WO2018016247A1 - フロー電池 - Google Patents

フロー電池 Download PDF

Info

Publication number
WO2018016247A1
WO2018016247A1 PCT/JP2017/022302 JP2017022302W WO2018016247A1 WO 2018016247 A1 WO2018016247 A1 WO 2018016247A1 JP 2017022302 W JP2017022302 W JP 2017022302W WO 2018016247 A1 WO2018016247 A1 WO 2018016247A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid
lithium
flow battery
active material
Prior art date
Application number
PCT/JP2017/022302
Other languages
English (en)
French (fr)
Inventor
藤本 正久
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018528453A priority Critical patent/JP6895646B2/ja
Priority to CN201780005786.8A priority patent/CN108475803B/zh
Priority to EP17830767.4A priority patent/EP3490046A4/en
Publication of WO2018016247A1 publication Critical patent/WO2018016247A1/ja
Priority to US16/167,531 priority patent/US11018364B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a flow battery.
  • Patent Document 1 discloses a redox flow battery using a slurry-like negative electrode solution containing solid negative electrode active material particles made of metal particles and a non-aqueous solvent.
  • a flow battery includes a first liquid in which a condensed aromatic compound and lithium are dissolved, a first electrode immersed in the first liquid, a first storage unit, and a first permeation suppression unit. And the first liquid in which the condensed aromatic compound is dissolved has a property of releasing solvated electrons of the lithium and dissolving the lithium as a cation, and the first electrode.
  • the lithium dissolved in the first liquid is precipitated to generate precipitated lithium particles, and the first circulation mechanism is disposed between the first electrode and the first accommodating portion.
  • the liquid is circulated, the first circulation mechanism moves the precipitated lithium particles generated on the first electrode to the first storage unit, and the first permeation suppression unit is configured such that the first liquid is the Outflow from the first housing portion to the first electrode A path that is provided, said first transmission suppressing portion suppresses the transmission of the deposited lithium particles.
  • a high energy density flow battery can be realized.
  • FIG. 1 is a block diagram showing a schematic configuration of a flow battery 1000 according to the first embodiment.
  • FIG. 2 is a diagram showing the measurement results of the potential of the condensed aromatic compound.
  • FIG. 3 is a block diagram showing a schematic configuration of flow battery 2000 according to the second embodiment.
  • FIG. 4 is a diagram showing the measurement results of the potential of the condensed aromatic compound.
  • FIG. 5 is a diagram showing the measurement results of the potential of the biphenyl solution.
  • FIG. 6 is a diagram showing the measurement results of the potential of the biphenyl solution.
  • FIG. 7 is a diagram showing the measurement results of the potential of the biphenyl solution.
  • FIG. 8 is a diagram showing the measurement results of the potential of the biphenyl solution.
  • FIG. 1 is a block diagram showing a schematic configuration of a flow battery 1000 according to the first embodiment.
  • FIG. 2 is a diagram showing the measurement results of the potential of the condensed aromatic compound.
  • FIG. 3 is a block
  • FIG. 9 is a diagram showing the measurement results of the potential of the trans-stilbene solution.
  • FIG. 10 is a diagram showing the measurement results of the potential of the biphenyl solution.
  • FIG. 11 is a diagram showing the measurement results of the potential of the trans-stilbene solution.
  • FIG. 12 is a diagram illustrating a sample of the first liquid.
  • FIG. 13 is a diagram showing another sample of the first liquid.
  • FIG. 1 is a block diagram showing a schematic configuration of a flow battery 1000 according to the first embodiment.
  • the flow battery 1000 according to Embodiment 1 includes a first liquid 110, a first electrode 210, and a first circulation mechanism 510.
  • the first liquid 110 is a liquid in which a condensed aromatic compound and lithium are dissolved.
  • the first electrode 210 is an electrode immersed in the first liquid 110.
  • the first circulation mechanism 510 includes a first storage unit 511 and a first permeation suppression unit 512.
  • the first liquid 110 in which the condensed aromatic compound is dissolved has a property of releasing lithium solvated electrons and dissolving lithium as a cation.
  • the lithium dissolved in the first liquid 110 is deposited on the first electrode 210, so that precipitated lithium particles 700 are generated.
  • the first circulation mechanism 510 circulates the first liquid 110 between the first electrode 210 and the first storage unit 511.
  • the first circulation mechanism 510 moves the precipitated lithium particles 700 generated on the first electrode 210 to the first storage unit 511.
  • transmission suppression part 512 is provided in the path
  • the first permeation suppression unit 512 suppresses permeation of the precipitated lithium particles 700.
  • the counter electrode side of the first electrode 210 can have more lithium than the first liquid 110 in which the condensed aromatic compound is dissolved. For this reason, a high capacity density based on a large amount of lithium determined by the lithium dissolved in the first liquid 110 and the precipitated lithium particles 700 can be obtained. Thereby, a high energy density and a high capacity can be realized.
  • the precipitated lithium particles 700 themselves are not circulated, but the first liquid 110 in which lithium is dissolved. Can only be circulated. For this reason, generation
  • a substance having a relatively low equilibrium potential (vs. Li / Li +) can be used as the condensed aromatic compound.
  • the negative electrode of the flow battery with a lower potential can be realized.
  • the flow battery which has a high battery voltage (discharge voltage) is realizable.
  • the condensed aromatic compound is the first.
  • Deposited lithium particles 700 may be generated by the reduction of lithium on the electrode 210 and the precipitation of the lithium dissolved in the first liquid 110 on the first electrode 210.
  • the condensed aromatic compound is oxidized on the first electrode 210, and precipitated lithium
  • the particles 700 may be dissolved in the first liquid 110 as lithium.
  • more precipitated lithium particles 700 can be generated during charging. Furthermore, during the discharge, many precipitated lithium particles 700 can be used as a lithium source. Thereby, the capacity
  • the condensed aromatic compound is oxidized or reduced by the first electrode 210.
  • the condensed aromatic compound may be at least one selected from the group consisting of phenanthrene, biphenyl, O-terphenyl, trans-stilbene, triphenylene, and anthracene. Good.
  • a solution containing a condensed aromatic compound (for example, an ether solution) has an ability to dissolve lithium (for example, lithium metal). Lithium tends to release electrons and become cations. For this reason, electrons are transferred to the condensed aromatic compound in the solution to become a cation and dissolve in the solution. At this time, the condensed aromatic compound that has received the electrons solvates with the electrons. By solvating with electrons, the condensed aromatic compound behaves as an anion. For this reason, the solution itself containing the condensed aromatic compound has ionic conductivity. Here, an equivalent amount of Li cations and electrons exist in the solution containing the condensed aromatic compound. For this reason, the solution itself containing the condensed aromatic compound can have a highly reducing property (in other words, a potential base).
  • a fairly base potential is observed.
  • the observed potential is determined by the degree of solvation between the condensed aromatic compound and the electron (that is, the type of the condensed aromatic compound).
  • condensed aromatic compounds that generate a base potential include phenanthrene, biphenyl, O-terphenyl, trans-stilbene, triphenylene, anthracene, and the like.
  • FIG. 2 is a diagram showing the measurement results of the potential of the condensed aromatic compound.
  • FIG. 2 shows the potential (Vvs. Li / Li +) measured on the basis of lithium metal using this potential measurement cell.
  • the first liquid 110 may be an ether solution.
  • an electrolytic solution containing a condensed aromatic compound can be realized as the first liquid 110. That is, since the solvent of the condensed aromatic compound is an ether solution having no electronic conductivity, the ether solution itself can have properties as an electrolytic solution.
  • ether at least one of generally known cyclic ethers and chain ethers can be used.
  • cyclic ether tetrahydrofuran (THF), dioxane (DO), 2-methyltetrahydrofuran (2MeTHF), 4-methyldioxane (4MeDO), and the like can be used.
  • chain ether glymes and the like can be used.
  • the first electrode 210 is represented as a negative electrode
  • the second electrode 220 is represented as a positive electrode.
  • the first electrode 210 can also be a positive electrode.
  • the first electrode 210 may be a positive electrode and the second electrode 220 may be a negative electrode.
  • the first electrode 210 may be an electrode having a surface that acts as a reaction field for the condensed aromatic compound.
  • a material that is stable with respect to the first liquid 110 can be used as the first electrode 210.
  • a material that is stable against an electrochemical reaction that is an electrode reaction can be used as the first electrode 210.
  • a metal stainless steel, iron, copper, nickel, etc.
  • carbon or the like can be used as the first electrode 210.
  • the first electrode 210 may have a structure with an increased surface area (for example, a mesh, a nonwoven fabric, a surface roughened plate, a sintered porous body, etc.). According to this, the specific surface area of the first electrode 210 is increased. Thereby, the oxidation reaction or the reduction reaction of the condensed aromatic compound can be further facilitated.
  • an increased surface area for example, a mesh, a nonwoven fabric, a surface roughened plate, a sintered porous body, etc.
  • the second electrode 220 may be configured to include a current collector and an active material provided on the current collector. Thereby, for example, a high-capacity active material can be used.
  • a high-capacity active material can be used as the active material of the second electrode 220.
  • a compound having a property of reversibly occluding and releasing lithium ions can be used as the active material of the second electrode 220.
  • the second electrode 220 may be lithium metal.
  • lithium metal is used as the second electrode 220, it is easy to control dissolution and precipitation as a metal positive electrode, and a high capacity can be realized.
  • the flow battery 1000 according to the first embodiment may further include an isolation unit 400.
  • the isolation unit 400 isolates the first electrode 210 and the first liquid 110 from the second electrode 220.
  • the isolation part 400 may be a microporous film (porous body) as used in a known secondary battery.
  • the separator 400 may be a porous film such as glass paper in which glass fibers are woven into a nonwoven fabric.
  • the isolation part 400 may be a diaphragm having ion conductivity (lithium ion conductivity).
  • the isolation part 400 may be an ion exchange resin membrane (for example, a cation exchange membrane, an anion exchange membrane, etc.) or a solid electrolyte membrane.
  • the first circulation mechanism 510 may be a mechanism including, for example, a pipe, a tank, a pump, a valve, and the like.
  • the first storage unit 511 may be a tank, for example.
  • the 1st accommodating part 511 may accommodate the 1st liquid 110 which the condensed aromatic compound melt
  • the flow battery 1000 may further include an electrochemical reaction unit 600, a positive electrode terminal 221, and a negative electrode terminal 211.
  • the electrochemical reaction unit 600 is separated into the negative electrode chamber 610 and the positive electrode chamber 620 by the isolation unit 400.
  • an electrode to be a negative electrode (first electrode 210 in the example shown in FIG. 1) is arranged.
  • the negative electrode terminal 211 is connected to an electrode serving as a negative electrode.
  • an electrode to be a positive electrode (second electrode 220 in the example shown in FIG. 1) is arranged.
  • the positive electrode terminal 221 is connected to an electrode serving as a positive electrode.
  • the negative electrode terminal 211 and the positive electrode terminal 221 are connected to a charge / discharge device, for example.
  • a voltage is applied between the negative electrode terminal 211 and the positive electrode terminal 221 by the charge / discharge device, or power is taken out between the negative electrode terminal 211 and the positive electrode terminal 221.
  • the first circulation mechanism 510 may include a pipe 514, a pipe 513, and a pump 515.
  • One end of the pipe 514 is connected to one of the negative electrode chamber 610 and the positive electrode chamber 620 in which the first electrode 210 is disposed (in the example shown in FIG. 1, the negative electrode chamber 610).
  • the other end of the pipe 514 is connected to the inlet side of the first liquid 110 of the first storage unit 511.
  • One end of the pipe 513 is connected to the outlet side of the first liquid 110 in the first housing part 511.
  • Another end of the pipe 513 is connected to one of the negative electrode chamber 610 and the positive electrode chamber 620 where the first electrode 210 is disposed (in the example shown in FIG. 1, the negative electrode chamber 610).
  • the pump 515 is provided in the pipe 514, for example. Alternatively, the pump 515 may be provided in the pipe 513.
  • transmission suppression part 512 may be provided in the junction part of the 1st accommodating part 511 and the piping 513, for example.
  • the first permeation suppression unit 512 may be a filter that filters the precipitated lithium particles 700.
  • the filter may be at least one of glass fiber filter paper, polypropylene nonwoven fabric, polyethylene nonwoven fabric, and metal mesh that does not react with lithium.
  • the filter may be a member having pores smaller than a predetermined particle size of the precipitated lithium particles 700 (for example, a particle size that can cause clogging).
  • a material for the filter a material that does not react with the precipitated lithium particles 700, the first liquid 110, and the like can be used.
  • the first liquid 110 accommodated in the first accommodating portion 511 passes through the first permeation suppression portion 512 and the pipe 513 and is supplied to the negative electrode chamber 610.
  • the condensed aromatic compound dissolved in the first liquid 110 is oxidized or reduced by the first electrode 210.
  • the first liquid 110 in which the oxidized or reduced condensed aromatic compound is dissolved passes through the pipe 514 and the pump 515 and is supplied to the first storage unit 511.
  • control of the circulation of the first liquid 110 may be performed by, for example, the pump 515. That is, the pump 515 appropriately starts the supply of the first liquid 110, stops the supply, or adjusts the supply amount.
  • control of the circulation of the first liquid 110 may be performed by another means (for example, a valve) different from the pump 515.
  • electrolyte solutions having different compositions may be used on the negative electrode chamber 610 side and the positive electrode chamber 620 side, respectively, with the isolation portion 400 interposed therebetween.
  • an electrolytic solution (solvent) having the same composition may be used on the positive electrode chamber 620 side and the negative electrode chamber 610 side.
  • the first electrode 210 is a negative electrode and is stainless steel.
  • the first liquid 110 is an ether solution in which a condensed aromatic compound is dissolved.
  • the condensed aromatic compound is phenanthrene (hereinafter referred to as PNT).
  • the second electrode 220 is a positive electrode, and includes a current collector (stainless steel) and lithium iron phosphate (LiFePO 4 ) that is an active material provided on the current collector.
  • a current collector stainless steel
  • lithium iron phosphate LiFePO 4
  • the positive electrode side is provided with lithium that exceeds the amount of lithium that can be dissolved in the first liquid 110 (the ether solution in which the condensed aromatic compound is dissolved).
  • the amount of lithium is designed to dominate the battery capacity.
  • Charging is performed by applying a voltage between the first electrode 210 and the second electrode 220.
  • reaction on the positive electrode side By application of voltage, the positive electrode side active material undergoes an oxidation reaction in the second electrode 220 that is the positive electrode. That is, lithium ions are released from the active material on the positive electrode side. Thereby, electrons are emitted from the second electrode 220 to the outside of the flow battery.
  • a part of the generated lithium ions (Li + ) can move to the first liquid 110 through the isolation part 400.
  • lithium is present on the positive electrode side.
  • lithium extracted by oxidation of the positive electrode migrates to the negative electrode side through the diaphragm.
  • the lithium atom is dissolved in the first liquid 110 existing around the lithium atom. That is, a reduction reaction of the condensed aromatic compound occurs on the first electrode 210.
  • the lithium concentration in the first liquid 110 reaches a saturated state.
  • the lithium generated in this saturated state cannot be completely dissolved in the first liquid 110.
  • lithium produced in this saturated state is deposited as precipitated lithium particles 700 on the first electrode 210.
  • the deposited lithium particles 700 deposited on the first electrode 210 are moved (supplied) to the first accommodating part 511 by the first circulation mechanism 510.
  • the precipitated lithium particles 700 sent to the first housing part 511 further ride on the flow and try to flow out again from the first housing part 511 to the first electrode 210 side.
  • the precipitated lithium particles 700 are trapped in the first permeation suppression unit 512 provided at the delivery port of the first storage unit 511. For this reason, the deposited lithium particles 700 are not delivered to the first electrode 210 side. Therefore, the precipitated lithium particles 700 are stored in the first housing part 511.
  • the above charging reaction can proceed until the active material on the positive electrode side reaches a fully charged state.
  • the active material on the positive electrode side When fully charged, the active material on the positive electrode side is in a charged state.
  • reaction on the positive electrode side By discharging the battery, electrons are supplied from the outside of the flow battery to the second electrode 220 that is the positive electrode. Thereby, a reduction reaction of the active material occurs on the second electrode 220.
  • a part of the lithium ions (Li + ) can be supplied from the first liquid 110 through the isolation part 400.
  • reaction on the negative electrode side Due to the discharge of the battery, an oxidation reaction of the condensed aromatic compound occurs on the first electrode 210 which is the negative electrode. Thereby, electrons are emitted from the first electrode 210 to the outside of the flow battery.
  • the condensed aromatic compound oxidized by the first electrode 210 is moved (supplied) to the first accommodating part 511 by the first circulation mechanism 510.
  • the precipitated lithium particles 700 stored in the first storage unit 511 are dissolved in the first liquid 110 in which the condensed aromatic compound oxidized by the first electrode 210 is dissolved. That is, in the first housing part 511, a reduction reaction of the condensed aromatic compound occurs.
  • the precipitated lithium particles 700 are excessively present in the first housing portion 511. For this reason, even if the amount of lithium in the first liquid 110 decreases in the first electrode 210, the amount of lithium that decreases is immediately determined by the deposited lithium particles 700 stored in the first storage unit 511 as the first amount. It is replenished by dissolving in the liquid 110.
  • the condensed aromatic compound reduced in the first storage unit 511 is moved (supplied) by the first circulation mechanism 510 to the place where the first electrode 210 is provided. Thereby, the oxidation reaction of the condensed aromatic compound occurs again.
  • the amount of lithium in the first liquid 110 is always kept saturated until the end of discharge. For this reason, stable discharge becomes possible.
  • the above discharge reaction can proceed until the active material on the positive electrode side reaches a complete discharge state.
  • FIG. 3 is a block diagram showing a schematic configuration of the flow battery 2000 according to the second embodiment.
  • the flow battery 2000 according to the second embodiment includes the following configuration in addition to the configuration of the flow battery 1000 according to the first embodiment described above.
  • the flow battery 2000 according to Embodiment 2 further includes the second liquid 120, the second electrode 220, and the second active material 320.
  • the second liquid 120 is a liquid in which the second electrode-side mediator 121 is dissolved.
  • the second electrode 220 is a counter electrode of the first electrode 210.
  • the second electrode 220 is an electrode immersed in the second liquid 120.
  • the second active material 320 is an active material immersed in the second liquid 120.
  • the second electrode side mediator 121 is oxidized and reduced by the second electrode 220.
  • the second electrode side mediator 121 is oxidized and reduced by the second active material 320.
  • a flow battery having a configuration in which the active material itself is not circulated while using the active material can be realized.
  • the 2nd active material 320 a high capacity
  • the battery capacity is determined by “positive electrode capacity density ⁇ negative electrode capacity density / (positive electrode capacity density + negative electrode capacity density)”. For this reason, by using a mediator type flow battery structure on both the first electrode 210 side and the second electrode 220 side, the capacity density can be greatly improved.
  • the second electrode side mediator 121 is used.
  • a substance having a relatively high equilibrium potential (vs. Li / Li +) eg, tetrathiafulvalene
  • the positive electrode of the flow battery with a higher potential can be realized. For this reason, the flow battery which has a higher battery voltage (discharge voltage) is realizable.
  • lithium may be dissolved in the second liquid 120.
  • the second active material 320 may be a material having a property of inserting and extracting lithium.
  • the second electrode-side mediator 121 is oxidized on the second electrode 220, and the second electrode-side mediator 121 oxidized on the second electrode 220 is reduced by the second active material 320 and the second active material 320 releases lithium. Also good.
  • the second electrode-side mediator 121 is reduced on the second electrode 220, and the second electrode-side mediator 121 reduced on the second electrode 220 is oxidized by the second active material 320 and the second active material 320 occludes lithium. Also good.
  • the second active material 320 for example, an active material having a property of reversibly occluding and releasing lithium (for example, lithium ions) can be used.
  • the material design of the 2nd active material 320 becomes easier.
  • a higher capacity can be realized.
  • the second electrode-side mediator 121 is oxidized or reduced by the second electrode 220.
  • the second electrode-side mediator 121 is oxidized and reduced by the second active material 320.
  • the redox potential region of the second electrode-side mediator 121 and the redox potential region of the second active material 320 may have overlapping regions.
  • the second electrode material mediator 121 can be oxidized and reduced by the second active material 320.
  • the upper limit value of the redox potential region of the second electrode-side mediator 121 may be higher than the upper limit value of the redox potential region of the second active material 320.
  • the lower limit value of the redox potential region of the second electrode-side mediator 121 may be lower than the lower limit value of the redox potential region of the second active material 320.
  • the capacity of the second active material 320 can be used sufficiently (for example, nearly 100%). For this reason, a higher capacity flow battery can be realized.
  • the second electrode side mediator 121 one kind of redox species having a plurality of redox potentials may be used.
  • a mixture of a plurality of redox species having a certain redox potential may be used as the second electrode-side mediator 121.
  • the second electrode-side mediator 121 may be an organic compound having a property of oxidizing and reducing.
  • the solubility of the second electrode-side mediator 121 in the second liquid 120 (for example, a non-aqueous solvent) can be increased.
  • the second electrode-side mediator 121 may be an organic compound having a multi-stage oxidation-reduction potential (for example, two or more oxidation-reduction potentials).
  • organic compounds capable of multi-step oxidation / reduction include tetrathiafulvalene derivatives, quinone derivatives, and TCNQ, which are organic compounds having a ⁇ -conjugated electron cloud.
  • the second electrode-side mediator 121 may be tetrathiafulvalene.
  • the second electrode-side mediator 121 having a relatively high two-stage oxidation-reduction potential (a lithium reference potential, approximately lower limit value 3.4 V and upper limit value 3.7 V) can be realized.
  • a lithium reference potential approximately lower limit value 3.4 V and upper limit value 3.7 V
  • the positive electrode of the flow battery with a higher potential can be realized.
  • the flow battery which has a high battery voltage (discharge voltage) is realizable.
  • the second active material 320 may be a material having a property of reversibly occluding and releasing lithium ions.
  • generally known secondary battery active materials for example, transition metal oxides, fluorides, polyanions, fluorinated polyanions, transition metal sulfides, etc. can be used as the second active material 320.
  • the second active material 320 may be lithium iron phosphate.
  • the equilibrium potential (vs. Li / Li +) of the second active material 320 can be made relatively high.
  • a substance for example, tetrathiafulvalene
  • vs. Li / Li + the second electrode-side mediator 121.
  • the second electrode side mediator 121 may be a quinone derivative.
  • the quinone derivative has, for example, a multistage oxidation-reduction potential of 1 V to 3 V with respect to lithium.
  • a material having a redox potential of 1 V to 3 V with respect to lithium may be used as the second active material 320.
  • the material having a redox potential of 1 V to 3 V with respect to lithium include titanium, niobium, or a lithium-containing compound (for example, Li 4 Ti 5 O 12 , LiNbO 3 , etc.).
  • the second electrode-side mediator 121 may be a metal-containing ion.
  • the metal-containing ions include vanadium ions, manganese ions, molybdenum ions, and the like having multistage oxidation-reduction potentials.
  • vanadium ions have a wide range of reaction stages (divalent and trivalent, trivalent and tetravalent, tetravalent and pentavalent).
  • a powdered active material may be used as the second active material 320.
  • the manufacturing can be simplified and the manufacturing cost can be reduced.
  • the second active material 320 an active material in a pellet form (for example, a state in which powder is formed into a pellet) may be used.
  • the tank is filled with the second active material 320 in the form of pellets, the manufacturing can be simplified and the manufacturing cost can be reduced.
  • an active material solidified in a pellet form with a generally known binder for example, polyvinylidene fluoride, polypropylene, polyethylene, polyimide, etc.
  • a generally known binder for example, polyvinylidene fluoride, polypropylene, polyethylene, polyimide, etc.
  • the second active material 320 an active material fixed in a film shape on a metal foil may be used.
  • the second active material 320 an active material in which generally known conductive assistants (for example, carbon black, polyaniline, etc.) or ionic conductors (for example, polymethyl methacrylate, polyethylene oxide, etc.) are mixed. May be used.
  • conductive assistants for example, carbon black, polyaniline, etc.
  • ionic conductors for example, polymethyl methacrylate, polyethylene oxide, etc.
  • the second active material 320 may be a substance that does not dissolve in the second liquid 120 (that is, is insoluble). Accordingly, a flow battery having a configuration in which the second electrode-side mediator 121 is circulated together with the second liquid 120 but the second active material 320 is not circulated can be realized.
  • the second liquid 120 may be, for example, a generally known non-aqueous electrolyte for a secondary battery.
  • the non-aqueous electrolyte is composed of, for example, a generally known electrolyte salt (for example, an electrolyte salt of lithium ions and anions) and a non-aqueous solvent in which the electrolyte salt is dissolved.
  • non-aqueous solvent generally known non-aqueous solvents for secondary batteries can be used. That is, as the non-aqueous solvent, cyclic and chain carbonates, cyclic and chain esters, cyclic and chain ethers, nitriles, cyclic and chain sulfones, cyclic and chain sulfoxides, and the like are used. Can be.
  • first liquid 110 and the second liquid 120 may be used.
  • the first electrode 210 is shown as a negative electrode
  • the second electrode 220 is shown as a positive electrode.
  • the first electrode 210 can also be a positive electrode.
  • the first electrode 210 may be a positive electrode and the second electrode 220 may be a negative electrode.
  • the second electrode 220 may be an electrode having a surface that acts as a reaction field of the second electrode-side mediator 121.
  • the second electrode 220 a material that is stable with respect to the solvent or supporting salt of the second liquid 120 can be used as the second electrode 220.
  • a material that is stable against an electrochemical reaction that is an electrode reaction may be used as the second electrode 220.
  • metal stainless steel, iron, copper, nickel, etc.
  • carbon or the like can be used as the second electrode 220.
  • the second electrode 220 may have a structure with an increased surface area (for example, a mesh, a nonwoven fabric, a surface roughened plate, a sintered porous body, etc.). According to this, the specific surface area of the second electrode 220 is increased. Thereby, the oxidation reaction or the reduction reaction of the second electrode side mediator 121 can be further facilitated.
  • an increased surface area for example, a mesh, a nonwoven fabric, a surface roughened plate, a sintered porous body, etc.
  • first electrode 210 and the second electrode 220 may be made of different materials, or may be made of the same material.
  • the flow battery 2000 according to Embodiment 2 further includes an isolation unit 400.
  • the isolation unit 400 isolates the first electrode 210 and the first liquid 110 from the second electrode 220 and the second liquid 120.
  • the isolation unit 400 As the isolation unit 400, the configuration shown in the first embodiment can be used.
  • the flow battery 2000 in the second embodiment may further include a second circulation mechanism 520.
  • the second circulation mechanism 520 is a mechanism for circulating the second liquid 120 between the second electrode 220 and the second active material 320.
  • the second electrode-side mediator 121 together with the second liquid 120 can be circulated between the second electrode 220 and the second active material 320. Thereby, the oxidation reaction and reduction reaction between each material can be performed more efficiently.
  • the second circulation mechanism 520 may be a mechanism including, for example, a pipe, a tank, a pump, a valve, and the like.
  • the second circulation mechanism 520 may include a second accommodating portion 521.
  • the second active material 320 and the second liquid 120 may be stored in the second storage unit 521.
  • the second circulation mechanism 520 may circulate the second liquid 120 between the second electrode 220 and the second storage unit 521.
  • the second active material 320 may be oxidized and reduced by the second active material 320 when the second active material 320 and the second liquid 120 come into contact with each other in the second housing portion 521.
  • the second liquid 120 and the second active material 320 can be brought into contact with each other in the second housing portion 521. Thereby, for example, the contact area between the second liquid 120 and the second active material 320 can be further increased. In addition, the contact time between the second liquid 120 and the second active material 320 can be made longer. For this reason, the oxidation reaction and reduction reaction of the second electrode-side mediator 121 by the second active material 320 can be performed more efficiently.
  • the second storage unit 521 may be a tank, for example.
  • the second storage unit 521 may store the second liquid 120 in which the second electrode-side mediator 121 is dissolved, for example, in the gap between the filled second active material 320.
  • the second circulation mechanism 520 may include a pipe 523, a pipe 524, and a pump 525.
  • One end of the pipe 524 is connected to one of the positive electrode chamber 620 and the negative electrode chamber 610 where the second electrode 220 is disposed (in the example shown in FIG. 3, the positive electrode chamber 620).
  • the other end of the pipe 524 is connected to the inlet side of the second liquid 120 of the second storage unit 521.
  • One end of the pipe 523 is connected to the outflow side of the second liquid 120 of the second storage portion 521.
  • the other end of the pipe 523 is connected to one of the positive electrode chamber 620 and the negative electrode chamber 610 where the second electrode 220 is disposed (in the example shown in FIG. 3, the positive electrode chamber 620).
  • the pump 525 is provided in the pipe 524, for example. Alternatively, the pump 525 may be provided in the pipe 523.
  • the second circulation mechanism 520 may include a second permeation suppression unit 522.
  • the second permeation suppression unit 522 suppresses permeation of the second active material 320.
  • the second permeation suppression unit 522 is provided in a path (the pipe 523 in the example shown in FIG. 3) through which the second liquid 120 flows out from the second storage unit 521 to the second electrode 220.
  • the second active material 320 it is possible to suppress the second active material 320 from flowing out of the second container 521 (for example, the second electrode 220 side). That is, the second active material 320 stays in the second accommodating part 521. Thereby, the flow battery of the structure which does not circulate the 2nd active material 320 itself is realizable. For this reason, clogging by the second active material 320 inside the member (for example, piping) of the second circulation mechanism 520 can be prevented. In addition, it is possible to prevent the occurrence of resistance loss due to the second active material 320 flowing out to the second electrode 220 side.
  • transmission suppression part 522 may be provided in the junction part of the 2nd accommodating part 521 and the piping 523, for example.
  • the second permeation suppression unit 522 may be a filter that filters the second active material 320, for example.
  • the filter may be a member having pores smaller than the minimum particle size of the particles of the second active material 320.
  • a material of the filter a material that does not react with the second active material 320, the second liquid 120, or the like can be used.
  • the filter may be, for example, a glass fiber filter paper, a polypropylene nonwoven fabric, a polyethylene nonwoven fabric, a metal mesh that does not react with metallic lithium, and the like.
  • the second active material 320 flows along with the flow of the second liquid 120 inside the second storage portion 521, the second active material 320 flows out of the second storage portion 521. Can be prevented.
  • the second liquid 120 accommodated in the second accommodating portion 521 passes through the second permeation suppression portion 522 and the pipe 523 and is supplied to the positive electrode chamber 620.
  • the second electrode-side mediator 121 dissolved in the second liquid 120 is oxidized or reduced by the second electrode 220.
  • the second liquid 120 in which the oxidized or reduced second electrode-side mediator 121 is dissolved passes through the pipe 524 and the pump 525 and is supplied to the second storage unit 521.
  • the second electrode-side mediator 121 dissolved in the second liquid 120 is oxidized or reduced by the second active material 320.
  • control of the circulation of the second liquid 120 may be performed by the pump 525, for example. That is, the pump 525 appropriately starts the supply of the second liquid 120, stops the supply, or adjusts the supply amount.
  • control of the circulation of the second liquid 120 may be performed by another means (for example, a valve) different from the pump 525.
  • the first electrode 210 is a negative electrode and is stainless steel.
  • the first liquid 110 is an ether solution in which a condensed aromatic compound is dissolved.
  • the condensed aromatic compound is phenanthrene (hereinafter referred to as PNT).
  • the second electrode 220 is a positive electrode and is stainless steel.
  • the second liquid 120 is an ether solution in which the second electrode-side mediator 121 is dissolved.
  • the second electrode-side mediator 121 is assumed to be tetrathiafulvalene (hereinafter referred to as TTF).
  • the second active material 320 is lithium iron phosphate (LiFePO 4 ).
  • the isolation part 400 is a lithium ion conductive solid electrolyte membrane.
  • the positive electrode side is provided with lithium that exceeds the amount of lithium that can be dissolved in the first liquid 110 (the ether solution in which the condensed aromatic compound is dissolved).
  • the amount of lithium is designed to dominate the battery capacity.
  • Charging is performed by applying a voltage between the first electrode 210 and the second electrode 220.
  • the second electrode 220 mediator 121 undergoes an oxidation reaction in the second electrode 220 that is the positive electrode. That is, the second electrode side mediator 121 is oxidized on the surface of the second electrode 220. Thereby, electrons are emitted from the second electrode 220 to the outside of the flow battery.
  • the second circulation mechanism 520 moves (supplies) the second electrode-side mediator 121 oxidized by the second electrode 220 to the place where the second active material 320 is provided.
  • the second electrode-side mediator 121 oxidized on the second electrode 220 is reduced by the second active material 320. That is, the second active material 320 is oxidized by the second electrode side mediator 121. As a result, the second active material 320 releases lithium.
  • the second circulation mechanism 520 moves (supplies) the second electrode-side mediator 121 reduced by the second active material 320 to the place where the second electrode 220 is provided.
  • the second electrode side mediator 121 is oxidized on the surface of the second electrode 220.
  • a part of the generated lithium ions (Li + ) can move to the first liquid 110 through the isolation part 400.
  • lithium is present on the positive electrode side.
  • lithium extracted by oxidation of the positive electrode migrates to the negative electrode side through the diaphragm.
  • the second electrode-side mediator 121 does not change when viewed from the total reaction including circulation.
  • the 2nd active material 320 located in the place away from the 2nd electrode 220 will be in a charging state.
  • TTF 2+ exists in the second liquid 120, and the second active material 320 becomes FePO 4 .
  • the charging potential is determined by the oxidation potential to TTF2 + .
  • the lithium atom is dissolved in the first liquid 110 existing around the lithium atom. That is, a reduction reaction of the condensed aromatic compound occurs on the first electrode 210.
  • the lithium concentration in the first liquid 110 reaches a saturated state.
  • the lithium generated in this saturated state cannot be completely dissolved in the first liquid 110.
  • lithium produced in this saturated state is deposited as precipitated lithium particles 700 on the first electrode 210.
  • the deposited lithium particles 700 deposited on the first electrode 210 are moved (supplied) to the first accommodating part 511 by the first circulation mechanism 510.
  • the precipitated lithium particles 700 sent to the first housing part 511 further ride on the flow and try to flow out again from the first housing part 511 to the first electrode 210 side.
  • the precipitated lithium particles 700 are trapped in the first permeation suppression unit 512 provided at the delivery port of the first storage unit 511. For this reason, the deposited lithium particles 700 are not delivered to the first electrode 210 side. Therefore, the precipitated lithium particles 700 are stored in the first housing part 511.
  • the above charging reaction can proceed until the second active material 320 reaches a fully charged state.
  • the second active material 320 When fully charged, the second active material 320 is in a charged state.
  • reaction on the positive electrode side By discharging the battery, electrons are supplied from the outside of the flow battery to the second electrode 220 that is the positive electrode. As a result, a reduction reaction of the second electrode-side mediator 121 occurs on the second electrode 220. That is, the second electrode side mediator 121 is reduced on the surface of the second electrode 220.
  • the second circulation mechanism 520 moves (supplies) the second electrode-side mediator 121 reduced by the second electrode 220 to the place where the second active material 320 is provided.
  • the second electrode-side mediator 121 reduced on the second electrode 220 is oxidized by the second active material 320. That is, the second active material 320 is reduced by the second electrode-side mediator 121. Accordingly, the second active material 320 occludes lithium.
  • the second circulation mechanism 520 moves (supplies) the second electrode-side mediator 121 oxidized by the second active material 320 to the place where the second electrode 220 is provided.
  • the second electrode-side mediator 121 is reduced on the surface of the second electrode 220.
  • a part of the lithium ions (Li + ) can be supplied from the first liquid 110 through the isolation part 400.
  • the second electrode-side mediator 121 does not change when viewed from the total reaction including circulation.
  • the second active material 320 located away from the second electrode 220 is in a discharged state.
  • TTF is present in the second liquid 120, and the second active material 320 becomes LiFePO 4 .
  • the discharge potential is determined by the reduction potential to TTF.
  • reaction on the negative electrode side Due to the discharge of the battery, an oxidation reaction of the condensed aromatic compound occurs on the first electrode 210 which is the negative electrode. Thereby, electrons are emitted from the first electrode 210 to the outside of the flow battery.
  • the condensed aromatic compound oxidized by the first electrode 210 is moved (supplied) to the first accommodating part 511 by the first circulation mechanism 510.
  • the precipitated lithium particles 700 stored in the first storage unit 511 are dissolved in the first liquid 110 in which the condensed aromatic compound oxidized by the first electrode 210 is dissolved. That is, in the first housing part 511, a reduction reaction of the condensed aromatic compound occurs.
  • the precipitated lithium particles 700 are excessively present in the first housing portion 511. For this reason, even if the amount of lithium in the first liquid 110 decreases in the first electrode 210, the amount of lithium that decreases is immediately determined by the deposited lithium particles 700 stored in the first storage unit 511 as the first amount. It is replenished by dissolving in the liquid 110.
  • the condensed aromatic compound reduced in the first storage unit 511 is moved (supplied) by the first circulation mechanism 510 to the place where the first electrode 210 is provided. Thereby, the oxidation reaction of the condensed aromatic compound occurs again.
  • the amount of lithium in the first liquid 110 is always kept saturated until the end of discharge. For this reason, stable discharge becomes possible.
  • the above discharge reaction can proceed until the second active material 320 reaches a complete discharge state.
  • FIG. 4 is a diagram showing the measurement results of the potential of the condensed aromatic compound.
  • the flow battery in Embodiment 3 has the following configuration in addition to the configuration of the flow battery in Embodiment 1 or 2 described above.
  • the condensed aromatic compound is composed of phenanthrene, biphenyl, O-terphenyl, trans-stilbene, triphenylene, anthracene, butyrophenone, valerophenone, acenaphthene, acenaphthylene, fluoranthene, and benzyl. It is at least one selected from the group.
  • a solution containing a condensed aromatic compound (for example, an ether solution) has an ability to dissolve lithium (for example, lithium metal). Lithium tends to release electrons and become cations. For this reason, electrons are transferred to the condensed aromatic compound in the solution to become a cation and dissolve in the solution. At this time, the condensed aromatic compound that has received the electrons solvates with the electrons. By solvating with electrons, the condensed aromatic compound behaves as an anion. For this reason, the solution itself containing the condensed aromatic compound has ionic conductivity. Here, an equivalent amount of Li cations and electrons exist in the solution containing the condensed aromatic compound. For this reason, the solution itself containing the condensed aromatic compound can have a highly reducing property (in other words, a potential base).
  • the flow battery in Embodiment 4 has the following configuration in addition to the configuration of the flow battery in any of Embodiments 1 to 3 described above.
  • the flow battery in the fourth embodiment includes the first liquid 110, the first electrode 210, the second liquid 120, the second electrode 220, and an electrolyte salt.
  • the first liquid 110 is a liquid in which a condensed aromatic compound is dissolved.
  • the first electrode 210 is an electrode immersed in the first liquid 110.
  • the second electrode 220 is a counter electrode of the first electrode 210.
  • the second electrode 220 is an electrode immersed in the second liquid 120.
  • the electrolyte salt is dissolved in at least one of the first liquid 110 and the second liquid 120.
  • the concentration of the electrolyte salt in the first liquid 110 is equal to or lower than the concentration of the condensed aromatic compound in the first liquid 110.
  • a flow battery with high energy density can be realized. That is, by setting the electrolyte salt concentration in the first liquid 110 to be equal to or lower than the concentration of the condensed aromatic compound, the equilibrium potential of the condensed aromatic compound can be further maintained. In other words, a significant increase in the equilibrium potential of the condensed aromatic compound (an increase due to the electrolyte salt) can be suppressed. Thereby, it can suppress that the equilibrium potential of the condensed aromatic compound becomes higher than the equilibrium potential on the second electrode 220 side.
  • the ionic conductivity of the liquid can be increased by dissolving the electrolyte salt in the liquid that is at least one of the first liquid 110 and the second liquid 120.
  • the concentration of the electrolyte salt in the first liquid 110 may be lower than the concentration of the condensed aromatic compound in the first liquid 110.
  • the equilibrium potential of the condensed aromatic compound can be further maintained.
  • a significant increase in the equilibrium potential of the condensed aromatic compound an increase due to the electrolyte salt
  • a flow battery with a higher energy density can be realized.
  • the flow battery in the fourth embodiment may further include an isolation unit 400.
  • the isolation unit 400 isolates the first electrode 210 and the first liquid 110 from the second electrode 220 and the second liquid 120.
  • the concentration of the electrolyte salt in the first liquid 110 may be lower than the concentration of the electrolyte salt in the second liquid 120.
  • the equilibrium potential of the condensed aromatic compound can be more maintained (the fluctuation of the equilibrium potential can be further reduced). For this reason, the flow battery which has a high battery voltage (discharge voltage) is realizable. In addition, a flow battery having a high energy density can be realized.
  • the electrolyte salt may be dissolved in the second liquid 120. At this time, the electrolyte salt may not be dissolved in the first liquid 110. That is, the concentration of the electrolyte salt in the first liquid 110 may be 0M.
  • the equilibrium potential of the condensed aromatic compound can be more maintained (the fluctuation of the equilibrium potential can be further reduced). For this reason, the flow battery which has a higher battery voltage (discharge voltage) is realizable. In addition, a flow battery with a higher energy density can be realized.
  • the first electrode 210 may be a negative electrode and the second electrode 220 may be a positive electrode.
  • the electrolyte salt may be a lithium salt.
  • the lithium salt LiBF 4, LiSbF 6, LiAsF 6, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiC ( SO 2 CF 3) 3, LiN (SO 2 F) 2, etc.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • the electrolyte salt is at least one selected from the group consisting of LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 , and LiCF 3 SO 3 . Also good.
  • FIG. 5, FIG. 6, FIG. 7 and FIG. 8 are diagrams showing the measurement results of the potential of the biphenyl solution.
  • Each sample was prepared by dissolving biphenyl, which is a condensed aromatic compound, and an electrolyte salt at a molar concentration (M) shown in each figure in a 2-methyltetrahydrofuran (2MeTHF) solution.
  • LiBF 4 was used as the electrolyte salt.
  • LiN (SO 2 CF 3 ) 2 was used as the electrolyte salt.
  • LiN (SO 2 F) 2 was used as the electrolyte salt.
  • LiCF 3 SO 3 was used as the electrolyte salt.
  • a potential measurement cell was prepared by injecting each of these samples, and each potential was measured. Each figure shows the potential (Vvs.Li/Li + ) measured on the basis of lithium metal.
  • the concentration of the electrolyte salt is equal to or lower than the concentration of biphenyl, a significant increase in the equilibrium potential of biphenyl is suppressed.
  • the concentration of the electrolyte salt is equal to or lower than the concentration of biphenyl, the equilibrium potential of biphenyl is set to 0.2 Vvs. It can be maintained below Li / Li + .
  • FIG. 9 is a diagram showing the measurement results of the potential of the trans-stilbene solution.
  • trans-stilbene that is a condensed aromatic compound and LiBF 4 that is an electrolyte salt are dissolved at a molar concentration (M) shown in FIG. Got ready.
  • M molar concentration
  • a potential measurement cell was prepared by injecting each of these samples, and each potential was measured.
  • FIG. 9 shows a potential (Vvs. Li / Li + ) measured on a lithium metal basis.
  • the concentration of the electrolyte salt is less than or equal to the concentration of trans-stilbene, a significant increase in the equilibrium potential of trans-stilbene is suppressed.
  • the concentration of the electrolyte salt is less than or equal to the concentration of trans-stilbene, the equilibrium potential of trans-stilbene is set to 0.2 to 0.6 Vvs. It can be maintained in the range of Li / Li + .
  • the flow battery in Embodiment 5 has the following configuration in addition to the configuration of the flow battery in any of Embodiments 1 to 3 described above.
  • the first liquid 110 is a liquid in which a condensed aromatic compound and an electrolyte salt are dissolved.
  • the electrolyte salt dissolved in the first liquid 110 is LiPF 6 .
  • a flow battery having a high energy density can be realized. That is, by setting the electrolyte salt to LiPF 6 in the first liquid 110, the equilibrium potential of the condensed aromatic compound can be maintained even if the electrolyte salt concentration is arbitrarily set with respect to the concentration of the condensed aromatic compound. Can do.
  • the ion conductivity can be improved by adding a sufficient amount of LiPF 6 while suppressing a significant increase in the equilibrium potential of the condensed aromatic compound (an increase due to the electrolyte salt). Thereby, it can suppress that the equilibrium potential of a condensed aromatic compound becomes higher than the equilibrium potential by the side of the 2nd electrode 220, improving ion conductivity.
  • the flow battery in the fifth embodiment may further include the second liquid 120 and the second electrode 220.
  • the second electrode 220 is a counter electrode of the first electrode 210.
  • the second electrode 220 is an electrode immersed in the second liquid 120.
  • LiPF 6 that is an electrolyte salt may be dissolved in the second liquid 120.
  • the ionic conductivity of the liquid can be increased.
  • the flow battery in the fifth embodiment may further include an isolation unit 400.
  • the isolation unit 400 isolates the first electrode 210 and the first liquid 110 from the second electrode 220 and the second liquid 120.
  • the equilibrium potential of the condensed aromatic compound can be more maintained (the fluctuation of the equilibrium potential can be further reduced). For this reason, the flow battery which has a higher battery voltage (discharge voltage) is realizable. In addition, a flow battery with a higher energy density can be realized.
  • the first electrode 210 may be a negative electrode
  • the second electrode 220 may be a positive electrode
  • FIG. 10 is a diagram showing the measurement results of the potential of the biphenyl solution.
  • Each sample was prepared by dissolving biphenyl as a condensed aromatic compound and LiPF 6 as an electrolyte salt at a molar concentration (M) shown in FIG. 10 in a 2-methyltetrahydrofuran (2MeTHF) solution.
  • a potential measurement cell was prepared by injecting each of these samples, and each potential was measured.
  • FIG. 10 shows the potential (Vvs. Li / Li + ) measured on the basis of lithium metal. As shown in FIG. 10, even when the electrolyte salt LiPF 6 concentration is larger (and smaller) than the concentration of biphenyl, the equilibrium potential of biphenyl with respect to the metal lithium potential is 0.2 Vvs. It can be maintained below Li / Li + .
  • FIG. 11 is a diagram showing the measurement results of the potential of the trans-stilbene solution.
  • Each sample was prepared by dissolving trans-stilbene, which is a condensed aromatic compound, and LiPF6, which is an electrolyte salt, in a 2-methyltetrahydrofuran (2MeTHF) solution at a molar concentration (M) shown in FIG. did.
  • a potential measurement cell was prepared by injecting each of these samples, and each potential was measured.
  • FIG. 11 shows the potential (Vvs. Li / Li + ) measured on the basis of lithium metal. As shown in FIG. 11, even when the electrolyte salt LiPF 6 concentration is larger (and smaller) than that of trans-stilbene, the equilibrium potential of trans-stilbene relative to the metal lithium potential is 0.3 V vs. It can be maintained before and after Li / Li + .
  • the flow battery in Embodiment 6 has the following configuration in addition to the configuration of the flow battery in any of Embodiments 1 to 5 described above.
  • the first liquid 110 includes tetrahydrofuran, 2methyl-tetrahydrofuran, 1,2 dimethoxyethane, 2,5-dimethyltetrahydrofuran, diethoxyethane, dibutoxyethane, diethylene glycol dimethyl ether, triethylene glycol,
  • a condensed aromatic compound is dissolved in at least one selected from the group consisting of ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, 3 methyl sulfolane, and tetrahydrofurfurylamine.
  • the first liquid that can dissolve lithium (for example, lithium metal) while having a function of stabilizing solvated electrons released from lithium paired with the condensed aromatic compound. 110 can be realized.
  • FIG. 12 is a diagram showing a sample of the first liquid.
  • lithium metal pieces were added to each solution prepared by dissolving biphenyl as a condensed aromatic compound at a concentration of 0.1M. About each solution, the solubility of lithium metal was confirmed visually after standing.
  • the lithium metal When the lithium metal is dissolved as lithium ions by passing solvated electrons to the solution, the colorless solution turns colored. Thus, the presence or absence of dissolution of the lithium metal can be determined by the disappearance of the lithium metal.
  • FIG. 13 is a diagram showing another sample of the first liquid.
  • Each sample shown in FIG. 13 is obtained by mixing the solvent X and the solvent Y shown in FIG. 13 at each volume mixing ratio.
  • dibutoxymethane, anisole, and phenetole did not show lithium metal solubility when used alone.
  • FIG. 13 when mixed with dibutoxyethane, dibutoxymethane, anisole, and phenetol showed the ability to dissolve lithium metal.
  • the flow battery of the present disclosure can be suitably used as, for example, an electricity storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

従来技術においては、高いエネルギー密度のフロー電池の実現が望まれる。 縮合芳香族化合物とリチウムとが溶解した第1液体と、前記第1液体に浸漬される第1電極と、第1収容部と第1透過抑制部とを備える第1循環機構と、を備え、前記縮合芳香族化合物が溶解した前記第1液体は、前記リチウムの溶媒和電子を放出させ、前記リチウムをカチオンとして溶解する性質を有し、前記第1電極上において、前記第1液体に溶解した前記リチウムが析出することで、析出リチウム粒子が発生し、前記第1循環機構は、前記第1電極と前記第1収容部との間で、前記第1液体を循環させ、前記第1循環機構は、前記第1電極上に発生した前記析出リチウム粒子を、前記第1収容部に、移動させ、前記第1透過抑制部は、前記第1液体が前記第1収容部から前記第1電極に流出する経路に、設けられ、前記析出リチウム粒子の透過を抑制する、フロー電池。

Description

フロー電池
 本開示は、フロー電池に関する。
 特許文献1には、金属粒子からなる固体状負極活物質粒子と非水系溶媒とを含むスラリー状の負極液を用いたレドックスフロー電池が、開示されている。
特許第5417441号公報
 従来技術においては、高いエネルギー密度のフロー電池の実現が望まれる。
 本開示の一様態におけるフロー電池は、縮合芳香族化合物とリチウムとが溶解した第1液体と、前記第1液体に浸漬される第1電極と、第1収容部と第1透過抑制部とを備える第1循環機構と、を備え、前記縮合芳香族化合物が溶解した前記第1液体は、前記リチウムの溶媒和電子を放出させ、前記リチウムをカチオンとして溶解する性質を有し、前記第1電極上において、前記第1液体に溶解した前記リチウムが析出することで、析出リチウム粒子が発生し、前記第1循環機構は、前記第1電極と前記第1収容部との間で、前記第1液体を循環させ、前記第1循環機構は、前記第1電極上に発生した前記析出リチウム粒子を、前記第1収容部に、移動させ、前記第1透過抑制部は、前記第1液体が前記第1収容部から前記第1電極に流出する経路に、設けられ、前記第1透過抑制部は、前記析出リチウム粒子の透過を抑制する。
 本開示によれば、高いエネルギー密度のフロー電池を実現できる。
図1は、実施の形態1におけるフロー電池1000の概略構成を示すブロック図である。 図2は、縮合芳香族化合物の電位の測定結果を示す図である。 図3は、実施の形態2におけるフロー電池2000の概略構成を示すブロック図である。 図4は、縮合芳香族化合物の電位の測定結果を示す図である。 図5は、ビフェニル溶液の電位の測定結果を示す図である。 図6は、ビフェニル溶液の電位の測定結果を示す図である。 図7は、ビフェニル溶液の電位の測定結果を示す図である。 図8は、ビフェニル溶液の電位の測定結果を示す図である。 図9は、trans-スティルベン溶液の電位の測定結果を示す図である。 図10は、ビフェニル溶液の電位の測定結果を示す図である。 図11は、trans-スティルベン溶液の電位の測定結果を示す図である。 図12は、第1液体のサンプルを示す図である。 図13は、第1液体の別のサンプルを示す図である。
 以下、本開示の実施の形態が、図面を参照しながら、説明される。
 (実施の形態1)
 図1は、実施の形態1におけるフロー電池1000の概略構成を示すブロック図である。
 実施の形態1におけるフロー電池1000は、第1液体110と、第1電極210と、第1循環機構510と、を備える。
 第1液体110は、縮合芳香族化合物とリチウムとが溶解した液体である。
 第1電極210は、第1液体110に浸漬される電極である。
 第1循環機構510は、第1収容部511と第1透過抑制部512とを備える。
 縮合芳香族化合物が溶解した第1液体110は、リチウムの溶媒和電子を放出させ、リチウムをカチオンとして溶解する性質を有する。
 第1電極210上において、第1液体110に溶解したリチウムが析出することで、析出リチウム粒子700が発生する。
 第1循環機構510は、第1電極210と第1収容部511との間で、第1液体110を循環させる。
 第1循環機構510は、第1電極210上に発生した析出リチウム粒子700を、第1収容部511に、移動させる。
 第1透過抑制部512は、第1液体110が第1収容部511から第1電極210に流出する経路(図1に示される例では、配管513)に、設けられる。
 第1透過抑制部512は、析出リチウム粒子700の透過を抑制する。
 以上の構成によれば、高いエネルギー密度と長いサイクル寿命とを両立したフロー電池を実現できる。
 すなわち、以上の構成によれば、縮合芳香族化合物が溶解した第1液体110が溶解できる量を超えるリチウムを第1電極210の対極側に持たせることができる。このため、第1液体110に溶解させるリチウムと析出リチウム粒子700とで決定される多量のリチウムに基づく、高い容量密度を得ることができる。これにより、高いエネルギー密度および高い容量を実現できる。
 また、以上の構成によれば、第1液体110が第1収容部511から第1電極210に流出する経路においては、析出リチウム粒子700そのものは循環させずに、リチウムが溶解した第1液体110のみを循環させることができる。このため、析出リチウム粒子700による配管などの詰まり等の発生を低減できる。したがって、サイクル寿命が長いフロー電池を実現できる。
 また、以上の構成によれば、縮合芳香族化合物として、平衡電位(vs.Li/Li+)が比較的低い物質を用いることができる。これにより、より電位の低いフロー電池の負極を実現できる。このため、高い電池電圧(放電電圧)を有するフロー電池を実現できる。
 なお、実施の形態1におけるフロー電池1000においては、フロー電池1000の充電時(すなわち、フロー電池1000の外部から第1電極210に電子が供給される状態)においては、縮合芳香族化合物は第1電極210上において還元され、かつ、第1電極210上において第1液体110に溶解したリチウムが析出することで析出リチウム粒子700が発生してもよい。
 また、フロー電池1000の放電時(すなわち、第1電極210からフロー電池1000の外部に電子が放出される状態)においては、縮合芳香族化合物は第1電極210上において酸化され、かつ、析出リチウム粒子700がリチウムとして第1液体110に溶解してもよい。
 以上の構成によれば、充電時において、より多くの析出リチウム粒子700を発生させることができる。さらに、放電時において、多くの析出リチウム粒子700をリチウム源として利用できる。これにより、充放電の容量を増加させることができる。
 例えば、第1液体110が第1電極210に接触することにより、縮合芳香族化合物は、第1電極210により、酸化または還元される。
 なお、実施の形態1におけるフロー電池1000においては、縮合芳香族化合物は、フェナントレン、ビフェニル、O-ターフェニル、trans-スティルベン、トリフェニレン、アントラセン、からなる群より選ばれる少なくとも1種であってもよい。
 以上の構成によれば、電位的に卑な性質を有する縮合芳香族化合物が溶解した第1液体110を実現できる。縮合芳香族化合物を含む溶液(例えば、エーテル溶液)は、リチウム(例えば、リチウム金属)を溶解する能力を有する。リチウムは、電子を離して、カチオンとなり易い。このため、溶液中の縮合芳香族化合物に電子を渡して、カチオンとなり、当該溶液に溶解する。このとき、電子を受け取った縮合芳香族化合物は電子と溶媒和する。電子と溶媒和することで、縮合芳香族化合物は、アニオンとして振る舞う。このため、縮合芳香族化合物を含む溶液そのものがイオン導電性を有する。ここで、縮合芳香族化合物を含む溶液中には、Liカチオンと電子が当量存在する。このため、縮合芳香族化合物を含む溶液自体には、還元性の強い(言い換えれば、電位的に卑な)性質を持たせることができる。
 例えば、縮合芳香族化合物が溶解した第1液体110にリチウムと反応しない電極を浸漬し、リチウム金属との電位を測定すれば、かなり卑な電位が観測される。観測される電位は、縮合芳香族化合物と電子の溶媒和の程度(すなわち、縮合芳香族化合物の種類)によって、決定される。卑な電位を生じる縮合芳香族化合物としては、フェナントレン、ビフェニル、O-ターフェニル、trans-スティルベン、トリフェニレン、アントラセン、など、が挙げられる。
 図2は、縮合芳香族化合物の電位の測定結果を示す図である。
 2×2cmの銅箔をポリプロピレン製微多孔性セパレータで包んだものの全体を、多量のリチウム金属箔で包んだ。これに、銅箔とリチウム金属にタブを取り付けた。その後、これに、ラミネート外装を取り付けた。これに、図2に示される各モル濃度(M)で縮合芳香族化合物を溶かした2MeTHFを注液した後、ラミネート外装を熱融着して密閉した。以上により、縮合芳香族化合物ごとに電位測定用セルを作製した。図2には、この電位測定用セルを用いてリチウム金属基準で測定された電位(Vvs.Li/Li+)が示されている。
 なお、実施の形態1におけるフロー電池1000においては、第1液体110は、エーテル溶液であってもよい。
 以上の構成によれば、第1液体110として、縮合芳香族化合物を含んだ電解液を実現できる。すなわち、縮合芳香族化合物の溶媒が電子導電性を持たないエーテル溶液であるので、当該エーテル溶液自体が電解液としての性質を有することができる。
 エーテルとしては、一般に公知の環状エーテルと鎖状エーテルとのうちの少なくとも1種が用いられうる。環状エーテルとしては、テトラヒドロフラン(THF)、ジオキサン(DO)、2-メチルテトラヒドロフラン(2MeTHF)、4-メチルジオキサン(4MeDO)、など、が用いられうる。鎖状エーテルとしては、グライム類、など、が用いられうる。
 なお、図1においては、一例として、第1電極210は負極であり、かつ、第2電極220は正極であるとして、表記されている。
 なお、第2電極220として、相対的に電位の低い電極を用いれば、第1電極210は、正極にもなりうる。
 すなわち、第1電極210は正極であり、かつ、第2電極220は負極であってもよい。
 第1電極210は、縮合芳香族化合物の反応場として作用する表面を有する電極であってもよい。
 この場合、第1電極210として、第1液体110に対して安定な材料が用いられうる。さらに、第1電極210として、電極反応である電気化学反応に対して安定な材料が用いられうる。例えば、第1電極210として、金属(ステンレス鋼、鉄、銅、ニッケル、など)、カーボン、など、が用いられうる。
 第1電極210は、その表面積を増大させた構造(例えば、メッシュ、不織布、表面粗化処理板、焼結多孔体、など)であってもよい。これによれば、第1電極210の比表面積が大きくなる。これにより、縮合芳香族化合物の酸化反応または還元反応を、より進行し易くできる。
 第2電極220は、集電体と、集電体上に設けられた活物質と、を備える構成であってもよい。これにより、例えば、高容量な活物質を用いることができる。第2電極220の活物質としては、リチウムイオンを可逆に吸蔵および放出する特性を有する化合物が用いられうる。
 もしくは、第2電極220は、リチウム金属であってもよい。第2電極220として、リチウム金属を用いた場合、金属正極としての溶解析出の制御が容易となり、かつ、高容量を実現できる。
 なお、実施の形態1におけるフロー電池1000は、隔離部400をさらに備えてもよい。
 隔離部400は、第1電極210および第1液体110と第2電極220との間を隔離する。
 隔離部400は、公知の二次電池に用いられるような、微多孔膜(多孔体)であってもよい。
 もしくは、隔離部400は、ガラス繊維を不織布に織り込んだガラスペーパーなどの多孔膜であってもよい。
 もしくは、隔離部400は、イオン伝導性(リチウムイオン伝導性)を有する隔膜であってもよい。例えば、隔離部400は、イオン交換樹脂膜(例えば、カチオン交換膜、アニオン交換膜、など)、または、固体電解質膜、など、であってもよい。
 第1循環機構510は、例えば、配管、タンク、ポンプ、バルブ、などを備える機構であってもよい。
 なお、実施の形態1においては、第1収容部511は、例えば、タンクであってもよい。
 また、第1収容部511は、縮合芳香族化合物が溶解した第1液体110を、収容していてもよい。
 また、図1に示されるように、実施の形態1におけるフロー電池1000は、電気化学反応部600と、正極端子221と、負極端子211と、をさらに備えてもよい。
 電気化学反応部600は、隔離部400により、負極室610と正極室620とに、分離されている。
 負極室610には、負極となる電極(図1に示される例では、第1電極210)が、配置される。
 負極端子211は、負極となる電極に、接続される。
 正極室620には、正極となる電極(図1に示される例では、第2電極220)が、配置される。
 正極端子221は、正極となる電極に、接続される。
 負極端子211と正極端子221とは、例えば、充放電装置に接続される。充放電装置により、負極端子211と正極端子221との間に電圧が印加されるか、または、負極端子211と正極端子221との間から電力が取り出される。
 また、図1に示されるように、実施の形態1におけるフロー電池1000においては、第1循環機構510は、配管514と、配管513と、ポンプ515と、を備えてもよい。
 配管514の一端は、負極室610と正極室620とのうち、第1電極210が配置される方(図1に示される例では、負極室610)に、接続される。
 配管514の別の一端は、第1収容部511の第1液体110の流入口側に、接続される。
 配管513の一端は、第1収容部511の第1液体110の流出口側に、接続される。
 配管513の別の一端は、負極室610と正極室620とのうち、第1電極210が配置される方(図1に示される例では、負極室610)に、接続される。
 ポンプ515は、例えば、配管514に設けられる。もしくは、ポンプ515は、配管513に設けられてもよい。
 第1透過抑制部512は、例えば、第1収容部511と配管513との接合部に、設けられてもよい。
 なお、実施の形態1におけるフロー電池1000においては、第1透過抑制部512は、析出リチウム粒子700を濾過するフィルターであってもよい。
 このとき、当該フィルターは、ガラス繊維濾紙、ポリプロピレン不織布、ポリエチレン不織布、前記リチウムと反応しない金属メッシュ、のうちの少なくとも1つであってもよい。
 以上の構成によれば、析出リチウム粒子700が第1電極210側へ流出することを、より抑制できる。このため、第1循環機構510の部材(例えば、配管)の内部の析出リチウム粒子700による目詰まりを、より防止できる。
 フィルターは、析出リチウム粒子700の所定の粒径(例えば、目詰まりを生じさせうる粒子径)よりも小さい孔を有する部材であってもよい。フィルターの材料としては、析出リチウム粒子700および第1液体110などと反応しない材料が用いられうる。
 以上の構成によれば、第1収容部511の内部において、第1液体110の流動とともに、析出リチウム粒子700の流動が生じても、析出リチウム粒子700が第1収容部511から流出することを防止できる。
 図1に示される例では、第1収容部511に収容されている第1液体110は、第1透過抑制部512と配管513とを通過して、負極室610に、供給される。
 これにより、第1液体110に溶解している縮合芳香族化合物は、第1電極210により、酸化または還元される。
 その後、酸化または還元された縮合芳香族化合物が溶解した第1液体110は、配管514とポンプ515とを通過して、第1収容部511に、供給される。
 なお、第1液体110の循環の制御は、例えば、ポンプ515により行われてもよい。すなわち、ポンプ515により、適宜、第1液体110の供給の開始、または、供給の停止、または、供給量などの調整、が行われる。
 もしくは、第1液体110の循環の制御は、ポンプ515とは異なる別の手段(例えば、バルブなど)により、行われてもよい。
 なお、隔離部400を隔てて、負極室610側と正極室620側とで、それぞれ、異なる組成の電解液(溶媒)が用いられてもよい。
 もしくは、正極室620側と負極室610側とで、同じ組成の電解液(溶媒)が用いられてもよい。
 <充放電プロセスの説明>
 実施の形態1におけるフロー電池1000の充放電プロセスが、以下に、説明される。
 なお、具体的に、下記の構成である動作例が例示されながら、充放電プロセスが説明される。
 すなわち、本動作例では、第1電極210は、負極であり、ステンレス鋼であるとする。
 また、本動作例では、第1液体110は、縮合芳香族化合物が溶解したエーテル溶液であるとする。
 また、本動作例では、縮合芳香族化合物は、フェナントレン(以下、PNTと表記される)であるとする。
 また、本動作例では、第2電極220は、正極であり、集電体(ステンレス鋼)と、集電体上に設けられた活物質であるリン酸鉄リチウム(LiFePO)と、を備える構成であるとする。
 また、本動作例では、第1液体110(縮合芳香族化合物が溶解したエーテル溶液)が溶解できるリチウム量を超えるリチウムを正極側に持たせる。このリチウム量が電池容量を支配するように設計する。
 [充電プロセスの説明]
 まず、充電反応が、説明される。
 第1電極210と第2電極220との間に、電圧が印加されることにより、充電が行われる。
 (正極側の反応)
 電圧の印加により、正極である第2電極220では、正極側の活物質の酸化反応が起こる。すなわち、正極側の活物質から、リチウムイオンが放出される。これにより、第2電極220からフロー電池の外部に電子が放出される。
 例えば、本動作例では、下記の反応が生じる。
 LiFePO → FePO + Li + e
 なお、発生したリチウムイオン(Li)の一部は、隔離部400を通じて、第1液体110に移動しうる。
 放電状態で電池を組み立てた場合、リチウムは正極側に存在する。上述のように、正極が酸化されることで引き抜かれたリチウムは、隔膜を通して、負極側に泳動する。
 (負極側の反応)
 電圧の印加により、負極である第1電極210にフロー電池の外部から電子が供給される。これにより、第1電極210上で電子を受け取ったリチウムイオンは、リチウム原子となる。
 例えば、本動作例では、下記の反応が生じる。
 Li + e → Li
 しかし、当該リチウム原子は、その周りに存在する第1液体110に溶解する。すなわち、第1電極210上では、縮合芳香族化合物の還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 Li → Li + e
 PNT + Li + e → PNT・Li
 さらに充電が進むと、第1液体110中のリチウム濃度が飽和状態に達する。この飽和状態で生成したリチウムは、第1液体110には溶けきれなくなる。その結果、この飽和状態で生成したリチウムは、第1電極210上に、析出リチウム粒子700として、析出する。
 例えば、本動作例では、下記の反応が生じる。
 Li + e → Li
 第1循環機構510により、第1電極210上に析出した析出リチウム粒子700が、第1収容部511まで、移動(供給)させられる。
 すなわち、第1電極210の近傍には、常に流れがある。このため、この流れに乗って、生成した析出リチウム粒子700は流出し、第1収容部511へ送られる。
 第1収容部511に送られた析出リチウム粒子700は、さらに流れに乗って、再び第1収容部511から第1電極210側へ、流出しようとする。しかし、析出リチウム粒子700は、第1収容部511の送出口に設けられた第1透過抑制部512にトラップされる。このため、析出リチウム粒子700は、第1電極210側には、送出されない。したがって、析出リチウム粒子700は、第1収容部511内に貯蔵される。
 以上の充電反応は、正極側の活物質が完全充電状態に到達するまで、進行しうる。
 [放電プロセスの説明]
 次に、満充電からの放電反応が、説明される。
 満充電では、正極側の活物質は、充電状態となっている。
 放電反応では、第1電極210と第2電極220との間から、電力が取り出される。
 (正極側の反応)
 電池の放電により、正極である第2電極220にフロー電池の外部から電子が供給される。これにより、第2電極220上では、活物質の還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 FePO + Li + e → LiFePO
 なお、リチウムイオン(Li)の一部は、隔離部400を通じて、第1液体110から供給されうる。
 (負極側の反応)
 電池の放電により、負極である第1電極210上では、縮合芳香族化合物の酸化反応が起こる。これにより、第1電極210からフロー電池の外部に電子が放出される。
 例えば、本動作例では、下記の反応が生じる。
 PNT・Li → PNT + Li + e
 すなわち、放電時においては、第1液体110に溶解したリチウムが放電する。これにより、第1液体110に溶解しているリチウム量は、減少する。
 第1循環機構510により、第1電極210により酸化された縮合芳香族化合物が、第1収容部511まで、移動(供給)させられる。
 第1収容部511に貯蔵されている析出リチウム粒子700は、第1電極210により酸化された縮合芳香族化合物が溶解した第1液体110に、溶解する。すなわち、第1収容部511では、縮合芳香族化合物の還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 Li → Li + e
 PNT + Li + e → PNT・Li
 このように、第1収容部511内には、過剰に、析出リチウム粒子700が存在する。このため、第1電極210において第1液体110中のリチウム量が減少しても、すぐに、その減少分のリチウム量は、第1収容部511に貯蔵されている析出リチウム粒子700が第1液体110に溶解することで、補充される。
 第1循環機構510により、第1収容部511において還元された縮合芳香族化合物が、第1電極210が設けられた場所まで、移動(供給)させられる。これにより、縮合芳香族化合物の酸化反応が、再度、起こる。
 例えば、本動作例では、下記の反応が生じる。
 PNT・Li → PNT + Li + e
 以上のように、放電末期まで、常に、第1液体110中のリチウム量は飽和状態に保たれる。このため、安定した放電が可能となる。
 以上の放電反応は、正極側の活物質が完全放電状態に到達するまで、進行しうる。
 (実施の形態2)
 以下、実施の形態2が説明される。なお、上述の実施の形態1と重複する説明は、適宜、省略される。
 実施の形態2として、第1電極側および第2電極側の両方において電解液を循環させる構成が、示される。
 図3は、実施の形態2におけるフロー電池2000の概略構成を示すブロック図である。
 実施の形態2におけるフロー電池2000は、上述の実施の形態1におけるフロー電池1000の構成に加えて、下記の構成を備える。
 すなわち、実施の形態2におけるフロー電池2000は、第2液体120と、第2電極220と、第2活物質320と、をさらに備える。
 第2液体120は、第2電極側メディエータ121が溶解した液体である。
 第2電極220は、第1電極210の対極である。第2電極220は、第2液体120に浸漬される電極である。
 第2活物質320は、第2液体120に浸漬される活物質である。
 第2電極側メディエータ121は、第2電極220により、酸化および還元される。
 第2電極側メディエータ121は、第2活物質320により、酸化および還元される。
 以上の構成によれば、より高いエネルギー密度とより長いサイクル寿命とを両立したフロー電池を実現できる。
 すなわち、以上の構成によれば、活物質を利用しながら、活物質そのものは循環させない構成のフロー電池を実現できる。このため、第2活物質320として、例えば、充放電反応に高容量な粉末活物質を、使用できる。これにより、より高いエネルギー密度および高い容量を実現できる。また、電池容量は「正極容量密度×負極容量密度/(正極容量密度+負極容量密度)」で決定される。このため、第1電極210側と第2電極220側の両方にメディエータ型のフロー電池構造を用いることで、容量密度を大きく向上させることができる。
 また、以上の構成によれば、粉末活物質そのものは循環させずに、第2電極側メディエータ121が溶解した第2液体120のみを循環させることができる。このため、粉末活物質による配管などの詰まり等の発生を抑制できる。したがって、サイクル寿命がより長いフロー電池を実現できる。
 また、以上の構成によれば、第2活物質320として平衡電位(vs.Li/Li+)が比較的高い活物質(例えば、リン酸鉄リチウム)を用いることで、第2電極側メディエータ121として、平衡電位(vs.Li/Li+)が比較的高い物質(例えば、テトラチアフルバレン)を用いることができる。これにより、より電位の高いフロー電池の正極を実現できる。このため、より高い電池電圧(放電電圧)を有するフロー電池を実現できる。
 なお、実施の形態2におけるフロー電池2000においては、第2液体120には、リチウムが溶解されてもよい。
 第2活物質320は、リチウムを吸蔵および放出する性質を有する物質であってもよい。
 フロー電池2000の充電時(すなわち、フロー電池2000の外部から第1電極210に電子が供給されるとともに第2電極220からフロー電池2000に電子が放出される状態)においては、第2電極側メディエータ121は第2電極220上において酸化され、かつ、第2電極220上において酸化された第2電極側メディエータ121は第2活物質320により還元されるとともに第2活物質320はリチウムを放出してもよい。
 フロー電池2000の放電時(すなわち、第1電極210からフロー電池2000に電子が放出されるとともにフロー電池2000の外部から第2電極220に電子が供給される状態)においては、第2電極側メディエータ121は第2電極220上において還元され、かつ、第2電極220上において還元された第2電極側メディエータ121は第2活物質320により酸化されるとともに第2活物質320はリチウムを吸蔵してもよい。
 以上の構成によれば、第2活物質320として、例えば、リチウム(例えば、リチウムイオン)を可逆的に吸蔵および放出する性質を有する活物質を、使用できる。これにより、第2活物質320の材料設計が、より容易となる。また、より高い容量を実現できる。
 例えば、第2液体120が第2電極220に接触することにより、第2電極側メディエータ121は、第2電極220により、酸化または還元される。
 例えば、第2液体120が第2活物質320に接触することにより、第2電極側メディエータ121は、第2活物質320により、酸化および還元される。
 なお、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121の酸化還元電位領域と第2活物質320の酸化還元電位領域とは、重複領域を有してもよい。
 以上の構成によれば、第2活物質320により、第2電極側メディエータ121の酸化と還元とを、行うことができる。
 また、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121の酸化還元電位領域の上限値は、第2活物質320の酸化還元電位領域の上限値よりも、高くてもよい。
 このとき、第2電極側メディエータ121の酸化還元電位領域の下限値は、第2活物質320の酸化還元電位領域の下限値よりも、低くてもよい。
 以上の構成によれば、第2活物質320の容量を、十分に(例えば、100%近く)、利用することができる。このため、より高容量なフロー電池を実現できる。
 第2電極側メディエータ121として、複数の酸化還元電位を有する1種類の酸化還元種が用いられてもよい。
 もしくは、第2電極側メディエータ121として、一定の酸化還元電位を有する酸化還元種が、複数、混合されたものが用いられてもよい。
 また、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121は、酸化および還元する特性を有する有機化合物であってもよい。
 以上の構成によれば、第2液体120(例えば、非水溶媒)への第2電極側メディエータ121の溶解度を、高めることができる。
 また、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121は、多段階の酸化還元電位(例えば、2種以上の酸化還元電位)を有する有機化合物であってもよい。
 このような、多段階の酸化還元が可能な有機化合物としては、π共役電子雲を有する有機化合物である、テトラチアフルバレン誘導体、キノン誘導体、TCNQ、など、が挙げられる。
 なお、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121は、テトラチアフルバレンであってもよい。
 以上の構成によれば、比較的高い2段階の酸化還元電位(リチウム基準電位で、およそ下限値3.4Vと上限値3.7V)を有する第2電極側メディエータ121を実現できる。これにより、より電位の高いフロー電池の正極を実現できる。このため、高い電池電圧(放電電圧)を有するフロー電池を実現できる。
 また、実施の形態2におけるフロー電池2000においては、第2活物質320は、リチウムイオンを可逆に吸蔵および放出する特性を有する物質であってもよい。例えば、第2活物質320としては、一般に公知の二次電池用活物質(例えば、遷移金属酸化物、フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物、など)、が用いられうる。
 なお、実施の形態2におけるフロー電池2000においては、第2活物質320は、リン酸鉄リチウムであってもよい。
 以上の構成によれば、第2活物質320の平衡電位(vs.Li/Li+)を比較的高くできる。このため、第2電極側メディエータ121として、平衡電位(vs.Li/Li+)が比較的高い物質(例えば、テトラチアフルバレン)を用いることができる。これにより、より電位の高いフロー電池の正極を実現できる。このため、高い電池電圧(放電電圧)を有するフロー電池を実現できる。
 鉄またはマンガンまたはリチウムを含有する化合物(例えば、LiFePO、LiMnO、など)、バナジウム含有化合物(例えば、V、など)、などは、リチウム基準で3.2V~3.7Vに酸化還元電位を有する。このため、第2活物質320としてLiFePOなどを用いる場合には、第2電極側メディエータ121としてテトラチアフルバレンを用いてもよい。
 なお、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121は、キノン誘導体であってもよい。キノン誘導体は、例えば、リチウム基準で、1V~3Vに、複数段の酸化還元電位を有する。この場合、リチウム基準で、1V~3Vに、酸化還元電位を有する材料を、第2活物質320として、用いてもよい。リチウム基準で1V~3Vに酸化還元電位を有する材料としては、チタンまたはニオブまたはリチウムを含有する化合物(例えば、LiTi12、LiNbO、など)、など、が挙げられる。
 また、実施の形態2におけるフロー電池2000においては、第2電極側メディエータ121は、金属含有イオンであってもよい。金属含有イオンとしては、例えば、多段階の酸化還元電位を有するバナジウムイオン、マンガンイオン、モリブデンイオン、など、が挙げられる。例えば、バナジウムイオンの場合、幅広い反応段階(2価と3価、3価と4価、4価と5価)を有している。
 なお、第2活物質320として、粉末状の活物質が用いられてもよい。第2活物質320を加工無しの粉末状態でタンクに充填する場合には、製造を簡便化でき、かつ、製造コストを低減できる。
 もしくは、第2活物質320として、ペレット状(例えば、粉末をペレット成型した状態)の活物質が用いられてもよい。第2活物質320をペレット状でタンクに充填する場合には、製造を簡便化でき、かつ、製造コストを低減できる。
 もしくは、第2活物質320として、一般に公知のバインダー(例えば、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリイミド、など)によりペレット状に固められた活物質が用いられてもよい。
 もしくは、第2活物質320として、金属箔上に膜状に固定化された状態の活物質が用いられてもよい。
 もしくは、第2活物質320として、一般に公知の導電助剤(例えば、カーボンブラック、ポリアニリン、など)、または、イオン伝導体(例えば、ポリメチルメタクリレート、ポリエチレンオキシド、など)が、混合された活物質が用いられてもよい。
 なお、第2活物質320は、第2液体120に溶解しない(すなわち、不溶である)物質であってもよい。これにより、第2液体120とともに第2電極側メディエータ121は循環させるが、第2活物質320は循環させない構成のフロー電池を実現できる。
 第2液体120は、例えば、一般に公知の二次電池用の非水電解液であってもよい。このとき、当該非水電解液は、例えば、一般に公知の電解質塩(例えば、リチウムイオンとアニオンとの電解質塩、)と、電解質塩が溶解した非水溶媒と、からなる。
 非水溶媒としては、一般に公知の二次電池用の非水溶媒が、用いられうる。すなわち、非水溶媒としては、環状および鎖状の炭酸エステル、環状および鎖状のエステル、環状および鎖状のエーテル、ニトリル、環状および鎖状のスルホン、環状および鎖状のスルホキシド、など、が用いられうる。
 なお、第1液体110と第2液体120とは、互いに異なる溶媒が用いられてもよいし、互いに同じ溶媒が用いられてもよい。
 なお、図3においては、一例として、第1電極210は負極であり、かつ、第2電極220は正極であるとして、表記されている。
 なお、第2電極220として、相対的に電位の低い電極を用いれば、第1電極210は、正極にもなりうる。
 すなわち、第1電極210は正極であり、かつ、第2電極220は負極であってもよい。
 第2電極220は、第2電極側メディエータ121の反応場として作用する表面を有する電極であってもよい。
 この場合、第2電極220として、第2液体120の溶媒や支持塩に対して安定な材料が用いられうる。さらに、第2電極220として、電極反応である電気化学反応に対して安定な材料が用いられうる。例えば、第2電極220として、金属(ステンレス鋼、鉄、銅、ニッケル、など)、カーボン、など、が用いられうる。
 第2電極220は、その表面積を増大させた構造(例えば、メッシュ、不織布、表面粗化処理板、焼結多孔体、など)であってもよい。これによれば、第2電極220の比表面積が大きくなる。これにより、第2電極側メディエータ121の酸化反応または還元反応を、より進行し易くできる。
 なお、第1電極210と第2電極220とは、互いに異なる材料の電極が用いられてもよいし、互いに同じ材料の電極が用いられてもよい。
 なお、実施の形態2におけるフロー電池2000は、隔離部400をさらに備える。
 隔離部400は、第1電極210および第1液体110と第2電極220および第2液体120との間を隔離する。
 隔離部400としては、上述の実施の形態1において示された構成が、用いられうる。
 なお、実施の形態2におけるフロー電池2000は、第2循環機構520をさらに備えてもよい。
 第2循環機構520は、第2電極220と第2活物質320との間で、第2液体120を循環させる機構である。
 以上の構成によれば、第2液体120とともに第2電極側メディエータ121を、第2電極220と第2活物質320との間で、循環させることができる。これにより、各材料間の酸化反応および還元反応を、より効率的に、行うことができる。
 第2循環機構520は、例えば、配管、タンク、ポンプ、バルブ、などを備える機構であってもよい。
 なお、実施の形態2におけるフロー電池2000においては、第2循環機構520は、第2収容部521を備えてもよい。
 第2活物質320と第2液体120とは、第2収容部521に、収容されてもよい。
 第2循環機構520は、第2電極220と第2収容部521との間で、第2液体120を循環させてもよい。
 第2収容部521において第2活物質320と第2液体120とが接触することにより、第2電極側メディエータ121は、第2活物質320により、酸化および還元されてもよい。
 以上の構成によれば、第2収容部521において、第2液体120と第2活物質320とを、接触させることができる。これにより、例えば、第2液体120と第2活物質320との接触面積を、より大きくできる。また、第2液体120と第2活物質320との接触時間を、より長くできる。このため、第2活物質320による第2電極側メディエータ121の酸化反応および還元反応を、より効率的に、行うことができる。
 なお、実施の形態2においては、第2収容部521は、例えば、タンクであってもよい。
 また、第2収容部521は、例えば、充填された第2活物質320の隙間に、第2電極側メディエータ121が溶解した第2液体120を、収容していてもよい。
 また、図3に示されるように、実施の形態2におけるフロー電池2000においては、第2循環機構520は、配管523と、配管524と、ポンプ525と、を備えてもよい。
 配管524の一端は、正極室620と負極室610とのうち、第2電極220が配置される方(図3に示される例では、正極室620)に、接続される。
 配管524の別の一端は、第2収容部521の第2液体120の流入口側に、接続される。
 配管523の一端は、第2収容部521の第2液体120の流出口側に、接続される。
 配管523の別の一端は、正極室620と負極室610とのうち、第2電極220が配置される方(図3に示される例では、正極室620)に、接続される。
 ポンプ525は、例えば、配管524に設けられる。もしくは、ポンプ525は、配管523に設けられてもよい。
 なお、実施の形態2におけるフロー電池2000においては、第2循環機構520は、第2透過抑制部522を備えてもよい。
 第2透過抑制部522は、第2活物質320の透過を抑制する。
 第2透過抑制部522は、第2液体120が第2収容部521から第2電極220に流出する経路(図3に示される例では、配管523)に、設けられる。
 以上の構成によれば、第2活物質320が第2収容部521以外(例えば、第2電極220側)へ流出することを抑制できる。すなわち、第2活物質320は、第2収容部521に留まる。これにより、第2活物質320そのものは循環させない構成のフロー電池を実現できる。このため、第2循環機構520の部材(例えば、配管)の内部の第2活物質320による目詰まりを防止できる。また、第2活物質320が第2電極220側に流出することによる抵抗損失の発生を防止できる。
 第2透過抑制部522は、例えば、第2収容部521と配管523との接合部に、設けられてもよい。
 第2透過抑制部522は、例えば、第2活物質320を濾過するフィルターであってもよい。このとき、フィルターは、第2活物質320の粒子の最小粒径よりも小さい孔を有する部材であってもよい。フィルターの材料としては、第2活物質320および第2液体120などと反応しない材料が用いられうる。フィルターは、例えば、ガラス繊維濾紙、ポリプロピレン不織布、ポリエチレン不織布、金属リチウムと反応しない金属メッシュ、など、であってもよい。
 以上の構成によれば、第2収容部521の内部において、第2液体120の流動とともに、第2活物質320の流動が生じても、第2活物質320が第2収容部521から流出することを防止できる。
 図3に示される例では、第2収容部521に収容されている第2液体120は、第2透過抑制部522と配管523とを通過して、正極室620に、供給される。
 これにより、第2液体120に溶解している第2電極側メディエータ121は、第2電極220により、酸化または還元される。
 その後、酸化または還元された第2電極側メディエータ121が溶解した第2液体120は、配管524とポンプ525とを通過して、第2収容部521に、供給される。
 これにより、第2液体120に溶解している第2電極側メディエータ121が、第2活物質320により、酸化または還元される。
 なお、第2液体120の循環の制御は、例えば、ポンプ525により行われてもよい。すなわち、ポンプ525により、適宜、第2液体120の供給の開始、または、供給の停止、または、供給量などの調整、が行われる。
 もしくは、第2液体120の循環の制御は、ポンプ525とは異なる別の手段(例えば、バルブなど)により、行われてもよい。
 <充放電プロセスの説明>
 実施の形態1におけるフロー電池1000の充放電プロセスが、以下に、説明される。
 なお、具体的に、下記の構成である動作例が例示されながら、充放電プロセスが説明される。
 すなわち、本動作例では、第1電極210は、負極であり、ステンレス鋼であるとする。
 また、本動作例では、第1液体110は、縮合芳香族化合物が溶解したエーテル溶液であるとする。
 また、本動作例では、縮合芳香族化合物は、フェナントレン(以下、PNTと表記される)であるとする。
 また、本動作例では、第2電極220は、正極であり、ステンレス鋼であるとする。
 また、本動作例では、第2液体120は、第2電極側メディエータ121が溶解したエーテル溶液であるとする。
 また、本動作例では、第2電極側メディエータ121は、テトラチアフルバレン(以下、TTFと表記される)であるとする。
 また、本動作例では、第2活物質320は、リン酸鉄リチウム(LiFePO)であるとする。
 また、本動作例では、隔離部400は、リチウムイオン導電性の固体電解質膜であるとする。
 また、本動作例では、第1液体110(縮合芳香族化合物が溶解したエーテル溶液)が溶解できるリチウム量を超えるリチウムを正極側に持たせる。このリチウム量が電池容量を支配するように設計する。
 [充電プロセスの説明]
 まず、充電反応が、説明される。
 第1電極210と第2電極220との間に、電圧が印加されることにより、充電が行われる。
 (正極側の反応)
 電圧の印加により、正極である第2電極220では、第2電極側メディエータ121の酸化反応が起こる。すなわち、第2電極220の表面において、第2電極側メディエータ121が酸化される。これにより、第2電極220からフロー電池の外部に電子が放出される。
 例えば、本動作例では、下記の反応が生じる。
 TTF → TTF + e
 TTF → TTF2+ + e
 第2循環機構520により、第2電極220により酸化された第2電極側メディエータ121が、第2活物質320が設けられた場所まで、移動(供給)させられる。
 このとき、第2電極220上において酸化された第2電極側メディエータ121は、第2活物質320により還元される。すなわち、第2活物質320は、第2電極側メディエータ121によって、酸化される。これにより、第2活物質320はリチウムを放出する。
 例えば、本動作例では、下記の反応が生じる。
 LiFePO + TTF2+ → FePO + Li + TTF
 第2循環機構520により、第2活物質320により還元された第2電極側メディエータ121が、第2電極220が設けられた場所まで、移動(供給)させられる。
 このとき、第2電極220の表面において、第2電極側メディエータ121が酸化される。
 例えば、本動作例では、下記の反応が生じる。
 TTF → TTF2+ + e
 なお、発生したリチウムイオン(Li)の一部は、隔離部400を通じて、第1液体110に移動しうる。
 放電状態で電池を組み立てた場合、リチウムは正極側に存在する。上述のように、正極が酸化されることで引き抜かれたリチウムは、隔膜を通して、負極側に泳動する。
 以上のように、第2電極側メディエータ121は、循環を含めたトータル反応で見ると、変化していない。
 一方で、第2電極220と離れた場所に位置する第2活物質320が、充電状態となる。
 完全充電状態では、第2液体120にはTTF2+が存在し、第2活物質320はFePOとなる。このとき、充電電位は、TTF2+への酸化電位で決定される。
 (負極側の反応)
 電圧の印加により、負極である第1電極210にフロー電池の外部から電子が供給される。これにより、第1電極210上で電子を受け取ったリチウムイオンは、リチウム原子となる。
 例えば、本動作例では、下記の反応が生じる。
 Li + e → Li
 しかし、当該リチウム原子は、その周りに存在する第1液体110に溶解する。すなわち、第1電極210上では、縮合芳香族化合物の還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 Li → Li + e
 PNT + Li + e → PNT・Li
 さらに充電が進むと、第1液体110中のリチウム濃度が飽和状態に達する。この飽和状態で生成したリチウムは、第1液体110には溶けきれなくなる。その結果、この飽和状態で生成したリチウムは、第1電極210上に、析出リチウム粒子700として、析出する。
 例えば、本動作例では、下記の反応が生じる。
 Li + e → Li
 第1循環機構510により、第1電極210上に析出した析出リチウム粒子700が、第1収容部511まで、移動(供給)させられる。
 すなわち、第1電極210の近傍には、常に流れがある。このため、この流れに乗って、生成した析出リチウム粒子700は流出し、第1収容部511へ送られる。
 第1収容部511に送られた析出リチウム粒子700は、さらに流れに乗って、再び第1収容部511から第1電極210側へ、流出しようとする。しかし、析出リチウム粒子700は、第1収容部511の送出口に設けられた第1透過抑制部512にトラップされる。このため、析出リチウム粒子700は、第1電極210側には、送出されない。したがって、析出リチウム粒子700は、第1収容部511内に貯蔵される。
 以上の充電反応は、第2活物質320が完全充電状態に到達するまで、進行しうる。
 [放電プロセスの説明]
 次に、満充電からの放電反応が、説明される。
 満充電では、第2活物質320は、充電状態となっている。
 放電反応では、第1電極210と第2電極220との間から、電力が取り出される。
 (正極側の反応)
 電池の放電により、正極である第2電極220にフロー電池の外部から電子が供給される。これにより、第2電極220上では、第2電極側メディエータ121の還元反応が起こる。すなわち、第2電極220の表面において、第2電極側メディエータ121が還元される。
 例えば、本動作例では、下記の反応が生じる。
 TTF2+ + e → TTF
 TTF + e → TTF
 第2循環機構520により、第2電極220により還元された第2電極側メディエータ121が、第2活物質320が設けられた場所まで、移動(供給)させられる。
 このとき、第2電極220上において還元された第2電極側メディエータ121は、第2活物質320により、酸化される。すなわち、第2活物質320は、第2電極側メディエータ121により、還元される。これにより、第2活物質320は、リチウムを吸蔵する。
 例えば、本動作例では、下記の反応が生じる。
 FePO + Li + TTF → LiFePO + TTF
 第2循環機構520により、第2活物質320により酸化された第2電極側メディエータ121が、第2電極220が設けられた場所まで、移動(供給)させられる。
 このとき、第2電極220の表面において、第2電極側メディエータ121が還元される。
 例えば、本動作例では、下記の反応が生じる。
 TTF + e → TTF
 なお、リチウムイオン(Li)の一部は、隔離部400を通じて、第1液体110から供給されうる。
 以上のように、第2電極側メディエータ121は、循環を含めたトータル反応で見ると、変化していない。
 一方で、第2電極220と離れた場所に位置する第2活物質320が、放電状態となる。
 完全放電状態では、第2液体120にはTTFが存在し、第2活物質320はLiFePOとなる。このとき、放電電位は、TTFへの還元電位で決定される。
 (負極側の反応)
 電池の放電により、負極である第1電極210上では、縮合芳香族化合物の酸化反応が起こる。これにより、第1電極210からフロー電池の外部に電子が放出される。
 例えば、本動作例では、下記の反応が生じる。
 PNT・Li → PNT + Li + e
 すなわち、放電時においては、第1液体110に溶解したリチウムが放電する。これにより、第1液体110に溶解しているリチウム量は、減少する。
 第1循環機構510により、第1電極210により酸化された縮合芳香族化合物が、第1収容部511まで、移動(供給)させられる。
 第1収容部511に貯蔵されている析出リチウム粒子700は、第1電極210により酸化された縮合芳香族化合物が溶解した第1液体110に、溶解する。すなわち、第1収容部511では、縮合芳香族化合物の還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 Li → Li + e
 PNT + Li + e → PNT・Li
 このように、第1収容部511内には、過剰に、析出リチウム粒子700が存在する。このため、第1電極210において第1液体110中のリチウム量が減少しても、すぐに、その減少分のリチウム量は、第1収容部511に貯蔵されている析出リチウム粒子700が第1液体110に溶解することで、補充される。
 第1循環機構510により、第1収容部511において還元された縮合芳香族化合物が、第1電極210が設けられた場所まで、移動(供給)させられる。これにより、縮合芳香族化合物の酸化反応が、再度、起こる。
 例えば、本動作例では、下記の反応が生じる。
 PNT・Li → PNT + Li + e
 以上のように、放電末期まで、常に、第1液体110中のリチウム量は飽和状態に保たれる。このため、安定した放電が可能となる。
 以上の放電反応は、第2活物質320が完全放電状態に到達するまで、進行しうる。
 (実施の形態3)
 以下、実施の形態3が説明される。なお、上述の実施の形態1または2と重複する説明は、適宜、省略される。
 図4は、縮合芳香族化合物の電位の測定結果を示す図である。
 2×2cmの銅箔をポリプロピレン製微多孔性セパレータで包んだものの全体を、多量のリチウム金属箔で包んだ。これに、銅箔とリチウム金属にタブを取り付けた。その後、これに、ラミネート外装を取り付けた。これに、図4とに示される各モル濃度(M)で縮合芳香族化合物を溶かした2MeTHFを注液した後、ラミネート外装を熱融着して密閉した。以上により、縮合芳香族化合物ごとに電位測定用セルを作製した。図4とには、この電位測定用セルを用いてリチウム金属基準で測定された電位(Vvs.Li/Li)が示されている。なお、この測定ではエーテルとして2MeTHFを使用したが、他のエーテルも同様に使用可能である。
 実施の形態3におけるフロー電池は、上述の実施の形態1または2におけるフロー電池の構成に加えて、下記の構成を備える。
 すなわち、実施の形態3におけるフロー電池においては、縮合芳香族化合物は、フェナントレン、ビフェニル、O-ターフェニル、trans-スティルベン、トリフェニレン、アントラセン、ブチロフェノン、バレロフェノン、アセナフテン、アセナフチレン、フルオランテン、ベンジル、からなる群より選ばれる少なくとも1種である。
 以上の構成によれば、電位的に卑な性質を有する縮合芳香族化合物が溶解した第1液体110を実現できる。縮合芳香族化合物を含む溶液(例えば、エーテル溶液)は、リチウム(例えば、リチウム金属)を溶解する能力を有する。リチウムは、電子を離して、カチオンとなり易い。このため、溶液中の縮合芳香族化合物に電子を渡して、カチオンとなり、当該溶液に溶解する。このとき、電子を受け取った縮合芳香族化合物は電子と溶媒和する。電子と溶媒和することで、縮合芳香族化合物は、アニオンとして振る舞う。このため、縮合芳香族化合物を含む溶液そのものがイオン導電性を有する。ここで、縮合芳香族化合物を含む溶液中には、Liカチオンと電子が当量存在する。このため、縮合芳香族化合物を含む溶液自体には、還元性の強い(言い換えれば、電位的に卑な)性質を持たせることができる。
 (実施の形態4)
 以下、実施の形態4が説明される。なお、上述の実施の形態1から3のいずれかと重複する説明は、適宜、省略される。
 実施の形態4におけるフロー電池は、上述の実施の形態1から3のいずれかにおけるフロー電池の構成に加えて、下記の構成を備える。
 すなわち、実施の形態4におけるフロー電池は、第1液体110と、第1電極210と、第2液体120と、第2電極220と、電解質塩と、を備える。
 第1液体110は、縮合芳香族化合物が溶解した液体である。
 第1電極210は、第1液体110に浸漬される電極である。
 第2電極220は、第1電極210の対極である。第2電極220は、第2液体120に浸漬される電極である。
 電解質塩は、第1液体110と第2液体120とのうちの少なくとも一方に溶解している。
 第1液体110における電解質塩の濃度は、第1液体110における縮合芳香族化合物の濃度以下である。
 以上の構成によれば、高いエネルギー密度のフロー電池を実現できる。すなわち、第1液体110において電解質塩の濃度を縮合芳香族化合物の濃度以下に設定することで、縮合芳香族化合物の有する平衡電位を、より維持することができる。言い換えれば、縮合芳香族化合物の有する平衡電位の大幅な上昇(電解質塩に起因する上昇)を、抑制できる。これにより、縮合芳香族化合物の平衡電位が第2電極220側の平衡電位よりも高くなってしまうことを、抑制できる。
 また、以上の構成によれば、第1液体110と第2液体120とのうちの少なくとも一方である液体に電解質塩を溶解させることで、当該液体のイオン伝導性を高めることができる。
 なお、実施の形態4においては、第1液体110における電解質塩の濃度は、第1液体110における縮合芳香族化合物の濃度よりも小さくてもよい。
 以上の構成によれば、縮合芳香族化合物の有する平衡電位を、より維持することができる。言い換えれば、縮合芳香族化合物の有する平衡電位の大幅な上昇(電解質塩に起因する上昇)を、より抑制できる。この結果、より高いエネルギー密度のフロー電池を実現できる。
 なお、実施の形態4におけるフロー電池は、隔離部400を、さらに備えてもよい。
 隔離部400は、第1電極210および第1液体110と第2電極220および第2液体120との間を隔離する。
 このとき、第1液体110における電解質塩の濃度は、第2液体120における電解質塩の濃度よりも、低くてもよい。
 以上の構成によれば、縮合芳香族化合物の有する平衡電位を、より維持することができる(平衡電位の変動を、より低減できる)。このため、高い電池電圧(放電電圧)を有するフロー電池を実現できる。また、高いエネルギー密度のフロー電池を実現できる。
 なお、実施の形態4においては、電解質塩は、第2液体120に溶解していてもよい。このとき、電解質塩は、第1液体110に溶解していなくてもよい。すなわち、第1液体110における電解質塩の濃度は、0Mであってもよい。
 以上の構成によれば、縮合芳香族化合物の有する平衡電位を、より維持することができる(平衡電位の変動を、より低減できる)。このため、より高い電池電圧(放電電圧)を有するフロー電池を実現できる。また、より高いエネルギー密度のフロー電池を実現できる。
 なお、実施の形態4においては、第1電極210は負極であり、かつ、第2電極220は正極であってもよい。
 なお、実施の形態4においては、電解質塩は、リチウム塩であってもよい。当該リチウム塩としては、LiBF、LiSbF、LiAsF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiN(SOF)、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 なお、実施の形態4においては、電解質塩は、LiBF、LiN(SOCF、LiN(SOF)、LiCFSO、からなる群より選ばれる少なくとも1つであってもよい。
 図5と図6と図7と図8は、ビフェニル溶液の電位の測定結果を示す図である。
 2-メチルテトラヒドロフラン(2MeTHF)溶液に、縮合芳香族化合物であるビフェニルと電解質塩とを、各図に示されるモル濃度(M)で、それぞれ溶解させて、各サンプルを準備した。図5に示されるサンプルおいては、電解質塩として、LiBFが用いられた。図6に示されるサンプルおいては、電解質塩として、LiN(SOCFが用いられた。図7に示されるサンプルおいては、電解質塩として、LiN(SOF)が用いられた。図8に示されるサンプルおいては、電解質塩として、LiCFSOが用いられた。これらの各サンプルを注液した電位測定用セルを作製して、それぞれの電位を測定した。各図には、リチウム金属基準で測定された電位(Vvs.Li/Li)が示されている。
 図5~図8に示されるように、電解質塩の濃度がビフェニルの濃度よりも大きい場合には、電解質塩濃度が増えるほど、金属リチウム電位に対するビフェニルの平衡電位は、上昇することがわかった。
 一方で、電解質塩の濃度がビフェニルの濃度以下である場合には、ビフェニルの平衡電位の大幅な上昇は、抑制されることがわかった。例えば、電解質塩の濃度がビフェニルの濃度以下である場合には、ビフェニルの平衡電位を、0.2Vvs.Li/Li以下に、維持することができる。
 図9は、trans-スティルベン溶液の電位の測定結果を示す図である。
 2-メチルテトラヒドロフラン(2MeTHF)溶液に、縮合芳香族化合物であるtrans-スティルベンと電解質塩であるLiBFとを、図9に示されるモル濃度(M)で、それぞれ溶解させて、各サンプルを準備した。これらの各サンプルを注液した電位測定用セルを作製して、それぞれの電位を測定した。図9には、リチウム金属基準で測定された電位(Vvs.Li/Li)が示されている。
 図9に示されるように、電解質塩の濃度がtrans-スティルベンの濃度よりも大きい場合には、電解質塩濃度が増えるほど、金属リチウム電位に対するtrans-スティルベンの平衡電位は、上昇することがわかった。
 一方で、電解質塩の濃度がtrans-スティルベンの濃度以下である場合には、trans-スティルベンの平衡電位の大幅な上昇は、抑制されることがわかった。例えば、電解質塩の濃度がtrans-スティルベンの濃度以下である場合には、trans-スティルベンの平衡電位を、0.2~0.6Vvs.Li/Liの範囲に、維持することができる。
 (実施の形態5)
 以下、実施の形態5が説明される。なお、上述の実施の形態1から4のいずれかと重複する説明は、適宜、省略される。
 実施の形態5におけるフロー電池は、上述の実施の形態1から3のいずれかにおけるフロー電池の構成に加えて、下記の構成を備える。
 すなわち、実施の形態5におけるフロー電池においては、第1液体110は、縮合芳香族化合物と電解質塩とが溶解した液体である。
 第1液体110に溶解している電解質塩は、LiPFである。
 以上の構成によれば、高いエネルギー密度のフロー電池を実現できる。すなわち、第1液体110において電解質塩をLiPFとすることで、縮合芳香族化合物の濃度に対して電解質塩濃度を任意に設定しても、縮合芳香族化合物の有する平衡電位を、維持することができる。言い換えれば、縮合芳香族化合物の有する平衡電位の大幅な上昇(電解質塩に起因する上昇)を抑制しながら、十分な量のLiPFの添加によるイオン伝導性の向上を実現できる。これにより、イオン伝導性を高めながら、縮合芳香族化合物の平衡電位が第2電極220側の平衡電位よりも高くなってしまうことを、抑制できる。
 なお、実施の形態5におけるフロー電池は、第2液体120と、第2電極220と、をさらに備えてもよい。
 第2電極220は、第1電極210の対極である。第2電極220は、第2液体120に浸漬される電極である。
 このとき、電解質塩であるLiPFは、第2液体120に溶解していてもよい。
 以上の構成によれば、第1液体110と第2液体120とのうちの少なくとも一方である液体に電解質塩としてLiPFを溶解させることで、当該液体のイオン伝導性を高めることができる。
 なお、実施の形態5におけるフロー電池は、隔離部400を、さらに備えてもよい。隔離部400は、第1電極210および第1液体110と第2電極220および第2液体120との間を隔離する。
 以上の構成によれば、縮合芳香族化合物の有する平衡電位を、より維持することができる(平衡電位の変動を、より低減できる)。このため、より高い電池電圧(放電電圧)を有するフロー電池を実現できる。また、より高いエネルギー密度のフロー電池を実現できる。
 なお、実施の形態5においては、第1電極210は負極であり、かつ、第2電極220は正極であってもよい。
 図10は、ビフェニル溶液の電位の測定結果を示す図である。
 2-メチルテトラヒドロフラン(2MeTHF)溶液に、縮合芳香族化合物であるビフェニルと電解質塩であるLiPFとを、図10に示されるモル濃度(M)で、それぞれ溶解させて、各サンプルを準備した。これらの各サンプルを注液した電位測定用セルを作製して、それぞれの電位を測定した。図10には、リチウム金属基準で測定された電位(Vvs.Li/Li)が示されている。図10に示されるように、電解質塩LiPF濃度がビフェニルの濃度よりも大きい場合(および、小さい場合)でも、金属リチウム電位に対するビフェニルの平衡電位は、0.2Vvs.Li/Li以下に、維持することができる。
 図11は、trans-スティルベン溶液の電位の測定結果を示す図である。
 2-メチルテトラヒドロフラン(2MeTHF)溶液に、縮合芳香族化合物であるtrans-スティルベンと電解質塩であるLiPF6とを、図11に示されるモル濃度(M)で、それぞれ溶解させて、各サンプルを準備した。これらの各サンプルを注液した電位測定用セルを作製して、それぞれの電位を測定した。図11には、リチウム金属基準で測定された電位(Vvs.Li/Li)が示されている。図11に示されるように、電解質塩LiPF濃度がtrans-スティルベンの濃度よりも大きい場合(および、小さい場合)でも、金属リチウム電位に対するtrans-スティルベンの平衡電位は、0.3Vvs.Li/Liの前後に、維持することができる。
 (実施の形態6)
 以下、実施の形態6が説明される。なお、上述の実施の形態1から5のいずれかと重複する説明は、適宜、省略される。
 実施の形態6におけるフロー電池は、上述の実施の形態1から5のいずれかにおけるフロー電池の構成に加えて、下記の構成を備える。
 すなわち、実施の形態6におけるフロー電池においては、第1液体110は、テトラヒドロフラン、2メチル-テトラヒドロフラン、1,2ジメトキシエタン、2,5-ジメチルテトラヒドロフラン、ジエトキシエタン、ジブトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、3メチルスルホラン、テトラヒドロフルフリルアミン、からなる群より選ばれる少なくとも1種に、縮合芳香族化合物を溶解させたものである。
 以上の構成によれば、縮合芳香族化合物と対になってリチウムから放出される溶媒和電子を安定化させる作用を有しながら、リチウム(例えば、リチウム金属)を溶解することができる第1液体110を実現できる。
 図12は、第1液体のサンプルを示す図である。
 図12に示される各サンプル(溶媒)に、縮合芳香族化合物としてビフェニルを用い0.1Mの濃度で溶解させ調整した各溶液に、リチウム金属片を投入した。それぞれの溶液について、静置後に、目視で、リチウム金属の溶解性を確認した。
 リチウム金属が溶媒和電子を溶液に渡してリチウムイオンとなって溶解すると、無色であった溶液は有色に変化する。このように、リチウム金属が消滅することにより、リチウム金属の溶解の有無を判断できる。
 図12において、リチウム金属の溶解が確認できたサンプルについては、「○」が表記されている。また、図12において、リチウム金属の溶解が確認できなかったサンプルについては、「×」が表記されている。
 図13は、第1液体の別のサンプルを示す図である。
 図13に示される各サンプルは、図13に示される溶媒Xと溶媒Yとを各体積混合比で混合したものである。
 図13に示される各サンプルについても、上述の図12に示されるサンプルと同じ実験を行い、リチウム金属の溶解の有無を確認した。
 図12に示されるように、ジブトキシメタン、アニソール、フェネトールは、単独で用いた場合には、リチウム金属の溶解能を示さなかった。しかし、図13に示されるように、ジブトキシエタンと混合することで、ジブトキシメタン、アニソール、フェネトールは、リチウム金属の溶解能を示すようになった。
 このように、リチウム金属の溶解能を示す溶媒を共存させることで、リチウム金属の溶解能を示さない溶媒にも、リチウム金属の溶解能を付与することができることが確認された。
 なお、上述の実施の形態1から6のそれぞれに記載の構成は、適宜、互いに、組み合わされてもよい。
 本開示のフロー電池は、例えば、蓄電デバイスとして好適に使用できる。
 110 第1液体
 120 第2液体
 121 第2電極側メディエータ
 210 第1電極
 220 第2電極
 320 第2活物質
 400 隔離部
 510 第1循環機構
 511 第1収容部
 512 第1透過抑制部
 520 第2循環機構
 521 第2収容部
 522 第2透過抑制部
 600 電気化学反応部
 610 負極室
 620 正極室
 1000,2000 フロー電池

Claims (17)

  1.  縮合芳香族化合物とリチウムとが溶解した第1液体と、
     前記第1液体に浸漬される第1電極と、
     第1収容部と第1透過抑制部とを備える第1循環機構と、
    を備え、
     前記縮合芳香族化合物が溶解した前記第1液体は、前記リチウムの溶媒和電子を放出させ、前記リチウムをカチオンとして溶解する性質を有し、
     前記第1電極上において、前記第1液体に溶解した前記リチウムが析出することで、析出リチウム粒子が発生し、
     前記第1循環機構は、前記第1電極と前記第1収容部との間で、前記第1液体を循環させ、
     前記第1循環機構は、前記第1電極上に発生した前記析出リチウム粒子を、前記第1収容部に、移動させ、
     前記第1透過抑制部は、前記第1液体が前記第1収容部から前記第1電極に流出する経路に、設けられ、
     前記第1透過抑制部は、前記析出リチウム粒子の透過を抑制する、
    フロー電池。
  2.  充電時においては、前記縮合芳香族化合物は前記第1電極上において還元され、かつ、前記第1電極上において前記第1液体に溶解した前記リチウムが析出することで前記析出リチウム粒子が発生し、
     放電時においては、前記縮合芳香族化合物は前記第1電極上において酸化され、かつ、前記析出リチウム粒子が前記リチウムとして前記第1液体に溶解する、
    請求項1に記載のフロー電池。
  3.  前記第1透過抑制部は、前記析出リチウム粒子を濾過するフィルターであり、
     前記フィルターは、ガラス繊維濾紙、ポリプロピレン不織布、ポリエチレン不織布、前記リチウムと反応しない金属メッシュ、のうちの少なくとも1つである、
    請求項1または2に記載のフロー電池。
  4.  前記縮合芳香族化合物は、フェナントレン、ビフェニル、O-ターフェニル、trans-スティルベン、トリフェニレン、アントラセン、ブチロフェノン、バレロフェノン、アセナフテン、アセナフチレン、フルオランテン、ベンジル、からなる群より選ばれる少なくとも1種である、請求項1から3のいずれかに記載のフロー電池。
  5.  電解質塩をさらに備え、
     前記電解質塩は、前記第1液体と前記第2液体とのうちの少なくとも一方に溶解しており、
     前記第1液体における前記電解質塩の濃度は、前記第1液体における前記縮合芳香族化合物の濃度以下である、
    請求項1から4のいずれかに記載のフロー電池。
  6.  前記第1液体における前記電解質塩の濃度は、前記第2液体における前記電解質塩の濃度よりも、低い、
    請求項5に記載のフロー電池。
  7.  前記電解質塩は、前記第2液体に溶解しており、前記第1液体に溶解していない、
    請求項6に記載のフロー電池。
  8.  前記電解質塩は、LiBF、LiN(SOCF、LiN(SOF)、LiCFSO、からなる群より選ばれる少なくとも1つである、
    請求項5から7のいずれかに記載のフロー電池。
  9.  前記第1液体には、電解質塩が溶解し、
     前記電解質塩は、LiPFである、
    請求項1から8のいずれかに記載のフロー電池。
  10.  前記第1液体は、テトラヒドロフラン、2メチル-テトラヒドロフラン、1,2ジメトキシエタン、2,5-ジメチルテトラヒドロフラン、ジエトキシエタン、ジブトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、3メチルスルホラン、テトラヒドロフルフリルアミン、からなる群より選ばれる少なくとも1種を含む、
    請求項1から9のいずれかに記載のフロー電池。
  11.  第2電極側メディエータが溶解した第2液体と、
     前記第1電極の対極であり、前記第2液体に浸漬される第2電極と、
     前記第2液体に浸漬される第2活物質と、
     前記第1電極および前記第1液体と前記第2電極および前記第2液体との間を隔離する隔離部と、
    をさらに備え、
     前記第2電極側メディエータは、前記第2電極により、酸化および還元され、
     前記第2電極側メディエータは、前記第2活物質により、酸化および還元される、
    請求項1から10のいずれかに記載のフロー電池。
  12.  前記第2液体には、リチウムが溶解され、
     前記第2活物質は、前記リチウムを吸蔵および放出する性質を有する物質であり、
     充電時においては、前記第2電極側メディエータは前記第2電極上において酸化され、かつ、前記第2電極上において酸化された前記第2電極側メディエータは前記第2活物質により還元されるとともに前記第2活物質は前記リチウムを放出し、
     放電時においては、前記第2電極側メディエータは前記第2電極上において還元され、かつ、前記第2電極上において還元された前記第2電極側メディエータは前記第2活物質により酸化されるとともに前記第2活物質は前記リチウムを吸蔵する、
    請求項11に記載のフロー電池。
  13.  前記第2電極側メディエータは、テトラチアフルバレンである、
    請求項11または12に記載のフロー電池。
  14.  前記第2活物質は、リン酸鉄リチウムである、
    請求項11から13のいずれかに記載のフロー電池。
  15.  第2循環機構をさらに備え、
     前記第2循環機構は、前記第2電極と前記第2活物質との間で、前記第2液体を循環させる、
    請求項11から14のいずれかに記載のフロー電池。
  16.  前記第2循環機構は、第2収容部を備え、
     前記第2活物質と前記第2液体とは、前記第2収容部に、収容され、
     前記第2循環機構は、前記第2電極と前記第2収容部との間で、前記第2液体を循環させ、
     前記第2収容部において前記第2活物質と前記第2液体とが接触することにより、前記第2電極側メディエータは、前記第2活物質により、酸化および還元される、
    請求項15に記載のフロー電池。
  17.  前記第2循環機構は、前記第2活物質の透過を抑制する第2透過抑制部を備え、
     前記第2透過抑制部は、前記第2液体が前記第2収容部から前記第2電極に流出する経路に、設けられる、
    請求項16に記載のフロー電池。
PCT/JP2017/022302 2016-07-19 2017-06-16 フロー電池 WO2018016247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018528453A JP6895646B2 (ja) 2016-07-19 2017-06-16 フロー電池
CN201780005786.8A CN108475803B (zh) 2016-07-19 2017-06-16 液流电池
EP17830767.4A EP3490046A4 (en) 2016-07-19 2017-06-16 FLOW BATTERY
US16/167,531 US11018364B2 (en) 2016-07-19 2018-10-23 Flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141441 2016-07-19
JP2016141441 2016-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/167,531 Continuation US11018364B2 (en) 2016-07-19 2018-10-23 Flow battery

Publications (1)

Publication Number Publication Date
WO2018016247A1 true WO2018016247A1 (ja) 2018-01-25

Family

ID=60992115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022302 WO2018016247A1 (ja) 2016-07-19 2017-06-16 フロー電池

Country Status (5)

Country Link
US (1) US11018364B2 (ja)
EP (1) EP3490046A4 (ja)
JP (1) JP6895646B2 (ja)
CN (1) CN108475803B (ja)
WO (1) WO2018016247A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220845A1 (ja) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 フロー電池
WO2020235121A1 (ja) * 2019-05-20 2020-11-26 パナソニックIpマネジメント株式会社 フロー電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261923B (zh) * 2018-11-30 2021-07-16 北京好风光储能技术有限公司 一种圆柱形电池组系统及其安全运行、回收方法
GB201902695D0 (en) * 2019-02-28 2019-04-17 Imperial Innovations Ltd Redox flow cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417441B2 (ja) 1971-12-29 1979-06-29
JP2013037856A (ja) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP5417441B2 (ja) * 2009-06-09 2014-02-12 シャープ株式会社 レドックスフロー電池
JP2015049969A (ja) * 2013-08-30 2015-03-16 富士重工業株式会社 フロー蓄電デバイスの再生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048383A1 (en) * 2011-09-28 2013-04-04 United Technologies Corporation Flow battery with two-phase storage
US8889300B2 (en) * 2012-02-27 2014-11-18 California Institute Of Technology Lithium-based high energy density flow batteries
US9362583B2 (en) * 2012-12-13 2016-06-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
CN104716372A (zh) * 2013-12-13 2015-06-17 中国人民解放军63971部队 一种水系锂离子液流电池
US9859583B2 (en) * 2014-03-04 2018-01-02 National Technology & Engineering Solutions Of Sandia, Llc Polyarene mediators for mediated redox flow battery
US9548509B2 (en) * 2014-03-25 2017-01-17 Sandia Corporation Polyoxometalate active charge-transfer material for mediated redox flow battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417441B2 (ja) 1971-12-29 1979-06-29
JP5417441B2 (ja) * 2009-06-09 2014-02-12 シャープ株式会社 レドックスフロー電池
JP2013037856A (ja) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2015049969A (ja) * 2013-08-30 2015-03-16 富士重工業株式会社 フロー蓄電デバイスの再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490046A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220845A1 (ja) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 フロー電池
CN110731026A (zh) * 2018-05-17 2020-01-24 松下知识产权经营株式会社 液流电池
US11258087B2 (en) 2018-05-17 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous flow battery with lithium ion conductive film
WO2020235121A1 (ja) * 2019-05-20 2020-11-26 パナソニックIpマネジメント株式会社 フロー電池
JP7008193B2 (ja) 2019-05-20 2022-01-25 パナソニックIpマネジメント株式会社 フロー電池

Also Published As

Publication number Publication date
EP3490046A4 (en) 2019-08-07
US11018364B2 (en) 2021-05-25
EP3490046A1 (en) 2019-05-29
JP6895646B2 (ja) 2021-06-30
CN108475803B (zh) 2022-03-29
CN108475803A (zh) 2018-08-31
US20190058207A1 (en) 2019-02-21
JPWO2018016247A1 (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
JP7022952B2 (ja) フロー電池
CN107251299B (zh) 氧化还原液流电池
US10873101B2 (en) Flow battery
US10547077B2 (en) Flow battery
US11018364B2 (en) Flow battery
JP2018018816A (ja) フロー電池
JP2018098180A (ja) フロー電池
JP6830215B2 (ja) フロー電池
US11322769B2 (en) Flow battery
JP2019003875A (ja) フロー電池
JP7008193B2 (ja) フロー電池
JP7122698B2 (ja) フロー電池
US11094957B2 (en) Flow battery
EP3806214A1 (en) Flow battery
WO2020136947A1 (ja) フロー電池
JP2018098178A (ja) フロー電池
WO2019220769A1 (ja) フロー電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528453

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830767

Country of ref document: EP

Effective date: 20190219