WO2018016265A1 - 相補型トランジスタ及び半導体装置 - Google Patents

相補型トランジスタ及び半導体装置 Download PDF

Info

Publication number
WO2018016265A1
WO2018016265A1 PCT/JP2017/023165 JP2017023165W WO2018016265A1 WO 2018016265 A1 WO2018016265 A1 WO 2018016265A1 JP 2017023165 W JP2017023165 W JP 2017023165W WO 2018016265 A1 WO2018016265 A1 WO 2018016265A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
extending
extension
transistor
Prior art date
Application number
PCT/JP2017/023165
Other languages
English (en)
French (fr)
Inventor
秀俊 大石
松本 光市
一行 富田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020187036524A priority Critical patent/KR102352906B1/ko
Priority to JP2018528462A priority patent/JP6947178B2/ja
Priority to US16/316,702 priority patent/US10720432B2/en
Publication of WO2018016265A1 publication Critical patent/WO2018016265A1/ja
Priority to US16/893,280 priority patent/US11004851B2/en
Priority to US17/224,617 priority patent/US11887984B2/en
Priority to US18/540,524 priority patent/US20240113120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78639Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a drain or source connected to a bulk conducting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Definitions

  • the present disclosure relates to a complementary transistor and a semiconductor device including the complementary transistor.
  • CMOS circuit that constitutes an inverter circuit, a NAND circuit, or the like composed of conventional field effect transistors, a p-channel field effect transistor and an n-channel field effect transistor are laid out in parallel. Then, by reducing and scaling such a layout, higher density of gates and lower power consumption have been promoted. However, the difficulty of processing has increased, and the manufacturing cost has increased remarkably.
  • TFET tunnel field effect transistor
  • 2D materials such as transition metal dichalcogenides
  • the semiconductor element disclosed in this patent publication is A first two-dimensional material including a first metal chalcogenide material; and a second two-dimensional material bonded to a side surface of the first two-dimensional material and including a second metal chalcogenide material;
  • two types of two-dimensional materials that is, a TFET corresponding to an n-channel field effect transistor are configured as a two-dimensional material constituting a TFET corresponding to a p-channel field effect transistor.
  • a total of four types of two-dimensional materials of two types of two-dimensional materials are required as the two-dimensional material, and a maximum of four types of materials constituting an electrode are required for the four types of two-dimensional materials. This complicates the manufacturing process of complementary transistors composed of TFETs and increases the manufacturing cost.
  • an object of the present disclosure is to reduce the types of constituent materials such as active regions of transistors, and to provide a configuration and structure that can simplify the manufacturing process, and such complementary transistors.
  • a semiconductor device having the above is provided.
  • a complementary transistor includes: A first control electrode, A first active region located below the first control electrode and formed by laminating a first A layer and a first B layer; A first insulating layer provided between the first control electrode and the first active region; A first A extending layer extending from one end of the first active region and composed of a first A layer; and A first B extension layer extending from the other end of the first active region and composed of a first B layer; A first transistor comprising: A second control electrode, A second active region located below the second control electrode and formed by laminating a second A layer and a second B layer; A second insulating layer provided between the second control electrode and the second active region; A second A extending layer extending from one end of the second active region and composed of a second A layer; and A second B extension layer extending from the other end of the second active region and composed of a second B layer; A second transistor comprising: A complementary transistor comprising: The first surface region having the first conductivity type
  • the complementary transistor according to the second aspect of the present disclosure for achieving the above object is as follows: A first control electrode, A first active region located below the first control electrode; A first insulating layer provided between the first control electrode and the first active region; A first A extending region extending from one end of the first active region; and A first B extending region extending from the other end of the first active region; A first transistor comprising: A second control electrode, A second active region located below the second control electrode; A second insulating layer provided between the second control electrode and the second active region; A second A extending region extending from one end of the second active region; and A second B extending region extending from the other end of the second active region; A second transistor comprising: A complementary transistor comprising: The first surface region having the first conductivity type provided on the base corresponds to the first A extending region, The first B extension region has characteristics as a second conductivity type different from the first conductivity type, and is provided on the first insulating region provided in the base body.
  • the first active region is provided on the first insulating region
  • the second surface region having the second conductivity type provided on the base corresponds to the second A extending region
  • the second B extending region has characteristics as the first conductivity type, and is provided on the second insulating region provided on the base body.
  • the second active region is provided on the second insulating region.
  • a semiconductor device is formed on a complementary transistor according to the first aspect of the present disclosure whose base is a silicon semiconductor substrate, and the silicon semiconductor substrate.
  • a field effect transistor is provided.
  • a semiconductor device for achieving the above object is formed on a complementary transistor according to the second aspect of the present disclosure, in which a base is formed of a silicon semiconductor substrate, and the silicon semiconductor substrate. Field effect transistor.
  • the complementary transistor according to the first aspect of the present disclosure or the complementary transistor according to the first aspect of the present disclosure constituting the semiconductor device according to the first aspect of the present disclosure the first A layer, Since the first A extension layer, the second A layer, and the second A extension layer are formed on the surface region of the substrate, the number of types of materials constituting the active region of the complementary transistor may be up to three, and complementary.
  • the types of constituent materials such as the active region of the type transistor can be reduced, and the manufacturing process can be simplified.
  • the complementary transistor according to the second aspect of the present disclosure or the complementary transistor according to the second aspect of the present disclosure that constitutes the semiconductor device according to the second aspect of the present disclosure also includes the first A Since the extension region and the second A extension region are formed in the surface region of the substrate, the number of types of materials constituting the active region of the complementary transistor may be three at the maximum, such as the active region of the complementary transistor. It is possible to reduce the types of constituent materials. Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 1 is a schematic partial cross-sectional view of a complementary transistor of Example 1.
  • FIG. 2A and 2B are diagrams schematically illustrating an operation state of the complementary transistor according to the first embodiment.
  • 3A and 3B are diagrams schematically illustrating the operation state of the complementary transistor according to the first embodiment, following FIGS. 2A and 2B.
  • 4A and 4B are diagrams schematically illustrating the operation state of the complementary transistor according to the first embodiment, following FIGS. 3A and 3B.
  • FIG. 5 is an equivalent circuit diagram of an inverter circuit configured by the complementary transistors of the first embodiment.
  • 6A, 6B, and 6C are conceptual diagrams showing the positional relationship between the active region and the control electrode in the complementary transistor of Example 1.
  • FIG. 1 is a schematic partial cross-sectional view of a complementary transistor of Example 1.
  • FIG. 2A and 2B are diagrams schematically illustrating an operation state of the complementary transistor according to the first embodiment.
  • 3A and 3B are diagrams schematically illustrating the operation
  • FIG. 7A, 7B, and 7C are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the first transistor in the complementary transistor of Example 1.
  • FIG. 8A and 8B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the complementary transistor manufacturing method according to the second embodiment.
  • 9A and 9B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of Example 2 following FIG. 8B.
  • FIG. 10 is a schematic partial cross-sectional view of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of Example 2 following FIG. 9B.
  • 11A and 11B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor according to the first modification of the second embodiment.
  • 12A and 12B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor according to the first modification of Example 2 following FIG. 11B.
  • FIG. 13 is a schematic partial cross-sectional view of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of the first modified example of Example 2 following FIG. 12B.
  • 14A and 14B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor according to the second modification of the second embodiment.
  • FIG. 15 is a schematic partial cross-sectional view of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of the second modified example of Example 2 following FIG. 14B.
  • FIG. 16 is a schematic partial cross-sectional view of a complementary transistor of Example 4.
  • FIG. 17A and FIG. 17B are diagrams schematically illustrating an operation state of the complementary transistor according to the fourth embodiment.
  • 18A and 18B are diagrams schematically illustrating the operation state of the complementary transistor according to the fourth embodiment, following FIGS. 17A and 17B.
  • FIG. 19A and FIG. 19B are diagrams schematically illustrating the operation state of the complementary transistor of the fourth embodiment, following FIG. 18A and FIG. 18B.
  • 20A, 20B, and 20C are conceptual diagrams showing the positional relationship between the active region and the control electrode in the complementary transistor of the fourth embodiment.
  • 21A, 21B, and 21C are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the first transistor in the complementary transistor of Example 4.
  • FIG. 22A and 22B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor according to the fifth embodiment.
  • FIG. 23A and FIG. 23B are schematic partial sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of Example 5 following FIG. 22B.
  • FIG. 24 is a schematic partial cross-sectional view of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of Example 5 following FIG. 23B.
  • 25A and 25B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor according to the first modification of the fifth embodiment.
  • 26A and 26B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of the first modified example of Example 5 following FIG. 25B.
  • 27A and 27B are schematic partial cross-sectional views of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor according to the second modification of the fifth embodiment.
  • FIG. 28 is a schematic partial cross-sectional view of a silicon semiconductor substrate and the like for explaining the outline of the manufacturing method of the complementary transistor of the second modified example of the fifth embodiment, following FIG. 27B.
  • FIG. 29 is an equivalent circuit diagram of a NAND circuit formed on the basis of the complementary transistors of the first to sixth embodiments.
  • FIG. 30 is an equivalent circuit diagram of a NOR circuit formed based on the complementary transistors of the first to sixth embodiments.
  • FIG. 31 is an equivalent circuit diagram of an SRAM circuit composed of eight transistors formed based on the complementary transistors of the first to sixth embodiments.
  • FIG. 32 is a schematic partial cross-sectional view of a modification of the complementary transistor of the first embodiment.
  • FIG. 33 is a schematic partial cross-sectional view of a modification of the complementary transistor of the fourth embodiment.
  • 34A, 34B, and 34C are a schematic perspective view and a partial cross-sectional view of a modification of the complementary transistor of the first embodiment (a structure having a so-called Fin shape), and
  • FIG. 34D is a plan view of the fourth embodiment. It is a typical partial cross section figure of the modification (structure which has what is called Fin shape) of a complementary transistor.
  • FIG. 35A, FIG. 35B, FIG. 35C, and FIG. 35D are diagrams schematically showing changes in energy bands in each active region when the complementary transistor of the present disclosure is turned on / off.
  • Complementary transistor according to the first aspect of the present disclosure the complementary transistor according to the first aspect of the present disclosure, the complementary transistor according to the second aspect of the present disclosure, and the semiconductor device according to the first aspect of the present disclosure Type transistor or complementary transistor according to the second aspect of the present disclosure constituting the semiconductor device according to the second aspect of the present disclosure (hereinafter, these complementary transistors are collectively referred to as “complementary transistor of the present disclosure.
  • the first B layer (first B extending region) is composed of a two-dimensional material or graphene
  • the second B layer (second B extending region) may be formed of a two-dimensional material or graphene.
  • the two-dimensional material is selected from the group consisting of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , WSe 2 , WTe 2 , ZrS 2 , ZrSe 2 , ZrTe 2 , HfS 2 , HfSe 2 and HfTe 2. It is possible to adopt a form composed of one kind of two-dimensional material.
  • examples of the thickness of the two-dimensional material include 0.65 nm to 6.5 nm, preferably 0.65 nm to 2.6 nm, but the thickness is not limited to these values.
  • the base is made of a semiconductor substrate, and the first insulating region and the second insulating region are made of element isolation regions provided on the semiconductor substrate. be able to.
  • the substrate can be composed of a two-dimensional material layer.
  • the base may be provided on a support material (for example, a substrate such as a silicon semiconductor substrate on which an insulating film is formed).
  • the substrate is made of silicon (Si) or germanium (Ge), and the first B layer (first B extending region) is MoS 2 , WTe. 2 or graphene, and the second B layer (second B extending region) may be composed of HfTe 2 .
  • the substrate consists of MoS 2, layer first 1B (1B-th extension region) consists WTe 2, layer first 2B (second 2B extension region) is composed ZrS 2, HFS 2 or HFSE 2 It can be set as the structure currently made.
  • the first aspect of the present disclosure constituting the complementary transistor according to the first aspect of the present disclosure, the complementary transistor according to the second aspect of the present disclosure, and the semiconductor device according to the first aspect of the present disclosure.
  • a complementary transistor (such as a complementary transistor of the present disclosure) according to the second aspect of the present disclosure that constitutes a semiconductor device according to the second aspect of the present disclosure.
  • the portion of the base body constituting the first surface region (first A extending region) and the portion of the base body constituting the second surface region (second A extending region) are made of different materials,
  • the first B layer and the first B extension layer (first B extension region), and the second B layer and the second B extension layer (second B extension region) may be formed of the same material. .
  • the difference from the value [E V (2D)] of the conduction band of the material constituting the 1B extension region is 1 eV or less
  • the difference from the value [E C (2D)] of the valence band of the material constituting the 2B extension region may be 1 eV or less. That is, E V (P) ⁇ E C (2D) ⁇ 1 (eV) E V (2D) ⁇ E C (N) ⁇ 1 (eV)
  • the present invention is not limited to this.
  • a portion of the base (first A extending region) constituting the first surface region is formed of a silicon semiconductor substrate
  • the portion of the base (second A extending region) that constitutes the second surface region is composed of a semiconductor layer formed on the silicon semiconductor substrate
  • the first B layer and the first B extension layer, and the second B layer and the second B extension layer, or alternatively, the first B extension region and the second B extension region are made of the same two-dimensional material.
  • the semiconductor layer is made of a germanium layer
  • 2B extending region) may be made of MoTe 2 .
  • the portion of the base (the first A extending region) constituting the first surface region is composed of a semiconductor layer formed on the silicon semiconductor substrate
  • the portion of the base (second A extending region) that constitutes the second surface region is composed of a silicon semiconductor substrate
  • the first B layer and the first B extension layer, and the second B layer and the second B extension layer, or alternatively, the first B extension region and the second B extension region are made of the same two-dimensional material.
  • the semiconductor layer is composed of an indium arsenide layer
  • the first B layer and the first B extending layer and the second B layer and the second B extending layer may be made of MoS 2 .
  • a portion of the base (first A extending region) constituting the first surface region is composed of a first semiconductor layer formed on the semiconductor substrate
  • a portion of the base (second A extending region) constituting the second surface region is constituted by a second semiconductor layer formed on the semiconductor substrate
  • the first B layer and the first B extension layer, and the second B layer and the second B extension layer, or alternatively, the first B extension region and the second B extension region are made of the same two-dimensional material.
  • the first semiconductor layer is made of an indium arsenide layer
  • the second semiconductor layer is made of a germanium layer
  • the second B extension layer can be made of MoS 2 , or alternatively A portion of the base (first A extending region) constituting the first surface region is formed of a silicon semiconductor substrate, A portion of the base (second A extending region) constituting the second surface region is composed of a germanium layer formed on the silicon semiconductor substrate,
  • the first B layer and the first B extension layer, and the second B layer and the second B extension layer, or alternatively, the first B extension region and the second B extension region are made of MoTe 2.
  • the portion of the base (first A extending region) constituting the first surface region is composed of an indium arsenic layer formed on the silicon semiconductor substrate
  • the portion of the base (second A extending region) that constitutes the second surface region is composed of a silicon semiconductor substrate
  • the first B layer and the first B extension layer, and the second B layer and the second B extension layer, or alternatively, the first B extension region and the second B extension region are made of MoS 2. Can do.
  • SiGe and SiC can be cited as other materials constituting the semiconductor layer formed on the silicon semiconductor substrate, and III-V group compound semiconductors and II-VI group compound semiconductors can be broadly cited.
  • Can do As a method for forming a semiconductor layer in a silicon semiconductor substrate, an epitaxial growth method or a concentration method (a semiconductor material layer for forming a semiconductor layer is formed on a region of the silicon semiconductor substrate on which a semiconductor layer is to be formed, and heat treatment (annealing treatment) is performed.
  • heat treatment annealing treatment
  • a buffer layer made of GaSb may be provided.
  • the material which comprises a buffer layer is not limited to these.
  • a germanium semiconductor substrate can be used in place of the silicon semiconductor substrate, and a semiconductor layer (not only a silicon layer but also a germanium layer or a III-V group compound semiconductor) is formed on an oxide film such as an SOI (Silicon On On Insulator) substrate.
  • SOI Silicon On On Insulator
  • III-V group compound semiconductors GaN-based compound semiconductors (including AlGaN mixed crystals, InAlGaN mixed crystals, and InGaN mixed crystals), InN-based compound semiconductors, AlN-based compound semiconductors, InAlGaP-based compound semiconductors, InAlGaAs-based compound semiconductors InGaAs-based compound semiconductor, InGaAsP-based compound semiconductor, GaP-based compound semiconductor, and InP-based compound semiconductor can be exemplified.
  • GaN-based compound semiconductors including AlGaN mixed crystals, InAlGaN mixed crystals, and InGaN mixed crystals
  • III-VI group compound semiconductor ZnSe, ZnS, ZnSSe, ZnTe, ZnMgSSe, (Zn, Mg)-(S, Se), (Zn, Cd)-(S, Se, Te), (Zn, Mg) , Cd) Se.
  • the first aspect of the present disclosure constituting the complementary transistor according to the first aspect of the present disclosure, the complementary transistor according to the second aspect of the present disclosure, and the semiconductor device according to the first aspect of the present disclosure.
  • a complementary transistor (such as a complementary transistor of the present disclosure) according to the second aspect of the present disclosure that constitutes a semiconductor device according to the second aspect of the present disclosure.
  • the portion of the base body constituting the first surface region (first A extending region) and the portion of the base body constituting the second surface region (second A extending region) are made of different materials,
  • the first B layer and the first B extension layer, the second B layer and the second B extension layer, or alternatively, the first B extension region and the second B extension region are made of different materials.
  • a portion of the base (first A extending region) constituting the first surface region is formed of a silicon semiconductor substrate
  • a portion of the base (second A extending region) constituting the second surface region is composed of a germanium layer formed on the silicon semiconductor substrate
  • the first B layer and the first B extension layer (first B extension region) are composed of MoTe 2
  • the second B layer and the second B extension layer (second B extension region) may be formed of MoS 2
  • the portion of the base (first A extending region) constituting the first surface region is composed of an indium arsenic layer formed on the silicon semiconductor substrate
  • the portion of the base that constitutes the second surface region is composed of a silicon semiconductor substrate
  • the first B layer and the first B extension layer (first B extension region) are composed of MoTe 2
  • the second B layer and the second B extension layer (second B extension region) may be formed of MoS 2 , or alternatively
  • the portion of the base (first A extending region) constituting the first surface region is composed of an indium arsenic
  • the “driving voltage of the first transistor” is a potential difference between the first control electrode and the first A layer (first A extending region), and the “driving voltage of the second transistor” is the second This is a potential difference between the control electrode and the second A layer (second A extending region).
  • the operational stability of the complementary transistor constituting the semiconductor device according to the first aspect of the present disclosure is From the point of view A first interlayer insulating film (first boundary region) is formed between the first A layer and the first B layer, A second interlayer insulating film (second boundary region) may be formed between the second A layer and the second B layer.
  • first boundary region is formed between the first A layer and the first B layer
  • second boundary region may be formed between the second A layer and the second B layer.
  • interlayer insulating films may be composed of natural oxide films. There may also be a form of lamination via weak van der Waals forces. Specifically, SiO 2 (including a natural oxide film), SiN, hexagonal boron nitride (hBN), and Al 2 O 3 are exemplified as materials constituting the first interlayer insulating film and the second interlayer insulating film.
  • examples of a method for forming the first interlayer insulating film and the second interlayer insulating film include a low temperature oxidation method, a plasma CVD method, and an ALD method.
  • examples of the thickness of the first interlayer insulating film and the second interlayer insulating film include 1 nm to 3 nm.
  • the first-A extending region and A first boundary region (corresponding to a first active region) is formed between the first B extended region and a second boundary region (corresponding to the first active region) is formed between the second A extended region and the second B extended region. (Corresponding to the second active region) may be formed. However, it is not essential to provide the first boundary region or the second boundary region.
  • the end surface of the first A extending region and the end surface of the first B extending region are in contact with each other, and the contact portion constitutes the first active region.
  • the end surface of the second A extending region and the end surface of the second B extending region are in contact with each other, and the contact portion may constitute the second active region.
  • the first A electrode is connected to the first A extension layer (first A extension region);
  • the first B electrode is connected to the first B extension layer (first B extension region);
  • the second A electrode is connected to the second A extension layer (second A extension region);
  • the second B electrode may be connected to the second B extending layer (second B extending region).
  • a voltage higher than that of the first A electrode is applied to the second A electrode
  • the second voltage V 2 is applied to the first control electrode and the second control electrode
  • the first transistor is turned on
  • the second transistor is turned off
  • a first voltage V 1 ( ⁇ V 2 ) lower than the second voltage V 2 is applied to the first control electrode and the second control electrode
  • the first transistor becomes non-conductive and the second transistor It can be set as the form used as a conduction
  • the second voltage V 2 for example, V dd volt> 0
  • the first voltage V 1 for example, 0 volt
  • the first A electrode is applied to the first A electrode. It can be set as a form.
  • the first transistor corresponds to an n-channel FET
  • the second transistor corresponds to a p-channel FET.
  • the first A extension layer, the first A extension region, the second A extension layer, and the second A extension region correspond to the drain portion in the FET
  • the first B extension layer, the first B extension region, and the second B extension correspond to the source part in the FET
  • the first control electrode and the second control electrode correspond to the gate part in the FET.
  • the first active region and the first control electrode overlap, but the orthographic image of the first active region is included in the orthographic image of the first control electrode. It may be coincident with the orthogonal projection image of the first control electrode, or may protrude from the orthogonal projection image of the first control electrode.
  • the second active region and the second control electrode overlap, but the orthographic image of the second active region may be included in the orthographic image of the second control electrode, It may coincide with the orthogonal projection image of the second control electrode, or may protrude from the orthogonal projection image of the second control electrode.
  • the orthogonal projection images of the first active region and the second active region are the first control electrode and the second control electrode. It is desirable to be included in the orthogonal projection image.
  • the first active region (first boundary region) and the first control electrode overlap, but an orthogonal projection image of the first active region (first boundary region). May be included in the orthogonal projection image of the first control electrode, may coincide with the orthogonal projection image of the first control electrode, or may protrude from the orthogonal projection image of the first control electrode. .
  • the second active region (second boundary region) and the second control electrode overlap, but the orthogonal projection image of the second active region (second boundary region) is the second control electrode. It may be included in the orthogonal projection image, may coincide with the orthogonal projection image of the second control electrode, or may protrude from the orthogonal projection image of the second control electrode.
  • the orthogonal projection images of the first active region and the second active region are the first control electrode and the second control electrode. It is desirable to be included in the orthogonal projection image.
  • TMDC transition metal dichalcogenide
  • CuS which is a compound of Cu, which is a transition metal
  • S which is a chalcogen element
  • a compound of a non-transition metal such as Ga, In, Ge, Sn, Pb and the chalcogen element (for example, GaS, GaSe, GaTe, In 2 Se 3 , InSnS 2 , SnSe 2 , GeSe, SnS 2 , PbO).
  • black phosphorus Black Phosphorus
  • the materials constituting the first B layer (first B extending region) and the second B layer (second B extending region) are the same, and the doping material for the first B layer (first B extending region) and the second B layer (second B)
  • the doping material for the extending region) may be different. Examples of doping include an ion implantation method and a chemical doping method.
  • NMNH nicotinamide mononucleotide-H
  • NADH nicotinamide adenine dinucleotide phosphate-H
  • NADPH nicotinamide adenine dinucleotide phosphate-H
  • PEI polyethylenimine
  • alkali metals such as potassium and lithium.
  • ionic liquids such as NO 2 BF 4 , NOBF 4 , NO 2 SbF 6 ; HCl, H 2 PO 4 , CH 3 COOH, Acid compounds such as H 2 SO 4 and HNO 3 ; Organic compounds such as dichlorodicyanoquinone, oxone, dimyristoylphosphatidylinositol and trifluoromethanesulfonimide; HPtCl 4 , AuCl 3 , HAuCl 4 , silver trifluoromethanesulfonate, AgNO 3 , H 2 PdCl 6 , Pd (OAc) 2 , Cu (CN) 2 and the like can be mentioned.
  • the following methods can be exemplified. That is, [A] A method in which a precursor of a transition metal chalcogenide-based material is formed in a thin film on an insulating region and then heat-treated. [B] A method of forming a thin film made of a transition metal oxide on an insulating region and then reacting the transition metal in the transition metal oxide with the chalcogen in the material containing the chalcogen element.
  • Graphene refers to a 1 atom thick sheet of sp 2 bonded carbon atoms, having a honeycomb-like hexagonal lattice structure made from carbon atoms and their bonds.
  • chemical doping may be performed.
  • a dopant layer may be formed on the graphene film.
  • the dopant layer can be an electron-accepting (p-type) dopant layer, or it can be an electron-donating (n-type) dopant layer.
  • Materials constituting the electron-accepting type (p-type) dopant layer include chlorides such as AuCl 3 , HAuCl 4 and PtCl 4 ; acids such as HNO 3 , H 2 SO 4 , HCl and nitromethane; Group III such as boron and aluminum Element: An electron-withdrawing molecule such as oxygen can be mentioned, and as a material constituting an electron-donating (n-type) dopant layer, in addition to a group V element such as nitrogen and phosphorus, a pyridine compound, a nitride, Examples thereof include electron-donating molecules such as alkali metals and aromatic compounds having an alkyl group.
  • Graphene can be formed, for example, by the manufacturing method described below.
  • a film containing a graphenization catalyst is formed on the base material.
  • the vapor phase carbon supply source is heat-treated to generate graphene.
  • the film-like graphene can be formed on the film containing the graphene catalyst.
  • graphene catalyst in addition to carbon compounds such as SiC, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, and Mention may be made of at least one metal selected from Zr.
  • a vapor phase carbon source for example, at least selected from carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene
  • carbon monoxide methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene
  • One type of carbon source can be mentioned.
  • the graphene can be obtained by isolate
  • first control electrode and the second control electrode include polysilicon, polycide, metal silicide, metal nitride (for example, TiN), metal such as aluminum (Al) and gold (Au), graphene and ITO, etc.
  • Examples of the method of forming the first control electrode and the second control electrode include various physical vapor deposition methods (PVD methods) including vacuum deposition and sputtering, and various chemical vapor deposition methods. (CVD method) can be exemplified.
  • first A electrode, the first B electrode, the second A electrode, and the second B electrode polysilicon doped with impurities; aluminum; tungsten, Ti, Pt, Pd, Cu, TiW, TiNW, WSi 2 .
  • a conductive material made of a refractory metal such as MoSi 2 or a metal silicide.
  • methods for forming these electrodes include various PVD methods and CVD methods.
  • SiO X based material such as silicon oxide (SiO 2), SiOF-based material or SiN-based materials, other SiON-based material
  • metal oxide materials such as Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), and lanthanum oxide (La 2 O), and metal nitride materials.
  • an insulating material made of a metal silicate such as HfSiO, HfSiON, ZrSiO, AlSiO, LaSiO can be exemplified.
  • the first insulating layer and the second insulating layer may be formed from one type of material, or may be formed from a plurality of types of materials.
  • the first insulating layer and the second insulating layer may have a single-layer configuration or a multi-layer configuration. It is preferable that the first insulating layer and the second insulating layer have the same configuration from the viewpoint of simplification of the process.
  • various CVD methods including ALD (Atomic Layer Deposition) method, metal organic chemical vapor deposition method (MOCVD method), various methods including vacuum evaporation method and sputtering method.
  • ALD Atomic Layer Deposition
  • MOCVD method metal organic chemical vapor deposition method
  • various methods including vacuum evaporation method and sputtering method various methods including vacuum evaporation method and sputtering method.
  • the PVD method can be exemplified.
  • the first insulating layer and the second insulating layer are formed by the same method, and it is preferable to form the first insulating layer and the second insulating layer at the same time from the viewpoint of simplification of the process.
  • Examples of the thicknesses of the first insulating layer and the second insulating layer include 1 nm to 10 nm.
  • the field effect transistor constituting the semiconductor device according to the first to second aspects of the present disclosure can be the same as a conventional field effect transistor.
  • the complementary transistor of the present disclosure can constitute a logic circuit such as an inverter circuit, a NAND circuit, an AND circuit, a NOR circuit, an OR circuit, an XOR circuit, or a NOT circuit, or a SRAM circuit.
  • a logic circuit such as an inverter circuit, a NAND circuit, an AND circuit, a NOR circuit, an OR circuit, an XOR circuit, or a NOT circuit, or a SRAM circuit.
  • Example 1 relates to a complementary transistor according to the first aspect of the present disclosure and a semiconductor device according to the first aspect of the present disclosure.
  • An inverter circuit is configured by the complementary transistors of the first embodiment.
  • FIG. 1 is a schematic partial cross-sectional view of the complementary transistor of the first embodiment.
  • FIGS. 2A, 2B, 3A, 3B, and 4A are schematic views illustrating the operation state of the complementary transistor of the first embodiment.
  • 4B shows an equivalent circuit diagram of the inverter circuit configured by the complementary transistor of the first embodiment
  • FIG. 5 shows a conceptual diagram showing the positional relationship between the active region and the control electrode in the complementary transistor of the first embodiment. 6A, 6B and 6C.
  • FIG. 2A shows a state where the first transistor is in a non-conductive state (off state)
  • FIG. 2B shows a state where the second transistor is in a conductive state (on state)
  • FIG. 3B shows a state in which the first transistor changes from a non-conductive state (off state) to a conductive state (on state)
  • FIG. 3B shows a state in which the second transistor changes from a conductive state (on state) to a non-conductive state (off state).
  • 4A shows a state where the first transistor is in a conductive state (on state)
  • FIG. 4B shows a state where the second transistor is in a non-conductive state (off state).
  • FIG. 5 for convenience, an equivalent circuit diagram of the inverter circuit is shown using symbols of field effect transistors.
  • the complementary transistor 10 of Example 1 is First control electrode 30, A first active region 32 that is located below the first control electrode 30 and is formed by laminating a first A layer 33 and a first B layer 35; A first insulating layer 31 made of hafnium oxide (HfO 2 ) having a thickness of 1 nm provided between the first control electrode 30 and the first active region 32; A first A extension layer 34 extending from one end of the first active region 32 and composed of a first A layer 33; and A first B extending layer 36 extending from the other end of the first active region 32 and composed of a first B layer 35; A first transistor TR 1 comprising : Second control electrode 40, A second active region 42 formed by laminating a second A layer 43 and a second B layer 45 located below the second control electrode 40; A second insulating layer 41 made of 1 nm hafnium oxide (HfO 2 ) provided between the second control electrode 40 and the second active region 42; A second A extending layer 44 extending from one end of the second active region 42 and composed of
  • the first conductivity type provided on the substrate (specifically, in Example 1 n-type) first surface region 20 1 with the equivalent to a 1A layer 33 and a 1A Nobezaiso 34
  • the first B layer 35 has characteristics as a second conductivity type different from the first conductivity type (that is, the second conductivity type, specifically, exhibits a behavior as a p-type, or has an electron accepting property.
  • the first B extending layer 36 is provided on the first insulating region 21 1 provided on the base body, (Specifically, in Example 1 p-type) second conductivity type formed on the substrate second surface region 20 2 having a corresponds to the 2A layer 43 and the 2A Nobezaiso 44,
  • the second B layer 45 has the characteristics as the first conductivity type (that is, the first conductivity type, specifically, shows the behavior as the n-type, or has the electron donating property),
  • the second B extending layer 46 is provided on the second insulating region 21 2 provided on the base.
  • the semiconductor device (semiconductor device, semiconductor element) of Example 1 includes the complementary transistor of Example 1 whose base is a silicon semiconductor substrate, and the field effect transistor formed on the silicon semiconductor substrate.
  • the field effect transistor has a known configuration and structure.
  • a field effect transistor group composed of a plurality of field effect transistors surrounds a complementary transistor group composed of a plurality of complementary transistors, and the field effect transistor group constitutes a peripheral circuit.
  • the complementary transistor is the front stage, and the field effect transistor connected to the complementary transistor is the rear stage.
  • a sensor that captures a desired physical quantity or chemical quantity is connected to the complementary transistor, and the sensor is connected to the desired physical quantity or chemical quantity.
  • the complementary transistor can be configured to send a signal to a subsequent field effect transistor and amplify the signal from the sensor by the field effect transistor. The same applies to Examples 2 to 6 described later.
  • the first B layer 35 and the first B extension layer 36 are made of a two-dimensional material or graphene
  • the second B layer 45 and the second B extension layer 46 are also made of a two-dimensional material or graphene.
  • the two-dimensional material is selected from the group consisting of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , WSe 2 , WTe 2 , ZrS 2 , ZrSe 2 , ZrTe 2 , HfS 2 , HfSe 2 and HfTe 2. It consists of one kind of two-dimensional material.
  • the base is made of a semiconductor substrate or silicon (Si), specifically, a silicon semiconductor substrate 20, and the first B layer 35 and the first B extended layer 36 are made of WTe 2 (the thickness is, for example, one atomic layer of WTe 2.
  • the second B layer 45 and the second B extending layer 46 are made of HfTe 2 (thickness is, for example, one atomic layer of HfTe 2 ).
  • the first insulating region 21 1 and the second insulating region 21 2 are composed of an element isolation region 21 made of SiO 2 provided on the silicon semiconductor substrate 20. Note that the first insulating region 21 1 and the second insulating region 21 2 may be formed by performing ion implantation, for example, in a portion where the first insulating region 21 1 and the second insulating region 21 2 are to be formed. .
  • the first transistor TR 1 further includes a first A electrode 38 connected to the first A extension layer 34 and a first B electrode 39 connected to the first B extension layer 36, and the second transistor TR 2. Further includes a second A electrode 48 connected to the second A extending layer 44 and a second B electrode 49 connected to the second B extending layer 46.
  • the first control electrode 30 and the second control electrode 40 are made of, for example, TiN.
  • Example 1 or Example 2 to Example 6 described later The difference between the energy value E C-sub of the lower end of the conduction band of the substrate (silicon semiconductor substrate 20) and the energy value E C-1B of the lower end of the conduction band of the first B layer 35 (first B extending region 135).
  • the absolute value is equal to or less than an energy difference that can be driven by the drive voltage of the first transistor TR 1 (specifically, for example, 1.0 eV or less if 1.0 volt),
  • the valence band of the upper end of the energy value E V-sub and the 1B layer 35 of the substrate 20 the absolute value of the difference between the value E V-1B energy at the upper end of the valence band of the (first 1B extending region 135) is , Or less than the energy difference that can be driven by the driving voltage of the first transistor TR 1 , Absolute value of the difference between the energy value E C-2B at the lower end of the conduction band of the conduction band of the lower end of the energy values E C-sub and the 2B layer 45 (first 2B extending region 145) of the base body 20, the Less than the energy difference that can be driven by the driving voltage of the two-transistor TR 2 (specifically, for example, 1.0 eV or less if 1.0 volt),
  • a first interlayer insulating film (first boundary region) 37 is formed between the first A layer 33 and the first B layer 35, and the second A layer 43 and the second B layer 45 have a second An interlayer insulating film (second boundary region) 47 is formed.
  • the first interlayer insulating film (first boundary region) 37, a second interlayer insulating film (second boundary region) 47 consists of HfO 2 having a thickness of 1 nm.
  • a voltage higher than that of the first A electrodes 38 and 138 is applied to the second A electrodes 48 and 148, and
  • the first transistor TR 1 becomes conductive
  • the second transistor TR 2 Become non-conductive
  • the first transistor TR 1 is turned off and the second transistor TR 2 is turned on.
  • the first control electrodes 30 and 130 and the second control electrode 40 are used.
  • 140 is represented by V CE .
  • the first voltage V 1 is applied to the first A layer 33 (first A extending region 133) constituting the first transistor, and the first A layer 33 in the first transistor TR 1 is applied.
  • the energy value of the upper end of the valence band and the lower end of the conduction band in the first boundary regions 37, 137 located between the (first A extending region 133) and the first B layer 35 (first B extending region 135) There is no change in each of the energy values (see FIG. 35A).
  • the first transistor TR 1 becomes non-conductive state.
  • the valence band in the second boundary area 47,147 located between the first 2A layer 43 in the second transistor TR 2 (first 2A extending region 143) and the 2B layer 45 (first 2B extending region 145) The energy value E V-2B of the upper end of the valence band and the lower end of the conduction band of the second B layer 45 (second B extension region 145) are respectively the energy value at the upper end of the conduction band and the energy value at the lower end of the conduction band.
  • the first A layer 33 (the first A extending region 133) constituting the first transistor TR 1.
  • the first voltage V 1 and the first A layer 33 (first A extending region 133) and the first B layer 35 (first B extending region 135) in the first transistor TR 1
  • the value of the energy at the upper end of the valence band and the value of the energy at the lower end of the conduction band in each of the first boundary regions 37 and 137 positioned between the valence electrons of the first B layer 35 (the first B extending region 135) It approaches the energy value E V-1B at the upper end of the band and the energy value E C-1B at the lower end of the conduction band (see FIG.
  • the first transistor TR 1 becomes conductive and the first transistor TR 1 becomes conductive.
  • the potentials of the 1A layer 33 (first A extending region 133) and the first B layer 35 (first B extending region 135) are ideally equal, and the potentials of the first B electrodes 39 and 139 are equal to the first potential V 1 .
  • the second transistor TR 2 for example, the second voltage V 2 is applied to the second A layer 43 (second A extending region 143), and the second voltage V 2 is applied to the second control electrode 40.
  • the first active region 32 and the first control electrode 30 overlap, but the orthographic image of the first active region 32 may be included in the orthographic image of the first control electrode 30. (See FIG. 6A), it may coincide with the orthographic image of the first control electrode 30 (see FIG. 6B), or may protrude from the orthographic image of the first control electrode 30 (see FIG. 6C).
  • the second active region 42 and the second control electrode 40 overlap, but the orthographic image of the second active region 42 is included in the orthographic image of the second control electrode 40.
  • the orthogonal projection images of the first active region 32 and the second active region 42 are the first control electrode 30. It is desirable that the second control electrode 40 be included in the orthogonal projection image.
  • Step-100 That is, the element isolation region 21 is formed in the silicon semiconductor substrate 20 based on a known method. Then, on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21, a first surface region 20 1 (first A) having a first conductivity type (specifically, n-type) based on an ion implantation method. The layer 33 and the 1A extending layer 34) are formed (see FIG. 7A).
  • a first interlayer insulating film 37 is formed on the surface of the silicon semiconductor substrate 20 (or on the surface of the silicon semiconductor substrate 20 and the element isolation region 21). Then, WTe 2 is formed on the first interlayer insulating film 37 and the first insulating region (element isolation region) 21 1 based on the CVD method, and then patterned into a desired shape. A 1B extending layer 36 can be obtained (see FIG. 7B).
  • the first insulating layer 31 is formed on the entire surface.
  • the first control electrode 30 is formed on the first insulating layer 31 (see FIG. 7C).
  • an interlayer insulating layer 22 made of SiO 2 is formed on the entire surface, an opening is formed in the interlayer insulating layer 22 located above the first A extension layer 34, and the opening is embedded with a conductive material, thereby The first A electrode 38 can be formed over the top surface of the insulating layer 22.
  • the first B electrode 39 is formed over the top surface of the interlayer insulating layer 22 by forming an opening in the interlayer insulating layer 22 located above the first B extending layer 36 and filling the opening with a conductive material. can do.
  • the second transistor TR 2 can also be formed by a substantially similar method. Thus, the complementary transistor shown in FIG. 1 can be obtained.
  • the activity of the complementary transistor since the first A layer 33, the first A extending layer 34, the second A layer 43, and the second A extending layer 44 are formed in the surface region of the base 20, the activity of the complementary transistor
  • the maximum number of materials constituting the region and the like may be three (specifically, for example, silicon, WTe 2 and HfTe 2 ), and two types of two-dimensional materials (2D materials) may be used. It is possible to reduce the types of constituent materials such as the active region of the semiconductor and to simplify the manufacturing process.
  • the second embodiment is a modification of the first embodiment.
  • a schematic partial end view of the complementary transistor of Example 2 in the middle of manufacture is shown.
  • the 1A layer 53 and the 1A Nobezaiso 54 portion of the substrate constituting the first surface region 20 1 and, in part (specifically the substrate constituting the second surface region 20 2,
  • the second A layer 63 and the second A extending layer 64 are made of different materials
  • the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of the same material (see also FIG. 1).
  • the complementary transistor of the second embodiment is composed of only one type of two-dimensional material (2D material), one type of semiconductor layer, and one type of semiconductor substrate.
  • the number of types of materials (particularly two-dimensional materials) can be further reduced, and the manufacturing process can be further simplified.
  • Portions 53, 54 of the substrate constituting the first surface region 20 1 is composed of a silicon semiconductor substrate 20
  • Portions 63, 64 of the base body constituting the second surface region 20 2 (specifically, the germanium layer) semiconductor layer formed on the silicon semiconductor substrate 20 is composed of 27A
  • the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of the same two-dimensional material (specifically, MoTe 2 ).
  • FIG. 8A, 8B, 9A, 9B, and 10 an outline of a manufacturing method of the complementary transistor of Example 2 will be described with reference to FIGS. 8A, 8B, 9A, 9B, and 10.
  • FIG. 8A, 8B, 9A, 9B, and 10 an outline of a manufacturing method of the complementary transistor of Example 2 will be described with reference to FIGS. 8A, 8B, 9A, 9B, and 10.
  • Step-200A That is, element isolation regions 21 (21 1 , 21 2 ) are formed in the silicon semiconductor substrate 20 based on a known method (see FIG. 8A). Then, the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the second transistor TR 2 is to be formed is etched to form a recess 26A (see FIG. 8B).
  • Step-210A Next, a desired region is covered with a mask layer (not shown), and the recess 26A is filled with a germanium (Ge) layer 27A as a semiconductor layer based on an epitaxial growth method (see FIG. 9A).
  • a germanium (Ge) layer 27A is formed based on the concentration method, it is not necessary to form the recess 26A. The same applies to the following description.
  • Step-220A Then, ion implantation is performed on the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed.
  • the first surface region 20 1 (the first A layer 53 and the first A) having the first conductivity type (specifically, n-type) is formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21.
  • An extension layer 54 can be formed (see FIG. 9B).
  • the germanium layer 27A surrounded by the element isolation region 21 is added to the second surface region 20 2 (the second A layer 63 and the second A extending layer 64) having the second conductivity type (specifically, p-type). Can be formed (see FIG. 10).
  • Step-230A Thereafter, in the same manner as described in Example 1, except that the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of MoTe 2.
  • the first transistor TR 1 and the second transistor TR 2 can be obtained.
  • a complementary transistor similar to that shown in FIG. 1 can be obtained.
  • FIG. 13 a schematic partial end view of the complementary transistor of the first modified example of the second embodiment in the middle of manufacture is shown.
  • Portions 73 and 74 of the substrate constituting the first surface region 20 1 (specifically, indium arsenide (InAs) layer) semiconductor layer formed on a silicon semiconductor substrate is composed of 27B
  • Portions 83 and 84 of the substrate constituting the second surface region 20 2 is composed of a silicon semiconductor substrate 20
  • the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of the same two-dimensional material (specifically, MoS 2 ) (see also FIG. 1). ).
  • FIG. 11A, 11B, 12A, 12B, and 13 an outline of a manufacturing method of a complementary transistor according to a first modification of the second embodiment will be described with reference to FIGS. 11A, 11B, 12A, 12B, and 13.
  • FIG. 11A, 11B, 12A, 12B, and 13 an outline of a manufacturing method of a complementary transistor according to a first modification of the second embodiment will be described with reference to FIGS. 11A, 11B, 12A, 12B, and 13.
  • Step-200B That is, element isolation regions 21 (21 1 , 21 2 ) are formed in the silicon semiconductor substrate 20 based on a known method (see FIG. 11A). Then, ion implantation is performed on the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and in which the second transistor TR 2 is to be formed. As a result, the second surface region 20 2 (second A layer 83 and second A extension) having the second conductivity type (specifically, p-type) is formed in the surface region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21. An underlying layer 84) can be formed (see FIG. 11B).
  • Step-210B a region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed is etched to form a recess 26B (see FIG. 12A).
  • Step-220B Thereafter, a desired region is covered with a mask layer (not shown), and a buffer layer 28B made of InP is formed on the bottom of the recess 26B based on an epitaxial growth method (see FIG. 12B). Further, after an InAs layer 27B as a semiconductor layer is formed based on an epitaxial growth method, ion implantation is performed on a region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed. Thus, the first surface region 20 1 (the first A layer 73 and the first A) having the first conductivity type (specifically, n-type) is formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21. An extension layer 74) can be formed (see FIG. 13).
  • Step-230B a method similar to the method described in Example 1, except that the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of MoS 2 .
  • the first transistor TR 1 and the second transistor TR 2 can be obtained.
  • a complementary transistor similar to that shown in FIG. 1 can be obtained.
  • FIG. 15 a schematic partial end view of the complementary transistor of the second modification of the second embodiment in the middle of manufacture is shown.
  • Base portions 73 and 74 constituting the first surface region 20 1 (specifically, indium arsenide (InAs) layer) first semiconductor layer formed on the semiconductor substrate 20 is composed of 27B
  • Portions 63, 64 of the base body constituting the second surface region 20 2 (specifically, the germanium layer) second semiconductor layer formed on the semiconductor substrate 20 is composed of 27A
  • the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of the same two-dimensional material (specifically, MoS 2 ) (also in Example 1). reference).
  • FIG. 14A, 14B, and 15 An outline of a manufacturing method of a complementary transistor according to a second modification of the second embodiment will be described with reference to FIGS. 14A, 14B, and 15.
  • FIG. 14A, 14B, and 15 An outline of a manufacturing method of a complementary transistor according to a second modification of the second embodiment will be described with reference to FIGS. 14A, 14B, and 15.
  • Step-200C That is, as in the second embodiment, element isolation regions 21 (21 1 , 21 2 ) are formed in the silicon semiconductor substrate 20 based on a known method. Then, the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the second transistor TR 2 is to be formed is etched to form a recess 26A (FIGS. 8A and 8B). reference). Next, a desired region is covered with a mask layer (not shown), and the recess 26A is filled with a germanium (Ge) layer 27A, which is a semiconductor layer (see FIG. 9A), and ion implantation is performed on the germanium layer 27A based on an epitaxial growth method. .
  • germanium (Ge) layer 27A which is a semiconductor layer (see FIG. 9A)
  • the second surface region 20 2 (second A layer 63 and second A extending layer 64) having the second conductivity type (specifically, p-type) is formed on the germanium layer 27A surrounded by the element isolation region 21. Can be formed (see FIG. 14A).
  • Step-210C Next, the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed is etched to form the recess 26B.
  • Step-220C Thereafter, a desired region is covered with a mask layer (not shown), and a buffer layer 28B made of InP is formed on the bottom of the recess 26B based on an epitaxial growth method (see FIG. 14B). Further, after an InAs layer 27B as a semiconductor layer is formed based on an epitaxial growth method, ion implantation is performed on a region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed. Thus, the first surface region 20 1 (the first A layer 73 and the first A) having the first conductivity type (specifically, n-type) is formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21. An extension layer 74) can be formed (see FIG. 15).
  • Step-230C a method similar to the method described in Example 1, except that the first B layer 35 and the first B extending layer 36, and the second B layer 45 and the second B extending layer 46 are made of MoS 2 .
  • the first transistor TR 1 and the second transistor TR 2 can be obtained.
  • a complementary transistor similar to that shown in FIG. 1 can be obtained.
  • the third embodiment is also a modification of the first embodiment.
  • the complementary transistor of Example 3 And portions 53 and 54 of the substrate constituting the first surface region 20 1 and the parts 63, 64 of the base constituting the second surface region 20 2, it is composed of different materials,
  • the first B layer 35 and the first B extending layer 36 and the second B layer 45 and the second B extending layer 46 are made of different materials.
  • portions 53 and 54 of the substrate constituting the first surface region 20 1 is composed of a silicon semiconductor substrate 20
  • Portions 63, 64 of the base body constituting the second surface region 20 2 is composed of a germanium layer 27A formed on the silicon semiconductor substrate 20
  • the first B layer 35 and the first B extending layer 36 are made of MoTe 2
  • the second B layer 45 and the second B extending layer 46 are made of MoS 2 .
  • portions 53 and 54 of the substrate constituting the first surface region 20 1 is composed of indium arsenide layer 27B formed on the silicon semiconductor substrate 20
  • Portions 63, 64 of the base body constituting the second surface region 20 2 is composed of a silicon semiconductor substrate 20
  • the first B layer and the first B extension layer (first B extension region) are composed of MoTe 2
  • the second B layer and the second B extension layer (second B extension region) may be formed of MoS 2 .
  • portions 53 and 54 of the substrate constituting the first surface region 20 1 is composed of indium arsenide layer 27B formed on the silicon semiconductor substrate 20
  • Portions 63, 64 of the base body constituting the second surface region 20 2 is composed of a germanium layer 27A formed on the silicon semiconductor substrate 20
  • the first B layer and the first B extension layer (first B extension region) are composed of MoTe 2
  • the second B layer and the second B extension layer (second B extension region) may be formed of MoS 2 .
  • the first surface region 20 1 constitutes a portion of the substrate 53 in the third embodiment, a method of forming the portions 63, 64 of the base body constituting the second surface region 20 2, the same method as described in Example 2 Furthermore, the first transistor TR 1 and the second transistor TR 2 can be obtained by a method similar to the method described in the first embodiment. Thus, a complementary transistor similar to that shown in FIG. 1 can be obtained.
  • Example 4 relates to a complementary transistor according to the second aspect of the present disclosure.
  • An inverter circuit is also configured by the complementary transistor of the fourth embodiment.
  • a schematic partial cross-sectional view of the complementary transistor of the fourth embodiment is shown in FIG. 16, and the operation state of the complementary transistor of the fourth embodiment is schematically shown in FIGS. 17A, 17B, 18A, 18B, and 19A.
  • FIGS. 20A, 20B, and 20C are conceptual diagrams showing the positional relationship between the active region and the control electrode in the complementary transistor of Example 4 shown in FIG. 19B.
  • 17A shows a state in which the first transistor is in a non-conducting state (off state)
  • FIG. 17B shows a state in which the second transistor is in a conducting state (on state)
  • FIG. 18B shows a state in which the first transistor changes from a non-conduction state (off state) to a conduction state (on state), and FIG. 18B shows a state in which the second transistor changes from a conduction state (on state) to a non-conduction state (off state).
  • FIG. 19A shows a state where the first transistor is in a conducting state (on state)
  • FIG. 19B shows a state where the second transistor is in a non-conducting state (off state).
  • the complementary transistor 110 of Example 4 is First control electrode 130, A first active region 132 located below the first control electrode 130; A first insulating layer 131 provided between the first control electrode 130 and the first active region 132; A first A extending region 133 extending from one end of the first active region 132, and A first B extending region 135 extending from the other end of the first active region 132; A first transistor TR 1 comprising : Second control electrode 140, A second active region 142 located below the second control electrode 140; A second insulating layer 141 provided between the second control electrode 140 and the second active region 142; A second A extending region 143 extending from one end of the second active region 142, and A second B extending region 145 extending from the other end of the second active region 142; A second transistor TR 2 comprising : Consists of.
  • the first surface region 120 1 having the first conductivity type (specifically, n-type in Example 4) provided on the base corresponds to the first A extending region 133
  • the first B extension region 135 has a characteristic as a second conductivity type different from the first conductivity type (that is, the first conductivity type exhibits a behavior as a second conductivity type, specifically, a p-type, or an electron Having a receptivity), provided on the first insulating region 21 1 provided on the substrate,
  • the first active region 132 is provided on the first insulating region 21 1 .
  • the second surface region 120 2 having the second conductivity type (specifically, p-type in Example 4) provided on the base corresponds to the second A extending region 143,
  • the second B extension region 145 has characteristics as the first conductivity type (that is, the first conductivity type, specifically, shows the behavior as the n-type, or has electron donating property),
  • the second active region 142 is provided on the second insulating region 21 2 .
  • the semiconductor device (semiconductor device, semiconductor element) of Example 4 includes the complementary transistor of Example 4 whose base is a silicon semiconductor substrate, and the field effect transistor formed on the silicon semiconductor substrate.
  • the first transistor TR 1 further includes a first A electrode 138 connected to the first A extending region 133 and a first B electrode 139 connected to the first B extending region 135, and the second transistor TR 2. Includes a second A electrode 148 connected to the second A extending region 143 and a second B electrode 149 connected to the second B extending region 145.
  • the first B extension region 135 is made of a two-dimensional material or graphene
  • the second B extension region 145 is also made of a two-dimensional material or graphene.
  • the two-dimensional material is selected from the group consisting of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , WSe 2 , WTe 2 , ZrS 2 , ZrSe 2 , ZrTe 2 , HfS 2 , HfSe 2 and HfTe 2. It consists of one kind of two-dimensional material.
  • the base body is made of a semiconductor substrate or silicon (Si), specifically, a silicon semiconductor substrate 20, and the first B extension region 135 is made of WTe 2 (the thickness is, for example, 5 Te 2 atomic layers).
  • the second B extending region 145 is composed of HfTe 2 (thickness is, for example, 5 atomic layers of HfTe 2 ).
  • first insulating region 21 1 and the second insulating region 21 2 are composed of an element isolation region 21 made of SiO 2 provided on the silicon semiconductor substrate 20.
  • the first control electrode 130 and the second control electrode 140, the first insulating layer 131 and the second insulating layer 141, the first A electrode 138 and the second A electrode 148, the first B electrode 139 and the second B electrode 149, and the interlayer insulating layer 22 are The same material as described in the first embodiment is used.
  • the first boundary region 137 (corresponding to the first active region 132) is formed between the first A extending region 133 and the first B extending region 135, and the second A A second boundary region 147 (corresponding to the second active region 142) is formed between the extending region 143 and the second B extending region 145.
  • the first boundary region 137 (first active region 132) is an intrinsic active region, and is specifically composed of WTe 2 having a thickness of 3 nm.
  • the second boundary region 147 (second active region 142) is also an intrinsic active region, and specifically consists of HfTe 2 having a thickness of 3 nm.
  • the end surface of the first A extending region 133 and the end surface of the first B extending region 135 may be in contact with each other, or the end surface of the second A extending region 143 and the end surface of the second B extending region 145 may be in contact with each other. Also good. That is, the first boundary region 137 and the second boundary region 147 are not provided, and the contact portion between the end surface of the first A extending region 133 and the end surface of the first B extending region 135 forms the first active region 132, and the second A A contact portion between the end surface of the extending region 143 and the end surface of the second B extending region 145 may be configured to form the second active region 142.
  • the first active region 132 (first boundary region 137) and the first control electrode 130 are overlapped, but the orthogonal projection image of the first active region 132 (first boundary region 137). May be included in the orthographic image of the first control electrode 130 (see FIG. 20A), may coincide with the orthographic image of the first control electrode 130 (see FIG. 20B), or the first You may protrude from the orthogonal projection image of the control electrode 130 (refer FIG. 20C).
  • the second active region 142 (second boundary region 147) and the second control electrode 140 overlap, but the orthogonal projection image of the second active region 142 (second boundary region 147) is It may be included in the orthographic image of the second control electrode 140 (see FIG.
  • the orthogonal projection images of the first active region 132 and the second active region 142 are the first control electrode 130. It is desirable that the second control electrode 140 is included in the orthogonal projection image.
  • FIGS. 21A, 21B, and 21C an outline of a manufacturing method of, for example, the first transistor in the complementary transistor of the fourth embodiment will be described with reference to FIGS. 21A, 21B, and 21C.
  • Step-400 That is, the element isolation region 21 is formed in the silicon semiconductor substrate 20 based on a known method.
  • a first surface region 120 1 (first A) having a first conductivity type (specifically, n-type) is formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 based on an ion implantation method.
  • An extension region 133) is formed (see FIG. 21A).
  • the first insulating layer 131 is formed on the entire surface.
  • the first control electrode 130 is formed on the first insulating layer 131 (see FIG. 21C).
  • an interlayer insulating layer 22 is formed on the entire surface, an opening is formed in the interlayer insulating layer 22 located above the first A extension region 133, and the opening is buried with a conductive material, whereby the top of the interlayer insulating layer 22 is formed.
  • the first A electrode 138 can be formed over the surface.
  • the first B electrode 139 is formed over the top surface of the interlayer insulating layer 22 by forming an opening in the interlayer insulating layer 22 located above the first B extending region 135 and filling the opening with a conductive material. can do.
  • the second transistor TR 2 can also be formed by a substantially similar method. Thus, the complementary transistor shown in FIG. 16 can be obtained.
  • the types of materials constituting the active region of the complementary transistor etc.
  • the maximum number of three types is sufficient, and the number of two-dimensional materials (2D materials) may be two, and the types of constituent materials such as active regions of complementary transistors can be reduced.
  • the fifth embodiment is a modification of the fourth embodiment.
  • the complementary transistor of Example 5 as shown in FIG. 24, a schematic partial end view of the complementary transistor of Example 5 in the middle of manufacture is shown.
  • the first A extension region 153 and the second A extension region 163 are made of different materials,
  • the first B extending region 135 and the second B extending region 145 are made of the same material. That is, the complementary transistor of the fifth embodiment is composed of only one type of two-dimensional material (2D material), one type of semiconductor layer, and one type of semiconductor substrate.
  • the number of types of materials (particularly two-dimensional materials) can be further reduced, and the manufacturing process can be further simplified.
  • the first A extending region 153 is composed of the silicon semiconductor substrate 20
  • the second A extending region 163 is composed of a semiconductor layer (specifically, a germanium layer) 127A formed on the silicon semiconductor substrate 20
  • the first B extension region 135 and the second B extension region 145 are made of the same two-dimensional material (specifically, MoTe 2 ).
  • FIG. 22A, 22B, 23A, 23B, and 24 an outline of a manufacturing method of the complementary transistor of Example 5 will be described with reference to FIGS. 22A, 22B, 23A, 23B, and 24.
  • FIG. 22A, 22B, 23A, 23B, and 24 an outline of a manufacturing method of the complementary transistor of Example 5 will be described with reference to FIGS. 22A, 22B, 23A, 23B, and 24.
  • Step-500A That is, element isolation regions 21 (21 1 , 21 2 ) are formed in the silicon semiconductor substrate 20 based on a known method (see FIG. 22A). Then, the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the second transistor TR 2 is to be formed is etched to form a recess 126A (see FIG. 22B).
  • Step-510A Next, a desired region is covered with a mask layer (not shown), and the recess 126A is filled with a germanium (Ge) layer 127A which is a semiconductor layer based on an epitaxial growth method (see FIG. 23A).
  • a germanium (Ge) layer 127A which is a semiconductor layer based on an epitaxial growth method (see FIG. 23A).
  • Step-520A ion implantation is performed on the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed.
  • the first surface region 120 1 first A extending region 153 having the first conductivity type (specifically, n-type) is formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21. Can be formed (see FIG. 23B).
  • the second surface region 120 2 (second A extending region 163) having the second conductivity type (specifically, p-type) is formed in the germanium layer 127A surrounded by the element isolation region 21. Yes (see FIG. 24).
  • Step-530A Thereafter, in the same manner as described in the fourth embodiment, except that the first B extended region 135 and the second B extended region 145 are made of MoTe 2 , so that the first transistor TR 1 and the second transistor TR You can get two .
  • a complementary transistor similar to that shown in FIG. 16 can be obtained.
  • FIG. 26B a schematic partial end view of the complementary transistor of the first modification of the fifth embodiment in the middle of manufacture is shown.
  • the first A extension region 173 is composed of a semiconductor layer (specifically, an indium arsenide layer) 127B formed on the silicon semiconductor substrate 20,
  • the second A extending region 183 is composed of the silicon semiconductor substrate 20,
  • the first B extending region 135 and the second B extending region 145 are made of the same two-dimensional material (specifically, MoS 2 ).
  • FIGS. 25A, 25B, 26A, and 26B an outline of a manufacturing method of the complementary transistor according to the first modification of the fifth embodiment will be described with reference to FIGS. 25A, 25B, 26A, and 26B.
  • Step-500B That is, element isolation regions 21 (21 1 , 21 2 ) are formed in the silicon semiconductor substrate 20 based on a known method. Then, ion implantation is performed on the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and in which the second transistor TR 2 is to be formed. As a result, the second A extension region 183 having the second conductivity type (specifically, p-type) can be formed in the surface region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 (FIG. 25A). reference).
  • Step-510B the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed is etched to form a recess 126B (see FIG. 25B).
  • Step-520B Thereafter, a desired region is covered with a mask layer (not shown), and a buffer layer 128B made of InP is formed on the bottom of the recess 126B based on an epitaxial growth method (see FIG. 26A). Further, an InAs layer 127B as a semiconductor layer is formed based on an epitaxial growth method. Next, ion implantation is performed on the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed. As a result, the first A extension region 173 having the first conductivity type (specifically, n-type) can be formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 (FIG. 26B).
  • the first transistor TR 1 and the second transistor TR are formed by the same method as that described in the fourth embodiment except that the first B extension region 135 and the second B extension region 145 are made of MoS 2. You can get two . Thus, a complementary transistor similar to that shown in FIG. 16 can be obtained.
  • the first A extending region 173 is composed of a first semiconductor layer (specifically, an indium arsenide layer) 127B formed on the semiconductor substrate 20,
  • the second A extending region 163 includes a second semiconductor layer (specifically, a germanium layer) 127A formed on the semiconductor substrate 20,
  • the first B extending region 135 and the second B extending region 145 are made of the same two-dimensional material (specifically, MoS 2 ).
  • FIG. 27A, 27B, and 28 an outline of a method for manufacturing a complementary transistor according to a second modification of the second embodiment will be described with reference to FIGS. 27A, 27B, and 28.
  • FIG. 27A, 27B, and 28 an outline of a method for manufacturing a complementary transistor according to a second modification of the second embodiment will be described with reference to FIGS. 27A, 27B, and 28.
  • Step-500C That is, as in the fifth embodiment, element isolation regions 21 (21 1 , 21 2 ) are formed in the silicon semiconductor substrate 20 based on a known method. Then, the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the second transistor TR 2 is to be formed is etched to form a recess 126A (FIGS. 22A and 22B). reference). Next, a desired region is covered with a mask layer (not shown), and the recess 126A is filled with a germanium (Ge) layer 127A which is a semiconductor layer based on an epitaxial growth method (see FIG. 23A).
  • Ge germanium
  • the second A extension region 163 can be formed in the germanium layer 127A surrounded by the element isolation region 21 (see FIG. 27A).
  • Step-510C the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 and the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed is etched to form the recess 126B.
  • Step-520C Thereafter, a desired region is covered with a mask layer (not shown), and a buffer layer 128B made of InP is formed on the bottom of the recess 126B based on the epitaxial growth method (see FIG. 27B). Further, an InAs layer 127B as a semiconductor layer is formed based on an epitaxial growth method. Next, ion implantation is performed on the region of the silicon semiconductor substrate 20 where the first transistor TR 1 is to be formed. As a result, the first A extension region 173 having the first conductivity type (specifically, n-type) can be formed on the surface of the region of the silicon semiconductor substrate 20 surrounded by the element isolation region 21 (FIG. 28).
  • Step-530C Next, in the same manner as described in the fourth embodiment, except that the first B extending region 135 and the second B extending region 145 are made of MoS 2 , the first transistor TR 1 and the second transistor TR 2 can be obtained. Thus, a complementary transistor similar to that shown in FIG. 16 can be obtained.
  • the first A extension region 173 is composed of the silicon semiconductor substrate 20
  • the second A extending region 163 is composed of a germanium layer 127A formed on the silicon semiconductor substrate 20
  • the first B extension region 135 and the second B extension region 145 are made of MoS 2 .
  • the first A extending region 173 is composed of an indium arsenic layer 127B formed on the silicon semiconductor substrate 20
  • the second A extending region 163 is composed of the silicon semiconductor substrate 20
  • the first B extension region 135 and the second B extension region 145 are made of MoS 2 .
  • the sixth embodiment is also a modification of the fourth embodiment.
  • the first A extension region and the second A extension region are made of different materials
  • the first B extending region and the second B extending region are made of different materials.
  • the first A extension region 153 is composed of the silicon semiconductor substrate 20
  • the second A extending region 163 is composed of a germanium layer 127A formed on the silicon semiconductor substrate 20
  • the 1B extension region 135 is composed of MoTe 2
  • the second B extension region 145 is made of MoS 2 .
  • the first A extension region 173 is composed of an indium arsenide layer 127B formed on the silicon semiconductor substrate 20
  • the second A extending region 163 is composed of the silicon semiconductor substrate 20
  • the 1B extension region 135 is composed of MoTe 2
  • the second B extension region 145 is made of MoS 2 .
  • the first A extension region 173 is composed of an indium arsenide layer 127B formed on the silicon semiconductor substrate 20
  • the second A extending region 163 is composed of a germanium layer 127A formed on the silicon semiconductor substrate 20
  • the 1B extension region 135 is composed of MoTe 2
  • the second B extension region 145 is made of MoS 2 .
  • the method for forming the first A extension regions 153 and 173 and the second A extension regions 163 and 183 in Example 6 can be the same as that described in Example 5, and further in Example 4.
  • the first transistor TR 1 and the second transistor TR 2 can be obtained by the same method as described.
  • a complementary transistor similar to that shown in FIG. 16 can be obtained.
  • the seventh embodiment is a modification of the first to sixth embodiments, and relates to a logic circuit including the complementary transistors described in the first to sixth embodiments.
  • FIG. 29 shows an equivalent circuit diagram of a NAND circuit formed on the basis of the complementary transistors of the first to sixth embodiments.
  • the NAND circuit is composed of four transistors Tr 1 , Tr 2 , Tr 3 , Tr 4 .
  • the first transistor Tr 1 and the third transistor Tr 3 are composed of the second transistor TR 2 in the complementary transistors of the first to sixth embodiments.
  • the second transistor Tr 2 and the fourth transistor Tr 4 are composed of the first transistor TR 1 in the complementary transistors of the first to sixth embodiments.
  • FIG. 30 shows an equivalent circuit diagram of a NOR circuit formed on the basis of the complementary transistors of the first to sixth embodiments.
  • the NOR circuit is also composed of four transistors Tr 1 , Tr 2 , Tr 3 , Tr 4 .
  • the first transistor Tr 1 and the third transistor Tr 3 are composed of the second transistor TR 2 in the complementary transistors of the first to sixth embodiments.
  • the second transistor Tr 2 and the fourth transistor Tr 4 are composed of the first transistor TR 1 in the complementary transistors of the first to sixth embodiments.
  • FIG. 31 shows an equivalent circuit diagram of an SRAM circuit composed of eight transistors formed on the basis of the complementary transistors of the first to sixth embodiments.
  • the SRAM circuit is composed of eight transistors Tr 1 , Tr 2 , Tr 3 , Tr 4 , Tr 5 , Tr 6 , Tr 7 and Tr 8 . Since the circuit configuration of the SRAM circuit itself is well known, detailed description thereof is omitted.
  • the first transistor Tr 1 and the fourth transistor Tr 4 are composed of the second transistor TR 2 in the complementary transistors of the first to sixth embodiments.
  • the remaining transistors Tr 2 , Tr 3 , Tr 5 , Tr 6 , Tr 7 , Tr 8 are composed of the first transistor TR 1 in the complementary transistors of the first to sixth embodiments.
  • the complementary transistor and the semiconductor device of the present disclosure have been described based on the preferred embodiments, the configuration, structure, constituent material, manufacturing method, and the like of the complementary transistor, the semiconductor device, and the like of the present disclosure are limited to the embodiments. Instead, it can be changed as appropriate. Further, various application examples of the complementary transistor of the present disclosure described in the embodiments are also examples, and needless to say, the present invention can be applied to other circuit examples. That is, in various circuits, the n-channel FET may be replaced with the first transistor in the complementary transistor of the present disclosure, and the p-channel FET may be replaced with the second transistor in the complementary transistor of the present disclosure.
  • the base body is formed of a silicon semiconductor substrate.
  • the base body 24 is formed of a two-dimensional material layer (for example, MoS). 2 ) can be composed.
  • the base 24 may be provided on a support material 23 (for example, a substrate such as a silicon semiconductor substrate on which an insulating film is formed).
  • a first insulating region 25 1 and a second insulating region 25 2 made of SiO 2 may be formed between the base 24 and the base 24.
  • FIG. 32 shows a modification of the complementary transistor of the first embodiment
  • FIG. 33 shows a modification of the complementary transistor of the fourth embodiment.
  • one transistor may have the structure shown in FIGS. 32 and 33, and the other transistor may have the transistor structure described in the second to third embodiments and the fifth to sixth embodiments.
  • the base is made of germanium (Ge) instead of silicon (Si)
  • the first B layer 35 (first B extending region 135) is made of MoS 2 , WTe 2 or graphene
  • the second B layer 45 can also be composed of HfTe 2 .
  • FIG. 34A a schematic perspective view is shown in FIG. 34A
  • a schematic partial cross-sectional view taken along arrow BB in FIG. 34A is shown in FIG. 34B
  • FIG. 34C which is a partial cross-sectional view
  • a structure having a so-called Fin shape can be used.
  • a so-called Fin shape can be used.
  • FIG. 34D shows a schematic partial cross-sectional view along the arrow BB in FIG. 34A of a modification of the fourth embodiment. In these drawings, only the first transistor constituting the complementary transistor is shown.
  • the transistor having the Fin shape is formed on a silicon semiconductor substrate, but the silicon semiconductor substrate is not shown.
  • the last two digits of the component reference numbers in FIGS. 34A, 34B, and 34C are the same as the two-digit numbers of the component reference numbers in the first transistor described in the first embodiment.
  • the last two digits of the component reference numbers in FIG. 34D are the same as the two-digit numbers of the component reference numbers in the first transistor described in the fourth embodiment.
  • a first control electrode A first active region located below the first control electrode and formed by laminating a first A layer and a first B layer; A first insulating layer provided between the first control electrode and the first active region; A first A extending layer extending from one end of the first active region and composed of a first A layer; and A first B extension layer extending from the other end of the first active region and composed of a first B layer;
  • a first transistor comprising: A second control electrode, A second active region located below the second control electrode and formed by laminating a second A layer and a second B layer; A second insulating layer provided between the second control electrode and the second active region; A second A extending layer extending from one end of the second active region and composed of a second A layer; and A second B extension layer extending from the other end of the second active region and composed of a second B layer;
  • a second transistor comprising: A complementary transistor comprising: The first surface region having the
  • the first B layer is composed of a two-dimensional material or graphene
  • the 2nd B layer is a compound type transistor given in [A01] comprised from two-dimensional material or graphene.
  • the two-dimensional material was selected from the group consisting of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , WSe 2 , WTe 2 , ZrS 2 , ZrSe 2 , ZrTe 2 , HfS 2 , HfSe 2 and HfTe 2 .
  • the complementary transistor according to [A02] which is made of one type of two-dimensional material.
  • the base consists of a semiconductor substrate, The complementary transistor according to any one of [A01] to [A03], in which the first insulating region and the second insulating region are element isolation regions provided in a semiconductor substrate.
  • the substrate is made of silicon or germanium,
  • the first B layer is made of MoS 2 , WTe 2 or graphene, Part 2B layer, complementary transistors according to any one of configured [A01] to [A03] from HfTe 2.
  • the substrate is made of MoS 2
  • the first B layer is composed of WTe 2 , Part 2B layer, ZrS 2, HFS complementary transistors according to any one of which is composed of 2 or HFSE 2 [A01] to [A03].
  • the portion of the base that forms the first surface region and the portion of the base that forms the second surface region are made of different materials,
  • the portion of the base constituting the first surface region is formed of a silicon semiconductor substrate, The portion of the base that constitutes the second surface region is composed of a semiconductor layer formed on the silicon semiconductor substrate,
  • the composite transistor according to [A10] in which the semiconductor layer is made of a germanium layer, and the first B layer and the first B extending layer, and the second B layer and the second B extending layer are made of MoTe 2 .
  • the portion of the base constituting the first surface region is composed of a semiconductor layer formed on the silicon semiconductor substrate,
  • the portion of the base that constitutes the second surface region is composed of a silicon semiconductor substrate,
  • the composite transistor according to [A12] in which the semiconductor layer is made of an indium arsenic layer, and the first B layer and the first B extending layer, and the second B layer and the second B extending layer are made of MoS 2 .
  • the portion of the base constituting the first surface region is composed of a first semiconductor layer formed on the semiconductor substrate,
  • the portion of the base that constitutes the second surface region is composed of a second semiconductor layer formed on the semiconductor substrate,
  • the first semiconductor layer is made of an indium arsenide layer
  • the second semiconductor layer is made of a germanium layer
  • the first B layer and the first B extended layer and the second B layer and the second B extended layer are made of MoS 2 [A14 ].
  • the portion of the base that forms the first surface region and the portion of the base that forms the second surface region are made of different materials, The composite transistor according to [A01], wherein the first B layer and the first B extension layer, and the second B layer and the second B extension layer are made of different materials.
  • the portion of the base that forms the first surface region is formed of a silicon semiconductor substrate, The portion of the base that constitutes the second surface region is composed of a germanium layer formed on the silicon semiconductor substrate, The first B layer and the first B extension layer are made of MoTe 2 , The 2B layer and the 2B Nobezaiso a composite transistor according to and a MoS 2 [A16].
  • the portion of the base constituting the first surface region is composed of an indium arsenic layer formed on the silicon semiconductor substrate,
  • the portion of the base that constitutes the second surface region is composed of a silicon semiconductor substrate,
  • the first B layer and the first B extension layer are made of MoTe 2 ,
  • the portion of the base constituting the first surface region is composed of an indium arsenic layer formed on the silicon semiconductor substrate,
  • the portion of the base that constitutes the second surface region is composed of a germanium layer formed on the silicon semiconductor substrate,
  • the first B layer and the first B extension layer are made of MoTe 2 ,
  • the absolute value of the difference between the energy value at the lower end of the conduction band of the substrate and the energy value at the lower end of the conduction band of the first B layer is less than the energy difference that can be driven by the driving voltage of the first transistor;
  • the absolute value of the difference between the energy value at the upper end of the valence band of the substrate and the energy value at the upper end of the valence band of the first B layer is less than the energy difference that can be driven by the driving voltage of the first transistor,
  • the absolute value of the difference between the energy value of the lower end of the conduction band of the substrate and the energy value of the lower end of the conduction band of the second B layer is less than the energy difference that can be driven by the driving voltage of the second transistor,
  • the absolute value of the difference between the energy value at the upper end of the valence band of the substrate and the energy value at the upper end of the valence band of the second B layer is equal to or less than the energy difference that can be driven by the driving voltage of the second transistor [A01.
  • a first interlayer insulating film is formed between the first A layer and the first B layer
  • the first transistor further includes a first A electrode connected to the first A extension layer, and a first B electrode connected to the first B extension layer
  • the second transistor further includes a second A electrode connected to the second A extension layer and a second B electrode connected to the second B extension layer. Any one of [A01] to [A21] The complementary transistor described in 1.
  • Control electrode An active region located below the control electrode and formed by laminating the A layer and the B layer, An insulating layer provided between the control electrode and the active region, An A extension layer composed of an A layer extending from one end of the active region; and A B extension layer extending from the other end of the active region and composed of a B layer;
  • a transistor comprising: The surface region having the first conductivity type provided on the base corresponds to the A layer and the A extending layer, The B layer has characteristics as a second conductivity type different from the first conductivity type, The B-th extension layer is a transistor provided on an insulating region provided on a base.
  • a first control electrode A first active region located below the first control electrode; A first insulating layer provided between the first control electrode and the first active region; A first A extending region extending from one end of the first active region; and A first B extending region extending from the other end of the first active region;
  • a first transistor comprising: A second control electrode, A second active region located below the second control electrode; A second insulating layer provided between the second control electrode and the second active region; A second A extending region extending from one end of the second active region; and A second B extending region extending from the other end of the second active region;
  • a second transistor comprising: A complementary transistor comprising: The first surface region having the first conductivity type provided on the base corresponds to the first A extending region, The first B extension region has characteristics as a second conductivity type different from the first conductivity type, and is provided on the first insulating region provided in the base body.
  • the first active region is provided on the first insulating region
  • the second surface region having the second conductivity type provided on the base corresponds to the second A extending region
  • the second B extending region has characteristics as the first conductivity type, and is provided on the second insulating region provided on the base body.
  • the second active region is a complementary transistor provided on the second insulating region.
  • the 1B extending region is composed of a two-dimensional material or graphene
  • the 2B extending region is a composite transistor according to [C01], which is made of a two-dimensional material or graphene.
  • the two-dimensional material was selected from the group consisting of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , WSe 2 , WTe 2 , ZrS 2 , ZrSe 2 , ZrTe 2 , HfS 2 , HfSe 2 and HfTe 2 .
  • the substrate is made of a semiconductor substrate;
  • the substrate is made of silicon or germanium,
  • the 1B extension region is composed of MoS 2 , WTe 2 or graphene,
  • Extended region first 2B is complementary transistors according to any one of configured [C01] to [C03] from HfTe 2.
  • the substrate is made of MoS 2 ,
  • the 1B extension region is composed of WTe 2 ,
  • the first A extension region and the second A extension region are made of different materials
  • the composite transistor according to [C01] in which the first B extension region and the second B extension region are made of the same material.
  • the difference between the value of the valence band of the material constituting the 1A extension region and the value of the conduction band of the material constituting the 1B extension region is 1 eV or less
  • the composite transistor according to [C08], in which a difference between a value of a conduction band of a material forming the second A extension region and a value of a valence band of a material forming the second B extension region is 1 eV or less.
  • the 1A extending region is formed of a silicon semiconductor substrate,
  • the second A extending region is composed of a semiconductor layer formed on the silicon semiconductor substrate,
  • the composite transistor according to [C10] in which the semiconductor layer is made of a germanium layer, and the first B extension region and the second B extension region are made of MoTe 2 .
  • the 1A extension region is composed of a semiconductor layer formed on a silicon semiconductor substrate,
  • the second A extending region is composed of a silicon semiconductor substrate,
  • the composite transistor according to [C12] in which the semiconductor layer is made of an indium arsenide layer, and the first B extension region and the second B extension region are made of MoS 2 .
  • the first A extension region is composed of a first semiconductor layer formed on the semiconductor substrate
  • the second A extension region is composed of a second semiconductor layer formed on the semiconductor substrate
  • the composite transistor according to [C14] in which the first semiconductor layer is made of an indium arsenic layer, the second semiconductor layer is made of a germanium layer, and the first B extended region and the second B extended region are made of MoS 2 .
  • the first A extension region and the second A extension region are made of different materials
  • the 1A extension region is composed of a silicon semiconductor substrate, The second A extending region is composed of a germanium layer formed on the silicon semiconductor substrate, The 1B extension region is composed of MoTe 2 , The 2B extending region is a composite transistor according to [C16], which is made of MoS 2 .
  • the 1A extension region is composed of an indium arsenide layer formed on the silicon semiconductor substrate, The second A extending region is composed of a silicon semiconductor substrate, The 1B extension region is composed of MoTe 2 , The 2B extending region is a composite transistor according to [C16], which is made of MoS 2 .
  • the 1A extension region is composed of an indium arsenide layer formed on the silicon semiconductor substrate
  • the second A extending region is composed of a germanium layer formed on the silicon semiconductor substrate
  • the 1B extension region is composed of MoTe 2
  • the 2B extending region is a composite transistor according to [C16], which is made of MoS 2 .
  • the absolute value of the difference between the energy value of the lower end of the conduction band of the substrate and the energy value of the lower end of the conduction band of the 1B extension region is less than the energy difference that can be driven by the drive voltage of the first transistor.
  • the absolute value of the difference between the energy value at the upper end of the valence band of the substrate and the energy value at the upper end of the valence band in the 1B extension region is equal to or less than the energy difference that can be driven by the driving voltage of the first transistor.
  • the absolute value of the difference between the energy value of the lower end of the conduction band of the substrate and the energy value of the lower end of the conduction band of the 2B extension region is less than the energy difference that can be driven by the driving voltage of the second transistor
  • the absolute value of the difference between the energy value at the upper end of the valence band of the substrate and the energy value at the upper end of the valence band in the 2B extension region is equal to or less than the energy difference that can be driven by the driving voltage of the second transistor.
  • the first transistor further includes a first A electrode connected to the first A extending region and a first B electrode connected to the first B extending region
  • the second transistor further includes a second A electrode connected to the second A extending region and a second B electrode connected to the second B extending region, and any one of [C01] to [C20]
  • Control electrode An active region located below the control electrode, An insulating layer provided between the control electrode and the active region, An A extension region extending from one end of the active region; and A B-th extension region extending from the other end of the active region;
  • a transistor comprising: The surface region having the first conductivity type provided on the base corresponds to the A-th extension region, The B-th extension region has characteristics as a second conductivity type different from the first conductivity type, and is provided on the insulating region provided on the base body.
  • An active region is a transistor provided over an insulating region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

相補型トランジスタは、第1トランジスタTR1及び第2トランジスタTR2から構成されており、各トランジスタの活性領域32,42は、第1A層33,43と第1B層35,45が積層されて成り、基体に設けられた表面領域201,202は第1A層33,43に相当し、第1B層35,45は、第1A層33,43とは異なる導電型の特性を有し、第1B層の延在層36,46は絶縁領域211,212の上に設けられている。

Description

相補型トランジスタ及び半導体装置
 本開示は、相補型トランジスタ、及び、係る相補型トランジスタを備えた半導体装置に関する。
 従来の電界効果トランジスタから構成されたインバータ回路やNAND回路等を構成するCMOS回路においては、pチャネル型電界効果トランジスタとnチャネル型電界効果トランジスタとを並置してレイアウトする。そして、このようなレイアウトを縮小スケーリングすることによって、ゲートの高密度化及び低消費電力化が進められてきた。しかしながら、加工難易度が上がり、製造コストが著しく増加している。
 低消費電力デバイスとして次世代デバイスの候補の1つにトンネル電界効果トランジスタ(TFET)が挙げられる。ここで、TFETの開発においては、遷移金属ダイカルコゲナイド(TMDC:Transition Metal DiChalcogenides)といった2次元材料(2D材料)が着目を集めている。そして、このようなTFETが、例えば、特開2015-090984号公報から周知である。この特許公開公報に開示された半導体素子は、
 第1金属カルコゲナイド系物質を含む第1二次元物質と、第1二次元物質の側面に結合しており、第2金属カルコゲナイド系物質を含む第2二次元物質とを具備し、第1二次元物質と第2二次元物質は化学結合している二次元物質要素を含む半導体層、及び、
 半導体層の少なくとも一面に位置する少なくとも1層の非半導体層を含む。
特開2015-090984号公報
 ところで、TFETから成る相補型トランジスタを想定した場合、pチャネル型電界効果トランジスタに対応するTFETを構成する2次元材料として2種類の2次元材料、nチャネル型電界効果トランジスタに対応するTFETを構成する2次元材料として2種類の2次元材料の合計4種類の2次元材料が必要とされるし、4種類の2次元材料に対して電極を構成する材料が最大、4種類、必要とされる。そのため、TFETから構成された相補型トランジスタの製造プロセスが複雑化し、また、製造コストの増加を招くといった問題がある。
 従って、本開示の目的は、トランジスタの活性領域等の構成材料の種類削減を図ることができ、また、製造プロセスの簡素化を図り得る構成、構造を有する相補型トランジスタ、及び、係る相補型トランジスタを備えた半導体装置を提供することにある。
 上記の目的を達成するための本開示の第1の態様に係る相補型トランジスタは、
 第1制御電極、
 第1制御電極の下方に位置し、第1A層と第1B層が積層されて成る第1活性領域、
 第1制御電極と第1活性領域との間に設けられた第1絶縁層、
 第1活性領域の一端から延在し、第1A層から構成された第1A延在層、及び、
 第1活性領域の他端から延在し、第1B層から構成された第1B延在層、
を備えた第1トランジスタ、並びに、
 第2制御電極、
 第2制御電極の下方に位置し、第2A層と第2B層が積層されて成る第2活性領域、
 第2制御電極と第2活性領域との間に設けられた第2絶縁層、
 第2活性領域の一端から延在し、第2A層から構成された第2A延在層、及び、
 第2活性領域の他端から延在し、第2B層から構成された第2B延在層、
を備えた第2トランジスタ、
から成る相補型トランジスタであって、
 基体に設けられた第1導電型を有する第1表面領域は、第1A層及び第1A延在層に相当し、
 第1B層は、第1導電型とは異なる第2導電型としての特性を有し、
 第1B延在層は、基体に設けられた第1絶縁領域の上に設けられており、
 基体に設けられた第2導電型を有する第2表面領域は、第2A層及び第2A延在層に相当し、
 第2B層は、第1導電型としての特性を有し、
 第2B延在層は、基体に設けられた第2絶縁領域の上に設けられている。
 上記の目的を達成するための本開示の第2の態様に係る相補型トランジスタは、
 第1制御電極、
 第1制御電極の下方に位置する第1活性領域、
 第1制御電極と第1活性領域との間に設けられた第1絶縁層、
 第1活性領域の一端から延在する第1A延在領域、及び、
 第1活性領域の他端から延在する第1B延在領域、
を備えた第1トランジスタ、並びに、
 第2制御電極、
 第2制御電極の下方に位置する第2活性領域、
 第2制御電極と第2活性領域との間に設けられた第2絶縁層、
 第2活性領域の一端から延在する第2A延在領域、及び、
 第2活性領域の他端から延在する第2B延在領域、
を備えた第2トランジスタ、
から成る相補型トランジスタであって、
 基体に設けられた第1導電型を有する第1表面領域は、第1A延在領域に相当し、
 第1B延在領域は、第1導電型とは異なる第2導電型としての特性を有し、基体に設けられた第1絶縁領域の上に設けられており、
 第1活性領域は、第1絶縁領域上に設けられており、
 基体に設けられた第2導電型を有する第2表面領域は、第2A延在領域に相当し、
 第2B延在領域は、第1導電型としての特性を有し、基体に設けられた第2絶縁領域の上に設けられており、
 第2活性領域は、第2絶縁領域上に設けられている。
 上記の目的を達成するための本開示の第1の態様に係る半導体装置は、基体がシリコン半導体基板から成る本開示の第1の態様に係る相補型トランジスタ、及び、シリコン半導体基板に形成された電界効果トランジスタを備えている。また、上記の目的を達成するための本開示の第2の態様に係る半導体装置は、基体がシリコン半導体基板から成る本開示の第2の態様に係る相補型トランジスタ、及び、シリコン半導体基板に形成された電界効果トランジスタを備えている。
 本開示の第1の態様に係る相補型トランジスタ、あるいは、本開示の第1の態様に係る半導体装置を構成する本開示の第1の態様に係る相補型トランジスタにあっては、第1A層、第1A延在層、第2A層及び第2A延在層が基体の表面領域に形成されているので、相補型トランジスタの活性領域等を構成する材料の種類は、最大、3種類でよく、相補型トランジスタの活性領域等の構成材料の種類削減を図ることができるし、製造プロセスの簡素化を図ることができる。また、本開示の第2の態様に係る相補型トランジスタ、あるいは、本開示の第2の態様に係る半導体装置を構成する本開示の第2の態様に係る相補型トランジスタにあっても、第1A延在領域、第2A延在領域は基体の表面領域に形成されているので、相補型トランジスタの活性領域等を構成する材料の種類は、最大、3種類でよく、相補型トランジスタの活性領域等の構成材料の種類削減を図ることができる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1は、実施例1の相補型トランジスタの模式的な一部断面図である。 図2A及び図2Bは、実施例1の相補型トランジスタの動作状態を模式的に示す図である。 図3A及び図3Bは、図2A及び図2Bに引き続き、実施例1の相補型トランジスタの動作状態を模式的に示す図である。 図4A及び図4Bは、図3A及び図3Bに引き続き、実施例1の相補型トランジスタの動作状態を模式的に示す図である。 図5は、実施例1の相補型トランジスタによって構成されるインバータ回路の等価回路図である。 図6A、図6B及び図6Cは、実施例1の相補型トランジスタにおける活性領域と制御電極の位置関係を示す概念図である。 図7A、図7B及び図7Cは、実施例1の相補型トランジスタにおける、第1トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図8A及び図8Bは、実施例2の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図9A及び図9Bは、図8Bに引き続き、実施例2の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図10は、図9Bに引き続き、実施例2の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図11A及び図11Bは、実施例2の第1変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図12A及び図12Bは、図11Bに引き続き、実施例2の第1変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図13は、図12Bに引き続き、実施例2の第1変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図14A及び図14Bは、実施例2の第2変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図15は、図14Bに引き続き、実施例2の第2変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図16は、実施例4の相補型トランジスタの模式的な一部断面図である。 図17A及び図17Bは、実施例4の相補型トランジスタの動作状態を模式的に示す図である。 図18A及び図18Bは、図17A及び図17Bに引き続き、実施例4の相補型トランジスタの動作状態を模式的に示す図である。 図19A及び図19Bは、図18A及び図18Bに引き続き、実施例4の相補型トランジスタの動作状態を模式的に示す図である。 図20A、図20B及び図20Cは、実施例4の相補型トランジスタにおける活性領域と制御電極の位置関係を示す概念図である。 図21A、図21B及び図21Cは、実施例4の相補型トランジスタにおける、第1トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図22A及び図22Bは、実施例5の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図23A及び図23Bは、図22Bに引き続き、実施例5の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図24は、図23Bに引き続き、実施例5の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図25A及び図25Bは、実施例5の第1変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図26A及び図26Bは、図25Bに引き続き、実施例5の第1変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図27A及び図27Bは、実施例5の第2変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図28は、図27Bに引き続き、実施例5の第2変形例の相補型トランジスタの製造方法の概略を説明するためのシリコン半導体基板等の模式的な一部断面図である。 図29は、実施例1~実施例6の相補型トランジスタに基づき形成されるNAND回路の等価回路図である。 図30は、実施例1~実施例6の相補型トランジスタに基づき形成されるNOR回路の等価回路図である。 図31は、実施例1~実施例6の相補型トランジスタに基づき形成される8つのトランジスタから構成されるSRAM回路の等価回路図である。 図32は、実施例1の相補型トランジスタの変形例の模式的な一部断面図である。 図33は、実施例4の相補型トランジスタの変形例の模式的な一部断面図である。 図34A、図34B及び図34Cは、実施例1の相補型トランジスタの変形例(所謂Fin形状を有する構造)の模式的な斜視図及び一部断面図であり、図34Dは、実施例4の相補型トランジスタの変形例(所謂Fin形状を有する構造)の模式的な一部断面図である。 図35A、図35B、図35C及び図35Dは、本開示の相補型トランジスタが導通状態/不導通状態となるときの各活性領域におけるエネルギーバンドの変化を模式的に示す図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の第1の態様~第2の態様に係る相補型トランジスタ及び半導体装置、全般に関する説明
2.実施例1(本開示の第1の態様に係る相補型トランジスタ及び本開示の第1の態様に係る半導体装置)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)
5.実施例4(本開示の第2の態様に係る相補型トランジスタ及び本開示の第2の態様に係る半導体装置)
6.実施例5(実施例4の変形)
7.実施例6(実施例4の別の変形)
8.実施例7(本開示の第1の態様~第2の態様に係る相補型トランジスタの各種適用例)
9.その他
〈本開示の第1の態様~第2の態様に係る相補型トランジスタ及び半導体装置、全般に関する説明〉
 本開示の第1の態様に係る相補型トランジスタ、本開示の第2の態様に係る相補型トランジスタ、本開示の第1の態様に係る半導体装置を構成する本開示の第1の態様に係る相補型トランジスタあるいは本開示の第2の態様に係る半導体装置を構成する本開示の第2の態様に係る相補型トランジスタ(以下、これらの相補型トランジスタを、総称して、『本開示の相補型トランジスタ等』と呼ぶ場合がある)において、
 第1B層(第1B延在領域)は、2次元材料又はグラフェンから構成されており、
 第2B層(第2B延在領域)は、2次元材料又はグラフェンから構成されている形態とすることができる。そして、この場合、2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る形態とすることができる。ここで、2次元材料の厚さとして0.65nm乃至6.5nm、好ましくは、0.65nm乃至2.6nmを例示することができるが、これらの値に限定するものではない。
 以上に説明した各種好ましい形態を含む本開示の相補型トランジスタ等において、基体は半導体基板から成り、第1絶縁領域及び第2絶縁領域は、半導体基板に設けられた素子分離領域から成る構成とすることができる。あるいは又、基体は2次元材料層から成る構成とすることができる。基体を2次元材料層から成る構成とする場合、基体を、支持材料(例えば、絶縁膜が表面に形成されたシリコン半導体基板等の基板)上に設ければよい。
 あるいは又、以上に説明した各種好ましい形態を含む本開示の相補型トランジスタ等において、基体はシリコン(Si)又はゲルマニウム(Ge)から成り、第1B層(第1B延在領域)はMoS2、WTe2又はグラフェンから構成されており、第2B層(第2B延在領域)はHfTe2から構成されている構成とすることができる。あるいは又、基体はMoS2から成り、第1B層(第1B延在領域)はWTe2から構成されており、第2B層(第2B延在領域)はZrS2、HfS2又はHfSe2から構成されている構成とすることができる。
 あるいは又、本開示の第1の態様に係る相補型トランジスタ、本開示の第2の態様に係る相補型トランジスタ、本開示の第1の態様に係る半導体装置を構成する本開示の第1の態様に係る相補型トランジスタあるいは本開示の第2の態様に係る半導体装置を構成する本開示の第2の態様に係る相補型トランジスタ(本開示の相補型トランジスタ等)において、
 第1表面領域を構成する基体の部分(第1A延在領域)と、第2表面領域を構成する基体の部分(第2A延在領域)とは、異なる材料から構成され、
 第1B層及び第1B延在層(第1B延在領域)と、第2B層及び第2B延在層(第2B延在領域)とは、同じ材料から構成されている形態とすることができる。
 そして、この場合、
 第1表面領域を構成する基体の部分(第1A延在領域を構成する材料)の価電子帯の値[EC(N)]と、第1B層及び第1B延在層を構成する材料(第1B延在領域を構成する材料)の伝導帯の値[EV(2D)]との差は1eV以下であり、
 第2表面領域を構成する基体の部分(第2A延在領域を構成する材料)の伝導帯の値[EV(P)]と、第2B層及び第2B延在層を構成する材料(第2B延在領域を構成する材料)の価電子帯の値[EC(2D)]との差は1eV以下である形態とすることができる。即ち、
V(P)-EC(2D)≦1(eV)
V(2D)-EC(N)≦1(eV)
を満足することが好ましいが、これに限定するものではない。
 更には、これらの場合において、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、シリコン半導体基板に形成された半導体層から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、あるいは又、第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている形態とすることができ、この場合、具体的には、例えば、半導体層はゲルマニウム層から成り、第1B層及び第1B延在層並びに第2B層及び第2B延在層(第1B延在領域及び第2B延在領域)は、MoTe2から成る形態とすることができる。
 あるいは又、これらの場合において、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板に形成された半導体層から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、シリコン半導体基板から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、あるいは又、第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている形態とすることができ、この場合、具体的には、例えば、半導体層はインジウム砒素層から成り、第1B層及び第1B延在層並びに第2B層及び第2B延在層(第1B延在領域及び第2B延在領域)は、MoS2から成る形態とすることができる。
 あるいは又、これらの場合において、
 第1表面領域を構成する基体の部分(第1A延在領域)は、半導体基板に形成された第1半導体層から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、半導体基板に形成された第2半導体層から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、あるいは又、第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている形態とすることができ、この場合、具体的には、例えば、第1半導体層はインジウム砒素層から成り、第2半導体層はゲルマニウム層から成り、第1B層及び第1B延在層並びに第2B層及び第2B延在層(第1B延在領域及び第2B延在領域)は、MoS2から成る形態とすることができるし、あるいは又、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、あるいは又、第1B延在領域及び第2B延在領域は、MoTe2から構成されている形態とすることができるし、あるいは又、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、シリコン半導体基板から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、あるいは又、第1B延在領域及び第2B延在領域は、MoS2から構成されている形態とすることができる。
 尚、シリコン半導体基板に形成された半導体層を構成する材料として、その他、SiGe、SiCを挙げることができるし、また、広くは、III-V族化合物半導体、II-VI族化合物半導体を挙げることができる。シリコン半導体基板における半導体層の形成方法として、エピタキシャル成長法、濃縮法(シリコン半導体基板の半導体層を形成すべき領域の上に半導体層を形成するための半導体材料層を形成し、熱処理(アニール処理)を行うことで、シリコン半導体基板に半導体層を形成する方法)を挙げることができる。シリコン半導体基板に形成された半導体層とシリコン半導体基板との間には、シリコン基板の結晶格子定数と半導体層の結晶格子定数の整合性をとるために、例えば、InP、InAlAs、InGaAs、GaAs、GaSbから成る緩衝層を設けてもよい。但し、緩衝層を構成する材料は、これらに限定するものではない。また、シリコン半導体基板の代わりに、ゲルマニウム半導体基板を用いることもできるし、SOI(Silicon On Insulator)基板等の酸化膜上に半導体層(シリコン層だけでなく、ゲルマニウム層やIII-V族化合物半導体層を含む)を形成した基板を用いることもできる。
 ここで、III-V族化合物半導体として、GaN系化合物半導体(AlGaN混晶あるいはInAlGaN混晶、InGaN混晶を含む)、InN系化合物半導体、AlN系化合物半導体、InAlGaP系化合物半導体、InAlGaAs系化合物半導体、InGaAs系化合物半導体、InGaAsP系化合物半導体、GaP系化合物半導体、InP系化合物半導体を例示することができ、具体的には、例えば、AlAs、AlAsP、AlAsSb、AlGaAs、AlGaAsP、AlGaAsSb、InAlGaAs、InAlGaP、AlGaN、AlGaP、InAlAs、InAlAsP、InAlGaAs、InAlP、InAlSb、AlN、InAlP、AlSb、GaAs、GaAsP、GaAsSb、InGaAs、InGaAsP、InGaN、InGaP、GaN、GaP、GaSb、InAs、InN、InPを挙げることができる。また、II-VI族化合物半導体として、ZnSe、ZnS、ZnSSe、ZnTe、ZnMgSSe、(Zn,Mg)-(S,Se)、(Zn,Cd)-(S,Se,Te)、(Zn,Mg,Cd)Seを例示することができる。
 あるいは又、本開示の第1の態様に係る相補型トランジスタ、本開示の第2の態様に係る相補型トランジスタ、本開示の第1の態様に係る半導体装置を構成する本開示の第1の態様に係る相補型トランジスタあるいは本開示の第2の態様に係る半導体装置を構成する本開示の第2の態様に係る相補型トランジスタ(本開示の相補型トランジスタ等)において、
 第1表面領域を構成する基体の部分(第1A延在領域)と、第2表面領域を構成する基体の部分(第2A延在領域)とは、異なる材料から構成され、
 第1B層及び第1B延在層と、第2B層及び第2B延在層とは、あるいは又、第1B延在領域と第2B延在領域とは、異なる材料から構成されている形態とすることができ、この場合、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B層及び第1B延在層(第1B延在領域)は、MoTe2から構成され、
 第2B層及び第2B延在層(第2B延在領域)は、MoS2から構成されている形態とすることができるし、あるいは又、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
 第1B層及び第1B延在層(第1B延在領域)は、MoTe2から構成され、
 第2B層及び第2B延在層(第2B延在領域)は、MoS2から構成されている形態とすることができるし、あるいは又、
 第1表面領域を構成する基体の部分(第1A延在領域)は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2表面領域を構成する基体の部分(第2A延在領域)は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B層及び第1B延在層(第1B延在領域)は、MoTe2から構成され、
 第2B層及び第2B延在層(第2B延在領域)は、MoS2から構成されている形態とすることができる。
 あるいは又、本開示の相補型トランジスタ等における上記の各種好ましい形態において、
 基体の伝導帯の下端のエネルギーの値EC-subと第1B層(第1B延在領域)の伝導帯の下端のエネルギーの値EC-1Bとの差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の価電子帯の上端のエネルギーの値EV-subと第1B層(第1B延在領域)の価電子帯の上端のエネルギーの値EV-1Bとの差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の伝導帯の下端のエネルギーの値EC-subと第2B層(第2B延在領域)の伝導帯の下端のエネルギーの値EC-2Bとの差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の価電子帯の上端のエネルギーの値EV-subと第2B層(第2B延在領域)の価電子帯の上端のエネルギーの値EV-2Bとの差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下である構成とすることができる。ここで、「第1トランジスタの駆動電圧」とは、第1制御電極と第1A層(第1A延在領域)との間の電位差であり、「第2トランジスタの駆動電圧」とは、第2制御電極と第2A層(第2A延在領域)との間の電位差である。
基体を構成する材料  EV(eV)     EC(eV)
  シリコン     5.17       4.05
  ゲルマニウム   4.66       4.00
  MoS2      5.86       4.27
2次元材料
  MoS2      5.86       4.27
  MoSe2     5.23       3.90
  MoTe2     4.76       3.83
  WS2       5.50       3.96
  WSe2      4.87       3.54
  WTe2      4.44       3.69
  ZrS2      6.79       5.71
  ZrSe2     6.15       5.86
  ZrTe2     5.69       4.97
  HfS2      6.83       5.59
  HfSe2     6.17       5.72
  HfTe2     5.53       4.91
半導体層を構成する材料
  ゲルマニウム   4.66       4.00
  InAs     5.35       4.99
 そして、図35Aに示すように、第1トランジスタがオフ時、
C-1A>EC-1B>EV-1A>EV-1B
を満足し、図35Cに示すように、第2トランジスタがオフ時、
C-2B>EC-2A>EV-2B>EV-2A
を満足し、図35Bに示すように、第1トランジスタがオン時、
C-1A>EV-1A>EC-1B>EV-1B
を満足し、図35Dに示すように、第2トランジスタがオン時、
C-2B>EV-2B>EC-2A>EV-2A
を満足することが好ましい。
 更には、以上に説明した好ましい形態、構成を含む本開示の第1の態様に係る相補型トランジスタ、本開示の第1の態様に係る半導体装置を構成する相補型トランジスタにおいて、動作の安定性といった観点から、
 第1A層と第1B層との間には第1層間絶縁膜(第1境界領域)が形成されており、
 第2A層と第2B層との間には第2層間絶縁膜(第2境界領域)が形成されている構成とすることができる。但し、第1層間絶縁膜、第2層間絶縁膜を設けることは必須ではない。後述する第1制御電極、第2制御電極への電圧の印加状態に基づく、第1活性領域におけるエネルギーバンドの状態の変化、第2活性領域におけるエネルギーバンドの状態の変化を達成できれば、第1層間絶縁膜、第2層間絶縁膜を設けることは不要である場合がある。これらの層間絶縁膜は、自然酸化膜から構成される場合もある。また、弱いファンデルワース力を介した積層といった形態もあり得る。具体的には、第1層間絶縁膜、第2層間絶縁膜を構成する材料として、SiO2(自然酸化膜を含む)、SiN、六方晶窒化ホウ素(hBN)、Al23を例示することができるし、第1層間絶縁膜、第2層間絶縁膜の形成方法として、低温酸化法、プラズマCVD法、ALD法を例示することができる。第1層間絶縁膜、第2層間絶縁膜の厚さとして1nm乃至3nmを例示することができる。
 また、以上に説明した好ましい形態、構成を含む本開示の第2の態様に係る相補型トランジスタ、本開示の第2の態様に係る半導体装置を構成する相補型トランジスタにおいて、第1A延在領域と第1B延在領域との間には第1境界領域(第1活性領域に相当する)が形成されており、第2A延在領域と第2B延在領域との間には第2境界領域(第2活性領域に相当する)が形成されている構成とすることができる。但し、第1境界領域や第2境界領域を設けることは必須ではなく、第1A延在領域の端面と第1B延在領域の端面とが接触しており、接触部が第1活性領域を構成する形態とすることもできるし、第2A延在領域の端面と第2B延在領域の端面とが接触しており、接触部が第2活性領域を構成する形態とすることもできる。
 本開示の相補型トランジスタ等においては、
 第1A電極が第1A延在層(第1A延在領域)に接続されており、
 第1B電極が第1B延在層(第1B延在領域)に接続されており、
 第2A電極が第2A延在層(第2A延在領域)に接続されており、
 第2B電極が第2B延在層(第2B延在領域)に接続されている形態とすることができる。そして、
 第2A電極には、第1A電極よりも高い電圧が印加され、
 第1制御電極及び第2制御電極に第2の電圧V2が印加されたとき、第1トランジスタは導通状態となり、第2トランジスタは不導通状態となり、
 第1制御電極及び第2制御電極に、第2の電圧V2よりも低い第1の電圧V1(<V2)が印加されたとき、第1トランジスタは不導通状態となり、第2トランジスタは導通状態となる形態とすることができる。具体的には、例えば、第2A電極には第2の電圧V2(例えば、Vddボルト>0)が印加され、第1A電極には第1の電圧V1(例えば、0ボルト)が印加される形態とすることができる。
 本開示の相補型トランジスタ等において、第1トランジスタはnチャネル型FETに相当し、第2トランジスタはpチャネル型FETに相当する。また、第1A延在層、第1A延在領域、第2A延在層、第2A延在領域はFETにおけるドレイン部に相当し、第1B延在層、第1B延在領域、第2B延在層、第2B延在領域はFETにおけるソース部に相当し、第1制御電極、第2制御電極はFETにおけるゲート部に相当する。
 本開示の第1の態様に係る相補型トランジスタにおいて、第1活性領域と第1制御電極とが重なっているが、第1活性領域の正射影像は、第1制御電極の正射影像に含まれていてもよいし、第1制御電極の正射影像と一致していてもよいし、第1制御電極の正射影像からはみ出していてもよい。同様に、重複領域において、第2活性領域と第2制御電極とが重なっているが、第2活性領域の正射影像は、第2制御電極の正射影像に含まれていてもよいし、第2制御電極の正射影像と一致していてもよいし、第2制御電極の正射影像からはみ出していてもよい。尚、第1制御電極、第2制御電極によって生成される電界が一層均一に加わるといった観点からは、第1活性領域及び第2活性領域の正射影像が、第1制御電極、第2制御電極の正射影像に含まれていることが望ましい。
 本開示の第2の態様に係る相補型トランジスタにおいて、第1活性領域(第1境界領域)と第1制御電極とが重なっているが、第1活性領域(第1境界領域)の正射影像は、第1制御電極の正射影像に含まれていてもよいし、第1制御電極の正射影像と一致していてもよいし、第1制御電極の正射影像からはみ出していてもよい。同様に、重複領域において、第2活性領域(第2境界領域)と第2制御電極とが重なっているが、第2活性領域(第2境界領域)の正射影像は、第2制御電極の正射影像に含まれていてもよいし、第2制御電極の正射影像と一致していてもよいし、第2制御電極の正射影像からはみ出していてもよい。尚、第1制御電極、第2制御電極によって生成される電界が一層均一に加わるといった観点からは、第1活性領域及び第2活性領域の正射影像が、第1制御電極、第2制御電極の正射影像に含まれていることが望ましい。
 本開示の相補型トランジスタ等の第1B層(第1B延在領域)、第2B層(第2B延在領域)を構成する材料として、あるいは又、2次元材料層を構成する材料として、前述したとおり、2次元材料を挙げることができるが、広くは、遷移金属カルコゲナイド(TMDC:Transition Metal DiChalcogenide)系材料を挙げることができる。TMDCは、例えば、MX2で表され、遷移金属「M」として、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Tc、Reを挙げることができるし、カルコゲン元素「X」として、O、S、Se、Teを挙げることができる。あるいは又、遷移金属であるCuとカルコゲン元素であるSとの化合物であるCuSを挙げることもできるし、Ga、In、Ge、Sn、Pb等の非遷移金属とカルコゲン元素との化合物(例えば、GaS、GaSe、GaTe、In2Se3、InSnS2、SnSe2、GeSe、SnS2、PbO)とすることもできる。あるいは又、黒リン(Black Phosphorus)を挙げることもできる。
 第1B層(第1B延在領域)と第2B層(第2B延在領域)を構成する材料を同じとし、第1B層(第1B延在領域)へのドーピング材料と第2B層(第2B延在領域)へのドーピング材料とを異ならせてもよい。ドーピングとして、イオン注入法や化学ドーピング法を挙げることができる。例えば、第1B層(第1B延在領域)を形成するためのドーピング材料として、NMNH(nicotinamide mononucleotide-H)、NADH(nicotinamide adenine dinucleotide-H)、NADPH(nicotinamide adenine dinucleotide phosphate-H)、PEI(polyethylenimine)、カリウムやリチウム等のアルカリ金属を挙げることができる。また、第2B層(第2B延在領域)を形成するためのドーピング材料として、NO2BF4、NOBF4、NO2SbF6等のイオン性液体;HCl、H2PO4、CH3COOH、H2SO4、HNO3等の酸類化合物;ジクロロジシアノキノン、オキソン、ジミリストイルホスファチジルイノシトール、トリフルオロメタンスルホンイミド等の有機化合物;HPtCl4、AuCl3、HAuCl4、トリフルオロメタンスルホン酸銀、AgNO3、H2PdCl6、Pd(OAc)2、Cu(CN)2等を挙げることができる。
 第1B層(第1B延在領域)、第2B層(第2B延在領域)、2次元材料層の形成方法として、化学的気相成長法(CVD法)、物理的気相成長法(PVD法)以外にも、以下の方法を例示することができる。即ち、
[a]遷移金属カルコゲナイド系材料の前駆体を、絶縁領域上に薄膜状に形成した後、加熱処理する方法。
[b]遷移金属酸化物から成る薄膜を絶縁領域上に形成した後、遷移金属酸化物における遷移金属とカルコゲン元素を含む材料におけるカルコゲンとを反応させる方法。
 グラフェン(graphene)とは、1原子の厚さのsp2結合炭素原子のシート状物質を指し、炭素原子とその結合から作製された蜂の巣のような六角形格子構造を有する。グラフェン膜にn型やp型の不純物をドーピングするためには、例えば、化学ドーピングを行えばよい。化学ドーピングを行うためには、具体的には、グラフェン膜上にドーパント層を形成すればよい。ドーパント層は、電子受容型(p型)のドーパント層とすることができるし、あるいは又、電子供与型(n型)のドーパント層とすることができる。電子受容型(p型)のドーパント層を構成する材料として、AuCl3、HAuCl4、PtCl4等の塩化物;HNO3、H2SO4、HCl、ニトロメタン等の酸;ホウ素やアルミニウムといったIII族元素;酸素等の電子吸引性分子を挙げることができるし、電子供与型(n型)のドーパント層を構成する材料として、窒素やリンといったV族元素の他に、ピリジン系化合物、窒化物、アルカリ金属類、アルキル基を有する芳香族化合物等の電子供与性分子を挙げることができる。
 グラフェンは、例えば、以下に説明する製造方法で形成することができる。即ち、ベース材上にグラフェン化触媒を含む膜を成膜する。そして、グラフェン化触媒を含む膜に対して気相炭素供給源を供給すると同時に、気相炭素供給源を熱処理して、グラフェンを生成させる。その後、グラフェンを所定の冷却速度で冷却することで、フィルム状のグラフェンをグラフェン化触媒を含む膜上に形成することができる。グラフェン化触媒として、SiC等の炭素化合物の他、Ni、Co、Fe、Pt、Au、Al、Cr、Cu、Mg、Mn、Mo、Rh、Si、Ta、Ti、W、U、V、及びZrから選択される少なくとも1種類の金属を挙げることができる。また、気相炭素供給源として、例えば、一酸化炭素、メタン、エタン、エチレン、エタノール、アセチレン、プロパン、ブタン、ブタジエン、ペンタン、ペンテン、シクロペンタジエン、ヘキサン、シクロヘキサン、ベンゼン及びトルエンから選択される少なくとも1種類の炭素源を挙げることができる。そして、以上のようにして形成されたフィルム状のグラフェンを、グラフェン化触媒を含む膜から分離することにより、グラフェンを得ることができる。
 第1制御電極、第2制御電極を構成する材料として、ポリシリコンやポリサイド、金属シリサイド、金属窒化物(例えば、TiN)、アルミニウム(Al)や金(Au)等の金属、グラフェンやITO等を例示することができ、第1制御電極、第2制御電極の形成方法として、真空蒸着法やスパッタリング法を含む各種の物理的気相成長法(PVD法)や、各種の化学的気相成長法(CVD法)を例示することができる。また、第1A電極、第1B電極、第2A電極、第2B電極を構成する材料として、不純物がドーピングされたポリシリコン;アルミニウム;タングステン、Ti、Pt、Pd、Cu、TiW、TiNW、WSi2、MoSi2等の高融点金属や金属シリサイドから成る導電材料を例示することができる。これらの電極の形成方法として、各種のPVD法、CVD法を例示することができる。
 第1絶縁層、第2絶縁層を構成する材料として、酸化シリコン(SiO2)等のSiOX系材料、SiOF系材料あるいはSiN系材料、SiON系材料の他、比誘電率k(=ε/ε0)が概ね4.0以上の所謂高比誘電率材料を挙げることができる。高比誘電率材料として、酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2)、酸化アルミニウム(Al23)、酸化アルミニウム・ハフニウム(HfAlO2)、酸化シリコン・ハフニウム(HfSiO)、酸化タンタル(Ta25)、酸化イットリウム(Y23)、酸化ランタン(La2O)といった金属酸化物材料や、金属窒化物材料を挙げることができる。あるいは又、HfSiO、HfSiON、ZrSiO、AlSiO、LaSiOといった金属シリケートから成る絶縁材料を例示することもできる。第1絶縁層、第2絶縁層は、1種類の材料から形成されていてもよいし、複数種類の材料から形成されていてもよい。また、第1絶縁層、第2絶縁層は、単層構成としてもよいし、複数層構成としてもよい。第1絶縁層及び第2絶縁層は、同じ構成とすることが、プロセスの簡素化といった観点から好ましい。第1絶縁層、第2絶縁層の形成方法として、ALD(Atomic Layer Deposition)法、有機金属化学的気相成長法(MOCVD法)を含む各種のCVD法、真空蒸着法やスパッタリング法を含む各種のPVD法を例示することができる。第1絶縁層及び第2絶縁層の形成方法は、同じ方法であり、同時に形成することが、プロセスの簡素化といった観点から好ましい。第1絶縁層、第2絶縁層の厚さとして1nm乃至10nmを例示することができる。
 本開示の第1の態様~第2の態様に係る半導体装置を構成する電界効果トランジスタは、従来の電界効果トランジスタと同様とすることができる。
 本開示の相補型トランジスタによって、インバータ回路や、NAND回路、AND回路、NOR回路、OR回路、XOR回路、NOT回路といった論理回路を構成することができるし、SRAM回路を構成することもできる。
 実施例1は、本開示の第1の態様に係る相補型トランジスタ及び本開示の第1の態様に係る半導体装置に関する。実施例1の相補型トランジスタによって、インバータ回路が構成される。実施例1の相補型トランジスタの模式的な一部断面図を図1に示し、実施例1の相補型トランジスタの動作状態を模式的に図2A、図2B、図3A、図3B、図4A、図4Bに示し、実施例1の相補型トランジスタによって構成されるインバータ回路の等価回路図を図5に示し、実施例1の相補型トランジスタにおける活性領域と制御電極の位置関係を示す概念図を図6A、図6B及び図6Cに示す。尚、図2Aには、第1トランジスタが不導通状態(オフ状態)にある状態を示し、図2Bには、第2トランジスタが導通状態(オン状態)にある状態を示し、図3Aには、第1トランジスタが不導通状態(オフ状態)から導通状態(オン状態)となる状態を示し、図3Bには、第2トランジスタが導通状態(オン状態)から不導通状態(オフ状態)となる状態を示し、図4Aには、第1トランジスタが導通状態(オン状態)にある状態を示し、図4Bには、第2トランジスタが不導通状態(オフ状態)にある状態を示す。また、図5においては、便宜上、電界効果トランジスタの記号を用いて、インバータ回路の等価回路図を示した。
 実施例1の相補型トランジスタ10は、
 第1制御電極30、
 第1制御電極30の下方に位置し、第1A層33と第1B層35が積層されて成る第1活性領域32、
 第1制御電極30と第1活性領域32との間に設けられた厚さ1nmの酸化ハフニウム(HfO2)から成る第1絶縁層31、
 第1活性領域32の一端から延在し、第1A層33から構成された第1A延在層34、及び、
 第1活性領域32の他端から延在し、第1B層35から構成された第1B延在層36、
を備えた第1トランジスタTR1、並びに、
 第2制御電極40、
 第2制御電極40の下方に位置し、第2A層43と第2B層45が積層されて成る第2活性領域42、
 第2制御電極40と第2活性領域42との間に設けられた1nmの酸化ハフニウム(HfO2)から成る第2絶縁層41、
 第2活性領域42の一端から延在し、第2A層43から構成された第2A延在層44、及び、
 第2活性領域42の他端から延在し、第2B層45から構成された第2B延在層46、
から成る。但し、膜厚は例示であり、これらの値に限定するものではない。
 そして、基体に設けられた第1導電型(具体的には、実施例1にあってはn型)を有する第1表面領域201は、第1A層33及び第1A延在層34に相当し、
 第1B層35は、第1導電型とは異なる第2導電型としての特性を有し(即ち、第2導電型、具体的には、p型としての挙動を示し、あるいは又、電子受容性を有し)、
 第1B延在層36は、基体に設けられた第1絶縁領域211の上に設けられており、
 基体に設けられた第2導電型(具体的には、実施例1にあってはp型)を有する第2表面領域202は、第2A層43及び第2A延在層44に相当し、
 第2B層45は、第1導電型としての特性を有し(即ち、第1導電型、具体的には、n型としての挙動を示し、あるいは又、電子供与性を有し)、
 第2B延在層46は、基体に設けられた第2絶縁領域212の上に設けられている。
 また、実施例1の半導体装置(半導体デバイス、半導体素子)は、基体がシリコン半導体基板から成る実施例1の相補型トランジスタ、及び、シリコン半導体基板に形成された電界効果トランジスタを備えている。電界効果トランジスタは周知の構成、構造を有する。例えば、複数の電界効果トランジスタから成る電界効果トランジスタ群が、複数の相補型トランジスタから成る相補型トランジスタ群を囲んでおり、電界効果トランジスタ群は周辺回路を構成する。あるいは又、相補型トランジスタを前段とし、相補型トランジスタに接続された電界効果トランジスタを後段とし、例えば、所望の物理量や化学量を捉えるセンサを相補型トランジスタに接続し、センサが所望の物理量や化学量を捉えたとき、相補型トランジスタは後段の電界効果トランジスタに信号を送出し、センサからの信号を電界効果トランジスタで増幅するといった構成を採用することができる。後述する実施2~実施例6においても同様とすることができる。
 ここで、第1B層35及び第1B延在層36は、2次元材料又はグラフェンから構成されており、第2B層45及び第2B延在層46も、2次元材料又はグラフェンから構成されている。具体的には、2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る。基体は、半導体基板あるいはシリコン(Si)、具体的には、シリコン半導体基板20から成り、第1B層35及び第1B延在層36はWTe2(厚さは、例えば、WTe21原子層分)から構成されており、第2B層45及び第2B延在層46はHfTe2(厚さは、例えば、HfTe21原子層分)から構成されている。また、第1絶縁領域211及び第2絶縁領域212は、シリコン半導体基板20に設けられたSiO2から成る素子分離領域21から構成されている。尚、第1絶縁領域211及び第2絶縁領域212を形成すべき部分に、例えば、イオン注入を行うことで、第1絶縁領域211及び第2絶縁領域212を形成してもよい。
 第1トランジスタTR1は、更に、第1A延在層34に接続された第1A電極38、及び、第1B延在層36に接続された第1B電極39を備えており、第2トランジスタTR2は、更に、第2A延在層44に接続された第2A電極48、及び、第2B延在層46に接続された第2B電極49を備えている。第1制御電極30及び第2制御電極40は、例えば、TiNから成る。
 更には、実施例1あるいは後述する実施例2~実施例6において、
 基体(シリコン半導体基板20)の伝導帯の下端のエネルギーの値EC-subと第1B層35(第1B延在領域135)の伝導帯の下端のエネルギーの値EC-1Bとの差の絶対値は、第1トランジスタTR1の駆動電圧で駆動可能なエネルギー差分以下(具体的には、例えば、1.0ボルトであれば、1eV以下)であり、
 基体20の価電子帯の上端のエネルギーの値EV-subと第1B層35(第1B延在領域135)の価電子帯の上端のエネルギーの値EV-1Bとの差の絶対値は、第1トランジスタTR1の駆動電圧で駆動可能なエネルギー差分以下であり、
 基体20の伝導帯の下端のエネルギーの値EC-subと第2B層45(第2B延在領域145)の伝導帯の下端のエネルギーの値EC-2Bとの差の絶対値は、第2トランジスタTR2の駆動電圧で駆動可能なエネルギー差分以下(具体的には、例えば、1.0ボルトであれば、1eV以下)であり、
 基体20の価電子帯の上端のエネルギーの値EV-subと第2B層45(第2B延在領域145)の価電子帯の上端のエネルギーの値EV-2Bとの差の絶対値は、第2トランジスタTR2の駆動電圧で駆動可能なエネルギー差分以下である。
 また、第1A層33と第1B層35との間には第1層間絶縁膜(第1境界領域)37が形成されており、第2A層43と第2B層45との間には第2層間絶縁膜(第2境界領域)47が形成されている。第1層間絶縁膜(第1境界領域)37、第2層間絶縁膜(第2境界領域)47は、厚さ1nmのHfO2から成る。
 ここで、実施例1あるいは後述する実施例2~実施例6の相補型トランジスタにおいて、
 第2A電極48,148には、第1A電極38,138よりも高い電圧が印加され、
 第1制御電極30,130及び第2制御電極40,140に第2の電圧V2(=Vddボルト)が印加されたとき、第1トランジスタTR1は導通状態となり、第2トランジスタTR2は不導通状態となり、
 第1制御電極30,130及び第2制御電極40,140に、第2の電圧V2(=Vddボルト)よりも低い第1の電圧V1(=0ボルト<Vdd)が印加されたとき、第1トランジスタTR1は不導通状態となり、第2トランジスタTR2は導通状態となる。図2A、図2B、図3A、図3B、図4A、図4B、図17A、図17B、図18A、図18B、図19A、図19Bにおいて、第1制御電極30,130、第2制御電極40,140に印加される電圧をVCEで表す。
 即ち、実施例1あるいは後述する実施例2~実施例6の相補型トランジスタにおいて、第2の電圧V2よりも低い第1の電圧V1(=0ボルト)が第1制御電極30,130に印加されたとき、第1トランジスタを構成する第1A層33(第1A延在領域133)には、例えば、第1の電圧V1が印加されており、第1トランジスタTR1における第1A層33(第1A延在領域133)と第1B層35(第1B延在領域135)との間に位置する第1境界領域37,137における価電子帯の上端のエネルギーの値及び伝導帯の下端のエネルギーの値のそれぞれには変化が生じない(図35A参照)。その結果、第1A層33(第1A延在領域133)から第1B層35(第1B延在領域135)への電子の移動は無く、第1トランジスタTR1は不導通状態となる。一方、第2トランジスタTR2における第2A層43(第2A延在領域143)と第2B層45(第2B延在領域145)との間に位置する第2境界領域47,147における価電子帯の上端のエネルギーの値及び伝導帯の下端のエネルギーの値のそれぞれは、第2B層45(第2B延在領域145)の価電子帯の上端のエネルギーの値EV-2B及び伝導帯の下端のエネルギーの値EC-2Bのそれぞれに近づく(図35D参照)。その結果、第2B層45(第2B延在領域145)から第2A層43(第2A延在領域143)へとトンネル効果によって電子が移動するので、第2トランジスタTR2は導通状態となり、第2A層43と第2B層45の電位は理想的には等しくなり、第2B電極49,149の電位は第2の電位V2となる。
 一方、第1の電圧V1よりも高い第2の電圧V2が第1制御電極30,130に印加されたとき、第1トランジスタTR1を構成する第1A層33(第1A延在領域133)には、例えば、第1の電圧V1が印加されており、第1トランジスタTR1における第1A層33(第1A延在領域133)と第1B層35(第1B延在領域135)との間に位置する第1境界領域37,137における価電子帯の上端のエネルギーの値及び伝導帯の下端のエネルギーの値のそれぞれは、第1B層35(第1B延在領域135)の価電子帯の上端のエネルギーの値EV-1B及び伝導帯の下端のエネルギーの値EC-1Bのそれぞれに近づく(図35B参照)。その結果、第1A層33(第1A延在領域133)から第1B層35(第1B延在領域135)へとトンネル効果によって電子が移動するので、第1トランジスタTR1は導通状態となり、第1A層33(第1A延在領域133)と第1B層35(第1B延在領域135)の電位は理想的には等しくなり、第1B電極39,139の電位は第1の電位V1となる。一方、第2トランジスタTR2において、第2A層43(第2A延在領域143)には、例えば、第2の電圧V2が印加されており、第2制御電極40には第2の電圧V2が印加されるので、第2トランジスタTR2における第2A層43(第2A延在領域143)と第2B層45(第2B延在領域145)との間に位置する第2境界領域47,147における価電子帯の上端のエネルギーの値及び伝導帯の下端のエネルギーの値のそれぞれには変化が生じない(図35C参照)。その結果、第2B層45(第2B延在領域145)から第2A層43(第2A延在領域143)への電子の移動は無く、第2トランジスタTR2は不導通状態となる。
 重複領域において、第1活性領域32と第1制御電極30とは重なっているが、第1活性領域32の正射影像は、第1制御電極30の正射影像に含まれていてもよいし(図6A参照)、第1制御電極30の正射影像と一致していてもよいし(図6B参照)、第1制御電極30の正射影像からはみ出していてもよい(図6C参照)。同様に、重複領域において、第2活性領域42と第2制御電極40とは重なっているが、第2活性領域42の正射影像は、第2制御電極40の正射影像に含まれていてもよいし(図6A参照)、第2制御電極40の正射影像と一致していてもよいし(図6B参照)、第2制御電極40の正射影像からはみ出していてもよい(図6C参照)。尚、第1制御電極30、第2制御電極40によって生成される電界が一層均一に加わるといった観点からは、第1活性領域32及び第2活性領域42の正射影像が、第1制御電極30、第2制御電極40の正射影像に含まれていることが望ましい。
 以下、実施例1の相補型トランジスタにおける、例えば、第1トランジスタの製造方法の概略を、図7A、図7B及び図7Cを参照して説明する。
  [工程-100]
 即ち、周知の方法に基づき、シリコン半導体基板20に素子分離領域21を形成する。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、イオン注入法に基づき、第1導電型(具体的には、n型)を有する第1表面領域201(第1A層33及び第1A延在層34)を形成する(図7A参照)。
  [工程-110]
 次に、シリコン半導体基板20の表面(あるいは、シリコン半導体基板20の表面及び素子分離領域21の上)に第1層間絶縁膜37を形成する。そして、第1層間絶縁膜37及び第1絶縁領域(素子分離領域)211の上に、CVD法に基づきWTe2を形成した後、所望の形状にパターニングすることで、第1B層35及び第1B延在層36を得ることができる(図7B参照)。
  [工程-120]
 次に、全面に第1絶縁層31を形成する。そして、第1絶縁層31上に第1制御電極30を形成する(図7C参照)。その後、全面に、SiO2から成る層間絶縁層22を形成し、第1A延在層34の上方に位置する層間絶縁層22に開口部を形成し、開口部を導電材料で埋め込むことで、層間絶縁層22の頂面に亙り、第1A電極38を形成することができる。一方、第1B延在層36の上方に位置する層間絶縁層22に開口部を形成し、開口部を導電材料で埋め込むことで、層間絶縁層22の頂面に亙り、第1B電極39を形成することができる。
 第2トランジスタTR2も、実質的に同様の方法で形成することができる。そして、こうして、図1に示した相補型トランジスタを得ることができる。
 実施例1の相補型トランジスタにおいて、第1A層33、第1A延在層34、第2A層43及び第2A延在層44は基体20の表面領域に形成されているので、相補型トランジスタの活性領域等を構成する材料の種類は、最大、3種類(具体的には、例えば、シリコン、WTe2及びHfTe2)でよいし、2次元材料(2D材料)は2種類でよく、相補型トランジスタの活性領域等の構成材料の種類削減を図ることができるし、製造プロセスの簡素化を図ることができる。
 実施例2は、実施例1の変形である。実施例2の相補型トランジスタにあっては、製造途中の実施例2の相補型トランジスタの模式的な一部端面図を図10に示すように、
 第1表面領域201を構成する基体の部分(具体的には、第1A層53及び第1A延在層54)と、第2表面領域202を構成する基体の部分(具体的には、第2A層63及び第2A延在層64)とは、異なる材料から構成され、
 第1B層35及び第1B延在層36と、第2B層45及び第2B延在層46とは、同じ材料から構成されている(図1も参照)。即ち、実施例2の相補型トランジスタは、1種類の2次元材料(2D材料)、1種類の半導体層及び1種類の半導体基板から構成されるだけであり、相補型トランジスタの活性領域等の構成材料(特に、2次元材料)の種類の一層の削減を図ることができるし、製造プロセスの一層の簡素化を図ることができる。
 そして、第1表面領域201を構成する基体の部分53,54の価電子帯の値[EC(N)]と、第1B層35及び第1B延在層36を構成する材料の伝導帯の値[EV(2D)]との差は1eV以下であり、
 第2表面領域202を構成する基体の部分63,64の伝導帯の値[EV(P)]と、第2B層45及び第2B延在層46を構成する材料の価電子帯の値[EC(2D)]との差は1eV以下である。即ち、
V(P)-EC(2D)≦1(eV)
V(2D)-EC(N)≦1(eV)
を満足する。
 具体的には、実施例2の相補型トランジスタにあっては、
 第1表面領域201を構成する基体の部分53,54は、シリコン半導体基板20から構成され、
 第2表面領域202を構成する基体の部分63,64は、シリコン半導体基板20に形成された半導体層(具体的には、ゲルマニウム層)27Aから構成され、
 第1B層35及び第1B延在層36、並びに、第2B層45及び第2B延在層46は、同じ2次元材料(具体的には、MoTe2)から構成されている。
 以下、実施例2の相補型トランジスタの製造方法の概略を、図8A、図8B、図9A、図9B、図10を参照して説明する。
  [工程-200A]
 即ち、周知の方法に基づき、シリコン半導体基板20に素子分離領域21(211,212)を形成する(図8A参照)。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域をエッチングし、凹部26Aを形成する(図8B参照)。
  [工程-210A]
 次いで、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部26Aを半導体層であるゲルマニウム(Ge)層27Aで埋め込む(図9A参照)。尚、濃縮法に基づきゲルマニウム(Ge)層27Aを形成する場合には凹部26Aの形成は不要である。以下の説明においても同様である。
  [工程-220A]
 そして、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、第1導電型(具体的には、n型)を有する第1表面領域201(第1A層53及び第1A延在層54)を形成することができる(図9B参照)。
 また、第2トランジスタTR2を形成すべきゲルマニウム層27Aの領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたゲルマニウム層27Aに、第2導電型(具体的には、p型)を有する第2表面領域202(第2A層63及び第2A延在層64)を形成することができる(図10参照)。
  [工程-230A]
 その後、実施例1において説明した方法と同様の方法で、但し、第1B層35及び第1B延在層36、並びに、第2B層45及び第2B延在層46を、MoTe2から構成することで、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図1に示したと同様の相補型トランジスタを得ることができる。
 あるいは又、実施例2の第1変形例にあっては、製造途中の実施例2の第1変形例の相補型トランジスタの模式的な一部端面図を図13に示すように、
 第1表面領域201を構成する基体の部分73,74は、シリコン半導体基板に形成された半導体層(具体的には、インジウム砒素(InAs)層)27Bから構成され、
 第2表面領域202を構成する基体の部分83,84は、シリコン半導体基板20から構成され、
 第1B層35及び第1B延在層36、並びに、第2B層45及び第2B延在層46は、同じ2次元材料(具体的には、MoS2)から構成されている(図1も参照)。
 以下、実施例2の第1変形例の相補型トランジスタの製造方法の概略を、図11A、図11B、図12A、図12B、図13を参照して説明する。
  [工程-200B]
 即ち、周知の方法に基づき、シリコン半導体基板20に素子分離領域21(211,212)を形成する(図11A参照)。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の表面領域に、第2導電型(具体的には、p型)を有する第2表面領域202(第2A層83及び第2A延在層84)を形成することができる(図11B参照)。
  [工程-210B]
 次いで、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域をエッチングし、凹部26Bを形成する(図12A参照)。
  [工程-220B]
 その後、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部26Bの底部に、InPから成る緩衝層28Bを形成する(図12B参照)。そして、更に、半導体層としてのInAs層27Bをエピタキシャル成長法に基づき形成した後、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、第1導電型(具体的には、n型)を有する第1表面領域201(第1A層73及び第1A延在層74)を形成することができる(図13参照)。
  [工程-230B]
 次に、実施例1において説明した方法と同様の方法で、但し、第1B層35及び第1B延在層36、並びに、第2B層45及び第2B延在層46を、MoS2から構成することで、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図1に示したと同様の相補型トランジスタを得ることができる。
 あるいは又、実施例2の第2変形例にあっては、製造途中の実施例2の第2変形例の相補型トランジスタの模式的な一部端面図を図15に示すように、
 第1表面領域201を構成する基体の部分73,74は、半導体基板20に形成された第1半導体層(具体的には、インジウム砒素(InAs)層)27Bから構成され、
 第2表面領域202を構成する基体の部分63,64は、半導体基板20に形成された第2半導体層(具体的には、ゲルマニウム層)27Aから構成され、
 第1B層35及び第1B延在層36、並びに、第2B層45及び第2B延在層46は、同じ2次元材料(具体的には、MoS2)から構成されている(実施例1も参照)。
 以下、実施例2の第2変形例の相補型トランジスタの製造方法の概略を、図14A、図14B、図15を参照して説明する。
  [工程-200C]
 即ち、実施例2と同様にして、周知の方法に基づき、シリコン半導体基板20に素子分離領域21(211,212)を形成する。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域をエッチングし、凹部26Aを形成する(図8A、図8B参照)。次いで、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部26Aを半導体層であるゲルマニウム(Ge)層27Aで埋め込み(図9A参照)、ゲルマニウム層27Aにイオン注入を施す。これによって、素子分離領域21によって囲まれたゲルマニウム層27Aに、第2導電型(具体的には、p型)を有する第2表面領域202(第2A層63及び第2A延在層64)を形成することができる(図14A参照)。
  [工程-210C]
 次いで、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域をエッチングし、凹部26Bを形成する。
  [工程-220C]
 その後、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部26Bの底部に、InPから成る緩衝層28Bを形成する(図14B参照)。そして、更に、半導体層としてのInAs層27Bをエピタキシャル成長法に基づき形成した後、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、第1導電型(具体的には、n型)を有する第1表面領域201(第1A層73及び第1A延在層74)を形成することができる(図15参照)。
  [工程-230C]
 次に、実施例1において説明した方法と同様の方法で、但し、第1B層35及び第1B延在層36、並びに、第2B層45及び第2B延在層46を、MoS2から構成することで、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図1に示したと同様の相補型トランジスタを得ることができる。
 実施例3も、実施例1の変形である。実施例3の相補型トランジスタにあっては、
 第1表面領域201を構成する基体の部分53,54と、第2表面領域202を構成する基体の部分63,64とは、異なる材料から構成され、
 第1B層35及び第1B延在層36と、第2B層45及び第2B延在層46とは、異なる材料から構成されている。
 具体的には、第1表面領域201を構成する基体の部分53,54は、シリコン半導体基板20から構成され、
 第2表面領域202を構成する基体の部分63,64は、シリコン半導体基板20に形成されたゲルマニウム層27Aから構成され、
 第1B層35及び第1B延在層36は、MoTe2から構成され、
 第2B層45及び第2B延在層46は、MoS2から構成されている。
 あるいは又、具体的には、第1表面領域201を構成する基体の部分53,54は、シリコン半導体基板20に形成されたインジウム砒素層27Bから構成され、
 第2表面領域202を構成する基体の部分63,64は、シリコン半導体基板20から構成され、
 第1B層及び第1B延在層(第1B延在領域)は、MoTe2から構成され、
 第2B層及び第2B延在層(第2B延在領域)は、MoS2から構成されている形態とすることができる。
 あるいは又、具体的には、第1表面領域201を構成する基体の部分53,54は、シリコン半導体基板20に形成されたインジウム砒素層27Bから構成され、
 第2表面領域202を構成する基体の部分63,64は、シリコン半導体基板20に形成されたゲルマニウム層27Aから構成され、
 第1B層及び第1B延在層(第1B延在領域)は、MoTe2から構成され、
 第2B層及び第2B延在層(第2B延在領域)は、MoS2から構成されている形態とすることができる。
 実施例3における第1表面領域201を構成する基体の部分53,54、第2表面領域202を構成する基体の部分63,64の形成方法は、実施例2において説明したと同様の方法とすることができるし、更には、実施例1において説明した方法と同様の方法で、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図1に示したと同様の相補型トランジスタを得ることができる。
 実施例4は、本開示の第2の態様に係る相補型トランジスタに関する。実施例4の相補型トランジスタによっても、インバータ回路が構成される。実施例4の相補型トランジスタの模式的な一部断面図を図16に示し、実施例4の相補型トランジスタの動作状態を模式的に図17A、図17B、図18A、図18B、図19A、図19Bに示し、実施例4の相補型トランジスタにおける活性領域と制御電極の位置関係を示す概念図を図20A、図20B及び図20Cに示す。尚、図17Aには、第1トランジスタが不導通状態(オフ状態)にある状態を示し、図17Bには、第2トランジスタが導通状態(オン状態)にある状態を示し、図18Aには、第1トランジスタが不導通状態(オフ状態)から導通状態(オン状態)となる状態を示し、図18Bには、第2トランジスタが導通状態(オン状態)から不導通状態(オフ状態)となる状態を示し、図19Aには、第1トランジスタが導通状態(オン状態)にある状態を示し、図19Bには、第2トランジスタが不導通状態(オフ状態)にある状態を示す。
 実施例4の相補型トランジスタ110は、
 第1制御電極130、
 第1制御電極130の下方に位置する第1活性領域132、
 第1制御電極130と第1活性領域132との間に設けられた第1絶縁層131、
 第1活性領域132の一端から延在する第1A延在領域133、及び、
 第1活性領域132の他端から延在する第1B延在領域135、
を備えた第1トランジスタTR1、並びに、
 第2制御電極140、
 第2制御電極140の下方に位置する第2活性領域142、
 第2制御電極140と第2活性領域142との間に設けられた第2絶縁層141、
 第2活性領域142の一端から延在する第2A延在領域143、及び、
 第2活性領域142の他端から延在する第2B延在領域145、
を備えた第2トランジスタTR2
から成る。
 そして、基体に設けられた第1導電型(具体的には、実施例4にあってはn型)を有する第1表面領域1201は、第1A延在領域133に相当し、
 第1B延在領域135は、第1導電型とは異なる第2導電型としての特性を有し(即ち、第2導電型、具体的には、p型としての挙動を示し、あるいは又、電子受容性を有し)、基体に設けられた第1絶縁領域211の上に設けられており、
 第1活性領域132は、第1絶縁領域211の上に設けられており、
 基体に設けられた第2導電型(具体的には、実施例4にあってはp型)を有する第2表面領域1202は、第2A延在領域143に相当し、
 第2B延在領域145は、第1導電型としての特性を有し(即ち、第1導電型、具体的には、n型としての挙動を示し、あるいは又、電子供与性を有し)、基体に設けられた第2絶縁領域212の上に設けられており、
 第2活性領域142は、第2絶縁領域212の上に設けられている。
 また、実施例4の半導体装置(半導体デバイス、半導体素子)は、基体がシリコン半導体基板から成る実施例4の相補型トランジスタ、及び、シリコン半導体基板に形成された電界効果トランジスタを備えている。
 第1トランジスタTR1は、更に、第1A延在領域133に接続された第1A電極138、及び、第1B延在領域135に接続された第1B電極139を備えており、第2トランジスタTR2は、第2A延在領域143に接続された第2A電極148、及び、第2B延在領域145に接続された第2B電極149を備えている。ここで、第1B延在領域135は、2次元材料又はグラフェンから構成されており、第2B延在領域145も、2次元材料又はグラフェンから構成されている。具体的には、2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る。基体は、半導体基板あるいはシリコン(Si)、具体的には、シリコン半導体基板20から成り、第1B延在領域135はWTe2(厚さは、例えば、WTe25原子層分)から構成されており、第2B延在領域145はHfTe2(厚さは、例えば、HfTe25原子層分)から構成されている。また、第1絶縁領域211及び第2絶縁領域212は、シリコン半導体基板20に設けられたSiO2から成る素子分離領域21から構成されている。第1制御電極130及び第2制御電極140、第1絶縁層131及び第2絶縁層141、第1A電極138及び第2A電極148、第1B電極139及び第2B電極149、層間絶縁層22は、実施例1に説明したと同様の材料から成る。
 実施例4の相補型トランジスタにおいて、第1A延在領域133と第1B延在領域135との間には第1境界領域137(第1活性領域132に相当する)が形成されており、第2A延在領域143と第2B延在領域145との間には第2境界領域147(第2活性領域142に相当する)が形成されている。第1境界領域137(第1活性領域132)は、イントリンシックな活性領域であり、具体的には、厚さ3nmのWTe2から成る。また、第2境界領域147(第2活性領域142)も、イントリンシックな活性領域であり、具体的には、厚さ3nmのHfTe2から成る。尚、第1A延在領域133の端面と第1B延在領域135の端面とが接していてもよいし、第2A延在領域143の端面と第2B延在領域145の端面とが接していてもよい。即ち、第1境界領域137や第2境界領域147を設けず、第1A延在領域133の端面と第1B延在領域135の端面との接触部が第1活性領域132を構成し、第2A延在領域143の端面と第2B延在領域145の端面との接触部が第2活性領域142を構成する形態とすることもできる。
 実施例4の相補型トランジスタの動作は、実施例1の相補型トランジスタの動作と同様とすることができるので、詳細な説明は省略する。
 実施例4の相補型トランジスタにおいて、第1活性領域132(第1境界領域137)と第1制御電極130とが重なっているが、第1活性領域132(第1境界領域137)の正射影像は、第1制御電極130の正射影像に含まれていてもよいし(図20A参照)、第1制御電極130の正射影像と一致していてもよいし(図20B参照)、第1制御電極130の正射影像からはみ出していてもよい(図20C参照)。同様に、重複領域において、第2活性領域142(第2境界領域147)と第2制御電極140とが重なっているが、第2活性領域142(第2境界領域147)の正射影像は、第2制御電極140の正射影像に含まれていてもよいし(図20A参照)、第2制御電極140の正射影像と一致していてもよいし(図20B参照)、第2制御電極140の正射影像からはみ出していてもよい(図20C参照)。尚、第1制御電極130、第2制御電極140によって生成される電界が一層均一に加わるといった観点からは、第1活性領域132及び第2活性領域142の正射影像が、第1制御電極130、第2制御電極140の正射影像に含まれていることが望ましい。
 以下、実施例4の相補型トランジスタにおける、例えば、第1トランジスタの製造方法の概略を、図21A、図21B及び図21Cを参照して説明する。
  [工程-400]
 即ち、周知の方法に基づき、シリコン半導体基板20に素子分離領域21を形成する。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、イオン注入法に基づき、第1導電型(具体的には、n型)を有する第1表面領域1201(第1A延在領域133)を形成する(図21A参照)。
  [工程-410]
 次に、第1絶縁領域(素子分離領域)211の頂面を、若干、除去した後、第1絶縁領域(素子分離領域)211の上に、CVD法に基づきWTe2を形成し、次いで、所望の形状にパターニングすることで、第1B延在領域135、第1境界領域137となる領域を得る。その後、化学ドーピング法に基づき、第1B延在領域135を形成する(図21B参照)。尚、化学ドーピング法を実行する際には、不所望の領域がドーピングされることを防止するためにマスク層を形成すればよい。
  [工程-420]
 次に、全面に第1絶縁層131を形成する。そして、第1絶縁層131上に第1制御電極130を形成する(図21C参照)。その後、全面に層間絶縁層22を形成し、第1A延在領域133の上方に位置する層間絶縁層22に開口部を形成し、開口部を導電材料で埋め込むことで、層間絶縁層22の頂面に亙り、第1A電極138を形成することができる。一方、第1B延在領域135の上方に位置する層間絶縁層22に開口部を形成し、開口部を導電材料で埋め込むことで、層間絶縁層22の頂面に亙り、第1B電極139を形成することができる。
 第2トランジスタTR2も、実質的に同様の方法で形成することができる。そして、こうして、図16に示した相補型トランジスタを得ることができる。
 実施例4の相補型トランジスタにあっても、第1A延在領域133、第2A延在領域143は基体の表面領域に形成されているので、相補型トランジスタの活性領域等を構成する材料の種類は、最大、3種類でよいし、2次元材料(2D材料)は2種類でよく、相補型トランジスタの活性領域等の構成材料の種類削減を図ることができる。
 実施例5は、実施例4の変形である。実施例5の相補型トランジスタにあっては、製造途中の実施例5の相補型トランジスタの模式的な一部端面図を図24に示すように、
 第1A延在領域153と第2A延在領域163とは、異なる材料から構成され、
 第1B延在領域135と第2B延在領域145は、同じ材料から構成されている。即ち、実施例5の相補型トランジスタは、1種類の2次元材料(2D材料)、1種類の半導体層及び1種類の半導体基板から構成されるだけであり、相補型トランジスタの活性領域等の構成材料(特に、2次元材料)の種類の一層の削減を図ることができるし、製造プロセスの一層の簡素化を図ることができる。
 そして、第1A延在領域153を構成する材料の価電子帯の値[EC(N)]と、第1B延在領域135を構成する材料の伝導帯の値[EV(2D)]との差は1eV以下であり、
 第2A延在領域135を構成する材料の伝導帯の値[EV(P)]と、第2B延在領域145を構成する材料の価電子帯の値[EC(2D)]との差は1eV以下である。即ち、
V(P)-EC(2D)≦1(eV)
V(2D)-EC(N)≦1(eV)
を満足する。
 具体的には、
 第1A延在領域153は、シリコン半導体基板20から構成され、
 第2A延在領域163は、シリコン半導体基板20に形成された半導体層(具体的には、ゲルマニウム層)127Aから構成され、
 第1B延在領域135及び第2B延在領域145は、同じ2次元材料(具体的には、MoTe2)から構成されている。
 以下、実施例5の相補型トランジスタの製造方法の概略を、図22A、図22B、図23A、図23B、図24を参照して説明する。
  [工程-500A]
 即ち、周知の方法に基づき、シリコン半導体基板20に素子分離領域21(211,212)を形成する(図22A参照)。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域をエッチングし、凹部126Aを形成する(図22B参照)。
  [工程-510A]
 次いで、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部126Aを半導体層であるゲルマニウム(Ge)層127Aで埋め込む(図23A参照)。
  [工程-520A]
 そして、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、第1導電型(具体的には、n型)を有する第1表面領域1201(第1A延在領域153)を形成することができる(図23B参照)。
 また、第2トランジスタTR2を形成すべきゲルマニウム層127Aの領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたゲルマニウム層127Aに、第2導電型(具体的には、p型)を有する第2表面領域1202(第2A延在領域163)を形成することができる(図24参照)。
  [工程-530A]
 その後、実施例4において説明した方法と同様の方法で、但し、第1B延在領域135及び第2B延在領域145を、MoTe2から構成することで、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図16に示したと同様の相補型トランジスタを得ることができる。
 あるいは又、実施例5の第1変形例にあっては、製造途中の実施例5の第1変形例の相補型トランジスタの模式的な一部端面図を図26Bに示すように、
 第1A延在領域173は、シリコン半導体基板20に形成された半導体層(具体的には、インジウム砒素層)127Bから構成され、
 第2A延在領域183は、シリコン半導体基板20から構成され、
 第1B延在領域135及び第2B延在領域145は、同じ2次元材料(具体的には、MoS2)から構成されている。
 以下、実施例5の第1変形例の相補型トランジスタの製造方法の概略を、図25A、図25B、図26A、図26Bを参照して説明する。
  [工程-500B]
 即ち、周知の方法に基づき、シリコン半導体基板20に素子分離領域21(211,212)を形成する。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の表面領域に、第2導電型(具体的には、p型)を有する第2A延在領域183を形成することができる(図25A参照)。
  [工程-510B]
 次いで、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域をエッチングし、凹部126Bを形成する(図25B参照)。
  [工程-520B]
 その後、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部126Bの底部に、InPから成る緩衝層128Bを形成する(図26A参照)。そして、更に、半導体層としてのInAs層127Bをエピタキシャル成長法に基づき形成する。次いで、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、第1導電型(具体的には、n型)を有する第1A延在領域173を形成することができる(図26B参照)。
  [工程-530B]
 その後、実施例4において説明した方法と同様の方法で、但し、第1B延在領域135及び第2B延在領域145を、MoS2から構成することで、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図16に示したと同様の相補型トランジスタを得ることができる。
 あるいは又、実施例5の第2変形例にあっては、製造途中の実施例5の第2変形例の相補型トランジスタの模式的な一部端面図を図28に示すように、
 第1A延在領域173は、半導体基板20に形成された第1半導体層(具体的にはインジウム砒素層)127Bから構成され、
 第2A延在領域163は、半導体基板20に形成された第2半導体層(具体的には、ゲルマニウム層)127Aから構成され、
 第1B延在領域135及び第2B延在領域145は、同じ2次元材料(具体的には、MoS2)から構成されている。
 以下、実施例2の第2変形例の相補型トランジスタの製造方法の概略を、図27A、図27B、図28を参照して説明する。
  [工程-500C]
 即ち、実施例5と同様にして、周知の方法に基づき、シリコン半導体基板20に素子分離領域21(211,212)を形成する。そして、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域をエッチングし、凹部126Aを形成する(図22A、図22B参照)。次いで、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部126Aを半導体層であるゲルマニウム(Ge)層127Aで埋め込む(図23A参照)。そして、第2トランジスタTR2を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたゲルマニウム層127Aに、第2A延在領域163を形成することができる(図27A参照)。
  [工程-510C]
 次いで、素子分離領域21によって囲まれたシリコン半導体基板20の領域であって、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域をエッチングし、凹部126Bを形成する。
  [工程-520C]
 その後、所望の領域をマスク層(図示せず)で覆い、エピタキシャル成長法に基づき、凹部126Bの底部に、InPから成る緩衝層128Bを形成する(図27B参照)。そして、更に、半導体層としてのInAs層127Bをエピタキシャル成長法に基づき形成する。次いで、第1トランジスタTR1を形成すべきシリコン半導体基板20の領域にイオン注入を施す。これによって、素子分離領域21によって囲まれたシリコン半導体基板20の領域の表面に、第1導電型(具体的には、n型)を有する第1A延在領域173を形成することができる(図28参照)。
  [工程-530C]
 次に、実施例4において説明した方法と同様の方法で、但し、第1B延在領域135及び第2B延在領域145を、MoS2から構成することで、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図16に示したと同様の相補型トランジスタを得ることができる。
 あるいは又、より具体的には、第1A延在領域173は、シリコン半導体基板20から構成され、
 第2A延在領域163は、シリコン半導体基板20に形成されたゲルマニウム層127Aから構成され、
 第1B延在領域135及び第2B延在領域145は、MoS2から構成されている。
 あるいは又、より具体的には、第1A延在領域173は、シリコン半導体基板20に形成されたインジウム砒素層127Bから構成され、
 第2A延在領域163は、シリコン半導体基板20から構成され、
 第1B延在領域135及び第2B延在領域145は、MoS2から構成されている。
 実施例6も、実施例4の変形である。実施例6の相補型トランジスタにあっては、
 第1A延在領域と第2A延在領域とは、異なる材料から構成され、
 第1B延在領域と第2B延在領域とは、異なる材料から構成されている。
 具体的には、第1A延在領域153は、シリコン半導体基板20から構成され、
 第2A延在領域163は、シリコン半導体基板20に形成されたゲルマニウム層127Aから構成され、
 第1B延在領域135は、MoTe2から構成され、
 第2B延在領域145は、MoS2から構成されている。
 あるいは又、具体的には、第1A延在領域173は、シリコン半導体基板20に形成されたインジウム砒素層127Bから構成され、
 第2A延在領域163は、シリコン半導体基板20から構成され、
 第1B延在領域135は、MoTe2から構成され、
 第2B延在領域145は、MoS2から構成されている。
 あるいは又、具体的には、第1A延在領域173は、シリコン半導体基板20に形成されたインジウム砒素層127Bから構成され、
 第2A延在領域163は、シリコン半導体基板20に形成されたゲルマニウム層127Aから構成され、
 第1B延在領域135は、MoTe2から構成され、
 第2B延在領域145は、MoS2から構成されている。
 実施例6における第1A延在領域153,173、第2A延在領域163,183の形成方法は、実施例5において説明したと同様の方法とすることができるし、更には、実施例4において説明した方法と同様の方法で、第1トランジスタTR1及び第2トランジスタTR2を得ることができる。こうして、図16に示したと同様の相補型トランジスタを得ることができる。
 実施例7は、実施例1~実施例6の変形であり、実施例1~実施例6において説明した相補型トランジスタによって構成された論理回路に関する。
 実施例1~実施例6の相補型トランジスタに基づき形成されるNAND回路の等価回路図を図29に示す。NAND回路は4つのトランジスタTr1,Tr2,Tr3,Tr4から構成されている。ここで、第1のトランジスタTr1及び第3のトランジスタTr3は、実施例1~実施例6の相補型トランジスタにおける第2トランジスタTR2から構成されている。また、第2のトランジスタTr2及び第4のトランジスタTr4は、実施例1~実施例6の相補型トランジスタにおける第1トランジスタTR1から構成されている。
 実施例1~実施例6の相補型トランジスタに基づき形成されるNOR回路の等価回路図を図30に示す。NOR回路も4つのトランジスタTr1,Tr2,Tr3,Tr4から構成されている。ここで、第1のトランジスタTr1及び第3のトランジスタTr3は、実施例1~実施例6の相補型トランジスタにおける第2トランジスタTR2から構成されている。また、第2のトランジスタTr2及び第4のトランジスタTr4は、実施例1~実施例6の相補型トランジスタにおける第1トランジスタTR1から構成されている。
 実施例1~実施例6の相補型トランジスタに基づき形成される8つのトランジスタから構成されるSRAM回路の等価回路図を図31に示す。SRAM回路は、8つのトランジスタTr1,Tr2,Tr3,Tr4,Tr5,Tr6,Tr7,Tr8から構成されている。このSRAM回路の回路構成、それ自体は周知であるので、詳細な説明は省略する。ここで、第1のトランジスタTr1及び第4のトランジスタTr4は、実施例1~実施例6の相補型トランジスタにおける第2トランジスタTR2から構成されている。また、残りのトランジスタTr2,Tr3,Tr5,Tr6,Tr7,Tr8は、実施例1~実施例6の相補型トランジスタにおける第1トランジスタTR1から構成されている。
 以上、本開示の相補型トランジスタ及び半導体装置を好ましい実施例に基づき説明したが、本開示の相補型トランジスタ、半導体装置の構成、構造、構成材料、製造方法等は、実施例に限定されるものではなく、適宜、変更することができる。また、実施例において説明した本開示の相補型トランジスタの各種適用例も例示であり、他の回路例に適用することができることは云うまでもない。即ち、各種回路において、nチャネル型FETを本開示の相補型トランジスタにおける第1トランジスタに置き換えればよいし、pチャネル型FETを本開示の相補型トランジスタにおける第2トランジスタに置き換えればよい。
 実施例1~実施例6においては、基体を、シリコン半導体基板から構成したが、図32、図33に模式的な一部断面図を示すように、基体24を2次元材料層(例えば、MoS2)から構成することができる。この場合、基体24を、支持材料(例えば、絶縁膜が表面に形成されたシリコン半導体基板等の基板)23の上に設ければよい。基体24と基体24との間には、例えば、SiO2から成る第1絶縁領域251、第2絶縁領域252を形成すればよい。あるいは又、2次元材料層から構成された基体において、第1絶縁領域251、第2絶縁領域252を形成すべき部分に、例えば、イオン注入を行うことで、第1絶縁領域251、第2絶縁領域252を形成してもよい。尚、図32は、実施例1の相補型トランジスタの変形例を示し、図33は、実施例4の相補型トランジスタの変形例を示す。
 あるいは又、一方のトランジスタを、図32、図33に示した構造とし、他方のトランジスタを実施例2~実施例3、実施例5~実施例6において説明したトランジスタの構造とすることもできる。
 あるいは又、基体を、シリコン(Si)の代わりにゲルマニウム(Ge)から構成し、第1B層35(第1B延在領域135)をMoS2、WTe2又はグラフェンから構成し、第2B層45(第2B延在領域145)をHfTe2から構成することもできる。
 あるいは又、模式的な斜視図を図34Aに示し、図34Aの矢印B-Bに沿った模式的な一部断面図を図34Bに示し、図34Aの矢印C-Cに沿った模式的な一部断面図を図34Cに示すように、実施例1の相補型トランジスタの変形例として、所謂Fin形状を有する構造とすることもできる。また、実施例4の相補型トランジスタの変形例として、所謂Fin形状を有する構造とすることもできる。実施例4の変形例の、図34Aの矢印B-Bに沿った模式的な一部断面図を図34Dに示す。尚、これらの図面においては、相補型トランジスタを構成する第1トランジスタのみを図示した。また、Fin形状を有するトランジスタは、シリコン半導体基板上に形成されているが、シリコン半導体基板の図示は省略した。図34A、図34B及び図34Cにおける構成要素の参照番号の下2桁は、実施例1において説明した第1トランジスタにおける構成要素の参照番号の2桁の数字と同じである。また、図34Dにおける構成要素の参照番号の下2桁は、実施例4において説明した第1トランジスタにおける構成要素の参照番号の2桁の数字と同じである。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《相補型トランジスタ・・・第1の態様》
 第1制御電極、
 第1制御電極の下方に位置し、第1A層と第1B層が積層されて成る第1活性領域、
 第1制御電極と第1活性領域との間に設けられた第1絶縁層、
 第1活性領域の一端から延在し、第1A層から構成された第1A延在層、及び、
 第1活性領域の他端から延在し、第1B層から構成された第1B延在層、
を備えた第1トランジスタ、並びに、
 第2制御電極、
 第2制御電極の下方に位置し、第2A層と第2B層が積層されて成る第2活性領域、
 第2制御電極と第2活性領域との間に設けられた第2絶縁層、
 第2活性領域の一端から延在し、第2A層から構成された第2A延在層、及び、
 第2活性領域の他端から延在し、第2B層から構成された第2B延在層、
を備えた第2トランジスタ、
から成る相補型トランジスタであって、
 基体に設けられた第1導電型を有する第1表面領域は、第1A層及び第1A延在層に相当し、
 第1B層は、第1導電型とは異なる第2導電型としての特性を有し、
 第1B延在層は、基体に設けられた第1絶縁領域の上に設けられており、
 基体に設けられた第2導電型を有する第2表面領域は、第2A層及び第2A延在層に相当し、
 第2B層は、第1導電型としての特性を有し、
 第2B延在層は、基体に設けられた第2絶縁領域の上に設けられている相補型トランジスタ。
[A02]第1B層は、2次元材料又はグラフェンから構成されており、
 第2B層は、2次元材料又はグラフェンから構成されている[A01]に記載の複合型トランジスタ。
[A03]2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る[A02]に記載の相補型トランジスタ。
[A04]基体は半導体基板から成り、
 第1絶縁領域及び第2絶縁領域は、半導体基板に設けられた素子分離領域から成る[A01]乃至[A03]のいずれか1項に記載の相補型トランジスタ。
[A05]基体は2次元材料層から成る[A01]乃至[A03]のいずれか1項に記載の相補型トランジスタ。
[A06]基体は、シリコン又はゲルマニウムから成り、
 第1B層は、MoS2、WTe2又はグラフェンから構成されており、
 第2B層は、HfTe2から構成されている[A01]乃至[A03]のいずれか1項に記載の相補型トランジスタ。
[A07]基体は、MoS2から成り、
 第1B層は、WTe2から構成されており、
 第2B層は、ZrS2、HfS2又はHfSe2から構成されている[A01]乃至[A03]のいずれか1項に記載の相補型トランジスタ。
[A08]第1表面領域を構成する基体の部分と、第2表面領域を構成する基体の部分とは、異なる材料から構成され、
 第1B層及び第1B延在層と、第2B層及び第2B延在層とは、同じ材料から構成されている[A01]に記載の複合型トランジスタ。
[A09]第1表面領域を構成する基体の部分の価電子帯の値と、第1B層及び第1B延在層を構成する材料の伝導帯の値との差は1eV以下であり、
 第2表面領域を構成する基体の部分の伝導帯の値と、第2B層及び第2B延在層を構成する材料の価電子帯の値との差は1eV以下である[A08]に記載の複合型トランジスタ。
[A10]第1表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
 第2表面領域を構成する基体の部分は、シリコン半導体基板に形成された半導体層から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、同じ2次元材料から構成されている[A08]又は[A09]に記載の複合型トランジスタ。
[A11]半導体層はゲルマニウム層から成り、第1B層及び第1B延在層並びに第2B層及び第2B延在層はMoTe2から成る[A10]に記載の複合型トランジスタ。
[A12]第1表面領域を構成する基体の部分は、シリコン半導体基板に形成された半導体層から構成され、
 第2表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、同じ2次元材料から構成されている[A08]又は[A09]に記載の複合型トランジスタ。
[A13]半導体層はインジウム砒素層から成り、第1B層及び第1B延在層並びに第2B層及び第2B延在層はMoS2から成る[A12]に記載の複合型トランジスタ。
[A14]第1表面領域を構成する基体の部分は、半導体基板に形成された第1半導体層から構成され、
 第2表面領域を構成する基体の部分は、半導体基板に形成された第2半導体層から構成され、
 第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、同じ2次元材料から構成されている[A08]又は[A09]に記載の複合型トランジスタ。
[A15]第1半導体層はインジウム砒素層から成り、第2半導体層はゲルマニウム層から成り、第1B層及び第1B延在層並びに第2B層及び第2B延在層はMoS2から成る[A14]に記載の複合型トランジスタ。
[A16]第1表面領域を構成する基体の部分と、第2表面領域を構成する基体の部分とは、異なる材料から構成され、
 第1B層及び第1B延在層と、第2B層及び第2B延在層とは、異なる材料から構成されている[A01]に記載の複合型トランジスタ。
[A17]第1表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
 第2表面領域を構成する基体の部分は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B層及び第1B延在層は、MoTe2から構成され、
 第2B層及び第2B延在層は、MoS2から構成されている[A16]に記載の複合型トランジスタ。
[A18]第1表面領域を構成する基体の部分は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
 第1B層及び第1B延在層は、MoTe2から構成され、
 第2B層及び第2B延在層は、MoS2から構成されている[A16]に記載の複合型トランジスタ。
[A19]第1表面領域を構成する基体の部分は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2表面領域を構成する基体の部分は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B層及び第1B延在層は、MoTe2から構成され、
 第2B層及び第2B延在層は、MoS2から構成されている[A16]に記載の複合型トランジスタ。
[A20]基体の伝導帯の下端のエネルギーの値と第1B層の伝導帯の下端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の価電子帯の上端のエネルギーの値と第1B層の価電子帯の上端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の伝導帯の下端のエネルギーの値と第2B層の伝導帯の下端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の価電子帯の上端のエネルギーの値と第2B層の価電子帯の上端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下である[A01]乃至[A19]のいずれか1項に記載の相補型トランジスタ。
[A21]第1A層と第1B層との間には第1層間絶縁膜が形成されており、
 第2A層と第2B層との間には第2層間絶縁膜が形成されている[A01]乃至[A20]のいずれか1項に記載の相補型トランジスタ。
[A22]第1トランジスタは、更に、第1A延在層に接続された第1A電極、及び、第1B延在層に接続された第1B電極を備えており、
 第2トランジスタは、更に、第2A延在層に接続された第2A電極、及び、第2B延在層に接続された第2B電極を備えている[A01]乃至[A21]のいずれか1項に記載の相補型トランジスタ。
[B01]
 制御電極、
 制御電極の下方に位置し、第A層と第B層が積層されて成る活性領域、
 制御電極と活性領域との間に設けられた絶縁層、
 活性領域の一端から延在し、第A層から構成された第A延在層、及び、
 活性領域の他端から延在し、第B層から構成された第B延在層、
を備えたトランジスタであって、
 基体に設けられた第1導電型を有する表面領域は、第A層及び第A延在層に相当し、
 第B層は、第1導電型とは異なる第2導電型としての特性を有し、
 第B延在層は、基体に設けられた絶縁領域の上に設けられているトランジスタ。
[C01]《相補型トランジスタ・・・第2の態様》
 第1制御電極、
 第1制御電極の下方に位置する第1活性領域、
 第1制御電極と第1活性領域との間に設けられた第1絶縁層、
 第1活性領域の一端から延在する第1A延在領域、及び、
 第1活性領域の他端から延在する第1B延在領域、
を備えた第1トランジスタ、並びに、
 第2制御電極、
 第2制御電極の下方に位置する第2活性領域、
 第2制御電極と第2活性領域との間に設けられた第2絶縁層、
 第2活性領域の一端から延在する第2A延在領域、及び、
 第2活性領域の他端から延在する第2B延在領域、
を備えた第2トランジスタ、
から成る相補型トランジスタであって、
 基体に設けられた第1導電型を有する第1表面領域は、第1A延在領域に相当し、
 第1B延在領域は、第1導電型とは異なる第2導電型としての特性を有し、基体に設けられた第1絶縁領域の上に設けられており、
 第1活性領域は、第1絶縁領域上に設けられており、
 基体に設けられた第2導電型を有する第2表面領域は、第2A延在領域に相当し、
 第2B延在領域は、第1導電型としての特性を有し、基体に設けられた第2絶縁領域の上に設けられており、
 第2活性領域は、第2絶縁領域上に設けられている相補型トランジスタ。
[C02]第1B延在領域は、2次元材料又はグラフェンから構成されており、
 第2B延在領域は、2次元材料又はグラフェンから構成されている[C01]に記載の複合型トランジスタ。
[C03]2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る[C02]に記載の相補型トランジスタ。
[C04]基体は半導体基板から成り、
 第1絶縁領域及び第2絶縁領域は、半導体基板に設けられた素子分離領域から成る[C01]乃至[C03]のいずれか1項に記載の相補型トランジスタ。
[C05]基体は2次元材料層から成る[C01]乃至[C03]のいずれか1項に記載の相補型トランジスタ。
[C06]基体は、シリコン又はゲルマニウムから成り、
 第1B延在領域は、MoS2、WTe2又はグラフェンから構成されており、
 第2B延在領域は、HfTe2から構成されている[C01]乃至[C03]のいずれか1項に記載の相補型トランジスタ。
[C07]基体は、MoS2から成り、
 第1B延在領域は、WTe2から構成されており、
 第2B延在領域は、ZrS2、HfS2又はHfSe2から構成されている[C01]乃至[C03]のいずれか1項に記載の相補型トランジスタ。
[C08]第1A延在領域と第2A延在領域とは、異なる材料から構成され、
 第1B延在領域と第2B延在領域とは、同じ材料から構成されている[C01]に記載の複合型トランジスタ。
[C09]第1A延在領域を構成する材料の価電子帯の値と、第1B延在領域を構成する材料の伝導帯の値との差は1eV以下であり、
 第2A延在領域を構成する材料の伝導帯の値と、第2B延在領域を構成する材料の価電子帯の値との差は1eV以下である[C08]に記載の複合型トランジスタ。
[C10]第1A延在領域は、シリコン半導体基板から構成され、
 第2A延在領域は、シリコン半導体基板に形成された半導体層から構成され、
 第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている[C08]又は[C09]に記載の複合型トランジスタ。
[C11]半導体層はゲルマニウム層から成り、第1B延在領域及び第2B延在領域はMoTe2から成る[C10]に記載の複合型トランジスタ。
[C12]第1A延在領域は、シリコン半導体基板に形成された半導体層から構成され、
 第2A延在領域は、シリコン半導体基板から構成され、
 第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている[C08]又は[C09]に記載の複合型トランジスタ。
[C13]半導体層はインジウム砒素層から成り、第1B延在領域及び第2B延在領域はMoS2から成る[C12]に記載の複合型トランジスタ。
[C14]第1A延在領域は、半導体基板に形成された第1半導体層から構成され、
 第2A延在領域は、半導体基板に形成された第2半導体層から構成され、
 第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている[C08]又は[C09]に記載の複合型トランジスタ。
[C15]第1半導体層はインジウム砒素層から成り、第2半導体層はゲルマニウム層から成り、第1B延在領域及び第2B延在領域はMoS2から成る[C14]に記載の複合型トランジスタ。
[C16]第1A延在領域と第2A延在領域とは、異なる材料から構成され、
 第1B延在領域と第2B延在領域とは、異なる材料から構成されている[C01]に記載の複合型トランジスタ。
[C17]第1A延在領域は、シリコン半導体基板から構成され、
 第2A延在領域は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B延在領域は、MoTe2から構成され、
 第2B延在領域は、MoS2から構成されている[C16]に記載の複合型トランジスタ。
[C18]第1A延在領域は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2A延在領域は、シリコン半導体基板から構成され、
 第1B延在領域は、MoTe2から構成され、
 第2B延在領域は、MoS2から構成されている[C16]に記載の複合型トランジスタ。
[C19]第1A延在領域は、シリコン半導体基板に形成されたインジウム砒素層から構成され、
 第2A延在領域は、シリコン半導体基板に形成されたゲルマニウム層から構成され、
 第1B延在領域は、MoTe2から構成され、
 第2B延在領域は、MoS2から構成されている[C16]に記載の複合型トランジスタ。
[C20]基体の伝導帯の下端のエネルギーの値と第1B延在領域の伝導帯の下端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の価電子帯の上端のエネルギーの値と第1B延在領域の価電子帯の上端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の伝導帯の下端のエネルギーの値と第2B延在領域の伝導帯の下端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
 基体の価電子帯の上端のエネルギーの値と第2B延在領域の価電子帯の上端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下である[C01]乃至[C19]のいずれか1項に記載の相補型トランジスタ。
[C21]第1トランジスタは、更に、第1A延在領域に接続された第1A電極、及び、第1B延在領域に接続された第1B電極を備えており、
 第2トランジスタは、更に、第2A延在領域に接続された第2A電極、及び、第2B延在領域に接続された第2B電極を備えている[C01]乃至[C20]のいずれか1項に記載の相補型トランジスタ。
[D01]
 制御電極、
 制御電極の下方に位置する活性領域、
 制御電極と活性領域との間に設けられた絶縁層、
 活性領域の一端から延在する第A延在領域、及び、
 活性領域の他端から延在する第B延在領域、
を備えたトランジスタであって、
 基体に設けられた第1導電型を有する表面領域は、第A延在領域に相当し、
 第B延在領域は、第1導電型とは異なる第2導電型としての特性を有し、基体に設けられた絶縁領域の上に設けられており、
 活性領域は、絶縁領域上に設けられているトランジスタ。
[E01]《半導体装置・・・第1の態様》
 基体がシリコン半導体基板から成る、[A01]乃至[A22]のいずれか1項に記載の相補型トランジスタ、及び、
 シリコン半導体基板に形成された電界効果トランジスタ、
を備えた半導体装置。
[E02]《半導体装置・・・第2の態様》
 基体がシリコン半導体基板から成る、[C01]乃至[C21]のいずれか1項に記載の相補型トランジスタ、及び、
 シリコン半導体基板に形成された電界効果トランジスタ、
を備えた半導体装置。
10,110・・・相補型トランジスタ、20・・・基体(シリコン半導体基板)、201,1201・・・第1表面領域、202,1202・・・第2表面領域、21・・・素子分離領域、211,251・・・第1絶縁領域、212,252・・・第2絶縁領域、22・・・層間絶縁層、23・・・支持材料、24・・・基体、26A,26B,126A,126B・・・凹部、27A,127A・・・半導体層(ゲルマニウム層)、27B,127B・・・半導体層(インジウム砒素層)、28B,128B・・・緩衝層、30,130・・・第1制御電極、31,131・・・第1絶縁層、32,132・・・第1活性領域、33,53,73・・・第1A層、133,153,173・・・第1A延在領域、34,54,74・・・第1A延在層、35・・・第1B層、135・・・第1B延在領域、36・・・第1B延在層、37・・・第1層間絶縁膜(第1境界領域)、137・・・第1境界領域、38,138・・・第1A電極、39,139・・・第1B電極、40,140・・・第2制御電極、41,141・・・第2絶縁層、42,142・・・第2活性領域、43,63,83・・・第2A層、143,163,183・・・第2A延在領域、44,64,84・・・第2A延在層、45・・・第2B層、145・・・第2B延在領域、46・・・第2B延在層、47・・・第2層間絶縁膜(第2境界領域)、147・・・第2境界領域、48,148・・・第2A電極、49,149・・・第2B電極、53,54,73,74・・・第1表面領域を構成する基体の部分、63,64,83,84・・・第2表面領域を構成する基体の部分、TR1・・・第1トランジスタ、TR2・・・第2トランジスタ

Claims (31)

  1.  第1制御電極、
     第1制御電極の下方に位置し、第1A層と第1B層が積層されて成る第1活性領域、
     第1制御電極と第1活性領域との間に設けられた第1絶縁層、
     第1活性領域の一端から延在し、第1A層から構成された第1A延在層、及び、
     第1活性領域の他端から延在し、第1B層から構成された第1B延在層、
    を備えた第1トランジスタ、並びに、
     第2制御電極、
     第2制御電極の下方に位置し、第2A層と第2B層が積層されて成る第2活性領域、
     第2制御電極と第2活性領域との間に設けられた第2絶縁層、
     第2活性領域の一端から延在し、第2A層から構成された第2A延在層、及び、
     第2活性領域の他端から延在し、第2B層から構成された第2B延在層、
    を備えた第2トランジスタ、
    から成る相補型トランジスタであって、
     基体に設けられた第1導電型を有する第1表面領域は、第1A層及び第1A延在層に相当し、
     第1B層は、第1導電型とは異なる第2導電型としての特性を有し、
     第1B延在層は、基体に設けられた第1絶縁領域の上に設けられており、
     基体に設けられた第2導電型を有する第2表面領域は、第2A層及び第2A延在層に相当し、
     第2B層は、第1導電型としての特性を有し、
     第2B延在層は、基体に設けられた第2絶縁領域の上に設けられている相補型トランジスタ。
  2.  第1B層は、2次元材料又はグラフェンから構成されており、
     第2B層は、2次元材料又はグラフェンから構成されている請求項1に記載の複合型トランジスタ。
  3.  2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る請求項2に記載の相補型トランジスタ。
  4.  基体は半導体基板から成り、
     第1絶縁領域及び第2絶縁領域は、半導体基板に設けられた素子分離領域から成る請求項1に記載の相補型トランジスタ。
  5.  基体は2次元材料層から成る請求項1に記載の相補型トランジスタ。
  6.  基体は、シリコン又はゲルマニウムから成り、
     第1B層は、MoS2、WTe2又はグラフェンから構成されており、
     第2B層は、HfTe2から構成されている請求項1に記載の相補型トランジスタ。
  7.  基体は、MoS2から成り、
     第1B層は、WTe2から構成されており、
     第2B層は、ZrS2、HfS2又はHfSe2から構成されている請求項1に記載の相補型トランジスタ。
  8.  第1表面領域を構成する基体の部分と、第2表面領域を構成する基体の部分とは、異なる材料から構成され、
     第1B層及び第1B延在層と、第2B層及び第2B延在層とは、同じ材料から構成されている請求項1に記載の複合型トランジスタ。
  9.  第1表面領域を構成する基体の部分の価電子帯の値と、第1B層及び第1B延在層を構成する材料の伝導帯の値との差は1eV以下であり、
     第2表面領域を構成する基体の部分の伝導帯の値と、第2B層及び第2B延在層を構成する材料の価電子帯の値との差は1eV以下である請求項8に記載の複合型トランジスタ。
  10.  第1表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
     第2表面領域を構成する基体の部分は、シリコン半導体基板に形成された半導体層から構成され、
     第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、同じ2次元材料から構成されている請求項8に記載の複合型トランジスタ。
  11.  第1表面領域を構成する基体の部分は、シリコン半導体基板に形成された半導体層から構成され、
     第2表面領域を構成する基体の部分は、シリコン半導体基板から構成され、
     第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、同じ2次元材料から構成されている請求項8に記載の複合型トランジスタ。
  12.  第1表面領域を構成する基体の部分は、半導体基板に形成された第1半導体層から構成され、
     第2表面領域を構成する基体の部分は、半導体基板に形成された第2半導体層から構成され、
     第1B層及び第1B延在層、並びに、第2B層及び第2B延在層は、同じ2次元材料から構成されている請求項8に記載の複合型トランジスタ。
  13.  第1表面領域を構成する基体の部分と、第2表面領域を構成する基体の部分とは、異なる材料から構成され、
     第1B層及び第1B延在層と、第2B層及び第2B延在層とは、異なる材料から構成されている請求項1に記載の複合型トランジスタ。
  14.  基体の伝導帯の下端のエネルギーの値と第1B層の伝導帯の下端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
     基体の価電子帯の上端のエネルギーの値と第1B層の価電子帯の上端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
     基体の伝導帯の下端のエネルギーの値と第2B層の伝導帯の下端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
     基体の価電子帯の上端のエネルギーの値と第2B層の価電子帯の上端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下である請求項1に記載の相補型トランジスタ。
  15.  第1A層と第1B層との間には第1層間絶縁膜が形成されており、
     第2A層と第2B層との間には第2層間絶縁膜が形成されている請求項1に記載の相補型トランジスタ。
  16.  第1制御電極、
     第1制御電極の下方に位置する第1活性領域、
     第1制御電極と第1活性領域との間に設けられた第1絶縁層、
     第1活性領域の一端から延在する第1A延在領域、及び、
     第1活性領域の他端から延在する第1B延在領域、
    を備えた第1トランジスタ、並びに、
     第2制御電極、
     第2制御電極の下方に位置する第2活性領域、
     第2制御電極と第2活性領域との間に設けられた第2絶縁層、
     第2活性領域の一端から延在する第2A延在領域、及び、
     第2活性領域の他端から延在する第2B延在領域、
    を備えた第2トランジスタ、
    から成る相補型トランジスタであって、
     基体に設けられた第1導電型を有する第1表面領域は、第1A延在領域に相当し、
     第1B延在領域は、第1導電型とは異なる第2導電型としての特性を有し、基体に設けられた第1絶縁領域の上に設けられており、
     第1活性領域は、第1絶縁領域上に設けられており、
     基体に設けられた第2導電型を有する第2表面領域は、第2A延在領域に相当し、
     第2B延在領域は、第1導電型としての特性を有し、基体に設けられた第2絶縁領域の上に設けられており、
     第2活性領域は、第2絶縁領域上に設けられている相補型トランジスタ。
  17.  第1B延在領域は、2次元材料又はグラフェンから構成されており、
     第2B延在領域は、2次元材料又はグラフェンから構成されている請求項16に記載の複合型トランジスタ。
  18.  2次元材料は、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、ZrS2、ZrSe2、ZrTe2、HfS2、HfSe2及びHfTe2から成る群から選択された1種類の2次元材料から成る請求項17に記載の相補型トランジスタ。
  19.  基体は半導体基板から成り、
     第1絶縁領域及び第2絶縁領域は、半導体基板に設けられた素子分離領域から成る請求項16に記載の相補型トランジスタ。
  20.  基体は2次元材料層から成る請求項16に記載の相補型トランジスタ。
  21.  基体は、シリコン又はゲルマニウムから成り、
     第1B延在領域は、MoS2、WTe2又はグラフェンから構成されており、
     第2B延在領域は、HfTe2から構成されている請求項16に記載の相補型トランジスタ。
  22.  基体は、MoS2から成り、
     第1B延在領域は、WTe2から構成されており、
     第2B延在領域は、ZrS2、HfS2又はHfSe2から構成されている請求項16に記載の相補型トランジスタ。
  23.  第1A延在領域と第2A延在領域とは、異なる材料から構成され、
     第1B延在領域と第2B延在領域とは、同じ材料から構成されている請求項16に記載の複合型トランジスタ。
  24.  第1A延在領域を構成する材料の価電子帯の値と、第1B延在領域を構成する材料の伝導帯の値との差は1eV以下であり、
     第2A延在領域を構成する材料の伝導帯の値と、第2B延在領域を構成する材料の価電子帯の値との差は1eV以下である請求項23に記載の複合型トランジスタ。
  25.  第1A延在領域は、シリコン半導体基板から構成され、
     第2A延在領域は、シリコン半導体基板に形成された半導体層から構成され、
     第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている請求項23に記載の複合型トランジスタ。
  26.  第1A延在領域は、シリコン半導体基板に形成された半導体層から構成され、
     第2A延在領域は、シリコン半導体基板から構成され、
     第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている請求項23に記載の複合型トランジスタ。
  27.  第1A延在領域は、半導体基板に形成された第1半導体層から構成され、
     第2A延在領域は、半導体基板に形成された第2半導体層から構成され、
     第1B延在領域及び第2B延在領域は、同じ2次元材料から構成されている請求項23に記載の複合型トランジスタ。
  28.  第1A延在領域と第2A延在領域とは、異なる材料から構成され、
     第1B延在領域と第2B延在領域とは、異なる材料から構成されている請求項16に記載の複合型トランジスタ。
  29.  基体の伝導帯の下端のエネルギーの値と第1B延在領域の伝導帯の下端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
     基体の価電子帯の上端のエネルギーの値と第1B延在領域の価電子帯の上端のエネルギーの値との差の絶対値は、第1トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
     基体の伝導帯の下端のエネルギーの値と第2B延在領域の伝導帯の下端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下であり、
     基体の価電子帯の上端のエネルギーの値と第2B延在領域の価電子帯の上端のエネルギーの値との差の絶対値は、第2トランジスタの駆動電圧で駆動可能なエネルギー差分以下である請求項16に記載の相補型トランジスタ。
  30.  基体がシリコン半導体基板から成る、請求項1乃至請求項15のいずれか1項に記載の相補型トランジスタ、及び、
     シリコン半導体基板に形成された電界効果トランジスタ、
    を備えた半導体装置。
  31.  基体がシリコン半導体基板から成る、請求項16乃至請求項29のいずれか1項に記載の相補型トランジスタ、及び、
     シリコン半導体基板に形成された電界効果トランジスタ、
    を備えた半導体装置。
PCT/JP2017/023165 2016-07-20 2017-06-23 相補型トランジスタ及び半導体装置 WO2018016265A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187036524A KR102352906B1 (ko) 2016-07-20 2017-06-23 상보형 트랜지스터 및 반도체 장치
JP2018528462A JP6947178B2 (ja) 2016-07-20 2017-06-23 相補型トランジスタ及び半導体装置
US16/316,702 US10720432B2 (en) 2016-07-20 2017-06-23 Complementary transistor and semiconductor device
US16/893,280 US11004851B2 (en) 2016-07-20 2020-06-04 Complementary transistor and semiconductor device
US17/224,617 US11887984B2 (en) 2016-07-20 2021-04-07 Complementary transistor and semiconductor device
US18/540,524 US20240113120A1 (en) 2016-07-20 2023-12-14 Complementary transistor and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-142699 2016-07-20
JP2016142699 2016-07-20
JP2017118682 2017-06-16
JP2017-118682 2017-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/316,702 A-371-Of-International US10720432B2 (en) 2016-07-20 2017-06-23 Complementary transistor and semiconductor device
US16/893,280 Continuation US11004851B2 (en) 2016-07-20 2020-06-04 Complementary transistor and semiconductor device

Publications (1)

Publication Number Publication Date
WO2018016265A1 true WO2018016265A1 (ja) 2018-01-25

Family

ID=60993183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023165 WO2018016265A1 (ja) 2016-07-20 2017-06-23 相補型トランジスタ及び半導体装置

Country Status (5)

Country Link
US (4) US10720432B2 (ja)
JP (1) JP6947178B2 (ja)
KR (1) KR102352906B1 (ja)
TW (1) TWI742102B (ja)
WO (1) WO2018016265A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947178B2 (ja) 2016-07-20 2021-10-13 ソニーグループ株式会社 相補型トランジスタ及び半導体装置
CN107994078B (zh) * 2017-12-14 2020-08-11 北京华碳科技有限责任公司 具有源极控制电极的场效应晶体管、制造方法和电子器件
DE102019120692A1 (de) * 2019-07-31 2021-02-04 Infineon Technologies Ag Leistungshalbleitervorrichtung und Verfahren
KR102418302B1 (ko) * 2021-01-14 2022-07-06 성균관대학교산학협력단 다중 영미분 전달전도 특성을 갖는 반도체 소자 및 그 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093360A1 (en) * 2011-01-04 2012-07-12 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor device
US20140158989A1 (en) * 2012-12-11 2014-06-12 Samsung Electronics Co., Ltd. Electronic device including graphene
US20140299944A1 (en) * 2013-04-05 2014-10-09 Samsung Electronics Co., Ltd. Graphene devices and methods of fabricating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620908A (en) * 1994-09-19 1997-04-15 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device comprising BiCMOS transistor
KR100521274B1 (ko) * 2003-06-10 2005-10-12 삼성에스디아이 주식회사 씨모스 박막 트랜지스터 및 이를 사용한 디스플레이디바이스
KR101824048B1 (ko) * 2013-09-04 2018-01-31 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 반도체 소자 및 그의 제조 방법, 그리고 반도체 집적 회로
KR102144999B1 (ko) 2013-11-05 2020-08-14 삼성전자주식회사 이차원 물질과 그 형성방법 및 이차원 물질을 포함하는 소자
JP6947178B2 (ja) 2016-07-20 2021-10-13 ソニーグループ株式会社 相補型トランジスタ及び半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093360A1 (en) * 2011-01-04 2012-07-12 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor device
US20140158989A1 (en) * 2012-12-11 2014-06-12 Samsung Electronics Co., Ltd. Electronic device including graphene
US20140299944A1 (en) * 2013-04-05 2014-10-09 Samsung Electronics Co., Ltd. Graphene devices and methods of fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SARKAR, DEBLINA ET AL.: "A subthermionic tunnel field-effect transistor with an atomically thin channel", NATURE, vol. 526, 1 October 2015 (2015-10-01), pages 91 - 95, XP055454184 *

Also Published As

Publication number Publication date
KR102352906B1 (ko) 2022-01-19
US20210225841A1 (en) 2021-07-22
JPWO2018016265A1 (ja) 2019-05-16
KR20190028382A (ko) 2019-03-18
TW201806084A (zh) 2018-02-16
US20200303376A1 (en) 2020-09-24
US11887984B2 (en) 2024-01-30
US11004851B2 (en) 2021-05-11
TWI742102B (zh) 2021-10-11
US20190157272A1 (en) 2019-05-23
US20240113120A1 (en) 2024-04-04
JP6947178B2 (ja) 2021-10-13
US10720432B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
US11887984B2 (en) Complementary transistor and semiconductor device
KR101156620B1 (ko) 그라핀 채널층을 가지는 전계 효과 트랜지스터
US7936040B2 (en) Schottky barrier quantum well resonant tunneling transistor
EP2120266B1 (en) Scalable quantum well device and method for manufacturing the same
US11688738B2 (en) Composite transistor with electrodes extending to active regions
US10872973B2 (en) Semiconductor structures with two-dimensional materials
KR101302848B1 (ko) 양자 우물 디바이스의 병렬 전도를 개선하기 위한 장치 및 방법
JP7164204B2 (ja) トンネル電界効果トランジスタおよび電子デバイス
US11081550B2 (en) Tunnel field-effect transistor having a stacked structure including a first active region and a second active region
JP2010093051A (ja) 電界効果型半導体装置
CN110957365A (zh) 半导体结构和半导体电路
US20220238721A1 (en) Semiconductor device including two-dimensional material
Hueting et al. Electrostatic Doping and Devices
Chang et al. Multiple V T in III-V FETs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036524

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018528462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830785

Country of ref document: EP

Kind code of ref document: A1