WO2018019108A1 - 一种信号调制方法和装置 - Google Patents

一种信号调制方法和装置 Download PDF

Info

Publication number
WO2018019108A1
WO2018019108A1 PCT/CN2017/091958 CN2017091958W WO2018019108A1 WO 2018019108 A1 WO2018019108 A1 WO 2018019108A1 CN 2017091958 W CN2017091958 W CN 2017091958W WO 2018019108 A1 WO2018019108 A1 WO 2018019108A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse waveform
symbols
symbol
signal
transmitted
Prior art date
Application number
PCT/CN2017/091958
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
吕长伟
张莎莎
Original Assignee
深圳超级数据链技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超级数据链技术有限公司 filed Critical 深圳超级数据链技术有限公司
Priority to EP17833411.6A priority Critical patent/EP3490205A4/en
Priority to JP2019503269A priority patent/JP6888076B2/ja
Priority to KR1020197005114A priority patent/KR102151514B1/ko
Publication of WO2018019108A1 publication Critical patent/WO2018019108A1/zh
Priority to US16/256,894 priority patent/US10742456B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03254Operation with other circuitry for removing intersymbol interference
    • H04L25/03261Operation with other circuitry for removing intersymbol interference with impulse-response shortening filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • H04L25/0384Design of pulse shapes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation

Definitions

  • the invention belongs to the field of communications, and in particular relates to a signal modulation method and device.
  • ISI Inter Symbol Interference
  • a Nyquist criterion that can avoid ISI is proposed in the field of communication, and a raised cosine filter that satisfies the Nyquist criterion is proposed.
  • the Nyquist criterion without ISI transmission becomes A guiding guideline for communication system design.
  • the Nyquist criterion can effectively avoid ISI inter-code interference and reduce the complexity of detection, in the Nyquist system, in order to satisfy the Nyquist criterion, it is inevitable to introduce excess bandwidth, resulting in spectral efficiency. And; because, in the currently used communication modulation method, when each symbol is separately transmitted, there is no ISI inter-symbol interference, but there is no coding constraint relationship between the transmitted symbols, which is not conducive to improving the signal's ability to resist noise and fading.
  • an embodiment of the present invention provides a signal modulation method, where the method includes:
  • each pulse waveform is associated with n symbols (n>1), and each symbol has a width of ⁇ ,
  • Each of the consecutive n symbols in the symbol stream to be transmitted and the pulse waveform are operated in accordance with a predetermined operation manner to generate a correlation signal between the symbol and the pulse waveform.
  • the predetermined operation mode is a convolution operation, and each of the consecutive n symbols and the pulse waveform in the symbol stream to be transmitted are The predetermined operation mode performs the operation, and the step of generating the associated signal of the symbol and the pulse waveform includes:
  • the predetermined operation mode is a multiplication operation, and the consecutive n symbols and the pulse waveform in the symbol stream to be transmitted are predetermined
  • the operation mode performs the operation, and the steps of generating the associated signal of the symbol and the pulse waveform include:
  • the symbol S i is represented as Where A represents the amplitude, w represents the angular frequency, t represents time, and ⁇ i represents the phase, and the associated signal generated by each of the consecutive n symbols in the symbol stream and the pulse waveform is: Where A' represents the magnitude of the associated signal.
  • the predetermined operation manner includes an addition operation, a subtraction operation, a multiplication operation, or an operation of a predetermined function relationship.
  • an embodiment of the present invention provides a signal modulation apparatus, where the apparatus includes:
  • a pulse waveform generating unit configured to generate a pulse waveform of the transmission signal, wherein the pulse waveform has a width of ⁇ , wherein each pulse waveform is associated with n symbols (n>1), and each symbol has a width of ⁇ ,
  • an operation unit configured to calculate, according to a predetermined operation manner, every n consecutive symbols in the symbol stream to be transmitted, and generate a correlation signal between the symbol and the pulse waveform.
  • the predetermined operation mode is a convolution operation
  • the operation unit is specifically configured to:
  • the predetermined operation mode is a multiplication operation
  • the operation unit is specifically configured to:
  • the symbol S i is represented as Where A represents the amplitude, w represents the angular frequency, and ⁇ i represents the phase, and the associated signal generated by each of the consecutive n symbols in the symbol stream and the pulse waveform is: Where A' represents the magnitude of the associated signal.
  • the predetermined operation manner includes an addition operation, a subtraction operation, a multiplication operation, or an operation of a predetermined function relationship.
  • the pulse waveform is generated by generating a pulse waveform including a width of n symbols Computation with a continuous n symbols according to a predetermined operation manner, so that the symbols in each symbol width among the generated associated signals include information of n symbols, and the number of symbols transmitted in the duration of each symbol width
  • the increase is beneficial to improve the spectral efficiency of the system, and the mutual constraint of the correlation between symbols, the information symbols are diffused into multiple symbols, which is beneficial to improve the signal's ability to resist noise and attenuation.
  • FIG. 1 is a flowchart of an implementation of a signal modulation method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a pulse waveform according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a waveform of a signal without ISI after modulation in the prior art
  • FIG. 4 is a flowchart of an implementation of a signal modulation method according to a first embodiment of the present invention
  • FIG. 5 is a schematic diagram of a model of a convolution operation according to a first embodiment of the present invention
  • FIG. 6 is a waveform diagram of signals after a convolution operation according to a first embodiment of the present invention.
  • FIG. 7 is a flowchart of an implementation of a signal modulation method according to a second embodiment of the present invention.
  • FIG. 8 is a model diagram of a multiplication operation according to a second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a signal modulation apparatus according to a third embodiment of the present invention.
  • An object of the present invention is to provide a signal modulation method, which is used to solve the problem of signal transmission in the prior art, in order to improve the accuracy of system transmission and avoid the influence of inter-symbol interference on system transmission, and generally use Nyquis. Special criteria, combined with the raised cosine filter that satisfies the Nyquist criterion law. Although the Nyquist criterion is used, combined with the raised cosine filter that satisfies the criterion, the inter-symbol interference ISI can be effectively avoided, and the detection complexity is reduced. However, the following problems still exist with this guideline:
  • the Nyquist system avoids the inter-symbol interference ISI as the design goal.
  • the detection complexity is effectively reduced, since each symbol is transmitted independently, the symbols are not correlated, which is not conducive to improving the signal against noise. And the ability to decline.
  • the present invention proposes a modulation scheme applied to all communication systems, combining coding and modulation, through all achievable mathematical models, including addition, subtraction, multiplication or others.
  • the function model forms mutual constraints between symbols, so that the formed communication system has the effects of high symbol transmission rate, narrow system bandwidth and high spectral efficiency.
  • due to the inherent coding constraints between the symbols the ability of the signal to combat noise and fading is also improved.
  • FIG. 1 is a schematic flowchart of an implementation process of a signal modulation method according to an embodiment of the present invention, which is described in detail as follows:
  • step S101 a pulse waveform of a transmission signal is generated, wherein the pulse waveform has a width of ⁇ , wherein each pulse waveform is associated with n symbols (n>1), and each symbol has a width of ⁇ .
  • the modulation method in the embodiment of the present invention can be applied to any domain, such as a time domain, a frequency domain, a coding domain, and the like.
  • FIG. 2 is a schematic diagram of a pulse waveform according to an embodiment of the present invention.
  • the width of the pulse waveform h(t) is ⁇ , wherein each pulse waveform is associated with n symbols (n>1). , each symbol has a width of ⁇ ,
  • n is 1, and only one symbol can be transmitted in one pulse waveform, and consecutive independent symbols are transmitted in the transmission channel, as shown in FIG. 3, the signal waveform without ISI which is commonly modulated in the prior art.
  • N represents the number of symbols contained in the data frame. Due to the waveform modulation process in the prior art, in order to satisfy the Nyquist criterion, it is inevitable to introduce an excess bandwidth.
  • embodiments of the present invention generate a pulse waveform of a transmission signal, and the width of the pulse is a sum of a plurality of symbol widths.
  • the number of symbols can be flexibly selected according to the user's modulation needs. When the number n of selected symbols is larger, the number of symbols transmitted in the same pulse waveform is larger, and the spectral efficiency is higher, and the number of associated symbols is larger within the same symbol width.
  • step S102 every n consecutive symbols in the symbol stream to be transmitted and the pulse waveform are calculated according to a predetermined operation manner to generate a correlation signal between the symbol and the pulse waveform.
  • the predetermined operation manner may include a convolution operation, an addition operation, a subtraction operation, a multiplication operation, or other functions.
  • Each of the consecutive n symbols in the symbol stream to be transmitted starts modulation coding from the first position of the symbol stream, and selects the first to the first in the symbol stream.
  • the n symbols are modulated with the pulse waveform, and then the second to n+1th symbols are selected to perform a modulation correlation operation with the pulse waveform, and so on, until the last symbol of the data frame is reached.
  • the continuous n symbols are selected to be modulated with the pulse waveform, so that when the receiving end demodulates the signal, continuous symbol stream data is obtained.
  • each successive n symbols are selected and modulated with the pulse waveform to obtain an association including n symbol information. signal.
  • the method further includes the step S103, sending the associated signal by using a transmission channel.
  • an associated signal generated by the n symbols and the pulse waveform can be obtained, and the symbol stream to be transmitted is continuously modulated.
  • the continuous associated signal corresponding to the symbol stream to be transmitted is sent to the receiving end, and the associated signal of each pulse waveform is demodulated by the receiving end to obtain the transmitted symbol data.
  • the present invention spreads the symbols to be transmitted into a plurality of symbols (symbols in the same pulse waveform) by a predetermined operation model, causing correlation and constraint relationships between the symbols, which is advantageous for the signal to resist noise and fading. And multiple symbols can be transmitted in the same pulse waveform, which is beneficial to improve spectrum utilization efficiency.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 is a flowchart showing an implementation process of a signal modulation method by a convolution operation model according to a first embodiment of the present invention, which is described in detail as follows:
  • step S401 a pulse waveform of a transmission signal is generated, wherein the pulse waveform has a width of ⁇ , wherein each pulse waveform is associated with n symbols (n>1), and each symbol has a width of ⁇ .
  • the pulse waveform is as shown in FIG. 2.
  • step S402 according to the convolution expression:
  • the symbol stream S to be transmitted is convoluted with the pulse waveform h.
  • the model of the convolution operation is as shown in FIG. 5.
  • the continuous process of convolving every n symbols with the pulse waveform can be expressed as:
  • step S403 the associated signal is transmitted through a transport channel.
  • the waveform of the signal after the convolution operation is as shown in Fig. 6, where N represents the number of symbols included in the data frame, and the width of each symbol
  • the information actually contains n symbols, that is, the correlation of symbols is realized. Also due to the width of each symbol
  • the number of symbols transmitted within is increased, so the transmission rate of the entire system becomes faster.
  • the inter-correlation of the symbols not only does not extend the system bandwidth, but also has no problem of excess bandwidth between the symbols in the embodiments of the present invention compared to the Nyquist transmission system, and the bandwidth of the system is only related to the pulse waveform. The bandwidth is related.
  • the essence of coding is the diffusion of symbols. The relationship between symbols creates a mutually constrained relationship, and the information symbols are spread into multiple code character numbers, which is beneficial to improve signal anti-noise and The ability to decline.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 7 is a flowchart showing an implementation process of a signal modulation method by a multiplication operation model according to a second embodiment of the present invention, which is described in detail as follows:
  • step S701 a pulse waveform of a transmission signal is generated, wherein the pulse waveform has a width of ⁇ , wherein each pulse waveform is associated with n symbols (n is an integer greater than 1), and each symbol has a width of ⁇ .
  • the symbol stream S to be transmitted is multiplied with the pulse waveform h.
  • the model of the multiplication operation is shown in Fig. 8.
  • the process of multiplying the continuous every n symbols by the pulse waveform can be expressed as:
  • each symbol can be represented as Where A represents the amplitude, w represents the angular frequency, and ⁇ i represents the phase, then the result of multiplication of each symbol is expressed as A' indicates the amplitude of the associated signal, that is, not only the correlation between symbols but also the correlation of the phase domain is realized by multiplication.
  • step S703 the associated signal is transmitted through a transport channel.
  • Each symbol width obtained after multiplication The information actually contains n symbols, and the correlation between the symbols is realized. Also due to the width of each symbol The number of symbols transmitted within is increased, so the transmission rate of the entire system becomes faster.
  • the essence of coding is the diffusion of symbols. The relationship between symbols creates a mutually constrained relationship, and the information symbols are spread into multiple code character numbers, which is beneficial to improve signal anti-noise and The ability to decline.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 9 is a schematic structural diagram of a signal modulation apparatus according to a third embodiment of the present invention, which is described in detail as follows:
  • the pulse waveform generating unit 901 is configured to generate a pulse waveform of the transmission signal, where the width of the pulse waveform is ⁇ , wherein each pulse waveform is associated with n symbols (n>1), and each symbol has a width of ⁇ .
  • the operation unit 902 is configured to calculate, according to a predetermined operation manner, every n consecutive symbols in the symbol stream to be transmitted, and generate a correlation signal between the symbol and the pulse waveform;
  • the sending unit 903 is configured to send the correlation signal by using a transmission channel.
  • the predetermined operation mode is a convolution operation
  • the operation unit is specifically configured to:
  • the predetermined operation mode is a multiplication operation
  • the operation unit is specifically configured to:
  • the symbol S i is expressed as Where A represents the amplitude, w represents the angular frequency, and ⁇ i represents the phase, and the associated signal generated by each of the consecutive n symbols in the symbol stream and the pulse waveform is: A' represents the magnitude of the associated signal.
  • the predetermined operation mode includes an addition operation, a subtraction operation, a multiplication operation, or an operation of a predetermined function relationship.
  • the signal modulating device corresponds to the above-mentioned signal modulating method, and will not be repeatedly described herein.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention is essentially or a part contributing to the prior art or all or Portions may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention All or part of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明提供了一种信号调制方法,其特征在于,所述方法包括:生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号(n>1),每个符号的宽度为Δτ,Δτ=τ/n; 将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号;通过传输信道发送所述关联信号。本发明有利于提高系统的频谱效率,并且通过符号之间的相关性产生互相约束,将信息符号扩散到多个符号之中,有利于提高信号对抗噪声和衰减的能力。

Description

一种信号调制方法和装置 技术领域
本发明属于通信领域,尤其涉及一种信号调制方法和装置。
背景技术
在通信系统中,码间(或符号)干扰(Inter symbol Interference,ISI)是影响系统性能的一个关键因素。为了避免码间干扰,在通信领域提出了能够避免ISI的奈奎斯特准则,并且提出了满足奈奎斯特准则的升余弦滤波器,目前,无ISI传输的奈奎斯特准则,成了通信系统设计的一个指导性准则。
虽然奈奎斯特准则可以有效的避免ISI码间干扰,降低检测的复杂度,但是,在奈奎斯特系统中,为了满足奈奎斯特准则,不可避免的需要引入过剩带宽,导致频谱效率降低;并且,由于目前常用的通信调制方法中,每个符号单独发送时,不存在ISI码间干扰,但传输的符号间没有编码约束关系,不利于提高信号对抗噪声和衰落的能力。
发明内容
本发明的目的在于提供一种信号调制方法和装置,以解决现有技术的信号调制方法中,容易引入过剩带宽,导致频谱效率降低,并且不利于提高信号对抗噪声和衰减能力的问题。
第一方面,本发明实施例提供了一种信号调制方法,所述方法包括:
生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形 关联n个符号(n>1),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000001
将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号。
结合第一方面,在第一方面的第一种可能实现方式中,所述预定的运算方式为卷积运算,所述将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号步骤包括:
根据卷积表达式:Si×h0+Si-1×h1...+Si-n+1×hn-1获取所述待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,i为整数,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符号个数,每个符号间隔Δτ。
结合第一方面,在第一方面的第二种可能实现方式中,所述预定的运算方式为乘法运算,所述将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号步骤包括:
根据乘法表达式:
Figure PCTCN2017091958-appb-000002
获取所述将待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符号个数。
结合第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式中,所述符号Si表示为
Figure PCTCN2017091958-appb-000003
其中A表示幅值,w表示角频率,t表示时间,θi表示相位,所述符号流中连续的每n个符号与所述脉冲波形生成的关联信号为:
Figure PCTCN2017091958-appb-000004
其中,A'表示关联信号的幅值。
结合第一方面,在第一方面的第四种可能实现方式中,所述预定的运算方式包括加法运算、减法运算、乘法运算或者预定函数关系的运算。
第二方面,本发明实施例提供了一种信号调制装置,所述装置包括:
脉冲波形生成单元,用于生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号(n>1),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000005
运算单元,用于将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号。
结合第二方面,在第二方面的第一种可能实现方式中,所述预定的运算方式为卷积运算,所述运算单元具体用于:
根据卷积表达式:Si×h0+Si-1×h1...+Si-n+1×hn-1获取所述待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符号个数。
结合第二方面,在第二方面的第二种可能实现方式中,所述预定的运算方式为乘法运算,所述运算单元具体用于:
根据乘法表达式:
Figure PCTCN2017091958-appb-000006
获取所述将待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符号个数。
结合第二方面的第二种可能实现方式,在第二方面的第三种可能实现方式中,所述符号Si表示为
Figure PCTCN2017091958-appb-000007
其中A表示幅值,w表示角频率,θi表示相位,所述符号流中连续的每n个符号与所述脉冲波形生成的关联信号为:
Figure PCTCN2017091958-appb-000008
其中,A'表示关联信号的幅值。
结合第二方面,在第二方面的第四种可能实现方式中,所述预定的运算方式包括加法运算、减法运算、乘法运算或者预定函数关系的运算。
在本发明中,通过生成包括n个符号的宽度的脉冲波形,将所述脉冲波形 与连续的n个符号按照预定的运算方式进行运算,从而使得生成的关联信号中,每个符号宽度内的符号,包含了n个符号的信息,在每个符号宽度的时长内传输的符号数增多,有利于提高系统的频谱效率,并且通过符号之间的相关性产生互相约束,将信息符号扩散到多个符号之中,有利于提高信号对抗噪声和衰减的能力。
附图说明
图1是本发明实施例提供的信号调制方法的实现流程图;
图2为本发明实施例中所述的脉冲波形的示意图;
图3为现有技术中调制后的无ISI的信号波形示意图;
图4是本发明第一实施例提供的信号调制方法的实现流程图;
图5为本发明第一实施例提供的卷积运算的模型示意图;
图6为本发明第一实施例提供的卷积运算后的信号波形图;
图7是本发明第二实施例提供的信号调制方法的实现流程图;
图8为本发明第二实施例提供的乘法运算的模型图;
图9是本发明第三实施例提供的信号调制装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的目的在于提供一种信号调制方法,以解决现有技术中对于信号调制时,为了提高系统传输的准确率,避免码间干扰对系统传输带来的影响,通常使用奈奎斯特准则,并且结合满足奈奎斯特准则的升余弦滤波器的方 法。虽然使用奈奎斯特准则,结合满足该准则的升余弦滤波器,可以有效的避免码间干扰ISI,降低检测的复杂度。但是使用该准则仍然会存在以下的问题:
首先,奈奎斯特系统会损失频谱效率,这是它最大的缺陷。任何物理可实现的脉冲波形,为了满足奈奎斯特准则,不可避免的需要引入过剩带宽,导致频谱效率降低。
其次,奈奎斯特系统以避免码间干扰ISI为设计目标,虽然有效的降低了检测复杂度,但由于各个符号都是独立发送的,各个符号之间不相关联,不利于提高信号对抗噪声和衰落的能力。
为了解决上述问题,充分利用传输的频谱资源,本发明提出一种应用于所有通信系统中的调制方式,将编码与调制相结合,通过一切可实现的数学模型,包括加法、减法、乘法或者其它函数模型形成符号间的相互约束,从而使得形成的通信系统具有符号传输速率高,系统带宽窄,频谱效率高的效果。同时,由于符号间自有的编码约束关系,信号对抗噪声和衰落的能力也得到了提高。下面结合附图具体进行说明。
如图1所示为本发明实施例提供的信号调制方法的实现流程示意图,详述如下:
在步骤S101中,生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号(n>1),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000009
本发明实施例所述调制方法,可以应用于任何域,比如时域、频域、编码域等。
具体的,图2为本发明实施例中所述的脉冲波形的示意图,如图2所示,脉冲波形h(t)的宽度为τ,其中每个脉冲波形关联n个符号(n>1),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000010
在传统的调制方式中,n为1,在一个脉冲波形中只能够发送一个符号,将连续独立的符号在传输信道中发送,如图3为现有技术中常见调制后的无ISI的信号波形示意图,其中N表示数据帧包含的符号个数。由 于现有技术中的波形调制过程中,为了满足奈奎斯特准则,不可避免的需要引入过剩带宽。
为了避免剩余带宽的出现,本发明实施例通过生成发送信号的脉冲波形,并且所述脉冲的宽度为多个符号宽度之和。符号的个数可以根据用户的调制需要灵活选择。当选择的符号的个数n越大时,在同一个脉冲波形中发送的符号的个数也越多,频谱效率越高,在同一个符号宽度内,关联的符号的个数也越多。
在步骤S102中,将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号。
在本发明实施例中,所述预定的运算方式,可以包括卷积运算、加法运算、减法运算、乘法运算或者其它函数运算的方式。
其中,所述待发送的符号流中的连续的每n个符号,具体是指待发送的符号流中,从符号流的第一个位置开始调制编码,选择符号流中的第1个至第n个符号与脉冲波形进行调制,然后选择第2个至第n+1个符号与脉冲波形进行调制关联运算,依此类推,直至到达数据帧的最后一个符号。
选择连续的n个符号与脉冲波形进行调制,从而使得接收端对信号进行解调时,得到连续的符号流数据。
与现有技术中不同之处在于,本发明选用了包括n个符号宽度的脉冲波形后,相应的选择连续的每n个符号与所述脉冲波形进行调制运算,得到包括n个符号信息的关联信号。
对于符号流中的所有符号数据,只需要按照符号流中符号的编号,每n个符号与一个脉冲波形进行调制,即可完成对符号流中的所有符号数据调制。
优选的一种实施方式中,所述方法还包括步骤S103,通过传输信道发送所述关联信号。
将符号流中连续的n个符号与所述脉冲波形调制后,可得到n个符号与所述脉冲波形生成的关联信号,通过对待发送的符号流进行连续的调制,可得到 待发送的符号流所对应的连续的关联信号,将所述关联信号发送至接收端,通过接收端对每个脉冲波形的关联信号进行解调,即可得到发送的符号数据。
由于本发明通过预定的运算模型,将待发送的符号扩散到多个符号(在同一脉冲波形中的符号)之中,使这些符号间产生关联和约束关系,有利于信号对抗噪声和衰落的能力,并且在同一脉冲波形中可以发送多个符号,有利于提高频谱利用效率。
实施例一:
图4示出了本发明第一实施例提供的通过卷积运算模型进行信号调制方法的实现流程,详述如下:
在步骤S401中,生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号(n>1),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000011
所述脉冲波形如图2所示。
在步骤S402中,根据卷积表达式:
Si×h0+Si-1×h1...+Si-n+1×hn-1获取所述待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符号个数,每个符号间隔Δτ。
将待发送的符号流S与脉冲波形h做卷积运算,卷积运算的模型如图5所示,连续的每n个符号与脉冲波形卷积的过程可表示为:
Si×h0+Si-1×h1...+Si-n+1×hn-1,即通过加法运算对每一个符号乘以不同的系数,将符号之间相加实现符号间的相关性,真正的完成了符号间的卷积。
在步骤S403中,通过传输信道发送所述关联信号。
卷积运算后的信号波形图如附图6所示,其中N表示数据帧包含的符号个数,每个符号宽度
Figure PCTCN2017091958-appb-000012
内实际包含了n个符号的信息,即实现了符号的相关性。 同时由于每个符号宽度
Figure PCTCN2017091958-appb-000013
内传输的符号数变多,因此整个系统的传输速率变快。符号之间相互关联不仅不会扩展系统带宽,而且相比于奈奎斯特传输系统,本发明实施例所述符号之间相互关联还不存在过剩带宽的问题,其系统的带宽仅与脉冲波形的带宽有关。另外从编码的角度来讲,编码的实质就是符号的扩散,通过符号之间的相关性产生互相约束的关系,将信息符号扩散到多个码字符号之中去,有利于提高信号对抗噪声和衰落的能力。
实施例二:
图7示出了本发明第二实施例提供的通过乘法运算模型进行信号调制方法的实现流程,详述如下:
在步骤S701中,生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号(n为大于1的整数),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000014
在步骤S702中,根据乘法表达式:
Figure PCTCN2017091958-appb-000015
获取所述将待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],每个符号间隔Δτ。
将待发送的符号流S与脉冲波形h做乘法运算。乘法运算的模型如图8所示,连续的每n个符号与脉冲波形相乘的过程可表示为:
Figure PCTCN2017091958-appb-000016
假设每个符号可表示为
Figure PCTCN2017091958-appb-000017
其中A表示幅值,w表示角频率,θi表示相位,那么各个符号相乘后的结果表示为
Figure PCTCN2017091958-appb-000018
A'表示关联信号的幅值,即通过乘法运算不仅实现了符号间的相关性,也实现了相位域的相关性。
在步骤S703中,通过传输信道发送所述关联信号。
乘法运算后得到的每个符号宽度
Figure PCTCN2017091958-appb-000019
内实际包含了n个符号的信息,实现了符号之间的相关性。同时由于每个符号宽度
Figure PCTCN2017091958-appb-000020
内传输的符号数变多,因此整个系统的传输速率变快。另外从编码的角度来讲,编码的实质就是符号的扩散,通过符号之间的相关性产生互相约束的关系,将信息符号扩散到多个码字符号之中去,有利于提高信号对抗噪声和衰落的能力。
实施例三:
图9示出了本发明第三实施例提供的信号调制装置的结构示意图,详述如下:
本发明实施例所述信号调节装置,包括:
脉冲波形生成单元901,用于生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号(n>1),每个符号的宽度为Δτ,
Figure PCTCN2017091958-appb-000021
运算单元902,用于将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号;
发送单元903,用于通过传输信道发送所述关联信号。
优选的,所述预定的运算方式为卷积运算,所述运算单元具体用于:
根据卷积表达式:Si×h0+Si-1×h1...+Si-n+1×hn-1获取所述待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符号个数,每个符号间隔Δτ。
优选的,所述预定的运算方式为乘法运算,所述运算单元具体用于:
根据乘法表达式:
Figure PCTCN2017091958-appb-000022
获取所述将待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,所述h是脉冲波形函数,可表示为h=[h0,h1,…,hn-1],n表示关联的符 号个数,每个符号间隔Δτ。
优选的,所述符号Si表示为
Figure PCTCN2017091958-appb-000023
其中A表示幅值,w表示角频率,θi表示相位,所述符号流中连续的每n个符号与所述脉冲波形生成的关联信号为:
Figure PCTCN2017091958-appb-000024
A'表示关联信号的幅值。
优选的,所述预定的运算方式包括加法运算、减法运算、乘法运算或者预定函数关系的运算。
本发明实施例所述信号调制装置,与上述信号调制方法对应,在此不作重复描述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或 部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种信号调制方法,其特征在于,所述方法包括:
    生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号且n>1,每个符号的宽度为Δτ,
    Figure PCTCN2017091958-appb-100001
    将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号。
  2. 根据权利要求1所述方法,其特征在于,所述预定的运算方式为卷积运算,所述将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号步骤包括:
    根据卷积表达式:Si×h0+Si-1×h1...+Si-n+1×hn-1获取所述待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,i为整数,所述h是脉冲波形函数,所述h=[h0,h1,…,hn-1]。
  3. 根据权利要求1所述方法,其特征在于,所述预定的运算方式为乘法运算,所述将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号步骤包括:
    根据乘法表达式:
    Figure PCTCN2017091958-appb-100002
    获取所述将待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,i为整数,所述h是脉冲波形函数,所述h=[h0,h1,…,hn-1],n表示关联的符号个数。
  4. 根据权利要求3所述方法,其特征在于,所述符号Si表示为
    Figure PCTCN2017091958-appb-100003
    其中A表示幅值,w表示角频率,t为时间,θi表示相位,所述符号流中连续的 每n个符号与所述脉冲波形生成的关联信号为:
    Figure PCTCN2017091958-appb-100004
    其中,A'表示关联信号的幅值。
  5. 根据权利要求1所述方法,其特征在于,所述预定的运算方式包括加法运算、减法运算、乘法运算或者预定函数关系的运算。
  6. 一种信号调制装置,其特征在于,所述装置包括:
    脉冲波形生成单元,用于生成发送信号的脉冲波形,所述脉冲波形的宽度为τ,其中每个脉冲波形关联n个符号且n>1,每个符号的宽度为Δτ,
    Figure PCTCN2017091958-appb-100005
    运算单元,用于将待发送的符号流中连续的每n个符号与所述脉冲波形按照预定的运算方式进行运算,生成符号与所述脉冲波形的关联信号。
  7. 根据权利要求6所述装置,其特征在于,所述预定的运算方式为卷积运算,所述运算单元具体用于:
    根据卷积表达式:Si×h0+Si-1×h1...+Si-n+1×hn-1获取所述待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,i为整数,所述h是脉冲波形函数,所述h=[h0,h1,…,hn-1]。
  8. 根据权利要求6所述装置,其特征在于,所述预定的运算方式为乘法运算,所述运算单元具体用于:
    根据乘法表达式:
    Figure PCTCN2017091958-appb-100006
    获取所述将待发送的符号流中连续的每n个符号与所述脉冲波形生成的关联信号,其中:所述Si表示第i个符号,i为整数,所述h是脉冲波形函数,所述h=[h0,h1,…,hn-1]。
  9. 根据权利要求8所述装置,其特征在于,所述符号Si表示为
    Figure PCTCN2017091958-appb-100007
    其中A表示幅值,w表示角频率,t为时间,θi表示相位,所述符号流中连续的每n个符号与所述脉冲波形生成的关联信号为:
    Figure PCTCN2017091958-appb-100008
    其中,A'表示关联信号的幅值。
  10. 根据权利要求6所述装置,其特征在于,所述预定的运算方式包括加法运算、减法运算、乘法运算或者预定函数关系的运算。
PCT/CN2017/091958 2016-07-25 2017-07-06 一种信号调制方法和装置 WO2018019108A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17833411.6A EP3490205A4 (en) 2016-07-25 2017-07-06 SIGNAL MODULATION METHOD AND DEVICE
JP2019503269A JP6888076B2 (ja) 2016-07-25 2017-07-06 信号変調方法及び装置
KR1020197005114A KR102151514B1 (ko) 2016-07-25 2017-07-06 신호 변조 방법과 장치
US16/256,894 US10742456B2 (en) 2016-07-25 2019-01-24 Signal modulation method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610588938.9 2016-07-25
CN201610588938.9A CN107659520B (zh) 2016-07-25 2016-07-25 一种信号调制方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/256,894 Continuation US10742456B2 (en) 2016-07-25 2019-01-24 Signal modulation method and device

Publications (1)

Publication Number Publication Date
WO2018019108A1 true WO2018019108A1 (zh) 2018-02-01

Family

ID=61015593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091958 WO2018019108A1 (zh) 2016-07-25 2017-07-06 一种信号调制方法和装置

Country Status (6)

Country Link
US (1) US10742456B2 (zh)
EP (1) EP3490205A4 (zh)
JP (1) JP6888076B2 (zh)
KR (1) KR102151514B1 (zh)
CN (1) CN107659520B (zh)
WO (1) WO2018019108A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001529B (zh) * 2022-04-26 2023-09-01 清华大学 面向无线光的通信感知一体化波形的生成方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641376A (zh) * 2003-12-17 2005-07-20 株式会社电装 用于检测距离的设备和用于检测物体的设备
US20130215990A1 (en) * 2012-02-17 2013-08-22 Vecima Networks Inc. Multiple-Mode Digital Modulation Using a Single Square-Root Nyquist Pulse-Shaping Transmit Filter
US8917786B1 (en) * 2013-05-09 2014-12-23 Urbain Alfred von der Embse QLM communications faster than Shannon rate
CN104883205A (zh) * 2014-02-28 2015-09-02 英飞凌科技奥地利有限公司 使用负载调制的通信
CN105493460A (zh) * 2013-08-29 2016-04-13 交互数字专利控股公司 用于超奈奎斯特速率多载波调制的方法及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601114A (nl) * 1986-05-01 1987-12-01 Philips Nv Transmissiestelsel voor de overdracht van databits.
JP2007318325A (ja) * 2006-05-24 2007-12-06 Hitachi Ltd 無線通信装置及び無線通信システム
FR2928509B1 (fr) * 2008-03-04 2011-01-14 Commissariat Energie Atomique Procede de codage spatio-temporel differentiel.
US20110141918A1 (en) * 2009-09-13 2011-06-16 Research Institute Of Tsinghua University In Shenzhen Time division multiplexing method and system
CN101873279A (zh) * 2010-06-18 2010-10-27 南开大学 一种基于帧级采样数据的多模板超宽带信道估计方法
CN102033234A (zh) * 2010-12-16 2011-04-27 上海交通大学 卫星导航系统信号的改进二进制编码符号调制方法
US9001948B2 (en) * 2010-12-23 2015-04-07 Texas Instruments Incorporated Pulse shaping in a communication system
WO2013159207A1 (en) * 2012-04-27 2013-10-31 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and devices for communications systems using multiplied rate transmission
CN103401620A (zh) * 2013-07-02 2013-11-20 山东大学 一种新型的脉冲超宽带信号压缩检测系统及方法
EP3092755B1 (en) * 2013-12-09 2018-11-14 Telefonaktiebolaget LM Ericsson (publ) Pre-coding in a faster-than-nyquist transmission system
CN103616699B (zh) * 2013-12-11 2015-11-11 上海交通大学 基于最小频移键控脉冲的二进制编码符号优化调制方法
CN104954051A (zh) * 2014-03-31 2015-09-30 富士通株式会社 脉冲成型滤波器的优化装置、发射机及方法
CN105407064A (zh) * 2015-10-15 2016-03-16 中国人民解放军理工大学 动态网格多载波调制系统的整数倍频偏估计方法
CN105681237B (zh) * 2016-01-15 2018-10-16 电子科技大学 一种通过数字光预均衡法来抑制符号间串扰的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641376A (zh) * 2003-12-17 2005-07-20 株式会社电装 用于检测距离的设备和用于检测物体的设备
US20130215990A1 (en) * 2012-02-17 2013-08-22 Vecima Networks Inc. Multiple-Mode Digital Modulation Using a Single Square-Root Nyquist Pulse-Shaping Transmit Filter
US8917786B1 (en) * 2013-05-09 2014-12-23 Urbain Alfred von der Embse QLM communications faster than Shannon rate
CN105493460A (zh) * 2013-08-29 2016-04-13 交互数字专利控股公司 用于超奈奎斯特速率多载波调制的方法及设备
CN104883205A (zh) * 2014-02-28 2015-09-02 英飞凌科技奥地利有限公司 使用负载调制的通信

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490205A4 *

Also Published As

Publication number Publication date
EP3490205A4 (en) 2020-02-19
CN107659520A (zh) 2018-02-02
EP3490205A1 (en) 2019-05-29
JP6888076B2 (ja) 2021-06-16
KR102151514B1 (ko) 2020-09-03
US20190158323A1 (en) 2019-05-23
KR20190030742A (ko) 2019-03-22
US10742456B2 (en) 2020-08-11
JP2019526200A (ja) 2019-09-12
CN107659520B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
US11018715B2 (en) Reliable orthogonal spreading codes in wireless communication
JP4989656B2 (ja) 干渉信号を制限するようにされたマルチキャリア信号を送信する方法ならびに送信装置、受信方法ならびに受信装置、及び、これらに対応するコンピュータプログラム
TWI466473B (zh) 用於虛擬多輸入多輸出的上鏈雜訊評估
AU2012392501A1 (en) OFDM communications
CN113708855B (zh) 基于深度学习的otfs数据驱动接收方法、系统及介质
CN113259298B (zh) Otfs信号处理方法、装置、设备及存储介质
US8422614B2 (en) Methods and apparatus for determining timing in a wireless communication system
WO2018019108A1 (zh) 一种信号调制方法和装置
EP3197115B1 (en) Method, apparatus and system for sending and receiving preamble sequence
CN117397215A (zh) 基于码本线性化的预编码信号的生成和接收
JP2003521148A (ja) 符号分割多元接続受信器
CN110690980A (zh) 一种行情数据的发送算法
Chen et al. Partial fractional Fourier transform (PFRFT)-OFDM for underwater acoustic communication
US9407374B2 (en) Nonlinear fourier analysis in optical systems
CN112995073A (zh) 一种信道估计方法、装置、设备及存储介质
CN112134676A (zh) 参考信号传输方法、装置、通信节点及存储介质
JP3934650B2 (ja) マルチキャリア通信システム及びその受信装置
Anand et al. Visualization of OFDM using Microsoft Excel spreadsheet in linear algebra perspective
WO2023185719A1 (zh) 信号传输方法、装置、发送端设备及接收端设备
Han et al. Equalization of OSDM over time-varying channels based on diagonal-block-banded matrix enhancement
Rautio et al. String matching with stopper compression
KR100932124B1 (ko) 톤별 채널 등화기
JPH11150485A (ja) マルチキャリア信号受信装置
CN116828458A (zh) Mimo系统中的密钥生成方法及相关装置
Hatanaka et al. Architecture and implementation of fading compensation for dynamic spectrum access wireless communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005114

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017833411

Country of ref document: EP

Effective date: 20190225