WO2018016506A1 - 高周波焼入れ用鋼 - Google Patents

高周波焼入れ用鋼 Download PDF

Info

Publication number
WO2018016506A1
WO2018016506A1 PCT/JP2017/026008 JP2017026008W WO2018016506A1 WO 2018016506 A1 WO2018016506 A1 WO 2018016506A1 JP 2017026008 W JP2017026008 W JP 2017026008W WO 2018016506 A1 WO2018016506 A1 WO 2018016506A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
induction hardening
fatigue strength
content
less
Prior art date
Application number
PCT/JP2017/026008
Other languages
English (en)
French (fr)
Inventor
慶 宮西
根石 豊
聡 志賀
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/317,086 priority Critical patent/US20190300994A1/en
Priority to EP17831022.3A priority patent/EP3489381A4/en
Priority to KR1020197004437A priority patent/KR20190028781A/ko
Priority to CN201780044512.XA priority patent/CN109477180A/zh
Priority to JP2017567500A priority patent/JP6384630B2/ja
Publication of WO2018016506A1 publication Critical patent/WO2018016506A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to steel, and more particularly, to steel for induction hardening.
  • Mechanical parts typified by gears are usually required to have excellent surface fatigue strength. If the surface hardness is high, excellent surface fatigue strength can be obtained. For this reason, mechanical parts that require surface fatigue strength may be manufactured by induction hardening.
  • An example of a method for manufacturing such a machine part is as follows. Intermediate products are manufactured by hot forging steel for induction hardening. Induction hardening is applied to intermediate products. Machine parts represented by gears are manufactured by grinding the induction-hardened intermediate product.
  • patent 4014042 (patent document 1)
  • patent 5742801 (patent document 2).
  • the steel bar for induction hardening disclosed in Patent Document 1 is in mass%, C: 0.5 to 0.7%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5%, Cr: 0 to 1.5%, V: 0 to 0.10%, S: 0.002 to 0.05%, Al: 0.01 to 0.04%, and N: 0.005 to 0.012%
  • the balance is Fe and impurities, Ti in the impurities is 0.003% or less, O is 0.0015% or less, P is 0.02% or less, and the X value represented by the formula (1) Is 0.62 to 0.90.
  • the number of inclusions other than MnS having an A value represented by the formula (2) of 0.80 or more, an aspect ratio of 3 or less, and a minor axis of 10 ⁇ m or more is two. / Mm 2 or less.
  • C (%), Si (%), Mn (%), and Cr (%) mean the content (% by mass) of each element.
  • Mn MIN means the lower limit (% by mass) of the Mn concentration in the surface region
  • Mn AVE means the average value (% by mass) of the Mn concentration.
  • the hot-rolled steel bar or wire disclosed in Patent Document 2 is C: 0.55 to 0.75%, Si: 0.1 to 1.0%, Mn: 0.3 to 1.5 by mass%. %, Cr: 0.1-2.0%, S: 0.002-0.05%, Al: 0.01-0.2% and N: 0.002-0.01%, the balance Consists of Fe and impurities, and P and O in the impurities are P: 0.025% or less and O: 0.002% or less, respectively, and Fn1 represented by the following formula (1) is 2.5 to 2.5%. It has a chemical composition that is 4.5.
  • the pearlite fraction is 90% or more, the average interval of the pearlite lamella is 150 to 300 nm, and the standard deviation of the pearlite lamella interval is 25 nm or less.
  • Patent No. 4014042 Japanese Patent No. 5742801
  • An object of the present invention is to provide a steel for induction hardening that has excellent machinability and can obtain excellent surface fatigue strength and excellent bending fatigue strength after induction hardening.
  • the steel for induction hardening according to the present invention has a chemical composition of mass%, C: 0.53 to less than 0.58%, Si: 0.70 to 1.40%, Mn: 0.20 to 1.40%. , P: less than 0.020%, S: 0.025% or less, Al: more than 0.06% to 0.15%, N: 0.0020 to 0.0080%, O: 0.0015% or less, B : 0.0003 to 0.0040%, Ti: 0.010 to 0.050%, Ca: 0.0005 to 0.005%, Cr: 0 to 0.15%, Cu: 0 to 0.50%, Ni: 0 to 0.30%, Mo: 0 to 0.20%, V: 0 to 0.05%, and Nb: 0 to 0.05%, with the balance being Fe and impurities, (1) to (3) are satisfied.
  • the steel structure consists of ferrite and pearlite, and the area ratio of pearlite is 85% or more.
  • the ratio of the number of composite inclusions to the total number of Al 2 O 3 inclusions and composite inclusions is 20% or more.
  • the composite inclusions are inclusions containing 2.0% or more of SiO 2 and 2.0% or more of CaO by mass%, with the remaining 99% or more being Al 2 O 3 .
  • the content (mass%) of the corresponding element is substituted for each element symbol in the expressions (1) to (3).
  • the steel for induction hardening according to the present invention has excellent machinability, and excellent surface fatigue strength and excellent bending fatigue strength can be obtained after induction hardening.
  • FIG. 1 is a side view of a small roller test piece used in a roller pitching test in Examples.
  • FIG. 2 is a side view of an Ono-type rotating bending fatigue strength test piece used in the bending fatigue strength test in Examples.
  • FIG. 3 is a front view of a large roller test piece used in the roller pitching test in the examples.
  • the present inventors investigated and examined the machinability of the steel for induction hardening, the surface fatigue strength of the steel material (mechanical parts) after induction hardening, and the bending fatigue strength. As a result, the present inventors obtained the following knowledge.
  • the microstructure of the steel for induction hardening is composed of ferrite and pearlite and the area ratio of pearlite in the structure (hereinafter referred to as pearlite fraction) is high.
  • Fn1 C + Si / 7 + Mn / 5 + Cr / 9 + Mo / 2.5.
  • Fn1 is an index of hardenability. If Fn1 is too high, the hardenability becomes too high. In this case, bainite is generated in the microstructure of the steel for induction hardening, and the pearlite fraction is reduced. As a result, even if induction hardening is performed, a non-uniform structure is likely to be generated on the surface layer. If Fn1 is 0.98 or less, the microstructure of the steel for induction hardening is composed of ferrite (pre-deposited ferrite) and pearlite, and the pearlite fraction is 85% or more. “The microstructure consists of ferrite and pearlite” means that the total area ratio of ferrite (pre-deposited ferrite) and pearlite in the microstructure is 97% or more.
  • the microstructure of the steel for induction hardening is a ferrite pearlite structure and the pearlite fraction is 85% or more as described above.
  • Fn2 C + Si / 10 + Mn / 20 + Cr / 25.
  • Fn2 is an index of the pearlite fraction when the steel microstructure is a ferrite pearlite structure. The higher the Fn2, the higher the pearlite fraction in the microstructure. If Fn2 is less than 0.70, the pearlite fraction in the microstructure is less than 85%, and a non-uniform structure is likely to be generated on the surface layer of the steel material after induction hardening. As a result, the surface fatigue strength of the steel material decreases. If Fn2 is 0.70 or more, the pearlite fraction in the microstructure is 85% or more.
  • the cementite in the pearlite easily dissolves during induction hardening. If undissolved cementite remains in the steel material after induction hardening, a heterogeneous structure is formed, and the hardness of the steel material surface after induction hardening decreases. As a result, the surface fatigue strength of the steel material decreases.
  • Both Si and Cr narrow the pearlite lamella spacing, making it easier for solid cement to dissolve during induction hardening.
  • Si and Cr further increase the temper softening resistance of the steel. Therefore, both Si and Cr suppress the formation of cementite during tempering and increase the surface fatigue strength of the steel material.
  • Cr concentrates to cementite and stabilizes cementite. For this reason, if the Cr content is too high, cementite does not easily dissolve during induction heating, and undissolved cementite tends to remain in the steel after induction hardening. If Cr content is reduced with respect to Si content, stabilization of cementite by Cr can be suppressed while narrowing the lamella spacing of pearlite. In this case, the cementite is liable to be dissolved during induction heating, and the cementite does not easily remain after induction hardening.
  • Fn3 Cr / Si.
  • Fn3 is an index indicating the ease of solid solution of cementite during induction hardening. The lower Fn3, the easier the cementite in the steel dissolves during high-frequency heating. On the other hand, if Fn3 is high, the Cr content is too high relative to the Si content. In this case, cementite hardly dissolves during high-frequency heating. As a result, sufficient hardness cannot be obtained in the steel material after quenching. If Fn3 is 0.20 or less, cementite is sufficiently dissolved during induction hardening. Therefore, in the steel material after induction hardening, sufficient surface hardness is obtained and excellent surface fatigue strength is obtained.
  • the form of inclusions in the steel further affects the surface fatigue strength of the steel after induction hardening.
  • Steel for machine parts (for example, gears) manufactured by induction hardening is manufactured by Al deoxidation. Therefore, Al 2 O 3 inclusions are present in the steel. Al 2 O 3 inclusions tend to aggregate with each other during the solidification process, and a coarse Al 2 O 3 inclusion group (cluster) is likely to be formed. Such clusters reduce the surface fatigue strength of machine parts after induction hardening.
  • the Al 2 O 3 inclusion means an inclusion containing 99% or more of Al 2 O 3 by mass%.
  • Al 2 O 3 inclusions have low adhesion to the steel matrix (base material) interface. Therefore, a gap is likely to occur at the interface between the Al 2 O 3 inclusion and the matrix during plastic working such as hot forging. Such a gap reduces the surface fatigue strength of the machine part.
  • the present inventors investigated and examined a method for suppressing the aggregation of inclusions and improving the adhesion with the matrix interface. As a result, the present inventors obtained the following new knowledge.
  • inclusions containing 2.0% or more of SiO 2 and 2.0% or more of CaO by mass%, and the remaining 99% by mass or more of Al 2 O 3 are referred to as “composite”. It is defined as “inclusion”. Composite inclusions are less likely to aggregate and form clusters. Furthermore, the adhesiveness of the composite inclusion with the matrix interface is higher than that of the Al 2 O 3 inclusion. Therefore, if the ratio of the composite inclusions among the inclusions in the steel is increased, the surface fatigue strength can be increased.
  • the ratio of the number of composite inclusions to the total number of Al 2 O 3 inclusions and composite inclusions in steel is defined as the composite inclusion ratio Ra (%).
  • the composite inclusion ratio Ra is high, the ratio of Al 2 O 3 inclusions in the steel decreases. In this case, inclusions are less likely to aggregate and the generation of clusters is suppressed. Furthermore, as described above, the adhesion of the composite inclusion to the matrix interface is high. Therefore, if the Al 2 O 3 inclusions are reduced due to the formation of composite inclusions, the reduction in surface fatigue strength due to the decrease in adhesion between the matrix in steel and the inclusions is also suppressed.
  • the composite inclusion ratio Ra is 20% or more, the formation of Al 2 O 3 inclusion clusters can be sufficiently suppressed. Furthermore, the adhesion to the matrix inclusions in the steel is also improved. As a result, the surface fatigue strength of the steel material after induction hardening can be increased.
  • the C content is set to 0.53 to less than 0.58% in addition to the above-described regulation of the S content. If the C content is less than 0.53 to 0.58%, it is possible to improve the machinability of the steel for induction hardening while maintaining the surface fatigue strength of the steel material after induction hardening.
  • the steel for induction hardening according to the present embodiment completed based on the above knowledge has a chemical composition of mass%, C: 0.53 to less than 0.58%, Si: 0.70 to 1.40%, Mn : 0.20 to 1.40%, P: less than 0.020%, S: 0.025% or less, Al: more than 0.06% to 0.15%, N: 0.0020 to 0.0080%, O: 0.0015% or less, B: 0.0003 to 0.0040%, Ti: 0.010 to 0.050%, Ca: 0.0005 to 0.005%, Cr: 0 to 0.15%, Cu: 0 to 0.50%, Ni: 0 to 0.30%, Mo: 0 to 0.20%, V: 0 to 0.05%, and Nb: 0 to 0.05%, The balance is made of Fe and impurities and satisfies formulas (1) to (3).
  • the steel structure consists of ferrite and pearlite, and the area ratio of pearlite is 85% or more.
  • the ratio of the number of composite inclusions to the total number of Al 2 O 3 inclusions and composite inclusions is 20% or more.
  • the composite inclusions are inclusions containing 2.0% or more of SiO 2 and 2.0% or more of CaO by mass%, with the remaining 99% or more being Al 2 O 3 .
  • the content (mass%) of the corresponding element is substituted for each element symbol in the expressions (1) to (3).
  • the chemical composition is as follows: Cr: 0.05 to 0.15%, Cu: 0.03 to 0.50%, Ni: 0.03 to 0.30%, and Mo: 0.01 to 0.20% You may contain 1 type, or 2 or more types selected from the group which consists of.
  • the chemical composition may contain one or two selected from the group consisting of V: 0.01 to 0.05% and Nb: 0.01 to 0.05%.
  • the chemical composition of the induction hardening steel according to the present embodiment contains the following elements.
  • C 0.53 to less than 0.58% Carbon (C) increases the surface fatigue strength of steel after induction hardening. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, the cold workability and machinability of the steel deteriorate. Accordingly, the C content is 0.53 to less than 0.58%.
  • the minimum with preferable C content is 0.54%, More preferably, it is 0.55%.
  • the upper limit with preferable C content is 0.57%, More preferably, it is 0.56%.
  • Si 0.70 to 1.40% Silicon (Si) deoxidizes steel. Si further increases the resistance to temper softening and suppresses the precipitation of cementite in the tempering process performed after induction quenching. Si further modifies the Al 2 O 3 inclusions to form complex inclusions (Al 2 O 3 —CaO—SiO 2 ) that are difficult to aggregate. If a composite inclusion is formed, the surface fatigue strength of the steel material after induction hardening will increase. If the Si content is too low, these effects cannot be obtained. On the other hand, if Si content is too high, the cold workability of steel will fall. Therefore, the Si content is 0.70 to 1.40%. The minimum with preferable Si content is 0.72%, More preferably, it is 0.75%. The upper limit with preferable Si content is 1.38%, More preferably, it is 1.36%.
  • Mn 0.20 to 1.40%
  • Manganese (Mn) increases the surface fatigue strength of steel after induction hardening. If the Mn content is too low, this effect cannot be obtained. On the other hand, if Mn content is too high, the cold workability of steel will fall. If the Mn content is too high, further segregation occurs. As a result, the grain boundary strength decreases, and the surface fatigue strength and / or bending fatigue strength of the steel material decreases. If the Mn content is too high, the machinability of the steel may further decrease. Therefore, the Mn content is 0.20 to 1.40%.
  • the minimum with preferable Mn content is 0.30%, More preferably, it is 0.35%.
  • the upper limit with preferable Mn content is 1.30%, More preferably, it is 1.25%.
  • S 0.025% or less Sulfur (S) is inevitably contained. S forms inclusions (MnS) and improves the machinability of the steel for induction hardening. On the other hand, if the S content is too high, coarse inclusions (MnS) are generated, and the surface fatigue strength of the steel material after induction hardening decreases. Accordingly, the S content is 0.025% or less.
  • the upper limit with preferable S content is 0.024%, More preferably, it is 0.023%.
  • the minimum with preferable S content for improving machinability is 0.005%, More preferably, it is 0.008%.
  • Al more than 0.06% to 0.15%
  • Aluminum (Al) deoxidizes steel. Further, Al combines with N in the steel to form AlN, and suppresses the coarsening of crystal grains during induction hardening. Further, Al exists in the steel as solute Al. The solid solution Al is exposed on the surface of the cut steel material at the time of cutting and forms Al oxide. Of the steel material, Al oxide is also formed on the surface of the portion cut by the cutting tool. Therefore, the scraped portion is difficult to seize on the cutting tool. As a result, tool wear is suppressed and the machinability of the steel is increased. If the Al content is too low, these effects cannot be obtained.
  • the Al content is more than 0.06% to 0.15%.
  • the minimum with preferable Al content is 0.08%, More preferably, it is 0.085%, More preferably, it is 0.09%.
  • the upper limit with preferable Al content is 0.14%, More preferably, it is 0.13%.
  • the Al content referred to in this specification means the total Al content.
  • N 0.0020 to 0.0080% Nitrogen (N) combines with Al to form AlN, and suppresses the coarsening of crystal grains during induction hardening. As a result, the surface fatigue strength of the steel material after induction hardening is increased. If the N content is too low, this effect cannot be obtained. On the other hand, if the N content is too high, N excessively dissolves in the ferrite and causes strain aging, which decreases the cold workability of the steel. If the N content is too high, coarse nitrides are generated, and the surface fatigue strength of the steel material is reduced. Therefore, the N content is 0.0020 to 0.0080%. The minimum with preferable N content is 0.0025%, More preferably, it is 0.0030%. The upper limit with preferable N content is 0.0075%, More preferably, it is 0.0070%.
  • Oxygen (O) is an impurity. O combines with Al, Si, and Ca to form oxides (or oxide inclusions), and decreases the surface fatigue strength of the steel material after induction hardening. Therefore, the O content is 0.0015% or less.
  • the upper limit with preferable O content is 0.0014%, More preferably, it is 0.0013%.
  • the O content is preferably as low as possible.
  • B 0.0003 to 0.0040% Boron (B) dissolves in steel and enhances the hardenability of the steel. As a result, the surface fatigue strength of the steel material after induction hardening is increased. B further increases the grain boundary strength and increases the bending fatigue strength of the steel material after induction hardening. If the B content is low, the above effect cannot be obtained effectively. On the other hand, if the B content is too high, the above effect is saturated. Therefore, the B content is 0.0003 to 0.0040%. The minimum with preferable B content is 0.0005%, More preferably, it is 0.0008%. The upper limit with preferable B content is 0.0038%, More preferably, it is 0.0036%.
  • Titanium (Ti) forms Ti nitride or Ti carbide and suppresses the coarsening of crystal grains during induction hardening. As a result, the surface fatigue strength and bending fatigue strength of the steel material after induction hardening are increased. Ti further binds to N, thereby suppressing B from binding to N and securing the amount of dissolved B. If the Ti content is too low, the above effect cannot be obtained. On the other hand, if the Ti content is too high, coarse Ti nitrides and Ti carbides are generated, and the cold workability of the steel decreases. Therefore, the Ti content is 0.010 to 0.050%. The lower limit of the Ti content is 0.012%, more preferably 0.013%. The upper limit with preferable Ti content is 0.048%, More preferably, it is 0.046%.
  • Ca 0.0005 to 0.005%
  • Calcium (Ca) modifies Al 2 O 3 inclusions to form composite inclusions (Al 2 O 3 —CaO—SiO 2 ).
  • the surface fatigue strength of the steel material after induction hardening is increased by modifying the Al 2 O 3 inclusions to produce composite inclusions. If the Ca content is too low, this effect cannot be obtained. On the other hand, if the Ca content is too high, coarse inclusions increase, and the surface fatigue strength of the steel material after induction hardening decreases on the contrary. Therefore, the Ca content is 0.0005 to 0.005%.
  • the minimum with preferable Ca content is 0.0008%, More preferably, it is 0.0010%.
  • the upper limit with preferable Ca content is 0.0048%, More preferably, it is 0.0046%.
  • the balance of the chemical composition of the steel for induction hardening according to the present embodiment is composed of Fe and impurities.
  • the impurities are mixed from the ore as a raw material, scrap, or the manufacturing environment when the induction hardening steel is industrially manufactured, and adversely affects the induction hardening steel of the present embodiment. It means that it is allowed in the range that does not give.
  • the induction hardening steel according to this embodiment may further contain one or more selected from the group consisting of Cr, Cu, Ni, and Mo. All of these elements increase the surface fatigue strength of the steel material after induction hardening.
  • Chromium (Cr) is an optional element and may not be contained. When contained, Cr dissolves in the steel and increases the surface fatigue strength of the steel material after induction hardening. Further, Cr increases the temper softening resistance of steel and suppresses the formation of cementite during tempering. As a result, the surface fatigue strength of the steel material is increased. If Cr is contained even a little, the above effect can be obtained to some extent. On the other hand, Cr tends to concentrate in cementite and stabilizes cementite. If the cementite is stabilized, the cementite hardly dissolves during induction hardening, and the cementite may remain. Therefore, solid solution C cannot be obtained sufficiently and sufficient hardness of the steel material cannot be obtained.
  • Cr Chromium
  • the Cr content is 0 to 0.15%.
  • a preferable lower limit of the Cr content for further effectively obtaining the above effect is 0.01%, more preferably 0.05%, still more preferably 0.06%, still more preferably 0.07%. It is.
  • the upper limit with preferable Cr content is 0.14%, More preferably, it is 0.13%.
  • Cu 0 to 0.50% Copper (Cu) is an optional element and may not be contained. When contained, Cu dissolves in steel and increases the surface fatigue strength of the steel material after induction hardening. If Cu is contained even a little, this effect can be obtained to some extent. On the other hand, if the Cu content is too high, the above effect is saturated. Therefore, the Cu content is 0 to 0.50%.
  • the minimum with preferable Cu content for acquiring the said effect more effectively is 0.03%, More preferably, it is 0.04%.
  • the upper limit with preferable Cu content is 0.45%, More preferably, it is 0.40%.
  • Nickel (Ni) is an optional element and may not be contained. When contained, Ni is dissolved in steel and increases the surface fatigue strength of the steel material after induction hardening. If Ni is contained even a little, the above effect can be obtained to some extent. On the other hand, if the Ni content is too high, the above effect is saturated. Therefore, the Ni content is 0 to 0.30%.
  • a preferable lower limit of the Ni content for further effectively obtaining the above effect is 0.03%, and more preferably 0.04%.
  • the upper limit with preferable Ni content is 0.25%, More preferably, it is 0.20%.
  • Mo 0 to 0.20%
  • Molybdenum (Mo) is an optional element and may not be contained. When contained, Mo dissolves in the steel and increases the surface fatigue strength of the steel after induction hardening. If Mo is contained even a little, the above effect can be obtained to some extent. On the other hand, if the Mo content is too high, the pearlite ratio in the steel for induction hardening becomes less than 85%, and the cold workability decreases. Therefore, the Mo content is 0 to 0.20%.
  • the minimum with preferable Mo content for acquiring the said effect more effectively is 0.01%, More preferably, it is 0.02%.
  • the upper limit with preferable Mo content is 0.18%, More preferably, it is 0.16%.
  • the induction hardening steel according to the present embodiment may further contain one or more selected from V and Nb in place of part of Fe. All of these elements increase the surface fatigue strength and bending fatigue strength of the steel material.
  • V 0 to 0.05%
  • Vanadium (V) is an optional element and may not be contained. When contained, V forms V nitride, V carbide, or V carbonitride, and suppresses coarsening of crystal grains during induction hardening. As a result, the surface fatigue strength and bending fatigue strength of the steel material after induction hardening are increased. If V is contained even a little, the above effect can be obtained to some extent. On the other hand, if the V content is too high, coarse V precipitates are generated and the cold workability of the steel is reduced. Therefore, the V content is 0 to 0.05%.
  • the minimum with preferable V content is 0.01%, More preferably, it is 0.02%, More preferably, it is 0.025%, More preferably, it is 0.03%.
  • the upper limit with preferable V content is 0.045%, More preferably, it is 0.04%.
  • Niobium (Nb) is an optional element and may not be contained.
  • Nb forms Nb nitride, Nb carbide, or Nb carbonitride, and suppresses coarsening of crystal grains during induction hardening.
  • the surface fatigue strength and bending fatigue strength of the steel material after induction hardening are increased.
  • the Nb content is 0 to 0.05%.
  • the lower limit of the Nb content for effectively obtaining the above effect is 0.01%, more preferably 0.012%.
  • the upper limit with preferable Nb content is 0.048%, More preferably, it is 0.046%.
  • Fn1 C + Si / 7 + Mn / 5 + Cr / 9 + Mo / 2.5.
  • Fn1 is an index of hardenability. If Fn1 exceeds 1.05, the hardenability becomes too high. In this case, hard bainite is generated in a part of the microstructure of the steel for induction hardening after rolling. Therefore, a ferrite pearlite structure cannot be obtained. If Fn1 is 1.05 or less, the microstructure of the steel for induction hardening becomes a ferrite pearlite structure. However, if Fn1 exceeds 0.98, sufficient machinability cannot be obtained. Therefore, Fn1 is set to 0.98 or less.
  • the microstructure of the induction hardening steel becomes a ferrite pearlite structure, and further sufficient machinability is obtained.
  • the preferable upper limit of Fn1 is 0.97.
  • the preferable lower limit of Fn1 for obtaining hardenability is 0.72.
  • Fn2 C + Si / 10 + Mn / 20 + Cr / 25.
  • Fn2 is an index of the pearlite fraction when the steel microstructure is a ferrite pearlite structure. The higher the Fn2, the higher the pearlite fraction in the microstructure. If Fn2 is less than 0.70, the pearlite fraction in the microstructure is less than 85%. If Fn2 is 0.70 or more, the pearlite fraction in the microstructure is 85% or more. A preferred lower limit of Fn2 is 0.72.
  • both Si and Cr narrow the pearlite lamella spacing. If the pearlite lamella spacing is narrow, the cementite is liable to be dissolved during induction hardening.
  • Cr concentrates to cementite and stabilizes cementite. If Si content is raised with respect to Cr content, stabilization of cementite by Cr can be suppressed while narrowing the lamella spacing of pearlite. For this reason, the cementite is easily dissolved during induction heating, and the cementite does not easily remain after induction hardening.
  • Fn3 Cr / Si.
  • Fn3 is an index indicating the degree of cementite solid solution after induction hardening. The lower Fn3, the easier the cementite in the steel dissolves during high-frequency heating. On the other hand, if Fn3 is high, the Cr content is too high relative to the Si content. In this case, cementite hardly dissolves during high-frequency heating. As a result, cementite remains in the steel material after quenching, and the surface fatigue strength of the steel material after induction quenching decreases. If Fn3 is 0.20 or less, cementite is sufficiently dissolved after induction hardening. Therefore, sufficient hardness is obtained in the steel material after induction hardening, and excellent surface fatigue strength is obtained. A preferred lower limit of Fn3 is 0.18.
  • the microstructure is composed of ferrite (pre-deposited ferrite) and pearlite. That is, the microstructure of the steel for induction hardening according to the present embodiment is a ferrite pearlite structure.
  • the microstructure is composed of ferrite and pearlite means that the total area ratio of ferrite and pearlite in the microstructure is 97% or more.
  • the total area ratio of ferrite and pearlite is 100%.
  • the balance other than ferrite and pearlite in the microstructure is, for example, bainite.
  • the area ratio of pearlite in the microstructure is defined as the pearlite fraction (%).
  • the pearlite fraction is 85% or more.
  • the total area ratio of ferrite and pearlite in the microstructure and the pearlite fraction are measured by the following method.
  • a sample is taken from induction hardening steel.
  • the induction hardening steel is a steel bar or a wire
  • the center part of the radius R connecting the surface and the central axis (hereinafter referred to as R / 2 part)
  • R / 2 part Take a sample from Of the collected sample surfaces, the surface perpendicular to the rolling direction of the steel material is taken as the observation surface.
  • the observation surface is polished, it is etched with 3% nitric acid alcohol (nitral etchant).
  • the etched observation surface is observed with a 500 ⁇ optical microscope to generate photographic images with arbitrary five fields of view.
  • the size of each visual field is 200 ⁇ m ⁇ 200 ⁇ m.
  • each phase such as ferrite and pearlite has a different contrast for each phase. Therefore, each phase is specified based on the contrast.
  • the total area ([mu] m 2) of the ferrite in each field and determines the total area of perlite ( ⁇ m 2).
  • the ratio of the sum of the total area of ferrite and the total area of pearlite in all fields to the total area of all fields is defined as the total area ratio (%) of ferrite and pearlite.
  • the ratio of the total pearlite area in all visual fields to the total area in all visual fields is defined as the pearlite fraction (%).
  • the steel for induction hardening of this embodiment contains Al 2 O 3 inclusions and composite inclusions.
  • an inclusion containing 2.0% or more of SiO 2 and 2.0% or more of CaO, and the remaining 99% or more of Al 2 O 3 is a composite inclusion. It is defined as Note that the upper limit of SiO 2 contained in the composite inclusion is, for example, 15%, and the upper limit of CaO is, for example, 25%.
  • the ratio of the number of composite inclusions to the total number of Al 2 O 3 inclusions and composite inclusions is defined as a composite inclusion ratio Ra (%). If the composite inclusion ratio Ra is high, the Al 2 O 3 inclusion in the steel decreases. In this case, Al 2 O 3 inclusions are less likely to aggregate, and the generation of clusters is suppressed. Further, as described above, the adhesiveness of the Al 2 O 3 inclusions to the matrix interface is low, whereas the adhesiveness of the composite inclusions to the matrix interface is high. Therefore, if the number of Al 2 O 3 inclusions decreases due to the formation of composite inclusions, the decrease in surface fatigue strength due to the decrease in the adhesion between the matrix in steel and the inclusions is also suppressed.
  • Ra composite inclusion ratio
  • the composite inclusion ratio Ra is 20% or more, the formation of Al 2 O 3 inclusion clusters can be sufficiently suppressed. Furthermore, the adhesion to the matrix inclusions in the steel is also improved. As a result, the surface fatigue strength of the steel material after induction hardening can be increased.
  • Particular Al 2 O 3 inclusions and composite inclusions in the steel, and the measurement of complex inclusions ratio Ra may be performed in the following manner.
  • a sample is taken from any position of induction hardening steel.
  • the induction hardening steel is a steel bar or wire
  • a sample is taken from the R / 2 part of the steel bar or wire.
  • 20 visual fields evaluation area per visual field: 100 ⁇ m ⁇ 100 ⁇ m
  • SEM scanning electron microscope
  • an inclusion is specified in each field of view (referred to as an observation surface).
  • an Al 2 O 3 inclusion and a complex inclusion are identified using energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • the inclusion is specified as an Al 2 O 3 inclusion.
  • it contains 2.0% or more of SiO 2 and 2.0% or more of CaO, and the balance substantially consists of Al 2 O 3 and impurities (specifically, 99% of the balance)
  • the inclusion is defined as a composite inclusion.
  • inclusions to be specified are inclusions having a circle equivalent diameter of 10 ⁇ m or more.
  • the equivalent circle diameter means the diameter of a circle when the area of each inclusion is converted into a circle having the same area.
  • inclusions having an equivalent circle diameter of at least twice the beam diameter of EDX are included, the accuracy of elemental analysis is enhanced.
  • the beam diameter of EDX used for specifying inclusions is 5 ⁇ m.
  • inclusions having an equivalent circle diameter of less than 10 ⁇ m cannot improve the accuracy of elemental analysis by EDX.
  • Inclusions having a circle-equivalent diameter of less than 10 ⁇ m have a very small effect on fatigue strength. Therefore, in the present embodiment, Al 2 O 3 inclusions and composite inclusions having an equivalent circle diameter of 10 ⁇ m or more are measured.
  • the upper limit of the equivalent circle diameter of Al 2 O 3 inclusions and composite inclusions is not particularly limited, but is, for example, 200 ⁇ m.
  • the total number TN1 of Al 2 O 3 inclusions having a specified equivalent circle diameter of 10 ⁇ m or more is obtained in all 20 fields of view.
  • the total number TN2 of the composite inclusions having a specified circle equivalent diameter of 10 ⁇ m or more is obtained.
  • inclusions of the same composition are adjacent to each other and the shortest distance between the adjacent inclusions is less than 1 ⁇ m, these inclusions are regarded as one individual.
  • An example of a manufacturing method includes a steel making process in which molten steel is refined and cast to manufacture a material (slab or ingot), and a hot working process in which the material is hot worked to produce induction hardening steel.
  • a steel making process in which molten steel is refined and cast to manufacture a material (slab or ingot)
  • a hot working process in which the material is hot worked to produce induction hardening steel.
  • the steel making process includes a refining process and a casting process.
  • refining process In the refining process, first, refining in the converter (primary refining) is performed on the hot metal produced by a known method. Secondary refining is performed on the molten steel produced from the converter. In secondary refining, addition of alloy elements for component adjustment is performed to produce molten steel that satisfies the above chemical composition.
  • deoxidation treatment is performed by adding Al to the molten steel discharged from the converter.
  • the removal treatment is performed.
  • secondary refining is performed.
  • composite refining is performed.
  • LF Laddle Furnace
  • VAD Vauum Arc Degassing
  • RH Rasterstahl-Hausen vacuum degassing
  • final adjustment of other alloy components excluding Si and Ca is performed.
  • the next treatment (heating and holding step and final component adjusting step) is performed on the molten steel.
  • Vg Gas flow rate (Nm 3 / min)
  • M l Mass of molten steel in ladle (ton)
  • T l Molten steel temperature (K)
  • h 0 Gas blowing depth (m)
  • P 0 Molten steel Surface pressure (Pa)
  • stirring power value (W / ton)
  • uniform mixing time (s).
  • the holding time ts is less than twice the uniform mixing time ⁇ , the Al 2 O 3 inclusions are not sufficiently modified into composite inclusions. That is, the composite inclusion ratio Ra is as low as less than 20%. If the holding time ts is twice or more the uniform mixing time ⁇ , the composite inclusion ratio Ra becomes 20% or more on condition that other conditions are satisfied.
  • Si and Ca are added to the molten steel after the heating and holding step to produce a molten steel that satisfies the above chemical composition and formulas (1) to (3).
  • Si and Ca may be added to the molten steel as independent raw materials.
  • a Si—Ca alloy may be used as a raw material and added to the molten steel.
  • the composite inclusion ratio Ra in the steel for induction hardening can be made 20% or more.
  • Si is added before adding Al to the molten steel, composite inclusions are unlikely to be formed.
  • Si and Ca are added to molten steel in which Al 2 O 3 inclusions are present, the Al 2 O 3 inclusions are modified into composite inclusions, and composite inclusions are generated. Therefore, in this embodiment, Al is added to molten steel, and then Si and Ca are added.
  • the order of addition of Si and Ca is not particularly limited. Si and Ca may be added simultaneously. Either Si or Ca may be added first.
  • a raw material (slab or ingot) is manufactured using the molten steel manufactured by the refining process. Specifically, a slab is manufactured by continuous casting using molten steel. Or you may ingot by the ingot-making method using molten steel.
  • the manufactured material is hot-worked to manufacture a steel material for induction hardening (bar or wire).
  • the hot working step one or more hot workings are usually performed.
  • the first hot working is, for example, block rolling or hot forging, and the next hot working is finish rolling using a continuous rolling mill.
  • the continuous rolling mill horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a line.
  • the induction-quenched steel after finish rolling is cooled to room temperature. At this time, the average cooling rate until the surface temperature of the steel for induction hardening reaches 800 to 500 ° C. is set to 1 ° C./second or less.
  • bainite is generated in an area ratio of 3% or more in the microstructure of the steel for induction hardening after cooling.
  • the average cooling rate is 1 ° C./second or less, the microstructure of the steel for induction hardening after cooling is composed of ferrite and pearlite.
  • a preferred lower limit of the average cooling rate is 0.1 ° C./second.
  • a preferable upper limit of the average cooling rate is 0.7 ° C./second.
  • the steel for induction hardening according to the present embodiment can be manufactured.
  • hot forging is performed on the prepared steel for induction hardening to produce an intermediate product.
  • the intermediate product is subjected to stress relief annealing.
  • the intermediate product after hot forging or after stress-relieving annealing is cut to produce a crude product.
  • the machine part is a gear
  • the crude product has a coarse gear shape.
  • grinding is performed to manufacture mechanical parts represented by gears.
  • the above formulas (1) to (3) are satisfied, and the composite inclusion ratio Ra is 20% or more. Therefore, the machinability of the steel for induction hardening can be improved, and further, the surface fatigue strength and the bending fatigue strength of the machine part after induction hardening can be increased.
  • “-” In Table 1 means that the content of the corresponding element is at the impurity level. Specifically, “-” in the B content means that the B content is less than 0.0001%. “ ⁇ ” In the Ti content means that the Ti content is less than 0.001%. “ ⁇ ” In the Ca content means that the Ca content is less than 0.0001%. “ ⁇ ” In the Cr, Cu, Ni, and Mo contents means that the content of each element is less than 0.01%. “ ⁇ ” In the V content means that the V content is less than 0.001%. “ ⁇ ” In Nb content means that the Nb content is less than 0.001%.
  • the molten steel of each test number was manufactured by the following method. Primary refining in the converter was carried out under the same conditions for the hot metal produced by a known method.
  • a heating and holding step was performed.
  • the ratio (ts / ⁇ ) of the holding time ts to the uniform mixing time ⁇ in each test number was as shown in Table 1.
  • Si—Ca alloy was added to the molten steel other than test number 40 to adjust the Si content and the Ca content, and molten steel having the chemical composition shown in Table 1 was manufactured.
  • Slabs having a cross section of 400 mm ⁇ 300 mm were manufactured by the continuous casting method using molten steel of test numbers 1 to 41.
  • the manufactured slab was heated to 1250 ° C. Using the heated slab, a steel slab having a cross section of 162 mm ⁇ 162 mm was produced by split rolling. The manufactured steel slab was air-cooled to room temperature (25 ° C.). The billet was again heated to 1200 ° C. The heated steel slab was hot-rolled (finish rolled) using a continuous rolling mill and then cooled to produce a steel bar for induction hardening having a diameter of 70 mm.
  • Table 1 shows the average cooling rate until the surface temperature of the steel bar after finish rolling reaches 800 to 500 ° C. in each test number.
  • S (Slow) indicates that the average cooling rate until the surface temperature of the steel bar after finish rolling reaches 800 to 500 ° C. is 1 ° C./second or less for the corresponding test number. It shows that it was.
  • cooling rate column of Table 1
  • F (Fast) indicates that the average cooling rate until the surface temperature of the steel bar after finish rolling reaches 800 to 500 ° C. is 1 ° C./second for the corresponding test number. Indicates that it has been exceeded.
  • the chemical composition of the steel bar of each manufactured test number was measured. As a result, the chemical composition of the steel bars of each test number was as shown in Table 1.
  • a surface fatigue strength test piece simulating a machine part and a smooth Ono type rotating bending fatigue strength test piece (hereinafter simply referred to as a bending fatigue strength test piece) were produced by the following method.
  • the steel bars of each test number were heated at 1200 ° C. for 30 minutes.
  • hot forging was performed at a finishing temperature of 950 ° C. or higher to produce a round bar having a diameter of 35 mm.
  • a round bar having a diameter of 35 mm was machined to produce a small roller test piece as a surface fatigue strength test piece.
  • the small roller test piece for roller pitching test shown in FIG. 1 was prepared for each test number (the unit of dimensions in FIG. 1 is mm).
  • a round bar having a diameter of 35 mm was machined to produce a plurality of bending fatigue strength test pieces shown in FIG. 2 for each test number (the unit of dimensions in FIG. 2 is mm).
  • the bending fatigue strength test piece had a parallel part having a diameter of 6 mm and a length of 25 mm.
  • Induction hardening was performed on each manufactured test piece. Specifically, heating is performed on the peripheral surface FP (portion having a diameter of 26 mm) of the small roller test piece using a high-frequency heating device with an output of 20 kW and a frequency of 50 kHz so that the hardened layer depth is 1.5 mm. Induction hardening was performed by adjusting the time within a range of 5 to 10 seconds. At that time, the heating temperature of the surface of the small roller test piece was 900 to 1100 ° C. Then, tempering was performed at 160 ° C. for 1 hour using a normal heat treatment furnace. Furthermore, induction hardening was performed on the parallel part of the bending fatigue strength test piece under the same conditions as the small roller test piece, and then tempering was performed under the same conditions as the small roller test piece using a normal heat treatment furnace. .
  • the Vickers hardness of the peripheral surface FP (part with a diameter of 26 mm) of the small roller test piece of each test number after induction hardening and the parallel part of the bending fatigue strength test piece was measured. Specifically, a Vickers hardness test based on JIS Z 2244 (2009) was performed on any three points on the peripheral surface FP of the small roller test piece and the surface of the parallel portion of the bending fatigue strength test piece. The test force at this time was 9.8 N. The average value of the obtained Vickers hardness was defined as the Vickers hardness (HV) of the test number. The average value of Vickers hardness obtained with the bending fatigue strength test piece was the same as the average value of Vickers hardness obtained with the small roller test piece. Therefore, the Vickers hardness after induction hardening is an average value of the measurement results of the small roller test piece. The measurement results are shown in Table 2.
  • FIG. 3 is a front view of the large roller test piece (the unit of dimensions in FIG. 3 is mm).
  • the large roller test piece is made of steel that meets the standard of JIS SCM420H, and is manufactured by the general manufacturing process, that is, normalization, test piece processing, eutectoid carburization by gas carburizing furnace, low temperature tempering and polishing. It was done.
  • the conditions of the roller pitching test are as follows.
  • Tester Roller pitching tester Test piece: Small roller test piece (diameter 26 mm), Large roller test piece (diameter 130mm), contact part 150mmR Maximum surface thickness: 3600 MPa Number of tests: 6 Slip rate: -40% Small roller rotation speed: 2000rpm Peripheral speed: Small roller: 2.72 m / s, Large roller: 3.81 m / s Lubricating oil temperature: 90 ° C Oil used: Automatic oil
  • the number of tests in the roller pitching test was six.
  • an SN diagram was prepared with the surface pressure on the vertical axis and the number of repetitions until the occurrence of pitching on the horizontal axis. Among those pitching it did not occur until the number of repetitions 2.0 ⁇ 10 7 times, and the highest surface pressure and surface fatigue strength.
  • the area of the largest thing became 1 mm ⁇ 2 > or more among the locations where the surface of a small roller test piece was damaged, it defined as generating pitting.
  • Table 2 shows the surface fatigue strength obtained by the test. With respect to the surface fatigue strength in Table 2, the surface fatigue strength of test number 21 was used as a reference value (100%). And the surface fatigue strength of each test number was shown by ratio (%) with respect to a reference value. If the surface fatigue strength was 100% or more, it was judged that excellent surface fatigue strength was obtained.
  • the number of tests in the Ono rotary bending fatigue strength test was 7.
  • a fatigue test was performed in a room temperature air atmosphere, and an SN diagram was prepared with the vertical axis representing the load stress and the number of repetitions until breakage. Among those that were not damaged up to a repetition number of 1.0 ⁇ 10 7 times, the highest load stress was defined as bending fatigue strength.
  • Table 2 shows the bending fatigue strength obtained by the test.
  • the bending fatigue strength of test number 21 was set as a reference value (100%). And the bending fatigue strength of each test number was shown by ratio (%) with respect to a reference value. If the bending fatigue strength was 115% or more, it was judged that excellent bending fatigue strength was obtained.
  • a machinability evaluation test piece was prepared by the following method. Similar to the surface fatigue strength test pieces, the steel bars of each test number were heated at 1200 ° C. for 30 minutes. Next, hot forging was performed on the heated steel bar to produce a round bar having a diameter of 35 mm. The finishing temperature during hot forging was 950 ° C. or higher. A round bar produced by hot forging was machined to finish a disk-shaped test piece (hereinafter referred to as a machinability test piece) having a diameter of 30 mm and a height of 15 mm.
  • a machinability test piece disk-shaped test piece having a diameter of 30 mm and a height of 15 mm.
  • Machineability evaluation test A machinability evaluation test by drilling was performed on the fabricated machinability test piece. Specifically, drilling was performed at a constant cutting speed until the total depth of the processed holes reached 1000 mm. When the drilled hole depth was 1000 mm, the drilling was once terminated. Then, the cutting speed was further increased and set, and drilling was performed again at the set cutting speed until the total depth of the processed holes reached 1000 mm. Similarly, drilling was performed sequentially while increasing the cutting speed, and the maximum cutting speed (m / min) at which the total depth of the processed holes was 1000 mm or more was obtained. The maximum cutting speed is normally used as an evaluation index of the tool life, and it can be determined that the tool life is better as the maximum cutting speed is higher. The maximum cutting speed was determined for each test number.
  • the drilling conditions of the machinability evaluation test are as follows, and water-soluble cutting oil was used at the time of drilling.
  • Cutting drill ⁇ 3mm high-speed drill
  • Cutting speed 10-90m / min
  • Feed 0.25mm / rev
  • Table 2 shows the machinability evaluation obtained by the test.
  • the machinability evaluation of test number 21 was set as a reference value (100%). And the machinability evaluation of each test number was shown by ratio (%) with respect to a reference value. If the maximum cutting speed was 135% or more, it was judged that excellent machinability was obtained.
  • the Si content was too low. Therefore, the Al 2 O 3 inclusions could not be sufficiently modified into composite inclusions, and the composite inclusion ratio Ra was less than 20%. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained.
  • the Mn content was too high. Therefore, bainite was generated in the structure after rolling, and the pearlite fraction was less than 85%.
  • the Vickers hardness of the steel material after induction hardening was less than 730HV.
  • the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained.
  • the machinability was less than 135%, and excellent machinability was not obtained.
  • test number 24 the Mn content was too low. Therefore, the strength of the steel material after induction hardening was low, and the Vickers hardness of the steel material after induction hardening was less than 730 HV. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained.
  • test number 25 the Cr content was too high. Therefore, the strength of the steel material after induction hardening was low, and the Vickers hardness of the steel material after induction hardening was less than 730 HV. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained. This is probably because cementite was not sufficiently dissolved during induction hardening, and martensite was not uniformly formed by quenching.
  • test number 26 the Al content was too high. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained. This is probably because a large amount of coarse Al 2 O 3 inclusions were generated.
  • test number 27 the Al content was too low. As a result, the machinability was less than 135%, and excellent machinability was not obtained.
  • test number 28 the B content was too low. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained. Furthermore, the bending fatigue strength was less than 115%, and an excellent bending fatigue strength was not obtained.
  • test number 29 the Ti content was too low. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained. Furthermore, the bending fatigue strength was less than 115%, and an excellent bending fatigue strength was not obtained.
  • test number 30 the Ca content was too high. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained. This is thought to be due to the formation of coarse oxide inclusions.
  • test number 40 the chemical composition was appropriate, and the expressions (1) to (3) were satisfied.
  • the order of addition of Al, Si, and Ca was not appropriate. Therefore, the composite inclusion ratio Ra was less than 20%. As a result, the surface fatigue strength was less than 100%, and excellent surface fatigue strength was not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

優れた切削性を有し、高周波焼入れ後において、優れた面疲労強度及び優れた曲げ疲労強度が得られる高周波焼入れ用鋼を提供する。本発明による高周波焼入れ用鋼は、質量%で、C:0.53~0.58%未満、Si:0.70~1.40%、Mn:0.20~1.40%、P:0.020%未満、S:0.025%以下、Al:0.06%超~0.15%、N:0.0020~0.0080%、O:0.0015%以下、B:0.0003~0.0040%、Ti:0.010~0.050%、及び、Ca:0.0005~0.005%を含有し、残部はFe及び不純物からなり、式(1)~(3)を満たす化学組成を有する。鋼組織はフェライト及びパーライトからなる。複合介在物の個数の比率は、20%以上である。 C+Si/7+Mn/5+Cr/9+Mo/2.5≦0.98 (1) C+Si/10+Mn/20+Cr/25≧0.70 (2) Cr/Si≦0.20 (3)

Description

高周波焼入れ用鋼
 本発明は、鋼に関し、さらに詳しくは、高周波焼入れ用鋼に関する。
 歯車に代表される機械部品は通常、優れた面疲労強度が求められる。表面の硬さが高ければ、優れた面疲労強度が得られる。そのため、面疲労強度が求められる機械部品は、高周波焼入れを実施して製造される場合がある。
 このような機械部品の製造方法の一例は次のとおりである。高周波焼入れ用鋼材を熱間鍛造して、中間品を製造する。中間品に対して高周波焼入れを実施する。高周波焼入れされた中間品に対して研削加工を実施して、歯車に代表される機械部品を製造する。
 上述の機械部品の疲労強度を改善する技術が、特許第4014042号(特許文献1)及び特許第5742801号(特許文献2)に提案されている。
 特許文献1に開示された高周波焼入れ用棒鋼は、質量%で、C:0.5~0.7%、Si:0.1~1.5%、Mn:0.2~1.5%、Cr:0~1.5%、V:0~0.10%、S:0.002~0.05%、Al:0.01~0.04%およびN:0.005~0.012%を含有し、残部はFeおよび不純物からなり、不純物中のTiが0.003%以下、Oが0.0015%以下、Pが0.02%以下で、(1)式で表されるX値が0.62~0.90である。この棒鋼の表層領域において、(2)式で表されるA値が0.80以上であり、アスペクト比が3以下で、且つ短径が10μm以上であるMnS以外の介在物の個数が2個/mm2以下である。ここで、式(1)はX=C(%)+0.11×Si(%)+0.07×Mn(%)+0.08×Cr(%)である。式(2)はA=(MnMIN/MnAVE)である。(1)式中のC(%)、Si(%)、Mn(%)、Cr(%)は、各元素の含有量(質量%)を意味する。(2)式中のMnMINは、表層領域におけるMn濃度の下限値(質量%)を意味し、MnAVEはMn濃度の平均値(質量%)を意味する。
 特許文献2に開示された熱間圧延棒鋼又は線材は、質量%で、C:0.55~0.75%、Si:0.1~1.0%、Mn:0.3~1.5%、Cr:0.1~2.0%、S:0.002~0.05%、Al:0.01~0.2%及びN:0.002~0.01%を含有し、残部はFe及び不純物からなり、不純物中のPおよびOがそれぞれ、P:0.025%以下及びO:0.002%以下で、さらに下記の式(1)で表されるFn1が2.5~4.5である化学組成を有する。組織において、パーライト分率が90%以上、パーライトラメラの平均間隔が150~300nmで、かつパーライトラメラ間隔の標準偏差が25nm以下である。式(1)は、Fn1=3Si+Mn+1.5Crであり、式(1)中の元素記号は、各元素の含有量(質量%)を意味する。
特許第4014042号 特許第5742801号
 特許文献1及び2で提案された鋼材でも、優れた面疲労強度が得られる。しかしながら、他の方法によっても、高周波焼入れ後の鋼材において、優れた面疲労強度が得られる方が好ましい。また、鋼材を用いて歯車を製造する場合、歯元部での優れた曲げ疲労強度も求められる。鋼材を用いて歯車等の機械部品を製造する場合さらに、優れた切削性も求められる。
 本発明の目的は、優れた切削性を有し、高周波焼入れ後において、優れた面疲労強度及び優れた曲げ疲労強度が得られる高周波焼入れ用鋼を提供することである。
 本発明による高周波焼入れ用鋼は、化学組成が、質量%で、C:0.53~0.58%未満、Si:0.70~1.40%、Mn:0.20~1.40%、P:0.020%未満、S:0.025%以下、Al:0.06%超~0.15%、N:0.0020~0.0080%、O:0.0015%以下、B:0.0003~0.0040%、Ti:0.010~0.050%、Ca:0.0005~0.005%、Cr:0~0.15%、Cu:0~0.50%、Ni:0~0.30%、Mo:0~0.20%、V:0~0.05%、及び、Nb:0~0.05%を含有し、残部はFe及び不純物からなり、式(1)~式(3)を満たす。鋼組織が、フェライト及びパーライトからなり、パーライトの面積率が85%以上である。鋼中において、Al23介在物及び複合介在物の総個数に対する、複合介在物の個数の比率は、20%以上である。複合介在物は、質量%で、2.0%以上のSiO2及び2.0%以上のCaOを含有し、残部の99%以上がAl23である介在物である。
 C+Si/7+Mn/5+Cr/9+Mo/2.5≦0.98 (1)
 C+Si/10+Mn/20+Cr/25≧0.70 (2)
 Cr/Si≦0.20 (3)
 ここで、式(1)~式(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。
 本発明による高周波焼入れ用鋼は、優れた切削性を有し、高周波焼入れ後において、優れた面疲労強度及び優れた曲げ疲労強度が得られる。
図1は、実施例中のローラピッチング試験で使用した、小ローラ試験片の側面図である。 図2は、実施例中の曲げ疲労強度試験で使用した、小野式回転曲げ疲労強度試験片の側面図である。 図3は、実施例中のローラピッチング試験で使用した、大ローラ試験片の正面図である。
 本発明者らは、高周波焼入れ用鋼の切削性と、高周波焼入れ後の鋼材(機械部品)の面疲労強度、及び、曲げ疲労強度とについて調査、検討を行った。その結果、本発明者らは次の知見を得た。
 (1)高周波焼入れ後の鋼材の面疲労強度を高めるためには、高周波焼入れ後の鋼材の表面硬さを高めることが有効である。表面硬さを高めるには、高周波焼入れにより、鋼材表層のミクロ組織を均一な焼入れ組織(マルテンサイト)とするのが好ましい。鋼材の表層組織にフェライト等が残存する等、表層組織が不均一組織となれば、表面硬さが低くなり、面疲労強度が低下する。
 高周波焼入れにより均一な焼入れ組織を得るためには、高周波焼入れ用鋼のミクロ組織がフェライト及びパーライトからなり、組織中のパーライトの面積率(以下、パーライト分率という)が高い方が好ましい。
 Fn1=C+Si/7+Mn/5+Cr/9+Mo/2.5と定義する。Fn1は焼入れ性の指標である。Fn1が高すぎれば、焼入れ性が高くなり過ぎる。この場合、高周波焼入れ用鋼のミクロ組織にベイナイトが生成し、パーライト分率が低下する。その結果、高周波焼入れを実施しても、表層に不均一組織が生成しやすい。Fn1が0.98以下であれば、高周波焼入れ用鋼のミクロ組織がフェライト(初析フェライト)及びパーライトからなり、パーライト分率が85%以上となる。「ミクロ組織がフェライト及びパーライトからなる」とは、ミクロ組織中におけるフェライト(初析フェライト)及びパーライトの総面積率が97%以上であることを意味する。
 (2)高周波焼入れにより均一な焼入れ組織を得るためには、上述のとおり、高周波焼入れ用鋼のミクロ組織をフェライト・パーライト組織とし、かつ、パーライト分率を85%以上にするのが好ましい。
 Fn2=C+Si/10+Mn/20+Cr/25と定義する。Fn2は、鋼のミクロ組織がフェライト・パーライト組織である場合のパーライト分率の指標である。Fn2が高いほど、ミクロ組織中のパーライト分率が高まる。Fn2が0.70未満であれば、ミクロ組織中のパーライト分率が85%未満となり、高周波焼入れ後の鋼材の表層に、不均一組織が生成しやすい。その結果、鋼材の面疲労強度が低下する。Fn2が0.70以上であれば、ミクロ組織中のパーライト分率が85%以上となる。
 (3)高周波焼入れによって均一な焼入れ組織を得るためにはさらに、高周波焼入れ時に、パーライト中のセメンタイトが容易に固溶するのが好ましい。高周波焼入れ後の鋼材に未固溶のセメンタイトが残存すれば、不均一組織が形成され、高周波焼入れ後の鋼材表面の硬さが低下する。その結果、鋼材の面疲労強度が低下する。
 Si及びCrはいずれも、パーライトのラメラ間隔を狭くして、高周波焼入れ時にセメンタイトを固溶しやすくする。Si及びCrはさらに、鋼の焼戻し軟化抵抗を高める。そのため、Si及びCrはいずれも、焼戻し時のセメンタイトの生成を抑制し、鋼材の面疲労強度を高める。しかしながら、Crはセメンタイトに濃化して、セメンタイトを安定化する。そのため、Cr含有量が高すぎれば、高周波加熱時にセメンタイトが固溶しにくく、高周波焼入れ後の鋼材に未固溶のセメンタイトが残存しやすい。Si含有量に対してCr含有量を低減すれば、パーライトのラメラ間隔を狭くしつつ、Crによるセメンタイトの安定化を抑制できる。この場合、高周波加熱時にセメンタイトが固溶しやすくなり、かつ、高周波焼入れ後にセメンタイトが残存しにくい。
 Fn3=Cr/Siと定義する。Fn3は高周波焼入れ時のセメンタイトの固溶しやすさを示す指標である。Fn3が低いほど、高周波加熱時に鋼中のセメンタイトが固溶しやすい。一方、Fn3が高ければ、Si含有量に対してCr含有量が高すぎる。この場合、高周波加熱時にセメンタイトが固溶しにくい。その結果、焼入れ後の鋼材において、十分な硬さが得られない。Fn3が0.20以下であれば、高周波焼入れ時にセメンタイトが十分に固溶する。そのため、高周波焼入れ後の鋼材において、十分な表面硬さが得られ、優れた面疲労強度が得られる。
 (4)高周波焼入れ後の鋼材の面疲労強度にはさらに、鋼中の介在物の形態が影響する。高周波焼入れされて製造される機械部品(たとえば歯車)用の鋼は、Al脱酸で製造される。したがって、鋼中にはAl23介在物が存在する。Al23介在物は凝固過程で互いに凝集しやすく、粗大なAl23介在物群(クラスタ)を形成しやすい。このようなクラスタは、高周波焼入れ後の機械部品の面疲労強度を低下する。なお、本明細書において、Al23介在物とは、質量%で、Al23を99%以上含有する介在物を意味する。
 Al23介在物はさらに、鋼のマトリクス(母材)界面との密着性が低い。そのため、熱間鍛造等の塑性加工時において、Al23介在物とマトリクスとの界面に隙間が生じやすい。このような隙間は、機械部品の面疲労強度を低下する。
 以上の知見に基づいて、本発明者らは、介在物の凝集を抑制し、マトリクス界面との密着性を高める方法について調査、検討を行った。その結果、本発明者らは、次の新たな知見を得た。
 本明細書において、質量%で、2.0%以上のSiO2と、2.0%以上のCaOとを含有し、残部の99質量%以上がAl23である介在物を、「複合介在物」と定義する。複合介在物は、凝集しにくく、クラスタを形成しにくい。さらに、複合介在物のマトリクス界面との密着性はAl23介在物よりも高い。したがって、鋼中の介在物のうち、複合介在物の比率を高めれば、面疲労強度を高めることができる。
 本明細書において、鋼中のAl23介在物及び複合介在物の総個数に対する、複合介在物の個数の比率を複合介在物比率Ra(%)と定義する。
 複合介在物比率Raが高ければ、鋼中のAl23介在物の割合が少なくなる。この場合、介在物が凝集しにくくなり、クラスタの生成が抑制される。さらに上述のとおり、複合介在物のマトリクス界面に対する密着性は高い。そのため、複合介在物の生成によりAl23介在物が少なくなれば、鋼中のマトリクスと介在物との密着性の低下に起因した面疲労強度の低下も抑制される。
 複合介在物比率Raが20%以上であれば、Al23介在物のクラスタの生成を十分に抑制できる。さらに、鋼中のマトリクスの介在物との密着性も改善される。その結果、高周波焼入れ後の鋼材の面疲労強度を高めることができる。
 (5)高周波焼入れ後の鋼材の曲げ疲労強度を高めるためには、上述の条件に加えて、高周波焼入れ後の鋼材の粒界強度を高めることが有効である。Bを含有すればPの粒界偏析が抑制される。そのため、高周波焼入れ後の鋼材の粒界強度が高くなる。その結果、曲げ疲労強度が高まる。
 (6)高周波焼入れ用鋼の切削性を高めるために、Sを含有する。SはMnと結合してMnSを形成し、鋼の切削抵抗を低下する。その結果、鋼の切削性が高まる。一方、S含有量が高すぎれば、面疲労強度が低下する。本実施形態の高周波焼入れ用鋼の化学組成において、S含有量が0.025%以下であれば、面疲労強度の低下を抑えつつ、鋼の切削性を高めることができる。
 鋼の切削性をさらに高めるために、鋼の硬さを高めすぎないことが有効である。そこで、本実施形態による高周波焼入れ用鋼の化学組成において、上述のS含有量の規定に加えて、C含有量を0.53~0.58%未満とする。C含有量が0.53~0.58%未満であれば、高周波焼入れ後の鋼材の面疲労強度を維持しつつ、高周波焼入れ用鋼の切削性を高めることができる。
 (7)鋼の切削性をさらに高めるために、固溶Al量を高めることが有効である。固溶Al量が高い鋼に対して切削加工する場合、切削面において、固溶AlがAl酸化物を形成する。また、鋼材のうち、切削工具に削り取られた部分の表面にもAl酸化物が形成される。そのため、削り取られた部分は切削工具に焼付きにくい。その結果、切削工具の工具摩耗が抑制され、鋼の切削性が高まる。本発明による高周波焼入れ用鋼の化学組成において、Al含有量が0.06%超~0.15%であれば、上述のAl23介在物に利用されるAlだけでなく、固溶Alとして鋼中に存在するAlも十分に得られる。そのため、鋼の切削性が高まる。
 以上の知見に基づいて完成した本実施形態による高周波焼入れ用鋼は、化学組成が、質量%で、C:0.53~0.58%未満、Si:0.70~1.40%、Mn:0.20~1.40%、P:0.020%未満、S:0.025%以下、Al:0.06%超~0.15%、N:0.0020~0.0080%、O:0.0015%以下、B:0.0003~0.0040%、Ti:0.010~0.050%、Ca:0.0005~0.005%、Cr:0~0.15%、Cu:0~0.50%、Ni:0~0.30%、Mo:0~0.20%、V:0~0.05%、及び、Nb:0~0.05%を含有し、残部はFe及び不純物からなり、式(1)~式(3)を満たす。鋼組織が、フェライト及びパーライトからなり、パーライトの面積率が85%以上である。鋼中において、Al23介在物及び複合介在物の総個数に対する、複合介在物の個数の比率は、20%以上である。複合介在物は、質量%で、2.0%以上のSiO2及び2.0%以上のCaOを含有し、残部の99%以上がAl23である介在物である。
 C+Si/7+Mn/5+Cr/9+Mo/2.5≦0.98 (1)
 C+Si/10+Mn/20+Cr/25≧0.70 (2)
 Cr/Si≦0.20 (3)
 ここで、式(1)~式(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。
 上記化学組成は、Cr:0.05~0.15%、Cu:0.03~0.50%、Ni:0.03~0.30%、及び、Mo:0.01~0.20%からなる群から選択される1種又は2種以上を含有してもよい。
 上記化学組成は、V:0.01~0.05%、及び、Nb:0.01~0.05%からなる群から選択される1種又は2種を含有してもよい。
 以下、本実施形態による高周波焼入れ用鋼について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [化学組成]
 本実施形態による高周波焼入れ用鋼の化学組成は、次の元素を含有する。
 C:0.53~0.58%未満
 炭素(C)は、高周波焼入れ後の鋼材の面疲労強度を高める。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、鋼の冷間加工性及び切削性が低下する。したがって、C含有量は0.53~0.58%未満である。C含有量の好ましい下限は0.54%であり、さらに好ましくは0.55%である。C含有量の好ましい上限は0.57%であり、さらに好ましくは0.56%である。
 Si:0.70~1.40%
 シリコン(Si)は鋼を脱酸する。Siはさらに、焼戻し軟化抵抗を高め、高周波焼入れ後に行われる焼戻し処理において、セメンタイトの析出を抑制する。Siはさらに、Al23介在物を改質して、凝集しにくい複合介在物(Al23-CaO-SiO2)を形成する。複合介在物が形成されれば、高周波焼入れ後の鋼材の面疲労強度が高まる。Si含有量が低すぎれば、これらの効果が得られない。一方、Si含有量が高すぎれば、鋼の冷間加工性が低下する。したがって、Si含有量は0.70~1.40%である。Si含有量の好ましい下限は0.72%であり、さらに好ましくは0.75%である。Si含有量の好ましい上限は1.38%であり、さらに好ましくは1.36%である。
 Mn:0.20~1.40%
 マンガン(Mn)は高周波焼入れ後の鋼材の面疲労強度を高める。Mn含有量が低すぎれば、この効果が得られない。一方、Mn含有量が高すぎれば、鋼の冷間加工性が低下する。Mn含有量が高すぎればさらに、偏析が生じる。その結果、粒界強度が低下し、鋼材の面疲労強度及び/又は曲げ疲労強度が低下する。Mn含有量が高すぎればさらに、鋼の切削性が低下する場合がある。したがって、Mn含有量は0.20~1.40%である。Mn含有量の好ましい下限は0.30%であり、さらに好ましくは0.35%である。Mn含有量の好ましい上限は1.30%であり、さらに好ましくは1.25%である。
 P:0.020%未満
 リン(P)は不純物である。Pは粒界に偏析して粒界を脆化する。そのため、Pは高周波焼入れ後の鋼材の面疲労強度を低下する。したがって、P含有量は0.020%未満である。P含有量の好ましい上限は0.015%であり、さらに好ましくは0.012%である。P含有量はなるべく低い方が好ましい。
 S:0.025%以下
 硫黄(S)は不可避的に含有される。Sは介在物(MnS)を形成し、高周波焼入れ用鋼の切削性を高める。一方、S含有量が高すぎれば、粗大な介在物(MnS)が生成して、高周波焼入れ後の鋼材の面疲労強度が低下する。したがって、S含有量は0.025%以下である。S含有量の好ましい上限は0.024%であり、さらに好ましくは0.023%である。切削性を高めるためのS含有量の好ましい下限は0.005%であり、さらに好ましくは0.008%である。
 Al:0.06%超~0.15%
 アルミニウム(Al)は鋼を脱酸する。Alはさらに、鋼中のNと結合してAlNを形成し、高周波焼入れ時の結晶粒の粗大化を抑制する。Alはさらに、固溶Alとして鋼中に存在する。固溶Alは、切削加工時において、切削された鋼材表面に露出して、Al酸化物を形成する。鋼材のうち、切削工具に削り取られた部分の表面にもAl酸化物が形成される。そのため、削り取られた部分は切削工具に焼付きにくい。その結果、工具摩耗が抑制され、鋼の切削性が高まる。Al含有量が低すぎれば、これらの効果が得られない。一方、Al含有量が高すぎれば、粗大なAl23介在物や、複数のAl23介在物が凝集したAl23クラスタが多数生成し、高周波焼入れ後の鋼材の面疲労強度が低下する。したがって、Al含有量は0.06%超~0.15%である。Al含有量の好ましい下限は0.08%であり、より好ましくは0.085%であり、さらに好ましくは0.09%である。Al含有量の好ましい上限は0.14%であり、さらに好ましくは0.13%である。本明細書にいうAl含有量は、全Alの含有量を意味する。
 N:0.0020~0.0080%
 窒素(N)はAlと結合してAlNを形成し、高周波焼入れ時の結晶粒の粗大化を抑制する。その結果、高周波焼入れ後の鋼材の面疲労強度を高める。N含有量が低すぎれば、この効果が得られない。一方、N含有量が高すぎれば、Nが過剰にフェライトに固溶してひずみ時効を生じ、鋼の冷間加工性が低下する。N含有量が高すぎればさらに、粗大な窒化物が生成して、鋼材の面疲労強度が低下する。したがって、N含有量は0.0020~0.0080%である。N含有量の好ましい下限は0.0025%であり、さらに好ましくは0.0030%である。N含有量の好ましい上限は0.0075%であり、さらに好ましくは0.0070%である。
 O:0.0015%以下
 酸素(O)は不純物である。OはAl、Si及びCaと結合して酸化物(又は酸化物系介在物)を形成し、高周波焼入れ後の鋼材の面疲労強度を低下する。したがって、O含有量は0.0015%以下である。O含有量の好ましい上限は0.0014%であり、さらに好ましくは0.0013%である。O含有量はなるべく低い方が好ましい。
 B:0.0003~0.0040%
 ボロン(B)は鋼に固溶して鋼の焼入れ性を高める。その結果、高周波焼入れ後の鋼材の面疲労強度を高める。Bはさらに、粒界強度を高め、高周波焼入れ後の鋼材の曲げ疲労強度を高める。B含有量が低ければ、上記効果が有効に得られない。一方、B含有量が高すぎれば、上記効果が飽和する。したがって、B含有量は0.0003~0.0040%である。B含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0008%である。B含有量の好ましい上限は0.0038%であり、さらに好ましくは0.0036%である。
 Ti:0.010~0.050%
 チタン(Ti)は、Ti窒化物又はTi炭化物を形成して、高周波焼入れ時の結晶粒の粗大化を抑制する。その結果、高周波焼入れ後の鋼材の面疲労強度及び曲げ疲労強度が高まる。Tiはさらに、Nと結合することにより、BがNと結合するのを抑制し、固溶B量を確保する。Ti含有量が低すぎれば、上記効果が得られない。一方、Ti含有量が高すぎれば、粗大なTi窒化物、Ti炭化物が生成して、鋼の冷間加工性が低下する。したがって、Ti含有量は0.010~0.050%である。Ti含有量の下限は0.012%であり、さらに好ましくは0.013%である。Ti含有量の好ましい上限は0.048%であり、さらに好ましくは0.046%である。
 Ca:0.0005~0.005%
 カルシウム(Ca)は、Al23介在物を改質して、複合介在物(Al23-CaO-SiO2)を形成する。Al23介在物を改質して複合介在物を生成することにより、高周波焼入れ後の鋼材の面疲労強度を高める。Ca含有量が低すぎれば、この効果が得られない。一方、Ca含有量が高すぎれば、粗大な介在物が増加して、高周波焼入れ後の鋼材の面疲労強度がかえって低下する。したがって、Ca含有量は0.0005~0.005%である。Ca含有量の好ましい下限は0.0008%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0048%であり、さらに好ましくは0.0046%である。
 本実施形態による高周波焼入れ用鋼の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、高周波焼入れ用鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本実施形態の高周波焼入れ用鋼に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態による高周波焼入れ用鋼はさらに、Cr、Cu、Ni、及び、Moからなる群から選択される1種又は2種以上を含有してもよい。これらの元素はいずれも、高周波焼入れ後の鋼材の面疲労強度を高める。
 Cr:0~0.15%
 クロム(Cr)は任意元素であり、含有されなくてもよい。含有される場合、Crは鋼に固溶して、高周波焼入れ後の鋼材の面疲労強度を高める。Crはさらに、鋼の焼戻し軟化抵抗を高め、焼戻し時のセメンタイトの生成を抑制する。その結果、鋼材の面疲労強度が高まる。Crが少しでも含有されれば、上記効果がある程度得られる。一方、Crはセメンタイトに濃化しやすく、セメンタイトを安定化する。セメンタイトが安定化すれば、高周波焼入れ時にセメンタイトが固溶しにくく、セメンタイトが残存する場合がある。そのため、固溶Cが十分に得られず、十分な鋼材の硬さが得られない。その結果、鋼材の面疲労強度が低下する。したがって、Cr含有量は0~0.15%である。上記効果をさらに有効に得るためのCr含有量の好ましい下限は0.01%であり、より好ましくは0.05%であり、さらに好ましくは0.06%であり、さらに好ましくは0.07%である。Cr含有量の好ましい上限は0.14%であり、さらに好ましくは0.13%である。
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。含有される場合、Cuは鋼に固溶して、高周波焼入れ後の鋼材の面疲労強度を高める。Cuが少しでも含有されれば、この効果がある程度得られる。一方、Cu含有量が高すぎれば、上記効果が飽和する。したがって、Cu含有量は0~0.50%である。上記効果をさらに有効に得るためのCu含有量の好ましい下限は0.03%であり、さらに好ましくは0.04%である。Cu含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%である。
 Ni:0~0.30%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有される場合、Niは鋼に固溶して、高周波焼入れ後の鋼材の面疲労強度を高める。Niが少しでも含有されれば、上記効果がある程度得られる。一方、Ni含有量が高すぎれば、上記効果が飽和する。したがって、Ni含有量は0~0.30%である。上記効果をさらに有効に得るためのNi含有量の好ましい下限は0.03%であり、さらに好ましくは0.04%である。Ni含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。
 Mo:0~0.20%
 モリブデン(Mo)は任意元素であり、含有されなくてもよい。含有される場合、Moは鋼に固溶して、高周波焼入れ後の鋼材の面疲労強度を高める。Moが少しでも含有されれば、上記効果がある程度得られる。一方、Mo含有量が高すぎれば、高周波焼入れ用鋼材中のパーライト比率が85%未満となり、冷間加工性が低下する。したがって、Mo含有量は0~0.20%である。上記効果をさらに有効に得るためのMo含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%である。Mo含有量の好ましい上限は0.18%であり、さらに好ましくは0.16%である。
 本実施形態による高周波焼入れ用鋼はさらに、Feの一部に代えて、V及びNbから選択される1種又は2種以上を含有してもよい。これらの元素はいずれも、鋼材の面疲労強度及び曲げ疲労強度を高める。
 V:0~0.05%
 バナジウム(V)は任意元素であり、含有されなくてもよい。含有される場合、VはV窒化物、V炭化物、又は、V炭窒化物を形成して、高周波焼入れ時の結晶粒の粗大化を抑制する。その結果、高周波焼入れ後の鋼材の面疲労強度及び曲げ疲労強度が高まる。Vが少しでも含有されれば、上記効果がある程度得られる。一方、V含有量が高すぎれば、粗大なV析出物が生成して、鋼の冷間加工性が低下する。したがって、V含有量は0~0.05%である。V含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.025%であり、さらに好ましくは0.03%である。V含有量の好ましい上限は0.045%であり、さらに好ましくは0.04%である。
 Nb:0~0.05%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。含有される場合、NbはNb窒化物、Nb炭化物、又は、Nb炭窒化物を形成して、高周波焼入れ時の結晶粒の粗大化を抑制する。その結果、高周波焼入れ後の鋼材の面疲労強度及び曲げ疲労強度が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。一方、Nb含有量が高すぎれば、粗大なNb析出物が生成して、鋼の冷間加工性が低下する。したがって、Nb含有量は0~0.05%である。上記効果を有効に得るためのNb含有量の下限は0.01%であり、さらに好ましくは0.012%である。Nb含有量の好ましい上限は0.048%であり、さらに好ましくは0.046%である。
 [式(1)について]
 上記化学組成はさらに、式(1)を満たす。
 C+Si/7+Mn/5+Cr/9+Mo/2.5≦0.98 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 Fn1=C+Si/7+Mn/5+Cr/9+Mo/2.5と定義する。Fn1は焼入れ性の指標である。Fn1が1.05を超えれば、焼入れ性が高くなり過ぎる。この場合、圧延後の高周波焼入れ用鋼のミクロ組織の一部に、硬質なベイナイトが生成する。そのため、フェライト・パーライト組織が得られない。Fn1が1.05以下であれば、高周波焼入れ用鋼のミクロ組織がフェライト・パーライト組織になる。しかしながら、Fn1が0.98を超えれば、十分な切削性が得られない。したがって、Fn1を0.98以下とする。この場合、高周波焼入れ用鋼のミクロ組織がフェライト・パーライト組織になり、さらに十分な切削性も得られる。Fn1の好ましい上限は0.97である。焼入れ性を得るためのFn1の好ましい下限は0.72である。
 [式(2)について]
 上記化学組成はさらに、式(2)を満たす。
 C+Si/10+Mn/20+Cr/25≧0.70 (2)
 ここで、式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 Fn2=C+Si/10+Mn/20+Cr/25と定義する。Fn2は、鋼のミクロ組織がフェライト・パーライト組織である場合のパーライト分率の指標である。Fn2が高いほど、ミクロ組織中のパーライト分率が高まる。Fn2が0.70未満であれば、ミクロ組織中のパーライト分率が85%未満となる。Fn2が0.70以上であれば、ミクロ組織中のパーライト分率が85%以上となる。Fn2の好ましい下限は0.72である。
 [式(3)について]
 上記化学組成はさらに、式(3)を満たす。
 Cr/Si≦0.20 (3)
 ここで、式(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。
 上述のとおり、Si及びCrはいずれも、パーライトのラメラ間隔を狭くする。パーライトのラメラ間隔が狭ければ、高周波焼入れ時にセメンタイトが固溶しやすくなる。しかしながら、Crはセメンタイトに濃化してセメンタイトを安定化する。Cr含有量に対してSi含有量を高めれば、パーライトのラメラ間隔を狭くしつつ、Crによるセメンタイトの安定化を抑制できる。そのため、高周波加熱時にセメンタイトが固溶しやすくなり、高周波焼入れ後にセメンタイトが残存しにくい。
 Fn3=Cr/Siと定義する。Fn3は高周波焼入れ後のセメンタイトの固溶度合いを示す指標である。Fn3が低いほど、高周波加熱時に鋼中のセメンタイトが固溶しやすい。一方、Fn3が高ければ、Si含有量に対してCr含有量が高すぎる。この場合、高周波加熱時にセメンタイトが固溶しにくい。その結果、焼入れ後の鋼材にセメンタイトが残存し、高周波焼入れ後の鋼材の面疲労強度が低下する。Fn3が0.20以下であれば、高周波焼入れ後にセメンタイトが十分に固溶する。そのため、高周波焼入れ後の鋼材において、十分な硬さが得られ、優れた面疲労強度が得られる。Fn3の好ましい下限は0.18である。
 [鋼のミクロ組織]
 高周波焼入れ用鋼が上記化学組成を有し、式(1)~式(3)を満たす場合、ミクロ組織は、フェライト(初析フェライト)及びパーライトからなる。つまり、本実施形態による高周波焼入れ用鋼のミクロ組織は、フェライト・パーライト組織である。本明細書において、「ミクロ組織がフェライト及びパーライトからなる」とは、ミクロ組織におけるフェライト及びパーライトの総面積率が97%以上であることを意味する。好ましくは、高周波焼入れ用鋼のミクロ組織において、フェライト及びパーライトの総面積率が100%である。フェライト及びパーライトの総面積率が100%でない場合、ミクロ組織中のフェライト及びパーライト以外の残部はたとえばベイナイトである。ミクロ組織中のパーライトの面積率をパーライト分率(%)と定義する。本実施形態による高周波焼入れ用鋼のミクロ組織において、パーライト分率は85%以上である。
 ミクロ組織中のフェライト及びパーライトの合計面積率と、パーライト分率とは次の方法で測定される。高周波焼入れ用鋼からサンプルを採取する。高周波焼入れ用鋼が棒鋼又は線材である場合、棒鋼又は線材の横断面(軸方向に垂直な面)のうち、表面と中心軸とを結ぶ半径Rの中央部(以下、R/2部という)からサンプルを採取する。採取されたサンプル表面のうち、鋼材の圧延方向に垂直な面を観察面とする。観察面を研磨した後、3%硝酸アルコール(ナイタル腐食液)にてエッチングする。エッチングされた観察面を500倍の光学顕微鏡にて観察して、任意の5視野の写真画像を生成する。各視野のサイズは200μm×200μmとする。
 各視野において、フェライト、パーライト等の各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、各相を特定する。特定された相のうち、各視野でのフェライトの総面積(μm2)、及び、パーライトの総面積(μm2)を求める。全ての視野の総面積に対する、全ての視野におけるフェライトの総面積とパーライトの総面積との和の比率を、フェライト及びパーライトの総面積率(%)と定義する。さらに、全ての視野におけるパーライト総面積の、全ての視野の総面積に対する比率を、パーライト分率(%)と定義する。
 [複合介在物比率Ra]
 本実施形態の高周波焼入れ用鋼は、Al23介在物と、複合介在物とを含有する。本明細書において、上述のとおり、2.0%以上のSiO2と、2.0%以上のCaOとを含有し、残部の99%以上がAl23である介在物を、複合介在物と定義する。なお、複合介在物中に含有されるSiO2の上限はたとえば15%であり、CaOの上限はたとえば25%である。
 本明細書において、Al23介在物及び複合介在物の総個数に対する、複合介在物の個数の比率を複合介在物比率Ra(%)と定義する。複合介在物比率Raが高ければ、鋼中のAl23介在物が少なくなる。この場合、Al23介在物が凝集しにくくなり、クラスタの生成が抑制される。さらに上述のとおり、Al23介在物のマトリクス界面に対する密着性が低いのに対して、複合介在物のマトリクス界面に対する密着性は高い。そのため、複合介在物の生成によりAl23介在物の数が少なくなれば、鋼中のマトリクスと介在物との密着性の低下に起因した面疲労強度の低下も抑制される。
 複合介在物比率Raが20%以上であれば、Al23介在物のクラスタの生成を十分に抑制できる。さらに、鋼中のマトリクスの介在物との密着性も改善される。その結果、高周波焼入れ後の鋼材の面疲労強度を高めることができる。
 鋼中のAl23介在物及び複合介在物の特定、及び、複合介在物比率Raの測定は、次の方法で実施できる。高周波焼入れ用鋼の任意の位置からサンプルを採取する。高周波焼入れ用鋼が棒鋼又は線材である場合、棒鋼又は線材のR/2部からサンプルを採取する。R/2部のサンプルの横断面(表面)に対して、走査型電子顕微鏡(SEM)を用いて1000倍の倍率でランダムに20視野(1視野あたりの評価面積100μm×100μm)を観察する。
 各視野(観察面という)のうち、介在物を特定する。特定した各介在物に対して、エネルギー分散型X線分光法(EDX)を用いて、Al23介在物と複合介在物とを特定する。具体的には、特定された介在物の元素分析結果において、Al含有量及びO含有量が質量%で99%以上である場合、その介在物をAl23介在物と特定する。元素分析の結果、2.0%以上のSiO2と、2.0%以上のCaOとを含有し、残部が実質的にAl23及び不純物からなる(具体的には、残部の99%以上がAl23)である場合、その介在物を複合介在物と定義する。
 上記特定の対象とする介在物は、円相当径が10μm以上の介在物とする。ここで、円相当径とは、各介在物の面積を、同じ面積を有する円に換算した場合の円の直径を意味する。
 円相当径がEDXのビーム径の2倍以上の介在物であれば、元素分析の精度が高まる。本実施形態において、介在物の特定に使用するEDXのビーム径は5μmとする。この場合、円相当径が10μm未満の介在物は、EDXでの元素分析の精度を高めることができない。円相当径10μm未満の介在物はさらに、疲労強度への影響が極めて小さい。したがって、本実施形態において、円相当径が10μm以上のAl23介在物及び複合介在物を測定対象とする。なお、Al23介在物及び複合介在物の円相当径の上限は特に限定されないが、たとえば、200μmである。
 20視野全てにおいて、特定された円相当径10μm以上のAl23介在物の総個数TN1を求める。同様に、特定された円相当径10μm以上の複合介在物の総個数TN2を求める。求めた総個数に基づいて、次の式により複合介在物比率Ra(%)を求める。
 Ra=TN2/(TN1+TN2)×100
 なお、同一組成の介在物が隣り合っており、隣り合う介在物の間の最短距離が1μm未満の場合、これらの介在物は1個体とみなす。
 [製造方法]
 本実施形態による高周波焼入れ用鋼の製造方法の一例を説明する。本実施形態では、高周波焼入れ用鋼の一例として、棒鋼又は線材の製造方法を説明する。しかしながら、本実施形態の高周波焼入れ用鋼は、棒鋼又は線材に限定されない。
 製造方法の一例は、溶鋼を精錬し、鋳造して素材(鋳片又はインゴット)を製造する製鋼工程と、素材を熱間加工して高周波焼入れ用鋼を製造する熱間加工工程とを備える。以下、それぞれの工程について説明する。
 [製鋼工程]
 製鋼工程は、精錬工程と鋳造工程とを含む。
 [精錬工程]
 精錬工程では初めに、周知の方法で製造された溶銑に対して転炉での精錬(一次精錬)を実施する。転炉から出鋼した溶鋼に対して、二次精錬を実施する。二次精錬において、成分調整の合金元素の添加を実施して、上記化学組成を満たす溶鋼を製造する。
 具体的には、転炉から出鋼した溶鋼に対してAlを添加して脱酸処理を実施する。脱酸処理後、除滓処理を実施する。除滓処理後、二次精錬を実施する。二次精錬はたとえば、複合精錬を実施する。たとえば、初めに、LF(Ladle Furnace)又はVAD(Vacuum Arc Degassing)を用いた精錬処理を実施する。さらに、RH(Ruhrstahl-Hausen)真空脱ガス処理を実施する。その後、Si及びCaを除く他の合金成分の最終調整を行う。
 二次精錬を実施して、Si及びCa以外の溶鋼の成分調整を実施した後、溶鋼に対して次の処理(加熱保持工程及び最終成分調整工程)を実施する。
 [加熱保持工程]
 二次精錬(最終成分調整)後の取鍋内の溶鋼に対して、1500~1600℃の温度で下記式によって算定される均一混合時間τ(s)の2倍以上の保持時間tsで加熱する。
 τ=800×ε-0.4
 ε=((6.18×Vg×Tl)/Ml)ln(1+(h0/(1.46×10-5×P0)))
 ここで、Vg:ガス流量(Nm3/min)、Ml:取鍋内溶鋼質量(ton)、Tl:溶鋼温度(K)、h0:ガス吹き込み深さ(m)、P0:溶鋼表面圧力(Pa)、ε:攪拌動力値(W/ton)、τ:均一混合時間(s)である。
 保持時間tsが均一混合時間τの2倍未満であれば、Al23介在物が複合介在物に十分に改質しない。つまり、複合介在物比率Raが20%未満と低くなる。保持時間tsが均一混合時間τの2倍以上であれば、他の条件を満たすことを条件として、複合介在物比率Raが20%以上となる。
 [最終成分調整工程]
 加熱保持工程後の溶鋼にSi及びCaを添加して、上述の化学組成及び式(1)~式(3)を満たす溶鋼を製造する。Si及びCaはそれぞれ単独の原料として溶鋼に添加してもよい。Si-Ca合金を原料として、溶鋼に添加してもよい。
 加熱保持工程で十分に均一に加熱された溶鋼にSi及びCaを添加すれば、Al23介在物が複合介在物に改質しやすい。上記加熱保持工程後に最終成分調整工程を実施することにより、高周波焼入れ用鋼中の複合介在物比率Raを20%以上にすることができる。
 仮に、溶鋼にAlを添加する前に、Siを添加すれば、複合介在物が形成されにくい。Al23介在物が存在する溶鋼にSi及びCaを添加することにより、Al23介在物が複合介在物に改質され、複合介在物が生成する。したがって、本実施形態では、溶鋼にAlを添加し、その後、Si及びCaを添加する。Si及びCaの添加順は特に限定されない。Si及びCaを同時に添加してもよい。Si及びCaのいずれかを先に添加してもよい。
 [鋳造工程]
 上記精錬工程により製造された溶鋼を用いて、素材(鋳片又はインゴット)を製造する。具体的には、溶鋼を用いて連続鋳造法により鋳片を製造する。又は、溶鋼を用いて造塊法によりインゴットしてもよい。
 [熱間加工工程]
 製造された素材を熱間加工して、高周波焼入れ用鋼材(棒鋼又は線材)を製造する。熱間加工工程では通常、1又は複数回の熱間加工を実施する。複数回熱間加工を実施する場合、最初の熱間加工はたとえば、分塊圧延又は熱間鍛造であり、次の熱間加工は、連続圧延機を用いた仕上げ圧延である。連続圧延機では、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。仕上げ圧延後の高周波焼入れ用鋼材を、室温になるまで冷却する。このとき、高周波焼入れ用鋼材の表面温度が800~500℃になるまでの平均冷却速度を1℃/秒以下にする。平均冷却速度が1℃/秒を超えれば、冷却後の高周波焼入れ用鋼材のミクロ組織において、ベイナイトが面積率で3%以上生成する。平均冷却速度が1℃/秒以下であれば、冷却後の高周波焼入れ用鋼材のミクロ組織は、フェライト及びパーライトからなる。平均冷却速度の好ましい下限は0.1℃/秒である。平均冷却速度の好ましい上限は0.7℃/秒である。
 以上の工程により、本実施の形態による高周波焼入れ用鋼を製造できる。
 [機械部品の製造方法]
 上述の高周波焼入れ用鋼は、歯車に代表される機械部品に製造される。機械部品の製造方法の一例は次のとおりである。
 初めに、準備された高周波焼入れ用鋼材に対して熱間鍛造を実施して、中間品を製造する。中間品に対して、必要に応じて、応力除去焼きなまし処理を実施する。熱間鍛造後又は応力除去焼きなまし処理後の中間品に対して切削加工を実施して、粗製品を製造する。機械部品が歯車である場合、粗製品は歯車粗形状を有する。粗製品に対して、高周波焼入れを実施する。高周波焼入れ後、研削加工を実施して、歯車に代表される機械部品を製造する。
 本実施形態の高周波焼入れ用鋼では、上記式(1)~式(3)を満たし、さらに複合介在物比率Raが20%以上である。そのため、高周波焼入れ用鋼の切削性を高め、さらに、高周波焼入れ後の機械部品の面疲労強度及び曲げ疲労強度を高めることができる。
 表1の化学組成を有する溶鋼を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1中の「-」は対応する元素の含有量が不純物レベルであることを意味する。具体的には、B含有量における「-」は、B含有量が0.0001%未満であることを意味する。Ti含有量における「-」は、Ti含有量が0.001%未満であることを意味する。Ca含有量における「-」は、Ca含有量が0.0001%未満であることを意味する。Cr、Cu、Ni、Mo含有量における「-」は、各元素の含有量が0.01%未満であることを意味する。V含有量における「-」は、V含有量が0.001%未満であることを意味する。Nb含有量における「-」は、Nb含有量は0.001%未満であることを意味する。
 表1中の「Fn1」欄には、対応する試験番号の鋼のFn1値が記載されている。「Fn2」欄には、対応する試験番号の鋼のFn2値が記載されている。「Fn3」欄には、対応する試験番号の鋼のFn3値が記載されている。
 各試験番号の溶鋼は次の方法で製造した。周知の方法で製造された溶銑に対して転炉での一次精錬を同じ条件で実施した。
 試験番号40以外の溶鋼に対しては、転炉から出鋼後、Alを添加して脱酸処理を実施し、その後、除滓処理を実施した。除滓処理後、VADを用いた精錬処理を実施し、その後、RH真空脱ガス処理を実施した。以上の工程により、Si及びCa以外の合金元素の組成成分の調整を行った。
 続いて、加熱保持工程を実施した。各試験番号における保持時間tsの均一混合時間τに対する比(ts/τ)は、表1に示すとおりであった。加熱保持工程後、試験番号40以外の溶鋼に対して、Si-Ca合金を添加して、Si含有量、Ca含有量を調整し、表1の化学組成の溶鋼を製造した。
 一方、試験番号40の溶鋼に対しては、転炉から出鋼後、Siを添加した脱酸処理を実施した。その後の加熱保持工程までの処理は、試験番号1~39及び41と同様とした。加熱保持工程後、Al及びCaを添加して、表1に示す化学組成の溶鋼を製造した。
 試験番号1~41の溶鋼を用いて、連続鋳造法により、400mm×300mmの横断面を有する鋳片を製造した。
 製造された鋳片を1250℃に加熱した。加熱された鋳片を用いて、分塊圧延にて162mm×162mmの横断面を有する鋼片を製造した。製造された鋼片を常温(25℃)まで空冷した。鋼片を再び1200℃に加熱した。加熱された鋼片に対して連続圧延機を用いて熱間圧延(仕上げ圧延)を行い、その後冷却し、直径70mmの高周波焼入れ用棒鋼を製造した。
 各試験番号における、仕上げ圧延後の棒鋼の表面温度が800~500℃になるまでの平均冷却速度を表1に示す。表1中の「冷却速度」欄において「S」(Slow)は、対応する試験番号について、仕上げ圧延後の棒鋼の表面温度が800~500℃になるまでの平均冷却速度が1℃/秒以下であったことを示す。表1中の「冷却速度」欄において「F」(Fast)は、対応する試験番号について、仕上げ圧延後の棒鋼の表面温度が800~500℃になるまでの平均冷却速度が1℃/秒を超えていたことを示す。製造された各試験番号の棒鋼の化学組成を測定した。その結果、各試験番号の棒鋼の化学組成は、表1のとおりであった。
 [ミクロ組織観察]
 各試験番号の棒鋼のR/2部から、組織観察用の試験片を採取した。試験片の表面のうち、棒鋼の長手方向(つまり、圧延方向又は延伸方向)と平行な断面を観察面と定義した。上述の方法に基づいて、フェライト及びパーライトの総面積率(%)を求めた。総面積率が97%以上のミクロ組織について、「F+P」として表2に示す。一方、総面積率が97%未満であり、残部にベイナイトが観察されたミクロ組織について、「F+P+B」として表2に示す。
Figure JPOXMLDOC01-appb-T000002
 さらに、上述の観察面に対して、上述の方法でパーライト分率(%)を求めた。その結果を表2に示す。
 [複合介在物比率Ra]
 高周波焼入れ用棒鋼に対して、上述の方法で、複合介在物比率Ra(%)を測定した。円相当径で10μm以上のAl23介在物及び複合介在物を特定し、上述の方法で複合介在物比率Ra(%)を求めた。その結果を表2に示す。
 [評価試験]
 [面疲労強度試験片及び平滑小野式回転曲げ疲労強度試験片の作製]
 機械部品を模擬した面疲労強度試験片及び平滑小野式回転曲げ疲労強度試験片(以下、単に曲げ疲労強度試験片という)を次の方法で作製した。各試験番号の棒鋼を、1200℃で30分加熱した。次に、仕上げ温度を950℃以上として熱間鍛造し、直径35mmの丸棒を製造した。直径35mmの丸棒を機械加工して、面疲労強度試験片として、小ローラ試験片を作製した。具体的に、図1に示すローラピッチング試験用小ローラ試験片を試験番号ごとに作製した(図1中の寸法の単位はmm)。
 さらに、直径35mmの丸棒を機械加工して、図2に示す曲げ疲労強度試験片を試験番号ごとに複数作製した(図2中の寸法の単位はmm)。曲げ疲労強度試験片は、直径6mm、及び長さ25mmの平行部を有した。
 作製された各試験片に対して、高周波焼入れを実施した。具体的には、小ローラ試験片の周面FP(直径26mmの部分)に対して、出力20kW、周波数50kHzの高周波加熱装置を用いて、硬化層深さが1.5mmとなるように、加熱時間を5~10秒の範囲内で調整して高周波焼入れ処理を実施した。その際、小ローラ試験片表面の加熱温度は900~1100℃であった。その後、通常の熱処理炉を用いて160℃で1時間の焼戻しを行った。さらに、曲げ疲労強度試験片の平行部に対して、小ローラ試験片と同じ条件で高周波焼入れを実施し、その後、通常の熱処理炉を用いて、小ローラ試験片と同じ条件で焼戻しを行った。
 [ビッカース硬さ試験]
 高周波焼入れ後の各試験番号の小ローラ試験片の周面FP(直径26mmの部分)、及び、曲げ疲労強度試験片の平行部のビッカース硬さを測定した。具体的には、小ローラ試験片の周面FP及び曲げ疲労強度試験片の平行部の表面の任意の3点に対して、JIS Z 2244(2009)に準拠したビッカース硬さ試験を実施した。このときの試験力は9.8Nとした。得られたビッカース硬さの平均値を、その試験番号のビッカース硬さ(HV)と定義した。曲げ疲労強度試験片で得られたビッカース硬さの平均値は、小ローラ試験片で得られたビッカース硬さの平均値と同じであった。そのため、高周波焼入れ後のビッカース硬さは、小ローラ試験片での測定結果の平均値とした。測定結果を表2に示す。
 [面疲労強度試験]
 ローラピッチング試験により、面疲労強度を求めた。ローラピッチング試験は、上記の小ローラ試験片と大ローラ試験片とを組合せて実施した。図3は大ローラ試験片の正面図である(図3中の寸法の単位はmm)。大ローラ試験片は、JIS規格SCM420Hの規格を満たす鋼からなり、一般的な製造工程、つまり、焼きならし、試験片加工、ガス浸炭炉による共析浸炭、低温焼戻し及び研磨、の工程によって作製された。ローラピッチング試験の条件は次のとおりである。
 試験機:ローラピッチング試験機
 試験片:小ローラ試験片(直径26mm)、
     大ローラ試験片(直径130mm)、接触部150mmR
 最大面厚:3600MPa
 試験数 :6個
 すべり率:-40%
 小ローラ回転数:2000rpm
 周速:小ローラ:2.72m/s、大ローラ:3.81m/s
 潤滑油温度:90℃
 使用オイル:オートマチック用オイル
 各試験番号について、ローラピッチング試験における試験数は6とした。試験後、縦軸に面圧、横軸にピッチング発生までの繰り返し数をとったS-N線図を作成した。繰り返し数2.0×107回までピッチングが発生しなかったもののうち、最も高い面圧を面疲労強度とした。なお、小ローラ試験片の表面が損傷している箇所のうち、最大のものの面積が1mm2以上になった場合をピッチング発生と定義した。
 表2に、試験により得られた面疲労強度を示す。表2中の面疲労強度では、試験番号21の面疲労強度を基準値(100%)とした。そして、各試験番号の面疲労強度を、基準値に対する比(%)で示した。面疲労強度が100%以上であれば、優れた面疲労強度が得られたと判断した。
 [曲げ疲労強度試験]
 上述の曲げ疲労試験片を用いて小野式回転曲げ疲労強度試験を実施し、曲げ疲労強度を求めた。
 各試験番号について、小野式回転曲げ疲労強度試験における試験数は7とした。室温大気雰囲気中で疲労試験を実施し、縦軸に負荷応力、破損までの繰り返し数をとったS-N線図を作成した。繰り返し数1.0×107回まで破損しなかったもののうち、最も高い負荷応力を曲げ疲労強度とした。
 表2に、試験により得られた曲げ疲労強度を示す。表2中の曲げ疲労強度では、試験番号21の曲げ疲労強度を基準値(100%)とした。そして、各試験番号の曲げ疲労強度を、基準値に対する比(%)で示した。曲げ疲労強度が115%以上であれば、優れた曲げ疲労強度が得られたと判断した。
 [切削性評価試験片の作製]
 切削性評価試験片を次の方法で作製した。面疲労強度試験片と同様に、各試験番号の棒鋼を、1200℃で30分加熱した。次に、加熱後の棒鋼に対して熱間鍛造を実施し、直径35mmの丸棒を製造した。熱間鍛造時の仕上げ温度は950℃以上であった。熱間鍛造により製造された丸棒を機械加工して、直径30mm、高さ15mmの円盤状試験片(以下、切削性試験片という)に仕上げた。
 [切削性評価試験]
 作製された切削性試験片に対して、ドリル加工による切削性評価試験を実施した。具体的に、加工穴の総深さが1000mmとなるまで、一定の切削速度でドリル加工を実施した。加工穴深さが1000mmとなった場合、ドリル加工をいったん終了した。そして、切削速度をさらに高めて設定し、設定された切削速度で、加工穴の総深さが1000mmとなるまで、ドリル加工を再度実施した。同様に、切削速度を高めながら順次ドリル加工を実施し、加工穴の総深さが1000mm以上可能な最大切削速度(m/min)を求めた。最大切削速度は通常、工具寿命の評価指標として用いられており、最大切削速度が大きいほど工具寿命が良好であると判断できる。各試験番号について最大切削速度を求めた。
 切削性評価試験のドリル加工条件は次のとおりであり、ドリル加工時、水溶性の切削油を使用した。
 切削ドリル:φ3mmハイスドリル
 切削速度:10~90m/min
 送り:0.25mm/rev
 表2に、試験により得られた切削性評価を示す。表2中の切削性評価では、試験番号21の切削性評価を基準値(100%)とした。そして、各試験番号の切削性評価を、基準値に対する比(%)で示した。最大切削速度が135%以上であれば、優れた切削性が得られたと判断した。
 [評価結果]
 表1及び表2を参照して、試験番号1~20の鋼では、化学組成が適切であり、式(1)~式(3)を満たした。さらに、精錬工程における製造条件は適切であった。そのため、ミクロ組織はフェライト・パーライト組織であり、パーライト分率は85%以上であった。さらに、複合介在物比率Raは20%以上であった。さらに、ビッカース硬さは730HV以上であった。その結果、面疲労強度は100%以上であり、優れた面疲労強度が得られた。さらに、曲げ疲労強度は115%以上であり、優れた曲げ疲労強度が得られた。さらに、切削性も135%以上であり、優れた切削性が得られた。
 一方、試験番号22では、Si含有量が低すぎた。そのため、Al23介在物を複合介在物に十分に改質できず、複合介在物比率Raが20%未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。
 試験番号23では、Mn含有量が高すぎた。そのため、圧延後の組織にベイナイトが生成し、パーライト分率が85%未満であった。その結果、高周波焼入れ後の鋼材のビッカース硬さが730HV未満であった。その結果、面疲労強度が100%未満となり、優れた面疲労強度が得られなかった。さらに、切削性が135%未満であり、優れた切削性が得られなかった。
 試験番号24では、Mn含有量が低すぎた。そのため、高周波焼入れ後の鋼材の強度が低く、高周波焼入れ後の鋼材のビッカース硬さが730HV未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。
 試験番号25では、Cr含有量が高すぎた。そのため、高周波焼入れ後の鋼材の強度が低く、高周波焼入れ後の鋼材のビッカース硬さが730HV未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。高周波焼入れ時にセメンタイトが十分に固溶せず、焼入れによるマルテンサイトが均一に生成しなかったためと考えられる。
 試験番号26では、Al含有量が高すぎた。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。粗大なAl23介在物が多量に生成したためと考えられる。
 試験番号27では、Al含有量が低すぎた。その結果、切削性が135%未満であり、優れた切削性が得られなかった。
 試験番号28では、B含有量が低すぎた。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。さらに、曲げ疲労強度が115%未満であり、優れた曲げ疲労強度が得られなかった。
 試験番号29では、Ti含有量が低すぎた。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。さらに、曲げ疲労強度が115%未満であり、優れた曲げ疲労強度が得られなかった。
 試験番号30では、Ca含有量が高すぎた。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。粗大な酸化物系介在物が生成したためと考えられる。
 試験番号31では、Ca含有量が低すぎた。そのため、複合介在物比率Raが20%未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。
 試験番号32及び33では、Fn1が式(1)を満たさなかった。そのため、ミクロ組織にベイナイトが生成した。その結果、切削性が135%未満であり、優れた切削性が得られなかった。
 試験番号34及び35では、Fn2が式(2)を満たさなかった。そのため、パーライト分率が85%未満であった。そのため、不完全焼入れが生じ、ビッカース硬さが730HV未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。
 試験番号36及び37では、Fn3が式(3)を満たさなかった。そのため、ビッカース硬さが730HV未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。高周波焼入れ時に未固溶のセメンタイトが残存したためと考えられる。
 試験番号38及び39では、化学組成が適切であり、式(1)~式(3)を満たした。しかしながら、精錬工程中の加熱保持工程において、ts/τ(保持時間/均一混合時間)が低かった。そのため、複合介在物比率Raが20%未満となった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。
 試験番号40では、化学組成が適切であり、式(1)~式(3)を満たした。しかしながら、Al、Si、Caの添加順が適切でなかった。そのため、複合介在物比率Raが20%未満となった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。
 試験番号41では、化学組成が適切であり、式(1)~式(3)を満たした。しかしながら、仕上げ圧延後の平均冷却速度が速すぎた。そのため、ミクロ組織にベイナイトが生成した。そのため、パーライト分率が85%未満であった。その結果、面疲労強度が100%未満であり、優れた面疲労強度が得られなかった。さらに、曲げ疲労強度が115%未満であり、優れた曲げ疲労強度が得られなかった。さらに、切削性が135%未満であり、優れた切削性が得られなかった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (3)

  1.  化学組成が、質量%で、
     C:0.53~0.58%未満、
     Si:0.70~1.40%、
     Mn:0.20~1.40%、
     P:0.020%未満、
     S:0.025%以下、
     Al:0.06%超~0.15%、
     N:0.0020~0.0080%、
     O:0.0015%以下、
     B:0.0003~0.0040%、
     Ti:0.010~0.050%、
     Ca:0.0005~0.005%、
     Cr:0~0.15%、
     Cu:0~0.50%、
     Ni:0~0.30%、
     Mo:0~0.20%、
     V:0~0.05%、及び、
     Nb:0~0.05%を含有し、残部はFe及び不純物からなり、式(1)~式(3)を満たし、
     鋼組織が、フェライト及びパーライトからなり、前記パーライトの面積率が85%以上であり、
     鋼中において、Al23介在物及び複合介在物の総個数に対する、前記複合介在物の個数の比率は、20%以上であり、前記複合介在物は、質量%で、2.0%以上のSiO2及び2.0%以上のCaOを含有し、残部の99%以上がAl23である、高周波焼入れ用鋼。
     C+Si/7+Mn/5+Cr/9+Mo/2.5≦0.98 (1)
     C+Si/10+Mn/20+Cr/25≧0.70 (2)
     Cr/Si≦0.20 (3)
     ここで、式(1)~式(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。
  2.  請求項1に記載の高周波焼入れ用鋼であって、
     前記化学組成は、
     Cr:0.05~0.15%、
     Cu:0.03~0.50%、
     Ni:0.03~0.30%、及び、
     Mo:0.01~0.20%からなる群から選択される1種又は2種以上を含有する、高周波焼入れ用鋼。
  3.  請求項1又は請求項2に記載の高周波焼入れ用鋼であって、
     前記化学組成は、
     V:0.01~0.05%、及び、
     Nb:0.01~0.05%からなる群から選択される1種又は2種を含有する、高周波焼入れ用鋼。
PCT/JP2017/026008 2016-07-19 2017-07-19 高周波焼入れ用鋼 WO2018016506A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/317,086 US20190300994A1 (en) 2016-07-19 2017-07-19 Steel for Induction Hardening
EP17831022.3A EP3489381A4 (en) 2016-07-19 2017-07-19 STEEL FOR INDUCTION HARDNESS
KR1020197004437A KR20190028781A (ko) 2016-07-19 2017-07-19 고주파 담금질용 강
CN201780044512.XA CN109477180A (zh) 2016-07-19 2017-07-19 高频淬火用钢
JP2017567500A JP6384630B2 (ja) 2016-07-19 2017-07-19 高周波焼入れ用鋼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141889 2016-07-19
JP2016141889 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016506A1 true WO2018016506A1 (ja) 2018-01-25

Family

ID=60992466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026008 WO2018016506A1 (ja) 2016-07-19 2017-07-19 高周波焼入れ用鋼

Country Status (6)

Country Link
US (1) US20190300994A1 (ja)
EP (1) EP3489381A4 (ja)
JP (1) JP6384630B2 (ja)
KR (1) KR20190028781A (ja)
CN (1) CN109477180A (ja)
WO (1) WO2018016506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316651A (zh) * 2019-01-21 2021-08-27 日本制铁株式会社 钢材及部件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028492A (ko) * 2016-07-19 2019-03-18 신닛테츠스미킨 카부시키카이샤 고주파 담금질용 강
KR20190031278A (ko) * 2016-07-19 2019-03-25 신닛테츠스미킨 카부시키카이샤 고주파 담금질용 강
JP6384628B2 (ja) * 2016-07-19 2018-09-05 新日鐵住金株式会社 高周波焼入れ用鋼
KR20190028782A (ko) * 2016-07-19 2019-03-19 신닛테츠스미킨 카부시키카이샤 고주파 담금질용 강
BE1029987A9 (nl) * 2021-12-06 2023-07-10 Soenen Tech Nv Werkwijze voor het harden van schuiven van een perforatiepers en de verkregen schuiven

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902423A (en) * 1998-03-16 1999-05-11 Stelco Inc. Heat treatment of grinding rod
JP2009007643A (ja) * 2007-06-28 2009-01-15 Kobe Steel Ltd 被削性に優れた機械構造用鋼
WO2010082685A1 (ja) * 2009-01-16 2010-07-22 新日本製鐵株式会社 表面硬化用機械構造用鋼及び機械構造用部品
WO2012008405A1 (ja) * 2010-07-14 2012-01-19 新日本製鐵株式会社 被削性に優れた機械構造用鋼
JP2013213245A (ja) * 2012-03-30 2013-10-17 Kobe Steel Ltd 耐剥離性および耐衝撃疲労特性に優れた歯車
JP2014037592A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 熱間圧延棒鋼または線材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742801A (en) 1980-08-27 1982-03-10 Tohoku Electric Power Co Inc Measuring rule for diagonal size
US4912399A (en) 1987-06-09 1990-03-27 Tektronix, Inc. Multiple lead probe for integrated circuits in wafer form
JP3458604B2 (ja) * 1996-06-28 2003-10-20 Jfeスチール株式会社 高周波焼入れ部品の製造方法
JP3562192B2 (ja) * 1997-01-31 2004-09-08 Jfeスチール株式会社 高周波焼入用部品およびその製造方法
JP2003147478A (ja) * 2001-11-12 2003-05-21 Sumitomo Metals (Kokura) Ltd 非調質鋼
JP4014042B2 (ja) * 2002-11-29 2007-11-28 住友金属工業株式会社 高周波焼入れ用棒鋼
ES2575997T3 (es) * 2006-04-04 2016-07-04 Nippon Steel & Sumitomo Metal Corporation Lámina de acero dura extra-delgada y método de fabricación de la misma
JP4900127B2 (ja) * 2007-08-07 2012-03-21 住友金属工業株式会社 高周波焼入れ用鋼材及びその製造方法
JP5521885B2 (ja) * 2010-08-17 2014-06-18 新日鐵住金株式会社 高強度かつ耐水素脆化特性に優れた機械部品用鋼線、および機械部品とその製造方法
TWI468534B (zh) * 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
JP5870019B2 (ja) * 2012-05-22 2016-02-24 株式会社神戸製鋼所 耐水素割れ性に優れた鍛鋼品
JP6384628B2 (ja) * 2016-07-19 2018-09-05 新日鐵住金株式会社 高周波焼入れ用鋼
KR20190028782A (ko) * 2016-07-19 2019-03-19 신닛테츠스미킨 카부시키카이샤 고주파 담금질용 강
KR20190031278A (ko) * 2016-07-19 2019-03-25 신닛테츠스미킨 카부시키카이샤 고주파 담금질용 강
KR20190028492A (ko) * 2016-07-19 2019-03-18 신닛테츠스미킨 카부시키카이샤 고주파 담금질용 강

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902423A (en) * 1998-03-16 1999-05-11 Stelco Inc. Heat treatment of grinding rod
JP2009007643A (ja) * 2007-06-28 2009-01-15 Kobe Steel Ltd 被削性に優れた機械構造用鋼
WO2010082685A1 (ja) * 2009-01-16 2010-07-22 新日本製鐵株式会社 表面硬化用機械構造用鋼及び機械構造用部品
WO2012008405A1 (ja) * 2010-07-14 2012-01-19 新日本製鐵株式会社 被削性に優れた機械構造用鋼
JP2013213245A (ja) * 2012-03-30 2013-10-17 Kobe Steel Ltd 耐剥離性および耐衝撃疲労特性に優れた歯車
JP2014037592A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 熱間圧延棒鋼または線材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489381A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316651A (zh) * 2019-01-21 2021-08-27 日本制铁株式会社 钢材及部件
US12006557B2 (en) 2019-01-21 2024-06-11 Nippon Steel Corporation Steel material and component

Also Published As

Publication number Publication date
EP3489381A1 (en) 2019-05-29
JPWO2018016506A1 (ja) 2018-07-19
EP3489381A4 (en) 2020-02-26
US20190300994A1 (en) 2019-10-03
KR20190028781A (ko) 2019-03-19
JP6384630B2 (ja) 2018-09-05
CN109477180A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP6384629B2 (ja) 高周波焼入れ用鋼
JP6384626B2 (ja) 高周波焼入れ用鋼
JP6384630B2 (ja) 高周波焼入れ用鋼
JP6384628B2 (ja) 高周波焼入れ用鋼
JP6384627B2 (ja) 高周波焼入れ用鋼
JP6144023B2 (ja) 肌焼用棒鋼または線材
JP6652019B2 (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
WO2013031587A1 (ja) 熱間鍛造用圧延棒鋼又は線材
JP5472063B2 (ja) 冷間鍛造用快削鋼
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP6176314B2 (ja) 肌焼用棒鋼または線材
WO2017069064A1 (ja) 機械構造用鋼及び高周波焼入鋼部品
JP2013108144A (ja) 熱間鍛造用圧延棒鋼又は線材
JP2019218586A (ja) 浸炭用鋼及び部品
JP7376784B2 (ja) 熱間鍛造部品
CN113646448B (zh) 钢轴部件
JP2020100896A (ja) 高周波焼入れ用綱および高周波焼入れ部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017567500

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004437

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017831022

Country of ref document: EP

Effective date: 20190219