WO2018016201A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2018016201A1
WO2018016201A1 PCT/JP2017/020610 JP2017020610W WO2018016201A1 WO 2018016201 A1 WO2018016201 A1 WO 2018016201A1 JP 2017020610 W JP2017020610 W JP 2017020610W WO 2018016201 A1 WO2018016201 A1 WO 2018016201A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
trench
semiconductor device
crystal
trenches
Prior art date
Application number
PCT/JP2017/020610
Other languages
English (en)
French (fr)
Inventor
小杉 亮治
世陽 紀
望月 和浩
河田 泰之
英典 纐纈
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US16/308,913 priority Critical patent/US10741648B2/en
Priority to CN201780040949.6A priority patent/CN109417096B/zh
Priority to DE112017003089.7T priority patent/DE112017003089T5/de
Publication of WO2018016201A1 publication Critical patent/WO2018016201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and can be suitably used for a semiconductor device including a power semiconductor element typified by a power MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor) and a manufacturing method thereof.
  • a power semiconductor element typified by a power MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor) and a manufacturing method thereof.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • Non-patent Document 1 JP2013-138171A (Patent Document 1) and Ryoji1Kosugi et.al., Development of SiC super-junction (SJ) device by deep trench-filling epitaxial growth, Materials Science Forum Vols. 740-742 (2013) pp 785-788 (Non-patent Document 1).
  • Patent Document 1 in the cell region, the n-type charge amount and the p-type charge amount in the n-type column region and the p-type column region constituting the super junction structure are made equal, and in the peripheral region, the cell region A semiconductor device is described that includes a charge balance changing region in which the n-type charge amount in the super junction structure is gradually increased from the p-type charge amount as it goes toward the outer peripheral direction.
  • Non-Patent Document 1 reports an example in which a trench having a width of 2.7 ⁇ m and a depth of 7 ⁇ m formed on a 4H-SiC substrate is backfilled with a SiC layer without generation of voids on the premise of manufacturing a super junction structure. ing.
  • the power semiconductor element having a super junction structure has an advantage that the on-resistance can be reduced while ensuring a high breakdown voltage.
  • One method of forming a super junction structure is a trench backfilling method (also referred to as a trench fill method). Since the trench backfilling method can produce a super junction structure having a deep trench, it is considered to be effective for reducing the on-resistance in a wide breakdown voltage range. However, a high aspect ratio trench is required to realize a high breakdown voltage power semiconductor device. However, in the trench backfill method, it is not easy to fill the high aspect ratio trench with a buried epitaxial growth method with a high yield. There has been a problem that the manufacturing yield of a semiconductor device including a power semiconductor element is low.
  • Non-patent Document 1 the reproducibility of the success of backfilling is low, and the cause is unknown.
  • a semiconductor device includes a single crystal substrate having a crystal main surface inclined with respect to a reference crystal direction that is a predetermined crystal direction, and extends in a first direction along the crystal main surface of the substrate.
  • a plurality of trenches provided in the substrate, spaced apart from each other in a second direction orthogonal to the first direction along the crystal main surface, and provided in the trench and having the same crystal structure as the substrate
  • One example of a semiconductor device manufacturing method as another representative means is as follows. That is, in a method for manufacturing a semiconductor device, a crystal main surface inclined with respect to a reference crystal direction which is a predetermined crystal direction, and a reference mark provided with a first angle error with respect to the reference crystal direction A single-crystal substrate is provided, extends in a first direction along the crystal main surface of the substrate, and is separated from each other in a second direction perpendicular to the first direction along the crystal main surface of the substrate In order to form a plurality of trenches in the substrate, a photomask for forming an etching mask pattern on the substrate is prepared, and the etching pattern is formed on the substrate using the photomask, Forming the plurality of trenches in the substrate using an etching pattern, and filling the inside of the plurality of trenches with a crystal layer having the same crystal structure as the substrate by a crystal growth method; The angle error between the reference crystal direction and the first direction is within ⁇ ⁇ , where ⁇ is
  • the manufacturing yield and reliability of a semiconductor device including a power semiconductor element can be improved.
  • FIG. 5 is a plan view showing a first example of a layout of a plurality of semiconductor chips formed on the SiC single crystal wafer according to the first embodiment.
  • FIG. 6 is a plan view showing a second example of the layout of a plurality of semiconductor chips formed on the SiC single crystal wafer according to the first embodiment.
  • FIG. FIG. 6 is a schematic diagram illustrating an example of a backfill mode of a plurality of trenches formed in the semiconductor device according to the first embodiment.
  • 1 is a plan view showing a configuration of a semiconductor device according to a first embodiment.
  • FIG. 5 is a cross-sectional view (cross-sectional view taken along the line AA ′ in FIG. 4) showing the configuration of the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment.
  • FIG. FIG. 7 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 6;
  • FIG. 8 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 7;
  • FIG. 9 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 8;
  • FIG. 10 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 9;
  • FIG. 11 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 10;
  • FIG. 12 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 11;
  • FIG. 13 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 12;
  • FIG. 14 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 13;
  • FIG. 6 is a plan view showing a plurality of trenches formed in a substrate according to a second embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing an end portion of a trench formed in a substrate according to a second embodiment.
  • 10 is a plan view showing a plurality of trenches formed in a substrate according to a modification of the second embodiment.
  • FIG. It is a top view which shows the 1st comparative example of the layout of the several semiconductor chip formed in the SiC single crystal wafer which the present inventors examined before this invention.
  • HCl / SiH 4 flow ratio is a diagram illustrating an example embodiment backfill case of 33.3,50 and 66.7.
  • a buried epitaxial growth method it is a figure which shows an example of the backfilling aspect in case the pressure in the growth furnace during epitaxial growth is 10 kPa.
  • FIG. 24 is a graph showing the relationship between the inclination angle ⁇ trench of the pattern on the photomask with respect to the ⁇ 11-20> direction and the inclination angle ⁇ mesa of the SiC layer crystal-grown on the upper side surface of the trench obtained from FIG. (A), (b) and (c) are for examining the relationship between the trench dimension and the state where the crystal layer blocks the trench when the crystal layer grows obliquely from the upper side surface of the trench. It is a schematic diagram which shows a model.
  • FIG. 26 is a graph showing an allowable angle error between the extension direction of the trench and the ⁇ 11-20> direction, calculated from the model shown in FIG. 25 and Knowledge C. Graph showing the relationship between the inclination angle ⁇ trench of the pattern on the photomask with respect to the ⁇ 11-20> direction, the crystal growth rate at the bottom of the trench (upper plot in the figure), and the crystal growth rate of the mesa top (lower plot in the figure)
  • FIG. 27 is a table summarizing the angle error ⁇ between the extending direction of the trench and the ⁇ 11-20> direction obtained from the fitting curve of the crystal growth rate at the trench bottom shown in FIG. 27, and the alignment margin coefficient k calculated from the angle error ⁇ . It is. (A), (b) and (c) are the top views which show the modification of the tip shape of the trench shown in the modification of Embodiment 2 and Embodiment 2. FIG.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • substrate includes not only a substrate made of silicon carbide (SiC) single crystal or a substrate made of silicon (Si) single crystal, but also silicon carbide. This includes an epitaxial layer formed on the main surface of a substrate made of (SiC) single crystal or a substrate made of silicon (Si) single crystal.
  • the number sequence (orientation index) enclosed by brackets ⁇ > indicates the crystal orientation, and for example, in the hexagonal single crystal, it is described by four orientation indices such as the ⁇ 11-20> direction.
  • the minus sign indicates that the azimuth index immediately after is the azimuth of the negative component.
  • ⁇ 11-20> means that the azimuth index 2 is in the minus direction.
  • a number sequence (face index) enclosed in parentheses () indicates a crystal face, and for example, in a hexagonal single crystal, it is described with 4 face indices such as (0001) face.
  • the power MOSFET according to the present embodiment has a super junction structure. According to the power MOSFET having such a super junction structure, the advantages described below can be obtained.
  • the withstand voltage is secured by lowering the impurity concentration of the substrate and extending the depletion layer formed on the substrate in the off state. Therefore, in order to realize a high breakdown voltage, it is necessary to increase the thickness of the substrate having a low impurity concentration.
  • the on-resistance of the power MOSFET is increased. That is, in the power MOSFET, the improvement in breakdown voltage and the reduction in on-resistance are in a trade-off relationship.
  • a super junction structure composed of periodically arranged p-type column regions and n-type column regions is formed on a substrate.
  • the superjunction structure is usually composed of a plurality of p-type column regions formed at regular intervals on an n-type substrate and a plurality of n-type columns composed of n-type substrates between adjacent p-type column regions. It is composed of areas.
  • a depletion layer extends in the lateral direction from a pn junction formed in a boundary region between the p-type column region and the n-type column region in the off state. For this reason, even if the impurity concentration of the n-type column region, which is a current path, is increased, a depletion layer extending inward of the n-type column region sandwiched between the two boundary regions is connected and the entire n-type column region is easily depleted. Become. Thereby, since the entire n-type column region is depleted in the off state, a breakdown voltage can be ensured.
  • the impurity concentration of the n-type column region that is a current path can be increased, and the entire n-type column region can be depleted.
  • the on-resistance can be reduced while ensuring a high breakdown voltage.
  • the interval between the p-type column regions adjacent to each other is reduced to reduce the n-type column region. It is necessary to narrow the width.
  • the p-type column region is formed by a buried epitaxial growth method in a trench formed in the substrate. For this reason, the formation accuracy of the p-type column region is determined by the formation accuracy of the trench. Since the trench is generally formed by a photolithography technique and a dry etching technique, the p-type column region can be formed with high accuracy by the trench backfilling method, and the interval between the p-type column regions adjacent to each other can be increased. Can be narrowed.
  • multi-epitaxial method As another method for forming a super junction structure.
  • the p-type column region is formed by an ion implantation method.
  • multi-stage ion implantation is required, which increases the number of ion implantations.
  • the trench filling method is adopted.
  • a power MOSFET having a super junction structure formed by a trench filling method will be described.
  • a semiconductor device including a power MOSFET having a super junction structure according to the present embodiment is manufactured on a wafer-like substrate (hereinafter referred to as a SiC single crystal substrate) made of silicon carbide (SiC) single crystal. Specifically, p-type column regions and n-type column regions constituting a super junction structure are alternately arranged in an epitaxial layer formed on the main surface of the SiC single crystal substrate.
  • this SiC single crystal substrate has a (0001) plane having a main surface inclined by 4 ° in the ⁇ 11-20> direction so that the orientation flat and the ⁇ 11-20> direction are substantially parallel.
  • a SiC single crystal substrate is manufactured. Therefore, the epitaxial layer formed by the epitaxial growth method on the main surface of the SiC single crystal substrate has the same crystal structure as that of the SiC single crystal substrate.
  • the orientation flat OF direction is not parallel to the ⁇ 11-20> direction due to variations in process conditions during the manufacture of the SiC single crystal substrate SW, and the orientation flat OF direction
  • the angle error with the ⁇ 11-20> direction may be larger than ⁇ 1 °.
  • the trench DT When a plurality of trenches (also referred to as grooves) DT constituting a super junction structure are formed in each semiconductor chip SC so as to extend substantially parallel to the direction of the orientation flat OF, the trench DT
  • the angle error between the extending direction (also referred to as the longitudinal direction) and the ⁇ 11-20> direction is greater than ⁇ 1 °.
  • the angle error between the direction of the orientation flat OF and the ⁇ 11-20> direction is smaller than ⁇ 1 °, a plurality of each formed on each semiconductor chip SC.
  • the extending direction of the trench DT may deviate from the direction of the orientation flat OF due to variations in process conditions at the time of manufacture.
  • the angle error between the extending direction of the trench DT and the ⁇ 11-20> direction may be larger than ⁇ 1 °.
  • FIG. 20 is a schematic diagram for explaining an example of a backfilling mode by the buried epitaxial growth method when the angle error between the extending direction of the trench DT and the ⁇ 11-20> direction is larger than ⁇ 1 °.
  • An epitaxial layer EP is formed on the main surface of SiC single crystal substrate SW, and a plurality of trenches DT are formed in the epitaxial layer EP so as to extend in one direction.
  • the angle error between the extending direction of the trench DT and the ⁇ 11-20> direction is, for example, about ⁇ 5 °.
  • the semiconductor layer SM for example, a SiC layer grows from the bottom of the trench DT and the upper surface of the convex portion of the epitaxial layer EP, and the inside of the trench DT is refilled.
  • the growth direction of the semiconductor layer SM is gradually inclined, when the epitaxial growth progresses, the upper portion of the trench DT and both ends in the extending direction are blocked, and vacancies (also referred to as voids) VO are formed inside the trench DT. It is formed.
  • the depth of the trench DT is 5 ⁇ m or more, particularly 10 ⁇ m or more, such a problem associated with the buried epitaxial growth method appears remarkably.
  • FIGS. 23 (a) to (i) are formed on a substrate by changing the inclination angle of the extending direction with respect to the ⁇ 11-20> direction, and thereafter FIG. 5 is a cross-sectional SEM photograph of a plurality of trenches in which a crystal layer is backfilled.
  • the plurality of trenches are formed on the photomask by forming a plurality of patterns in which inclination angles with respect to the ⁇ 11-20> direction are changed, and the photomask is used to intentionally tilt with respect to the ⁇ 11-20> direction. It is formed on the substrate with a variation.
  • FIG. 23A to 23I show the inclination angle ⁇ trench with respect to the ⁇ 11-20> direction of the pattern on the photomask.
  • FIG. 23A shows “ ⁇ 2.0 °”.
  • the angle “( ⁇ 1.5 °)” shown in parentheses in FIG. 23A is an “estimated actual angle” to be described later.
  • a pattern inclined toward the ⁇ -1100> direction orthogonal to the ⁇ 11-20> direction is referred to as a positively inclined pattern, and is directed toward the direction opposite to the ⁇ -1100> direction (ie, ⁇ 1-100>).
  • An inclined pattern is called a pattern inclined to the minus side.
  • a plurality of trenches were formed in a 4H-SiC substrate that was 4 ° off in the ⁇ 11-20> direction, and then the inside of the plurality of trenches was backfilled by crystal growth of a SiC layer.
  • the substrate used in the experiment is manufactured so that the orientation flat is in the ⁇ 11-20> direction, but the angle error between the orientation flat in the specification of the substrate and the ⁇ 11-20> direction is within ⁇ 5 °. is there.
  • the trench is formed by an ICP (Inductively Coupled Plasma) etching method, and the trench has a depth of 22 ⁇ m to 25 ⁇ m and a width of 2.25 ⁇ m to 2.5 ⁇ m.
  • the dimension of the convex portion of the substrate, which is a space separating adjacent trenches, is 2.25 ⁇ m to 2.5 ⁇ m.
  • the experimental conditions not specified such as the backfill crystal growth of the SiC layer are the same as those described in ⁇ Semiconductor device manufacturing method >> in the first embodiment described later.
  • FIG. 23D substantially corresponds to the estimated actual angle of 0 °.
  • FIG. 24 shows ⁇ 11-20 of the pattern on the photomask
  • FIG. 24 is a graph showing the relationship between the inclination angle ⁇ trench with respect to the direction and the inclination angle ⁇ mesa of the SiC layer grown on the upper side surface of the trench obtained from FIG. 23. It can be seen that ⁇ trench and ⁇ mesa are in a proportional relationship approximated by a straight line. From this figure, the following findings are obtained.
  • FIGS. 25A, 25B, and 25C show that the crystal layer is inclined obliquely from the upper side surface of the trench.
  • FIG. 5 is a schematic diagram showing a model for considering the relationship between the trench dimension and the state in which the crystal layer blocks the trench when the crystal grows.
  • FIG. 25A shows a first model in which crystal growth with an inclination angle Q1 starts from an upper part h / 2 on the side surface of the trench and closes the trench with respect to a trench having a height h and a width w. ing. This corresponds to the fact that the SiC layer grows inclined from the upper half of the side surface of the trench in the experimental results shown in FIG. Therefore, the model shown in FIG. 25A is the minimum condition for avoiding the growth inhibition of the crystal layer inside the trench.
  • the maximum allowable tilt angle Q1 in the model shown in FIG. 25A is expressed by the following (Expression 1).
  • FIG. 25B shows a second model for effectively mitigating the growth inhibition of the crystal layer inside the trench. That is, in this model, a crystal layer having an inclination angle Q2 is grown from the upper part h / 2 on the side surface of the trench so that the entrance of the trench is not blocked, and the crystal growth is suppressed to about the width w / 2 of the trench. Is based on.
  • the maximum allowable tilt angle Q2 in the model shown in FIG. 25B is expressed by the following (formula 2).
  • FIG. 25C shows a further desirable third model. That is, in this model, a crystal layer having an inclination angle Q3 is grown from the upper part h / 2 on the side surface of the trench so that the entrance of the trench is not blocked, and the crystal growth is further performed with a margin w / 4 of the trench. It is based on keeping it to the extent.
  • the maximum allowable tilt angle Q3 in the model shown in FIG. 25C is expressed by the following (Equation 3).
  • the crystal layer growth angle needs to be an angle smaller than Q1 in (Equation 1) at least, preferably (Equation 2). It is desirable that the angle be smaller than Q2, and more preferably smaller than Q3 in (Equation 3).
  • FIG. 26 is a graph showing the allowable angle error between the extension direction of the trench and the ⁇ 11-20> direction calculated from the model shown in FIG. 25 and the above (knowledge C). That is, Q1 in (Equation 1), Q2 in (Equation 2), and Q3 in (Equation 3) correspond to ⁇ mesa in (Knowledge C), so that it is acceptable if the slope 13 obtained from the experimental results of FIG.
  • the angle error ⁇ with respect to the ⁇ 11-20> direction of the extending direction of the trench to be obtained is obtained as a value corresponding to ⁇ trench. Thereby, the following knowledge is obtained.
  • the angle error ⁇ between the extending direction of the trench and the ⁇ 11-20> direction is at least smaller than the following (formula 4). It is necessary to be.
  • the angle error ⁇ between the extending direction of the trench and the ⁇ 11-20> direction is preferably smaller than the following (Equation 5).
  • the angle error ⁇ between the extending direction of the trench and the ⁇ 11-20> direction is smaller than the following (Equation 6).
  • FIG. 26 shows the results of calculating the above (Formula 4), (Formula 5) and (Formula 6).
  • the vertical axis in FIG. 26 represents the angle error ⁇ with respect to the ⁇ 11-20> direction of the extension direction of the trench allowed for the three models shown in FIGS. 25 (a), (b), and (c). To do.
  • the first horizontal axis is the height h when the width w of the trench is 2 ⁇ m, and shows a range of 0 ⁇ m to 40 ⁇ m.
  • the allowable value of the angle error ⁇ decreases and does not change rapidly, and gradually decreases as the aspect ratio increases. Therefore, management of the angle error ⁇ becomes important when the aspect ratio is 5 or more.
  • the aspect ratio is 10 or more, the characteristic gradually decreases as approximated by a straight line from the curve, and the value of the angle error ⁇ itself becomes smaller. Therefore, management of the angle error ⁇ becomes more important. In other words, as an application range of the present invention, a remarkable effect can be expected when the aspect ratio is 5 or more. Further, when the aspect ratio is 10 or more, a more remarkable effect can be expected.
  • FIG. 27 summarizes the experimental results shown in FIG. FIG. 10 is a graph showing the relationship between the inclination angle ⁇ trench of the upper pattern with respect to the ⁇ 11-20> direction and the crystal growth rate of the trench bottom (upper plot in the figure). Similarly, in FIG. 27, the crystal growth rate of Mesa top (the upper surface of the convex portion of the substrate) is also shown (lower plot in the figure).
  • the mesa means a convex portion, and by forming a plurality of trenches in the substrate, the convex portion of the substrate, which is a spacer that separates adjacent trenches, is formed, which is called a mesa.
  • the curve connecting the experimental result points shown in FIG. 27 is a Gaussian fitting curve.
  • FIG. 27 shows that the crystal growth rate at the bottom of the trench is sensitive to the influence of ⁇ trench. That is, it is presumed that a mechanism that makes it difficult for the source gas for crystal growth to be supplied to the bottom of the trench works by narrowing the entrance at the top of the trench as the crystal layer grows in an inclined manner.
  • the crystal growth rate of the mesa top is a relatively gradual change with respect to ⁇ trench because the crystal growth is in the vicinity of the upper surface of the substrate and is not easily restricted by the supply of the source gas.
  • k ⁇ arctan ⁇ k ⁇ (w / h) ⁇ / 13 (Expression 7)
  • k is defined as an “alignment margin coefficient” for convenience, and k is a coefficient smaller than 2.
  • k is smaller than 2
  • oblique growth of the crystal layer shown in FIG. 23 is suppressed, and the degree of completeness of backfilling of the crystal layer in the trench is increased.
  • the width (L-width) of the ⁇ trench of the Gaussian curve is read at 50%, 80% and 90% of the height position (Level), and the angle error ⁇ is obtained by halving it.
  • the meaning of “level” is considered in the crystal growth of the trench backfill before the trench entrance is completely closed.
  • the source gas supplied for trench backfilling is considered to be distributed into the following three parts.
  • the above (a) is a target part of the present invention, and it is desirable to maximize the contribution of the source gas to this part.
  • the above (b) is a crystal growth that occurs vertically upward from the mesa top, and thus does not cause any direct harm to the backfilling of the trench bottom, but it is desirable that it be as small as possible.
  • the above (c) is a part that hinders the object of the present invention, and it is desirable to minimize the contribution of the raw material gas to this part.
  • A1 + A2 ( ⁇ ) + B1 + B2 ( ⁇ ) + C1 + C2 ( ⁇ ) const (Equation 9)
  • A1, B1, and C1 are constants, they are transferred to the right side and are combined as a new constant const ′ to obtain the following expression.
  • k ⁇ arctan ⁇ k ⁇ (w / h) ⁇ / 13
  • k is defined as an alignment margin coefficient and needs to be a value smaller than 2.
  • a semiconductor device including a power MOSFET having a super-junction structure based on the above-described knowledge leading to the present invention a semiconductor layer is reliably backfilled inside a trench by a buried epitaxial growth method. It is possible to provide a novel technical idea capable of improving the manufacturing yield and reliability.
  • FIG. 1 is a plan view showing a first example of the layout of a plurality of semiconductor chips formed on the SiC single crystal wafer according to the first embodiment.
  • FIG. 2 is a plan view showing a second example of the layout of the plurality of semiconductor chips formed on the SiC single crystal wafer according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining an example of a backfill mode of a plurality of trenches formed in the semiconductor device according to the first embodiment.
  • a semiconductor device including a power MOSFET having a super junction structure according to the first embodiment is manufactured on a wafer-like SiC single crystal substrate SW for each semiconductor chip SC.
  • an epitaxial layer having a crystal structure similar to that of SiC single crystal substrate SW is formed on the main surface of SiC single crystal substrate SW, and extends in the x direction (first direction) on this epitaxial layer.
  • the p-type column region PC and the n-type column region NC have a super junction structure that is alternately arranged in the y direction (second direction) orthogonal to the x direction along the main surface of the SiC single crystal substrate SW.
  • the SiC single crystal substrate SW is made of, for example, 4H polytype hexagonal SiC single crystal (“4H—SiC” for short).
  • the p-type column region PC is composed of a semiconductor layer (SiC layer) embedded in a plurality of trenches DT formed in the epitaxial layer and extending in the x direction and spaced apart from each other in the y direction by a buried epitaxial growth method.
  • An n-type column region NC made of an epitaxial layer is formed between p-type column regions PC adjacent to each other in the direction.
  • the semiconductor layer is an epitaxial layer, that is, a crystal layer having a crystal structure similar to that of the SiC single crystal substrate SW.
  • the trench DT has a depth of, for example, 5 ⁇ m or more.
  • a trench DT having an aspect ratio of about 10 and a depth of about 20 ⁇ m can be exemplified.
  • the trench DT has a tapered shape that becomes narrower as the depth increases.
  • the taper angle formed between the bottom surface and the side surface of the trench DT is, for example, about 88 ° to 90 °.
  • the taper angle may be 80 ° to 90 ° (80 ° or more and 90 ° or less), more preferably 85 ° to 90 °, and most preferably 88 ° to 90 °.
  • the SiC single crystal substrate SW has a main surface whose (0001) plane is inclined by 4 ° in the ⁇ 11-20> direction, and has an orientation flat OF and a ⁇ 11-20> direction.
  • the angle error is within ⁇ ⁇ .
  • is determined as ⁇ arctan ⁇ k ⁇ (w / h) ⁇ / 13 with respect to the trench having the height h and the width w as described in (Knowledge E).
  • k is at least less than 2, preferably 0.9 or less, more preferably 0.5, and still more preferably 0.3 or less.
  • a typical value can be given within ⁇ 1 ° ( ⁇ 1 ° or more and 1 ° or less).
  • the plurality of trenches DT are formed so that the direction in which the plurality of trenches DT formed in the epitaxial layer extend (x direction) and the direction of the orientation flat OF of the SiC single crystal substrate SW are the same. Yes. Therefore, the angle error between the extending direction (x direction) of the trench DT and the ⁇ 11-20> direction is within ⁇ ⁇ .
  • the same direction does not mean a completely matched direction, but means a substantially matched direction or a substantially matched direction, and includes a certain range in consideration of variations.
  • the SiC single crystal substrate SW has a main surface whose (0001) plane is inclined by 4 ° in the ⁇ 11-20> direction, and the orientation flat OF and The angle error with the ⁇ 11-20> direction is greater than the above ⁇ ⁇ .
  • the plurality of trenches DT are formed so that the direction in which the plurality of trenches DT formed in the epitaxial layer extend (x direction) is the same as the ⁇ 11-20> direction. Therefore, the angle error between the extending direction (x direction) of the trench DT and the ⁇ 11-20> direction is within ⁇ ⁇ .
  • FIG. 3 shows the first and second examples of the semiconductor device according to the first embodiment, that is, the case where the angular error between the extending direction (x direction) of the trench DT and the ⁇ 11-20> direction is within ⁇ ⁇ . It is the schematic explaining an example of the backfilling aspect by a buried epitaxial growth method in FIG.
  • the semiconductor layer SM grows from the bottom of the trench DT and the top surface of the convex portion of the epitaxial layer EP, and the inside of the trench DT is refilled. Further, since the angle error between the extending direction (x direction) of the trench DT and the ⁇ 11-20> direction is within ⁇ ⁇ , even if the epitaxial growth proceeds, the inclination of the growth direction of the semiconductor layer SM is small, and the trench DT The trench DT can be backfilled with the semiconductor layer SM before the upper portion and both ends in the extending direction are closed.
  • voids are less likely to be formed inside the trench DT, and a decrease in manufacturing yield due to backfill failure can be prevented.
  • the reliability of the semiconductor device can be improved.
  • FIG. 4 is a plan view showing the configuration of the semiconductor device according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along line AA ′ of FIG.
  • the semiconductor chip SC has, for example, a rectangular shape, and includes a cell region (also referred to as an active portion) CR, a transition region TR, and a peripheral region (both peripheral edge portions). And) PER. Then, the transition region TR is disposed so as to surround the outside of the cell region CR, and the peripheral region PER is further disposed so as to surround the transition region TR. In other words, the cell region CR is arranged in the inner region surrounded by the peripheral region PER via the transition region TR.
  • a peripheral structure represented by, for example, a bevel structure in which the periphery is etched obliquely, a diffusion ring structure, a field ring structure, or a field plate structure is formed.
  • These peripheral structures are basically formed based on a design concept that makes it difficult for an avalanche breakdown phenomenon to occur due to electric field concentration.
  • the power MOSFET having a plurality of super junction structures is formed in the inner region including the central region, and the peripheral region having the electric field relaxation structure in the outer region surrounding the inner region.
  • a structure is formed.
  • the cell region CR includes an epitaxial layer EP on the main surface of the substrate SUB, and a p-type column region PC and an n-type column region NC extending in the x direction.
  • a p-type column region PC and an n-type column region NC extending in the x direction.
  • the angle error between the extending direction (x direction) of the plurality of trenches DT where the plurality of p-type column regions PC are formed and the ⁇ 11-20> direction is within ⁇ ⁇ .
  • is determined as described above in (Knowledge E).
  • the ratio of the width in the y direction of the p-type column region PC and the width in the y direction of the n-type column region NC is 1: 1 is illustrated.
  • the width in the y direction of the p-type column region PC and the width in the y direction of the n-type column region NC may be different from each other.
  • epitaxial layer EP is formed on the main surface of substrate SUB made of silicon carbide (SiC) containing n-type impurities such as nitrogen (N), phosphorus (P), or arsenic (As).
  • the epitaxial layer EP is composed of a semiconductor layer (S layer) mainly composed of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N), phosphorus (P) or arsenic (As) is introduced. And has a crystal structure similar to that of the substrate SUB.
  • the n-type impurity concentration of the epitaxial layer EP is lower than the impurity concentration of the substrate SUB, for example, 3.0 ⁇ 10 16 / cm 3 .
  • a plurality of p-type column regions PC are formed in the epitaxial layer EP so as to be separated from each other in the y direction.
  • Each of the p-type column regions PC includes a semiconductor layer (SiC layer) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced.
  • This semiconductor layer is a crystal layer having the same crystal structure as the epitaxial layer EP, and the p-type impurity concentration of the p-type column region PC is, for example, 3.0 ⁇ 10 16 / cm 3 .
  • the portion of the epitaxial layer EP sandwiched between the p-type column regions PC adjacent to each other becomes the n-type column region NC.
  • the epitaxial region EP including the plurality of n-type column regions NC and the substrate SUB constitute a drain region of the power MOSFET.
  • an element portion is formed on the upper surface of the epitaxial layer EP on which the super junction structure is formed.
  • a channel region CH in contact with the p-type column region PC is formed on the upper surface of the epitaxial layer EP, and a source region SR is formed so as to be included in the channel region CH.
  • the channel region CH is composed of a semiconductor region into which a p-type impurity such as aluminum (Al) or boron (B) is introduced
  • the source region SR is composed of, for example, nitrogen (N), phosphorus (P) or arsenic. It is composed of a semiconductor region into which an n-type impurity such as (As) is introduced.
  • a body contact region BC reaching the channel region CH from the upper surface of the epitaxial layer EP is formed in the central portion of the source region SR.
  • the body contact region BC is composed of a semiconductor region into which a p-type impurity such as aluminum (Al) or boron (B) is introduced.
  • the impurity concentration of the body contact region BC is higher than the impurity concentration of the channel region CH. Is also high.
  • a gate insulating film GI is formed on a region sandwiched between adjacent channel regions CH, and a gate electrode GE is formed on the gate insulating film GI.
  • the gate insulating film GI is formed of, for example, a silicon oxide film, but is not limited thereto.
  • the gate insulating film GI may be formed of a high dielectric constant film having a dielectric constant higher than that of the silicon oxide film.
  • the gate electrode GE is formed of, for example, a polycrystalline silicon film.
  • the gate electrode GE is formed so as to be aligned with the source region SR.
  • an interlayer insulating film IL made of, for example, silicon oxide is formed so as to cover the upper surface and side walls of the gate electrode GE.
  • a source electrode SE is formed over the interlayer insulating film IL covering the plurality of gate electrodes GE.
  • the source electrode SE is formed by a laminated film of a barrier conductor film made of, for example, titanium tungsten (TiW) and an aluminum (Al) film.
  • TiW titanium tungsten
  • Al aluminum
  • the body contact region BC has a function of ensuring ohmic contact with the source electrode SE, and since the body contact region BC exists, the source region SR and the channel region CH are electrically at the same potential. Connected.
  • the on-operation of the parasitic npn bipolar transistor having the source region SR as the emitter region, the channel region CH as the base region, and the n-type column region NC as the collector region can be suppressed. That is, the fact that the source region SR and the channel region CH are electrically connected at the same potential means that no potential difference is generated between the emitter region and the base region of the parasitic npn bipolar transistor. The on-operation of the parasitic npn bipolar transistor can be suppressed.
  • a surface protective film PAS made of, for example, silicon oxide is formed so as to partially cover the source electrode SE, and a partial region of the source electrode SE is exposed from the surface protective film PAS.
  • a drain electrode DE made of metal is formed on the back surface of the substrate SUB (the surface opposite to the main surface on which the epitaxial layer EP is formed).
  • a plurality of super junction structure power MOSFETs are formed in the cell region CR.
  • transition region TR a plurality of p-type column regions PC and a plurality of n-type column regions NC composed of epitaxial layers EP are alternately arranged in the y direction. It has a super junction structure. Furthermore, as described above, the angle error between the extending direction (x direction) of the plurality of trenches DT where the plurality of p-type column regions PC are formed and the ⁇ 11-20> direction is within ⁇ ⁇ .
  • is determined as described above in (Knowledge E).
  • a plurality of p-type column regions PC and a plurality of n-type column regions NC are also formed in the transition region TR.
  • a gate lead portion GPU formed of a polycrystalline silicon film in the same layer as the gate electrode GE in the cell region CR is formed on the channel region CH via the gate insulating film GI.
  • An interlayer insulating film IL is formed so as to cover the upper surface and side walls of the gate lead part GPU, and an opening exposing a part of the upper surface of the gate lead part GPU is formed in a part of the interlayer insulating film IL.
  • a gate lead electrode GPE formed of a laminated film in the same layer as the source electrode SE in the cell region CR is formed on the interlayer insulating film IL including the inside of the opening.
  • the gate lead-out part GPU is electrically connected to the plurality of gate electrodes GE, and the gate voltage applied to the gate lead-out electrode GPE passes through each of the plurality of gate electrodes GE via the gate lead-out part GPU. To be applied.
  • a channel region CH extending from the cell region CR is formed on the upper surface of the epitaxial layer EP, and a source extraction region SPR is formed so as to be included in the channel region CH.
  • An interlayer insulating film IL is formed on the upper surface of the epitaxial layer EP so as to cover the channel region CH, and an opening is formed in the interlayer insulating film IL so as to expose the source lead region SPR.
  • a source lead electrode SPE formed of a laminated film in the same layer as the gate lead electrode GPE is formed on the interlayer insulating film IL including the inside of the opening.
  • a surface protective film PAS made of, for example, silicon oxide is formed so as to partially cover the gate lead electrode GPE and the source lead electrode SPE, and a partial region of the gate lead electrode GPE and the source lead electrode A part of the SPE is exposed from the surface protective film PAS.
  • the transition structure is formed in the transition region TR.
  • a plurality of p-type column regions PC and a plurality of n-type column regions NC are also formed in the peripheral region PER.
  • a plurality of dummy electrodes FE formed of a polycrystalline silicon film in the same layer as the gate electrode GE in the cell region CR are connected to the epitaxial layer EP via the silicon oxide film in the same layer as the gate insulating film GI in the cell region CR. It is formed on the upper surface.
  • an interlayer insulating film IL is formed on the upper surface of the epitaxial layer EP so as to cover the upper surfaces and side walls of the plurality of dummy electrodes FE.
  • a surface protective film PAS made of, for example, silicon oxide is formed.
  • the peripheral structure is formed in the peripheral region PER.
  • FIGS. 6 to 14 are cross-sectional views showing manufacturing steps of the semiconductor device according to the first embodiment.
  • a substrate (planar substantially circular thin plate called a wafer) SUB having a low-concentration epitaxial layer EP made of an n-type semiconductor layer formed on a main surface (surface, upper surface) is prepared.
  • the substrate SUB is made of, for example, a 4H polytype type or 6H polytype type hexagonal SiC single crystal, and has a main surface whose (0001) plane is inclined by 4 ° in the ⁇ 11-20> direction. Therefore, the epitaxial layer EP is also made of SiC single crystal and has the same crystal structure as that of the substrate SUB.
  • an n-type impurity such as nitrogen (N), phosphorus (P), or arsenic (As) is introduced into the epitaxial layer EP.
  • the n-type impurity concentration of the epitaxial layer EP is, for example, about 3.0 ⁇ 10 16 / cm 3
  • the thickness of the epitaxial layer EP is, for example, about 20 ⁇ m to 30 ⁇ m.
  • the epitaxial layer EP of the cell region CR, the transition region TR, and the peripheral region PER is extended in the x direction by a selective etching method using a pattern made of an insulating material as a hard mask. Then, a plurality of trenches DT separated from each other in the y direction are formed.
  • the depth of the trench DT from the upper surface of the epitaxial layer EP is 5 ⁇ m or more.
  • the trench DT having an aspect ratio of about 10 and a depth from the upper surface of the epitaxial layer EP of about 20 ⁇ m can be exemplified.
  • the taper angle of the trench DT to about 88 ° to 90 °, for example, the concentration distribution of the semiconductor layer in the backfill region can be improved.
  • the extending direction (x direction) of the trench DT has an angle error within ⁇ ⁇ with respect to the ⁇ 11-20> direction.
  • is determined as described above in (Knowledge E).
  • the method of forming the trench DT differs depending on the specifications of the substrate SUB prepared in advance, and the following first method (first example described with reference to FIG. 1) and second method (described with reference to FIG. 2). A second example) can be illustrated.
  • First method When preparing a substrate SUB, a substrate SUB having an angle error between the orientation flat direction and the ⁇ 11-20> direction within ⁇ ⁇ 1 ( ⁇ 1: first angle error) is prepared.
  • the standard specification of the above angle error of SiC substrates that are currently available as standard is as large as ⁇ 5 °.
  • the first method uses, for example, a substrate with a special specification such that the angle error is within ⁇ 0.5 °. SUB will be prepared.
  • an angle error ( ⁇ 2: second angle error) due to an offset between the photomask and the substrate SUB caused by the exposure apparatus is sufficiently small with respect to the first angle error, or is measured in advance and measured by the exposure apparatus. It is assumed that it has been corrected by adjustment. That is, in the exposure process, it is assumed that the second angle error is sufficiently smaller than the first angle error ( ⁇ 2 ⁇ ⁇ 1).
  • the extension direction (x direction) of the trench DT and ⁇ 11-20> The angle error with the direction is within ⁇ ⁇ .
  • Second Method Here, first, when preparing the substrate SUB, the angle error between the orientation flat direction and the ⁇ 11-20> direction prepares the standard specification substrate SUB.
  • the angle error of a standard specification SiC substrate currently available is within ⁇ 5 °.
  • the angle error (first angle error) between the orientation flat direction and the ⁇ 11-20> direction is measured by, for example, X-ray diffraction to obtain error data.
  • the measurement of the angle error may be performed by batch processing for each crystal ingot obtained by cutting the substrate SUB, or may be performed for each individual substrate SUB.
  • the former is advantageous in that the number of measurements is small, but batch management of the substrate SUB is required. Since the latter is measured for each individual, an in-line measuring device or the like is required. However, since the measurement is performed for each individual, strict management is possible.
  • the measurement of the above angle error may be performed by a semiconductor device manufacturer.
  • a substrate SUB may be prepared by a third party such as a substrate manufacturer measuring the angle error and delivering the substrate SUB with the specified error data to the manufacturer.
  • angle correction with respect to the orientation flat is performed by the exposure apparatus using the previously obtained error data.
  • the exposure apparatus to be used satisfies ⁇ 2 ⁇ ⁇ 1 as a premise.
  • the angle error between the extending direction (x direction) of the trench DT and the ⁇ 11-20> direction is set within ⁇ ⁇ .
  • the angle error between the orientation flat direction of the substrate SUB prepared in advance and the ⁇ 11-20> direction is within a range that can be corrected by the exposure apparatus.
  • the combined use of the first and second methods described above is effective according to the required ⁇ . That is, in this case, a substrate SUB having a first angle error smaller than the standard specification is prepared, error data of the first angle error is measured, and angle correction is performed in the exposure apparatus using the error data. According to this method, ⁇ can be reduced, so that it is possible to cope with backfilling of trenches DT having an extremely large aspect ratio (for example, an aspect ratio of 10 or more), and the inside of the trench DT is independent of the aspect ratio. The effect of making the impurity concentration distribution in the backfill crystal region uniform can also be obtained.
  • an ICP etching apparatus is used to form the trench DT.
  • the same as the epitaxial layer EP is formed inside the plurality of trenches DT formed in the respective epitaxial layers EP of the cell region CR, the transition region TR, and the peripheral region PER by, for example, the buried epitaxial growth method.
  • a p-type semiconductor layer which is a crystal layer having a crystal structure is formed.
  • n-type column region NC n-type column region separating the adjacent trenches DT is ground, and further polished by, for example, CMP (Chemical-Mechanical-Polishing) method, A p-type column region PC made of a p-type semiconductor layer is formed only inside the plurality of trenches DT. Between the trenches DT spaced apart from each other in the y direction is an n-type column region NC made of the epitaxial layer EP.
  • the angle error between the extending direction of the plurality of trenches DT and the ⁇ 11-20> direction is within ⁇ ⁇
  • the upper and both ends of the trench DT are blocked even if the trench DT has an aspect ratio of about 10.
  • the inside of the plurality of trenches DT can be backfilled with the p-type semiconductor layer without forming voids.
  • the p-type semiconductor layer can be refilled with good reproducibility inside the plurality of trenches DT by controlling the gas type, gas flow rate, temperature, pressure and the like.
  • the gas species for example, silicon (Si) source gas, carbon (C) source gas, hydrogen (H 2 ) gas, hydrochloric acid (HCl) gas, and doping gas are used.
  • silicon (Si) source gas for example, monosilane (SiH 4 ) gas or the like is used.
  • the carbon (C) source gas for example, ethylene (C 2 H 4 ), methyl acetylene (C 3 H 4 ), propane (C 3 H 8 ), or the like is used.
  • aluminum (Al) is selected as the p-type dopant, for example, trimethylaluminum (TMA) or triethylaluminum (TEA) is used as a doping gas.
  • the HCl / SiH 4 flow rate ratio is, for example, 30 or more and 65 or less, and the H 2 / SiH 4 flow rate ratio is, for example, 500 or more and 7,000 or less.
  • FIG. 21 is a diagram illustrating an example of a backfill mode when the HCl / SiH 4 flow rate ratio is 33.3, 50, and 66.7 in the buried epitaxial growth method.
  • the H 2 / SiH 4 flow ratio is 5,000.
  • the pressure in the growth furnace during epitaxial growth is, for example, 30 kPa or more and 100 kPa or less.
  • FIG. 22 is a diagram showing an example of a backfilling mode when the pressure in the growth furnace during epitaxial growth is 10 kPa in the buried epitaxial growth method.
  • etching becomes excessively strong particularly on the side surface of the trench DT, and the shape of the initial trench DT is destroyed.
  • a higher upper limit pressure is desirable, but atmospheric pressure is the upper limit pressure for safe epitaxial growth in a quartz furnace.
  • the conditions of the buried epitaxial growth method can be changed during the epitaxial growth, and the doping gas flow rate, the SiH 4 flow rate, the carbon / silicon (C / Si) ratio, and the like may be appropriately changed during the epitaxial growth. As a result, the concentration distribution of the p-type semiconductor layer in the backfill region can be made uniform.
  • the p-type impurity concentration, width, and pitch of the p-type column region PC of each of the cell region CR, the transition region TR, and the peripheral region PER are set so as to achieve charge balance.
  • the semiconductor device according to the first embodiment a case where the ratio of the width in the y direction of the p-type column region PC and the width in the y direction of the n-type column region NC is 1: 1 is illustrated.
  • the p-type impurity concentration of the p-type column region PC is set so that the total charge amount of the p-type column region PC and the total charge amount of the n-type column region NC are the same.
  • the p-type impurity concentration of the p-type column region PC is the same as the n-type impurity concentration of the epitaxial layer EP constituting the n-type column region NC, for example, about 3.0 ⁇ 10 16 / cm 3 .
  • a super junction structure in which the p-type column region PC and the n-type column region NC are alternately formed in the epitaxial layer EP is formed by the “trench embedding method”. Is done.
  • a channel region CH is formed in the cell region CR and the transition region TR by, for example, selective ion implantation using a pattern made of an insulating material as a hard mask. To do.
  • the channel region CH is a p-type semiconductor region formed by introducing a p-type impurity such as aluminum (Al) or boron (B) into the epitaxial layer EP.
  • a plurality of source regions SR are formed in the cell region CR and a source extraction region SPR is formed in the transition region TR by a selective ion implantation method using, for example, a pattern made of an insulating material as a hard mask.
  • the source region SR and the source extraction region SPR are n-type semiconductor regions formed by introducing an n-type impurity such as nitrogen (N), phosphorus (P), or arsenic (As) into the epitaxial layer EP. is there.
  • the plurality of source regions SR formed in the cell region CR are electrically connected to the source lead region SPR formed in the transition region TR.
  • a body contact region BC whose bottom reaches the channel region CH is formed at the center of each of the plurality of source regions SR in the cell region CR by, for example, selective ion implantation using a pattern made of an insulating material as a hard mask.
  • the body contact region BC is a p-type semiconductor region formed by introducing a p-type impurity such as aluminum (Al) or boron (B) into the epitaxial layer EP, for example.
  • the impurity concentration is formed to be higher than the impurity concentration of the channel region CH.
  • ion implantation may be performed with the temperature of the substrate SUB set to 300 ° C. or higher in order to suppress defects caused by ion implantation.
  • the termination structure may be formed by performing ion implantation for ensuring a high breakdown voltage.
  • a cap layer for preventing surface roughness for example, a carbon film having a thickness of 1 ⁇ m or more is deposited on the upper surface of the epitaxial layer EP by sputtering or the like to activate the impurities.
  • the heat treatment is performed at a temperature of about 1600 ° C. to 1800 ° C., for example. Thereafter, the cap layer is removed.
  • a gate insulating film GI is formed on the upper surface of the epitaxial layer EP, and a conductor film PF is formed on the gate insulating film GI.
  • the gate insulating film GI is made of, for example, silicon oxide, and is formed by, for example, a thermal oxidation method.
  • the gate insulating film GI is not limited to the silicon oxide film, and may be a high dielectric constant film having a higher dielectric constant than a silicon oxide film typified by a hafnium oxide film, for example.
  • the conductor film PF formed on the gate insulating film GI is made of, for example, polycrystalline silicon, and is formed by, for example, a CVD (Chemical Vapor Deposition) method.
  • the conductive film PF is patterned by a selective etching method using a resist pattern as a mask.
  • a plurality of gate electrodes GE are formed in the cell region CR
  • a gate lead portion GPU is formed in the transition region TR
  • a plurality of dummy electrodes FE are formed in the peripheral region PER.
  • the gate lead part GPU is formed so as to be electrically connected to the plurality of gate electrodes GE.
  • an interlayer insulating film IL that covers the plurality of gate electrodes GE, the gate lead part GPU, and the plurality of dummy electrodes FE is formed on the upper surface of the epitaxial layer EP.
  • the interlayer insulating film IL is made of, for example, silicon oxide, and is formed by, for example, a CVD method.
  • an opening where the bottom reaches the source region SR and the body contact region BC is formed in the interlayer insulating film IL.
  • an opening exposing a part of the gate lead part GPU in the transition region TR is formed.
  • the source lead region SPR is exposed by forming an opening in the interlayer insulating film IL.
  • a metal film is formed on the substrate.
  • This metal film is formed of, for example, a laminated film of a titanium tungsten (TiW) film and an aluminum (Al) film, and is formed by, for example, a sputtering method.
  • the metal film is patterned by a selective etching method using a resist pattern as a mask.
  • a source electrode SE electrically connected to the source region SR and the body contact region BC is formed in the cell region CR
  • a gate lead electrode electrically connected to the gate lead portion GPU is formed in the transition region TR.
  • a source lead electrode SPE electrically connected to the GPE and the source lead region SPR is formed.
  • a surface protective film PAS is formed so as to cover the source electrode SE, the gate lead electrode GPE, and the source lead electrode SPE.
  • the surface protection film PAS is patterned by, for example, a selective etching method using a resist pattern as a mask to form a partial region of the source electrode SE, a partial region of the gate lead electrode GPE, and a partial region of the source lead electrode SPE. Is exposed from the surface protective film PAS. Thereby, the region exposed from the surface protective film PAS can be functioned as an external connection region.
  • the substrate SUB is ground from the back surface opposite to the main surface of the substrate SUB, thereby thinning the substrate SUB.
  • the metal film used as the drain electrode DE is formed in the back surface of the board
  • a laser annealing process corresponding to a heat treatment of about 1,000 ° C. is performed.
  • the semiconductor device having the super junction structure power MOSFET according to the first embodiment can be manufactured.
  • the SiC single crystal substrate having the main surface (off angle) whose (0001) plane is inclined by 4 ° in the ⁇ 11-20> direction is illustrated, but the present invention is not limited to this.
  • a SiC single crystal substrate having a main surface whose (0001) plane is inclined by 1 ° or more and 5 ° or less in the ⁇ 11-20> direction may be used.
  • a SiC single crystal substrate in which an off angle is provided on the crystal main surface of the (000-1) plane may be used instead of the (0001) plane.
  • the present invention is not limited to this.
  • a hexagonal SiC single crystal substrate having a main surface inclined in the ⁇ 1-100> direction orthogonal to the ⁇ 11-20> direction may be used.
  • the crystal direction for providing the off angle may be other than the above. Therefore, a predetermined crystal direction that provides an off angle such as the ⁇ 11-20> direction can be more generally referred to as a reference crystal direction.
  • the present invention can also be applied to.
  • the present invention may be similarly applied to other wide gap compound semiconductors such as nitrogen gallium (GaN) as a hexagonal substrate. Further, even if the crystal structure such as 3C—SiC or gallium oxide (Ga 2 O 3 ) is different, the present invention may be applicable to the same problem.
  • GaN nitrogen gallium
  • the crystal structure such as 3C—SiC or gallium oxide (Ga 2 O 3 ) is different, the present invention may be applicable to the same problem.
  • the orientation flat OF was used as a reference mark for the ⁇ 11-20> direction.
  • a 4-inch SiC substrate currently on the market is provided with a reference mark called a primary flat or a secondary flat. Therefore, the orientation flat is a general term including a primary flat and a secondary flat.
  • a notch may be used as a similar reference mark. Therefore, the orientation flat OF described in the first embodiment more generally means a reference mark for indicating a specific crystal orientation provided on the substrate.
  • the angle error between the extending direction of the trench DT and the ⁇ 11-20> direction is set within ⁇ ⁇ .
  • is determined as described above in (Knowledge E).
  • a plurality of trenches provided in the substrate, spaced apart from each other, and a first column region formed in the trench and having a crystal layer having the same crystal structure as the substrate, and adjacent to each other in the second direction
  • a second column region comprising a portion of the substrate between the trenches,
  • An angle error between the reference crystal direction and the first direction is within ⁇ ⁇ , where ⁇ is a depth of the trench, h is a width of the trench, and k is a coefficient larger than 0 and smaller than 2.
  • FIG. 15 is a plan view showing a plurality of trenches formed in the substrate according to the second embodiment.
  • FIG. 16 is an enlarged sectional view showing an end portion of a trench formed in the substrate according to the second embodiment.
  • the plurality of trenches DT constituting the super junction structure are formed in the epitaxial layer EP.
  • the plurality of trenches DT extend in the x direction and are spaced apart from each other in the y direction, and the semiconductor layer is buried back in the plurality of trenches DT by a buried epitaxial growth method.
  • the center portion A1 in the x direction of the trench DT has a constant width in the y direction in plan view, but the first tip portion B1 and the second tip portion B2 at both ends in the x direction of the trench DT
  • the side surface of the trench DT is inclined with respect to the x direction, and the width in the y direction gradually decreases as it approaches the outer periphery of the semiconductor device.
  • a shape in which the side surface of the trench DT is inclined with respect to the x direction in plan view is referred to as a “tapered shape”.
  • the angular error between the extending direction (x direction) of the trench DT and the ⁇ 11-20> direction is within ⁇ ⁇ .
  • is determined as described above in (Knowledge E).
  • the bottom surface of the trench DT is inclined with respect to the upper surface of the epitaxial layer EP (horizontal plane composed of the x direction and the y direction).
  • the depth in the z direction gradually decreases as the outer periphery of the semiconductor device is approached.
  • the semiconductor layer SM When the semiconductor layer SM is back-filled into the trench DT using the buried epitaxial growth method, silicon (Si) or carbon (C) contained in the source gas is contained in the first tip portion B1 and the second tip portion B2 of the trench DT.
  • the semiconductor layer SM tends to be more easily consumed than the central portion A1 of the trench DT.
  • the side surface and the bottom surface of the trench DT are inclined at the first tip portion B1 and the second tip portion B2 of the trench DT, so that the volume of the trench DT approaches the outer periphery of the semiconductor device. Therefore, even if the semiconductor layer SM backfilled by the buried epitaxial growth method is reduced, the inside of the trench DT can be backfilled by the semiconductor layer SM.
  • the length L1 in the x direction of the first tip portion B1 of the trench DT and the length L2 in the x direction of the second tip portion B2 of the trench DT are different from each other, and the length L1 of the first tip portion B1 located in the ⁇ 11-20> direction is shorter than the length L2 of the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction. It has become.
  • the angle ⁇ 11 formed between the side surface of the first tip portion B1 located in the ⁇ 11-20> direction and the x direction is equal to the side surface of the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction. It is larger than the angle theta 12 formed by the x-direction.
  • the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction is the first tip portion located in the ⁇ 11-20> direction.
  • the semiconductor layer tends to be less buried. For this reason, there is a concern that the first tip portion B1 located in the ⁇ 11-20> direction and the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction cannot be backfilled with the semiconductor layer almost simultaneously. It was done.
  • the first tip portion B1 located in the ⁇ 11-20> direction and the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction are formed in different shapes. Then, by forming the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction more easily than the first tip portion B1 located in the ⁇ 11-20> direction, the semiconductor layer can be filled almost simultaneously. The first tip portion B1 located in the ⁇ 11-20> direction and the second tip portion B2 located in the direction opposite to the ⁇ 11-20> direction can be backfilled with the semiconductor layer.
  • the first dummy pattern DTR1 of the trench is formed between the first tip portions B1 of the trenches DT adjacent to each other in the y direction, and adjacent to each other in the y direction.
  • a second dummy pattern DTR2 of the trench is formed between the second tip portions B2 of the matching trenches DT. Then, the semiconductor layer is also buried back in each of the first dummy pattern DTR1 and the second dummy pattern DTR2 by using the buried epitaxial growth method.
  • the first dummy pattern DTR1 is spaced apart from the first tip portion B1 of the trench DT adjacent to each other in the y direction
  • the second dummy pattern DTR2 is separated from the second tip portion B2 of the trench DT adjacent to each other in the y direction. They are spaced apart.
  • the first dummy pattern DTR1 and the second dummy pattern DTR2 have a triangular shape.
  • the side surface of the first dummy pattern DTR1 facing the side surface of the first tip portion B1 of the trench DT is formed to be parallel to the side surface of the first tip portion B1, and similarly, the second tip portion B2 of the trench DT.
  • the side surface of the second dummy pattern DTR2 facing the side surface is formed to be parallel to the side surface of the second tip portion B2.
  • the present inventors formed a plurality of trenches in a substrate made of Si (silicon) single crystal (hereinafter referred to as a Si single crystal substrate), and a semiconductor layer inside the plurality of trenches by a buried epitaxial growth method.
  • the technology to backfill was examined. In that case, the influence of the presence or absence of the dummy pattern did not appear remarkably in the aspect of the semiconductor layer buried back in the trench DT.
  • FIG. 17 illustrates a semiconductor device according to a modification of the second embodiment with reference to FIG.
  • FIG. 17 is a plan view showing a plurality of trenches formed in the substrate according to the modification of the second embodiment.
  • the shape of the first dummy pattern DTR1 and the second dummy pattern DTR2 in a plan view may be a trapezoid.
  • the side surface of the first dummy pattern DTR1 facing the side surface of the first tip portion B1 of the trench DT is formed to be parallel to the side surface of the first tip portion B1.
  • the side surface of the second dummy pattern DTR2 facing the side surface of the second tip portion B2 of the DT is formed to be parallel to the side surface of the second tip portion B2.
  • FIGS. 15 and 17 are plan views showing modifications of the tip shape of the trench shown in the second embodiment and the modification of the second embodiment. That is, a modification of the tip shape of the trench DT in FIGS. 15 and 17 is shown.
  • the trench DT of FIG. 15 has a shape in which the tip is cut at the first and second tip portions (a shape having a finite width at the tip).
  • the trench DT in FIG. 29 (a) has a pointed tip (ideally a shape having a width of zero at the tip), and is otherwise the same as FIG.
  • the pattern “blunt” that occurs in the photomask process and the etching process are performed. Due to “blunting” or the like, the resulting trench DT has a blunt shape with a finite width at the tip as shown in FIG.
  • the shape in which the tip of FIG. 29A is sharpened as much as possible is realized by using a technique such as optical proximity collection OPC (Optical Proximity Correction).
  • OPC Optical Proximity Correction
  • FIG. 29 (b) is an example having a pointed concave portion at the tip. This is a concave portion having a sharp tip formed in the direction opposite to that shown in FIG.
  • the shape of the tip of the trench is defined as having a “positive curvature” as viewed from the trench center line, and the shape of the tip of the trench is shown in the state shown in FIG. Is defined as having a "negative curvature” when viewed from the trench centerline.
  • the angles formed by the side surfaces and the center line are ⁇ 11 and ⁇ 12 , respectively.
  • FIG. 29C is an example in which the tip shape is asymmetric with respect to the center line of the trench.
  • This shape can also be regarded as a tip having a right triangle.
  • the angles of the tip portions are respectively set.
  • ⁇ 22 be ⁇ 21 .
  • the shape of the trench of FIG.29 (c) is a substantially rhombus shape, it can also be made into a trapezoid shape.
  • the appropriate ranges for ⁇ 11 , ⁇ 12 , ⁇ 21 , and ⁇ 22 are larger than ⁇ determined by Expression (7) and smaller than 90 degrees. Preferably it is 45 degrees or less, More preferably, it is 30 degrees or less. Further, as described in the section of “(2) Second feature and its effect” in the above (Embodiment 2), it is more preferable that the relations ⁇ 11 > ⁇ 12 and ⁇ 21 > ⁇ 22 are satisfied.
  • the second embodiment includes at least the following embodiment, and an invention without the condition of the angle error ⁇ is also grasped. Note that an invention of a combination of these inventions and the invention grasped in the first embodiment is not excluded.
  • a first dummy pattern and a second dummy pattern are disposed between the first tip portion and the second tip portion of the trenches adjacent to each other in the second direction so as to be separated from the trench.
  • the first tip portion and the second tip portion located at both ends in the first direction of the trench have a first depth and a second depth, respectively.
  • a central portion of the trench between the first tip portion and the second tip portion has a third depth;
  • the semiconductor device, wherein the first depth and the second depth are shallower than the third depth.
  • the central portion A1 and the first tip portion B1 of the trench DT are taken into account. Since the first tip portion B2 and the second tip portion B2 have different shapes, and the first dummy pattern DTR1 and the second dummy pattern DTR2 are arranged, the semiconductor layer can be satisfactorily embedded in the plurality of trenches DT. As a result, the manufacturing yield and reliability of the semiconductor device can be improved.
  • a plurality of p-type column regions are formed by forming a plurality of trenches in an n-type epitaxial layer on an n-type substrate and then backfilling the p-type semiconductor layer inside the plurality of trenches.
  • a super junction structure was constituted by a plurality of p-type column regions and a plurality of n-type column regions formed of n-type epitaxial layers between adjacent p-type column regions.
  • a plurality of n-type column regions may be formed by forming a plurality of trenches in a p-type epitaxial layer on an n-type substrate and then backfilling the n-type semiconductor layer inside the plurality of trenches.
  • a super junction structure is constituted by a plurality of n-type column regions and a plurality of p-type column regions formed of p-type epitaxial layers between adjacent n-type column regions.
  • the above-described embodiment is not limited to the production of the super junction structure, but is a basic technology for refilling the inside of a relatively deep trench by crystal growth. Therefore, if the substrate and the crystal layer embedded in the trench have the same crystal structure, the substrate and the embedded crystal layer can be applied even if they have the same conductivity type. As such an application, for example, a MEMS (Micro Electro Mechanical Systems) device can be assumed.
  • MEMS Micro Electro Mechanical Systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

パワー半導体素子を含む半導体装置の製造歩留りおよび信頼性を向上させる。<11-20>方向に対して傾斜した結晶主面を有する基板に、x方向に延在し、x方向と直交するy方向に互いに離間する複数のトレンチDTが形成されている。そして、トレンチDTの内部に埋め込まれた半導体層からなるp型カラム領域PCと、y方向に互いに隣り合うトレンチDTの間の基板の部分からなるn型カラム領域NCとによってスーパージャンクション構造が構成されており、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差が±θ以内である。ここでθは、高さh、幅wのトレンチに対して、{arctan{k×(w/h)}}/13で定まる。ここでkは、少なくとも2より小さく、好ましくは0.9以下、さらに好ましくは0.5、さらにさらに好ましくは0.3以下である。

Description

半導体装置およびその製造方法
 本発明は、半導体装置およびその製造方法に関し、例えばパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に代表されるパワー半導体素子を含む半導体装置およびその製造方法に好適に利用できるものである。
 本技術分野の背景技術として、例えば特開2013-138171号公報(特許文献1)およびRyoji Kosugi et.al., Development of SiC super-junction (SJ) device by deep trench-filling epitaxial growth, Materials Science Forum Vols. 740-742 (2013) pp 785-788(非特許文献1)がある。
 特許文献1には、セル領域では、スーパージャンクション(Super Junction)構造を構成するn型カラム領域およびp型カラム領域でのn型電荷量とp型電荷量が等しくされ、周辺領域では、セル領域の外周方向に向かうに連れて、スーパージャンクション構造でのn型電荷量が徐々にp型電荷量よりも多くされるチャージバランス変化領域を備える半導体装置が記載されている。
 また、非特許文献1には、スーパージャンクション構造の製造を前提として、4H-SiC基板に形成した幅2.7μm、深さ7μmのトレンチをボイドの発生なくSiC層で埋め戻した例が報告されている。
特開2013-138171号公報
Ryoji Kosugi et.al., Development of SiC super-junction (SJ) device by deep trench-filling epitaxial growth, Materials Science Forum Vols. 740-742 (2013) pp 785-788
 スーパージャンクション構造のパワー半導体素子は、高耐圧を確保しながら、オン抵抗を低減できるという利点を有している。
 スーパージャンクション構造の形成方法の1つに、トレンチ埋め戻し法(トレンチフィル法とも言う。)がある。トレンチ埋め戻し法は、深いトレンチを有するスーパージャンクション構造を作製することができることから、広い耐圧範囲においてオン抵抗の低減に有効であると考えられる。しかし、高耐圧のパワー半導体素子を実現するには、高アスペクト比のトレンチが必要となるが、トレンチ埋め戻し法では、高アスペクト比のトレンチを埋め込みエピタキシャル成長法によって歩留りよく埋め戻すことは容易ではなく、パワー半導体素子を含む半導体装置の製造歩留りが低いという課題があった。
 なお、非特許文献1においても、埋め戻しの成功の再現性は低く、その原因は不明であった。
 上記課題を解決するための代表的な手段としての半導体装置の一つを例示すれば以下のとおりである。すなわち、半導体装置を、所定の結晶方向である基準結晶方向に対して傾斜した結晶主面を有する単結晶の基板と、前記基板の前記結晶主面に沿う第1方向に延在し、前記基板の前記結晶主面に沿って前記第1方向と直交する第2方向に互いに離間して、前記基板に設けられた複数のトレンチと、前記トレンチの内部に設けられ、前記基板と同じ結晶構造を持つ結晶層からなる第1カラム領域と、前記第2方向に互いに隣り合う前記トレンチの間の前記基板の部分からなる第2カラム領域と、を備え、前記基準結晶方向と前記第1方向との角度誤差が±θ以内であり、前記θは、前記トレンチの深さをh、前記トレンチの幅をw、kを2より小さい係数とするとき、θ={arctan{k×(w/h)}}/13で定まるように構成する。
 他の代表的な手段としての半導体装置の製造方法の一つを例示すれば以下の通りである。すなわち、半導体装置の製造方法であって、所定の結晶方向である基準結晶方向に対して傾斜した結晶主面、および前記基準結晶方向に対して第1角度誤差を持って設けられた基準マークを有する単結晶の基板を準備し、前記基板の前記結晶主面に沿う第1方向に延在し、前記基板の前記結晶主面に沿って前記第1方向と直交する第2方向に互いに離間する複数のトレンチを前記基板に形成するために、前記基板上にエッチング用マスクパターンを形成するためのフォトマスクを準備し、前記フォトマスクを用いて前記基板上に前記エッチング用パターンを形成し、前記エッチング用パターンを用いて前記基板に前記複数のトレンチを形成し、前記複数のトレンチの内部を結晶成長法により前記基板と同じ結晶構造を持つ結晶層で埋め込み、前記基準結晶方向と前記第1方向との角度誤差が±θ以内であり、前記θは、前記トレンチの深さをh、前記トレンチの幅をw、kを2より小さい係数とするとき、θ={arctan{k×(w/h)}}/13で定まるようにする。
 本発明によれば、パワー半導体素子を含む半導体装置の製造歩留りおよび信頼性を向上することができる。
 上記した以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。
実施の形態1によるSiC単結晶ウェハに形成された複数の半導体チップのレイアウトの第1例を示す平面図である。 実施の形態1によるSiC単結晶ウェハに形成された複数の半導体チップのレイアウトの第2例を示す平面図である。 実施の形態1による半導体装置に形成された複数のトレンチの埋め戻し態様の一例を説明する概略図である。 実施の形態1による半導体装置の構成を示す平面図である。 実施の形態1による半導体装置の構成を示す断面図(図4のA-A´線で切断した断面図)である。 実施の形態1による半導体装置の製造工程を示す断面図である。 図6に続く半導体装置の製造工程を示す断面図である。 図7に続く半導体装置の製造工程を示す断面図である。 図8に続く半導体装置の製造工程を示す断面図である。 図9に続く半導体装置の製造工程を示す断面図である。 図10に続く半導体装置の製造工程を示す断面図である。 図11に続く半導体装置の製造工程を示す断面図である。 図12に続く半導体装置の製造工程を示す断面図である。 図13に続く半導体装置の製造工程を示す断面図である。 実施の形態2による基板に形成された複数のトレンチを示す平面図である。 実施の形態2による基板に形成されたトレンチの端部を拡大して示す断面図である。 実施の形態2の変形例による基板に形成された複数のトレンチを示す平面図である。 本発明に先立って本発明者らが検討した、SiC単結晶ウェハに形成された複数の半導体チップのレイアウトの第1比較例を示す平面図である。 本発明に先立って本発明者らが検討した、SiC単結晶ウェハに形成された複数の半導体チップのレイアウトの第2比較例を示す平面図である。 本発明に先立って本発明者らが検討した、半導体装置に形成された複数のトレンチの埋め戻し態様の一例を説明する概略図である。 埋め込みエピタキシャル成長法において、HCl/SiH流量比が33.3、50および66.7の場合の埋め戻し態様の一例を示す図である。 埋め込みエピタキシャル成長法において、エピタキシャル成長中の成長炉内の圧力が10kPaの場合の埋め戻し態様の一例を示す図である。 (a)~(i)は、<11-20>方向に対する延在方向の傾き角度を変えて基板に形成され、その後、結晶層が埋め戻された、複数のトレンチの断面SEM写真である。 フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchと、図23から得られたトレンチ上部側面に結晶成長したSiC層の傾き角度θmesaとの関係を示すグラフ図である。 (a)、(b)および(c)は、結晶層がトレンチ上部側面から斜めに傾いて成長する場合における、トレンチ寸法と、結晶層がトレンチを塞いでしまう状態との関係を考察するためのモデルを示す模式図である。 図25に示したモデルおよび知見Cから算出した、許容されるトレンチの延在方向と<11-20>方向との角度誤差を示すグラフ図である。 フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchと、トレンチ底の結晶成長レート(図中上部のプロット)およびメサトップの結晶成長レート(図中下部のプロット)との関係を示すグラフ図である。 図27に示したトレンチ底の結晶成長レートのフィッテング曲線から求めたトレンチの延在方向と<11-20>方向との角度誤差θ、および角度誤差θから算出したアライメント余裕係数kをまとめた表である。 (a)、(b)および(c)は、実施の形態2および実施の形態2の変形例に示すトレンチの先端形状の変形例を示す平面図である。
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。また、断面図および平面図において、各部位の大きさは実デバイスと対応するものではなく、図面を分かりやすくするため、特定の部位を相対的に大きく表示する場合がある。また、断面図と平面図とが対応する場合においても、図面を分かりやすくするため、特定の部位を相対的に大きく表示する場合がある。また、断面図であっても図面を見易くするためにハッチングを省略する場合もあり、平面図であっても図面を見易くするためにハッチングを付す場合もある。
 また、単に「基板」と言うときには、特に、明示していない限り、「基板」には、炭化珪素(SiC)単結晶からなる基板または珪素(Si)単結晶からなる基板のみでなく、炭化珪素(SiC)単結晶からなる基板または珪素(Si)単結晶からなる基板の主面上にエピタキシャル層を形成したものも含まれる。
 また、特に、明示していない限り、ブラケット< >で囲んだ数列(方位指数)は結晶方位を示し、例えば六方晶単結晶では<11-20>方向のように4個の方位指数で記載する。ここで、マイナス記号は直後の方位指数がマイナス成分の方位であること表し、例えば<11-20>では方位指数2がマイナス方向であることを意味する。また、まる括弧( )で囲んだ数列(面指数)は結晶面を示し、例えば六方晶単結晶では(0001)面のように4個の面指数で記載する。
 以下、本実施の形態を図面に基づいて詳細に説明する。
 (スーパージャンクション構造の利点)
 本実施の形態によるパワーMOSFETはスーパージャンクション構造を有している。このようなスーパージャンクション構造のパワーMOSFETによれば、以下に説明する利点を得ることができる。
 パワーMOSFETでは、基板の不純物濃度を低くして、オフ状態時に基板に形成される空乏層を延ばすことにより、耐圧を確保している。従って、高耐圧を実現するためには、低不純物濃度の基板を厚くする必要がある。一方、低不純物濃度の基板を厚くすると、パワーMOSFETのオン抵抗が高くなる。つまり、パワーMOSFETにおいては、耐圧の向上とオン抵抗の低減とはトレードオフの関係にあることになる。
 本実施の形態によるパワーMOSFETでは、周期的に配置されるp型カラム領域とn型カラム領域とからなるスーパージャンクション構造を基板に形成している。スーパージャンクション構造は、通常、n型の基板に一定の間隔を置いて形成される複数のp型カラム領域と、互いに隣り合うp型カラム領域の間のn型の基板からなる複数のn型カラム領域とによって構成される。
 このスーパージャンクション構造のパワーMOSFETでは、オフ状態において、p型カラム領域とn型カラム領域との境界領域に形成されるpn接合から横方向にも空乏層が延びる。このため、電流通路であるn型カラム領域の不純物濃度を高くしても、2つの境界領域に挟まれるn型カラム領域の内側方向に延びる空乏層が繋がってn型カラム領域全体が空乏化しやすくなる。これにより、オフ状態でn型カラム領域全体が空乏化するため、耐圧を確保することができる。つまり、スーパージャンクション構造のパワーMOSFETでは、電流通路であるn型カラム領域の不純物濃度を高くすることができ、かつ、n型カラム領域全体を空乏化することができる。この結果、スーパージャンクション構造のパワーMOSFETでは、高耐圧を確保しながら、オン抵抗を低減することができる。
 (トレンチ埋め戻し法の利点)
 スーパージャンクション構造においては、パワーMOSFETのオン抵抗の低減を図る観点から、例えば互いに隣り合うp型カラム領域の間隔を狭くして、n型カラム領域の幅を狭くすることが有効である。なぜなら、オン抵抗の低減を図る観点から、電流通路であるn型カラム領域のn型不純物濃度を高くすることが望ましいからである。すなわち、オン抵抗を低減するために、n型カラム領域のn型不純物濃度を高くすると、n型カラム領域への空乏層の延びが小さくなることから、n型カラム領域全体を空乏化させるためには、n型カラム領域の幅を狭くする必要がある。
 従って、n型カラム領域のn型不純物濃度を高くして、オン抵抗を低減する一方、耐圧も確保することを考慮すると、互いに隣り合うp型カラム領域の間隔を狭くして、n型カラム領域の幅を狭くする必要がある。
 スーパージャンクション構造を形成する代表的な方法として、「トレンチ埋め戻し法」がある。このトレンチ埋め戻し法では、p型カラム領域は、基板に形成されたトレンチへの埋め込みエピタキシャル成長法で形成される。このため、トレンチの形成精度によって、p型カラム領域の形成精度が決定される。トレンチは、一般に、フォトリソグラフィ技術およびドライエッチング技術によって形成されることから、トレンチ埋め戻し法では、高精度でp型カラム領域を形成することができて、互いに隣り合うp型カラム領域の間隔を狭くすることができる。
 なお、スーパージャンクション構造を形成する他の方法として、「マルチエピタキシャル法」がある。しかし、このマルチエピタキシャル法では、p型カラム領域をイオン注入法で形成している。このため、深くp型カラム領域を基板に形成するには、多段のイオン注入が必要となり、イオン注入の回数が増加するという課題がある。
 そこで、本実施の形態では、トレンチ埋め込み法を採用する。以下、トレンチ埋め込み法によって形成されるスーパージャンクション構造のパワーMOSFETについて説明する。
 (埋め込みエピタキシャル成長法に伴う不具合の詳細な説明)
 本実施の形態によるスーパージャンクション構造のパワーMOSFETを含む半導体装置は、ウェハ状の炭化珪素(SiC)単結晶からなる基板(以下、SiC単結晶基板と言う。)に製造される。具体的には、SiC単結晶基板の主面上に形成されたエピタキシャル層にスーパージャンクション構造を構成するp型カラム領域とn型カラム領域とが交互に配置される。このSiC単結晶基板は、一般に、(0001)面が<11-20>方向に4°傾いた主面を有しており、オリエンテーションフラットと<11-20>方向とがほぼ平行になるように、SiC単結晶基板は製造される。従って、SiC単結晶基板の主面上にエピタキシャル成長法により形成されるエピタキシャル層も、SiC単結晶基板と同様の結晶構造を有する。
 しかし、例えば図18に示すように、SiC単結晶基板SWの製造時におけるプロセス条件のばらつきなどにより、オリエンテーションフラットOFの方向が<11-20>方向と平行にならず、オリエンテーションフラットOFの方向と<11-20>方向との角度誤差が±1°よりも大きくなることがある。このような場合、各半導体チップSCにそれぞれスーパージャンクション構造を構成する複数のトレンチ(溝とも言う。)DTが、オリエンテーションフラットOFの方向とほぼ平行に延在するように形成されると、トレンチDTの延在方向(長手方向とも言う。)と<11-20>方向との角度誤差は±1°よりも大きくなる。
 また、例えば図19に示すように、オリエンテーションフラットOFの方向と<11-20>方向との角度誤差が±1°よりも小さい場合であっても、各半導体チップSCにそれぞれ形成される複数のトレンチDTの延在方向が、その製造時におけるプロセス条件のばらつきなどにより、オリエンテーションフラットOFの方向とずれることがある。このような場合、トレンチDTの延在方向と<11-20>方向との角度誤差が±1°よりも大きくなることがある。
 本発明者らが検討したところ、トレンチDTの延在方向と<11-20>方向との角度誤差が±1°よりも大きくなると、埋め込みエピタキシャル成長法によるトレンチDTの内部への半導体層の埋め戻しが難しくなることが明らかとなった。
 図20は、トレンチDTの延在方向と<11-20>方向との角度誤差が±1°よりも大きい場合における、埋め込みエピタキシャル成長法による埋め戻し態様の一例を説明する概略図である。SiC単結晶基板SWの主面上にエピタキシャル層EPが形成されており、そのエピタキシャル層EPに複数のトレンチDTが一方の方向に延在するように形成されている。トレンチDTの延在方向と<11-20>方向との角度誤差は、例えば±5°程度である。
 エピタキシャル成長の初期は、トレンチDTの底およびエピタキシャル層EPの凸部の上面などから半導体層SM、例えばSiC層が成長して、トレンチDTの内部は埋め戻されていく。しかし、半導体層SMの成長方向が徐々に傾くため、エピタキシャル成長が進むと、トレンチDTの上部および延在方向の両端部が閉塞して、トレンチDTの内部に空孔(ボイドとも言う。)VOが形成される。特に、トレンチDTの深さが5μm以上、特に10μm以上になると、埋め込みエピタキシャル成長法に伴うこのような不具合が顕著に現れる。
 (本発明に至った知見)
 本発明に至った知見について、以下に詳細に説明する。
 (1)トレンチの内部を埋め戻すSiC層の結晶成長に関する実験結果
 図23(a)~(i)は、<11-20>方向に対する延在方向の傾き角度を変えて基板に形成され、その後、結晶層が埋め戻された、複数のトレンチの断面SEM写真である。複数のトレンチは、フォトマスク上に<11-20>方向に対する傾き角度を変化させた複数のパターンを形成し、そのフォトマスクを使用して、意図的に<11-20>方向に対して傾きのバリエーションを持たせて基板に形成されている。図23(a)~(i)には、フォトマスク上で<11-20>方向に対するパターンの傾き角度を-2.0°~+2.0°の範囲で、0.5°刻みで変化させた場合における、それぞれのトレンチの埋め込みの様子を示している。
 図23(a)~(i)では、フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchを示しており、例えば図23(a)では「-2.0°」と示している。なお、図23(a)に、括弧書きで併記した角度「(-1.5°)」は、後述する「推定される実角度」である。また、<11-20>方向と直交する<-1100>方向に向かって傾斜するパターンをプラス側に傾くパターンと言い、<-1100>方向と反対方向(つまり<1-100>)に向かって傾斜するパターンをマイナス側に傾くパターンと言う。
 実験条件としては、<11-20>方向に4°オフの4H-SiC基板に複数のトレンチを形成した後、複数のトレンチの内部をSiC層の結晶成長により埋め戻した。トレンチを形成するためのフォトマスクは、実験に使用した基板のオリエンテーションフラットと、θtrench=0°のパターンとが平行になるように露光装置によってアライメントされている。
 実験に使用した基板はオリエンテーションフラットが<11-20>方向となるように製造されているが、その基板の仕様上のオリエンテーションフラットと<11-20>方向との角度誤差は±5°以内である。トレンチは、ICP(Inductively Coupled Plasma)エッチング法で形成され、トレンチの深さは22μm~25μm、幅は2.25μm~2.5μmである。また、隣り合うトレンチを隔てるスペースである基板の凸部の寸法は2.25μm~2.5μmである。その他、SiC層の埋め戻し結晶成長など、明記しない実験条件は、後述する実施の形態1の≪半導体装置の製造方法≫で説明するものと同様である。
 実験結果では、図23(d)に示すθtrench=-0.5°のパターンにおいて最良の結果が得られており、トレンチが垂直性を保持したまままSiC層がトレンチの内部に良好な状態で埋め込まれている。一方、図23(c)、(b)、(a)の方向に、すなわちマイナス側にθtrenchが傾いたものは、トレンチ側面から左側に傾斜を持ったSiC層が結晶成長し、角度が大きくなるにつれてトレンチ上部を覆ってしまう。また、図23(e)、(f)、(g)、(h)、(i)の方向に、すなわちプラス側にθtrenchが傾いたものは、トレンチ側面から右側に傾斜を持ったSiC層が結晶成長し、角度が大きくなるにつれてトレンチ上部を覆ってしまう。以上の結果より、以下の知見が得られる。
 (知見A)θtrenchが大きくなり、トレンチ上部が結晶成長したSiC層で覆われると、トレンチの内部に原料ガスが供給されにくくなるため、トレンチの内部におけるSiC層の埋め戻し結晶成長が阻害される。
 (知見B)θtrench=-0.5°パターンで、SiC層はほぼ垂直の結晶成長が実現できており、実験に使用した基板のオリエンテーションフラットは厳密な<11-20>方向から0.5°程度ズレて形成されている。このため、図23(a)~(i)の括弧書きで併記した「トレンチの延在方向と結晶固有の<11-20>方向との間の推定される実角度」を割り当てることができる。この実験では、図23(d)が推定された実角度0°にほぼ対応する。
 (2)フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchと、トレンチ上部側面に成長したSiC層の傾き角度θmesaとの関係
 図24は、フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchと、図23から得られたトレンチ上部側面に成長したSiC層の傾き角度θmesaとの関係を示すグラフ図である。θtrenchとθmesaとは直線で近似される比例関係にあることが分かる。この図から、以下の知見が得られる。
 (知見C)θtrenchとθmesaとは直線で近似される比例関係にあり、その傾きは13である。
 (3)トレンチ形状と、トレンチの内部における結晶層の成長阻害との関係を検討するためのモデル
 図25(a)、(b)および(c)は、結晶層がトレンチ上部側面から斜めに傾いて結晶成長する場合における、トレンチ寸法と、結晶層がトレンチを塞いでしまう状態との関係を考察するためのモデルを示す模式図である。
 図25(a)は、高さh、幅wのトレンチに対して、トレンチ側面の上部h/2から、傾斜角Q1を持った結晶成長が始まり、トレンチを塞いでしまう第1のモデルを示している。これは、図23に示した実験結果において、トレンチ側面の上部半分位からSiC層が傾斜して成長していることに対応する。従って、図25(a)に示すモデルが、トレンチの内部における結晶層の成長阻害を避けるための最低限の条件となる。図25(a)に示すモデルにおける許容できる最大の傾斜角Q1は、以下の(式1)で表される。
  Q1=arctan(2w/h)  ・・・・(式1)
 図25(b)は、効果的にトレンチの内部における結晶層の成長阻害を緩和するための第2のモデルを示している。すなわち、このモデルでは、トレンチの入り口が塞がらないように、トレンチ側面の上部h/2から、傾斜角Q2を持った結晶層が成長し、その結晶成長をトレンチの幅w/2程度に抑えることを基準としている。図25(b)に示すモデルにおける許容できる最大の傾斜角Q2は、以下の(式2)で表される。
  Q2=arctan(w/h)  ・・・・(式2)
 図25(c)は、さらに望ましい第3のモデルを示している。すなわち、このモデルでは、トレンチの入り口が塞がらないように、トレンチ側面の上部h/2から、傾斜角Q3を持った結晶層が成長し、その結晶成長を、さらに余裕をもってトレンチの幅w/4程度に抑えることを基準としている。図25(c)に示すモデルにおける許容できる最大の傾斜角Q3は、以下の(式3)で表される。
  Q3=arctan(w/2h)  ・・・・(式3)
 すなわち、トレンチの内部における結晶層の成長阻害を避けるためには、結晶層の成長角度は、最低限でも(式1)のQ1より小さい角度であることが必要であり、好ましくは(式2)のQ2より小さい角度であることが望ましく、さらに好ましくは(式3)のQ3より小さい角度であることが望ましいことになる。
 (4)図25に示したモデルから算出した、許容されるトレンチの延在方向の<11-20>方向に対する角度誤差θ
 図26は、図25に示したモデルおよび上記(知見C)から算出した、許容されるトレンチの延在方向と<11-20>方向との角度誤差を示すグラフ図である。すなわち、(式1)のQ1、(式2)のQ2および(式3)のQ3は(知見C)のθmesaに対応するので、図24の実験結果から得られた傾き13を使えば、許容されるトレンチの延在方向の<11-20>方向に対する角度誤差θが、θtrenchに対応する値として得られる。これにより、以下の知見が得られる。
 (知見D)トレンチの内部における結晶層の成長阻害を避けるためには、トレンチの延在方向と<11-20>方向との角度誤差θは、少なくとも、以下の(式4)より小さい角度であることが必要である。
  θ=Q1/13={arctan(2w/h)}/13 ・・・・(式4)
 好ましくはトレンチの延在方向と<11-20>方向との角度誤差θは、以下の(式5)より小さい角度であるとよい。
  θ=Q2/13={arctan(w/h)}/13  ・・・・(式5)
 さらに好ましくはトレンチの延在方向と<11-20>方向との角度誤差θは、以下の(式6)より小さい角度であるとよい。
  θ=Q3/13={arctan(w/2h)}/13 ・・・・(式6)
 トレンチの延在方向と<11-20>方向との角度誤差θは、許容される角度誤差としてはプラス側およびマイナス側の両側があるので、上記(式4)、(式5)および(式6)で表される±θ以内であることが、トレンチの内部における結晶層の成長阻害を効果的に緩和するための知見である。
 図26は、上記(式4)、(式5)および(式6)を計算した結果である。図26の縦軸は、図25(a)、(b)および(c)に示した3つのモデルに対して許容されるトレンチの延在方向の<11-20>方向に対する角度誤差θを意味する。第1の横軸は、トレンチの幅wを2μmとしたときの高さhであり、0μm~40μmの範囲を示している。第2の横軸は、アスペクト比(Ratio=h/w)を表し、無次元の数値であり、0~20の範囲を示している。
 図26において、アスペクト比が5よりも小さくなると、関数の性質により延在方向の<11-20>方向に対する角度誤差θの許容値が急減に増大する。従って、このようなアスペクト比が比較的小さな領域(0~5)では、角度誤差θの余裕が比較的大きい。
 これに対して、アスペクト比が5以上では、角度誤差θの許容値は、減少するとともに急激な変化をしなくなり、アスペクト比が大きくなるにつれて漸減する。従って、アスペクト比が5以上において、角度誤差θの管理が重要になる。さらにアスペクト比が10以上になると、曲線からほぼ直線で近似されるような漸減する特性も持つようになり、角度誤差θの値自体も小さくなるので、さらに角度誤差θの管理が重要になる。言い換えれば、本発明の適用範囲として、アスペクト比が5以上において顕著な効果が期待できる。さらにアスペクト比が10以上においては、さらに顕著な効果が期待できる。
 (5)フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchと、トレンチ底の結晶成長レートとの関係
 図27は、図23に示した実験結果をまとめたものであり、フォトマスク上におけるパターンの<11-20>方向に対する傾き角度θtrenchと、トレンチ底(Trench bottom)の結晶成長レートとの関係を示すグラフ図である(図中上部のプロット)。図27には、同様に、メサトップ(Mesa top)(基板の凸部の上面)の結晶成長レートも同時に示してある(図中下部のプロット)。ここで、メサとは凸部を意味し、基板に複数のトレンチを形成することにより、互いに隣り合うトレンチを隔てるスペーサである基板の凸部が形成されるので、それをメサと呼んでいる。図27に示す実験結果の点を結ぶ曲線は、ガウシアンによるフィッテング曲線である。
 図27から、トレンチ底の結晶成長レートは、θtrenchの影響を敏感に受けることが分かる。すなわち、結晶層が傾いて成長することによりトレンチ最上部の入り口が狭くなることで、トレンチ底に結晶成長の原料ガスが供給されにくくなるメカニズムが働いていると推定される。
 なお、メサトップの結晶成長レートは、その結晶成長が基板の上面近傍であり、原料ガスの供給の制限を受けにくいことから、θtrenchに対して比較的緩やかな変化である。しかしこの場合でも、θtrench=-0.5°のパターンでメサトップの結晶成長レートが減少しており、トレンチ底に効率的に原料ガスが供給されることを逆の観点から裏づけていると考えられる。
 ところで、(式4)、(式5)および(式6)をより一般化して定式すれば、以下の(式7)となる。
  θ={arctan{k×(w/h)}}/13・・・・(式7)
 ここで、kは、便宜上「アライメント余裕係数」と定義することにし、kは2より小さい係数となる。(式4)、(式5)および(式6)は、それぞれk=2、k=1およびk=1/2に対応する特定ケースということになる。kが2より小さい程、図23に示した結晶層の斜め成長が抑制され、トレンチの内部における結晶層の埋め戻しの完成度があがることになる。なお、kの理論上の最小値は0であるが、このときθ=0になる。現実の製造プロセスではk=0を実現することは困難であるので、製造歩留りおよび製造コスト(製造余裕)とのバランスからkを選択することで、半導体装置のコストを最適化することができる。
 (式7)を逆にkについて解くと、以下の(式8)を得る。
  k=(h/w)×tan(13×θ)・・・・(式8)
 (6)アライメント余裕係数kの計算結果
 図28に、図27に示したトレンチ底の結晶成長レートのフィッテング曲線の所定の高さにおけるθtrenchの幅から角度誤差θを読み取り、この角度誤差θと(式8)とから算出したアライメント余裕係数kを示している。トレンチ底の結晶成長レートの変化分の高さを「高さ位置(Level)」と呼ぶことにし、ガウシアン曲線の裾(θtrench=-2.0°または+1.0°)を0%(結晶成長レート:GR=2.38μm/h)、ガウシアン曲線のピーク(θtrench=-0.46°)を100%(結晶成長レート:GR=4.33μm/h)とし、0%~100%の数値として定義する。
 図28では、高さ位置(Level)の50%、80%および90%においてガウシアン曲線のθtrenchの幅(L-width)を読み取り、それを1/2して角度誤差θを得ている。図23に示した実験条件では、トレンチの深さhは22μm~25μm、幅wは2.25μm~2.5μmであったので、(式8)を用いてkを計算する際に、その中央値としてh=23.5μm、w=2.385μmを用いた。
 以下では、トレンチの入り口が完全に閉じる前のトレンチ埋め戻しの結晶成長において、「高さ位置(Level)」の意味を考察する。単純化されたモデルでは、トレンチ埋め戻しのために供給された原料ガスは、次の3つの部分に分配されると考えられる。
 (a)トレンチ底で起きる結晶成長への寄与分:A1+A2(θ)
 (b)メサトップで起きる結晶成長への寄与分:B1+B2(θ)
 (c)トレンチ側面で起きる結晶成長への寄与分:C1+C2(θ)
 図23および図27に示した実験結果が、A1、B1およびC1のθtrenchに依存しない定数部と、A2(θ)、B2(θ)およびC2(θ)のθtrenchに依存する変数部の存在を示唆しているからである。
 上記(a)は、本発明の目的とする部分であり、この部分への原料ガスの寄与を最大化することが望ましい。上記(b)は、メサトップから垂直上方に起きる結晶成長であるため、トレンチ底の埋め戻しに直接害をもたらす訳ではないが、できるだけ少ない方が望ましい。上記(c)は、本発明の目的を阻害する部分であり、この部分への原料ガスの寄与を最小化することが望ましい。
 原料ガスの供給は一定であり、上記(a)、(b)および(c)の総和は常に一定(const)であるとして、次の式を得る。
  A1+A2(θ)+B1+B2(θ)+C1+C2(θ)=const・・・・(式9)
 ここで、A1、B1およびC1は定数なので右辺に移項して、新たな定数const’としてまとめると次の式を得る。
  A2(θ)+B2(θ)+C2(θ)=const’・・・・(式10)
 (式10)で、A2(θ)への原料ガスの寄与が100%となるときに、残るB2(θ)+C2(θ)は0%になる。これは、図27に示したθtrench=0.5°近傍に対応し、高さ位置(Level)としては100%に対応する。また、これは、上記(a)が最大化、上記(b)および(c)を最小化できた状態である。
 逆に、(式10)で、A2(θ)への寄与が0%となるときに、残るB2(θ)+C2(θ)は100%になる。これは、図27に示したθtrench=-2.0°またはθtrench=+1.0°近傍に対応し、高さ位置(Level)としては0%に対応する。また、これは、上記(a)が最小化、上記(b)および(c)が最大化となった状態である。以上により、高さ位置(Level)は、近似的に、トレンチ底への結晶成長の効率のよさを表すパラメータとして理解することもできる。以上の結果より、以下の知見が得られる。
 (知見E)高さh、幅wのトレンチの内部における結晶層の成長阻害を緩和するための、トレンチの延在方向と結晶方位(例えば<11-20>方向)との角度誤差θは少なくとも、一般に以下の式で表される((式7)再掲))。
  θ={arctan{k×(w/h)}}/13
 ここで、kはアライメント余裕係数と定義し、2よりも小さい値であることが必要である。トレンチ底の結晶成長レートが飽和する(0%)場合にくらべ、k=0.9以下であれば50%以上効率的な結晶成長レートが確保される。さらに、k=0.5以下であれば80%以上効率的な結晶成長レートが確保される。さらに好ましくは、k=0.3以下であれば90%以上効率的な結晶成長レートが確保される。
 本実施の形態では、前述の本発明に至った知見を基に、スーパージャンクション構造のパワーMOSFETを含む半導体装置において、埋め込みエピタキシャル成長法によりトレンチの内部へ確実に結晶層を埋め戻すことにより、半導体装置の製造歩留りおよび信頼性を向上させることのできる新規な技術的思想を提供する。
 (実施の形態1)
 ≪半導体装置の特徴および効果≫
 本実施の形態1による半導体装置の特徴および効果について、図1、図2および図3を用いて説明する。図1は、本実施の形態1によるSiC単結晶ウェハに形成された複数の半導体チップのレイアウトの第1例を示す平面図である。図2は、本実施の形態1によるSiC単結晶ウェハに形成された複数の半導体チップのレイアウトの第2例を示す平面図である。図3は、本実施の形態1による半導体装置に形成された複数のトレンチの埋め戻し態様の一例を説明する概略図である。
 まず、本実施の形態1による半導体装置の第1例について、図1を用いて説明する。
 図1に示すように、本実施の形態1によるスーパージャンクション構造のパワーMOSFETを含む半導体装置は、半導体チップSC毎にウェハ状のSiC単結晶基板SWに製造される。具体的には、SiC単結晶基板SWの主面上に、SiC単結晶基板SWと同様の結晶構造を持つエピタキシャル層が形成され、このエピタキシャル層に、x方向(第1方向)に延在するp型カラム領域PCとn型カラム領域NCとが、SiC単結晶基板SWの主面に沿ってx方向と直交するy方向(第2方向)に交互に配置されたスーパージャンクション構造を有している。SiC単結晶基板SWは、例えば4Hポリタイプ六方晶系SiC単結晶(略記すれば「4H-SiC」)からなる。
 p型カラム領域PCは、x方向に延在し、y方向に互いに離間してエピタキシャル層に形成された複数のトレンチDTに、埋め込みエピタキシャル成長法により埋め込まれた半導体層(SiC層)からなり、y方向に互いに隣り合うp型カラム領域PCの間にエピタキシャル層からなるn型カラム領域NCが形成されている。半導体層は、エピタキシャル層、すなわちSiC単結晶基板SWと同様の結晶構造を持つ結晶層である。
 トレンチDTは、例えば5μm以上の深さを有しており、例えばアスペクト比が10程度で、深さが20μm程度のトレンチDTを例示することができる。また、トレンチDTは、深くなるほど狭くなる先細り形状となるが、トレンチDTの底面と側面とがなすテーパー角は、例えば88°~90°程度である。なお、このテーパー角としては、80°~90°(80°以上、90°以下)であってもよく、85°~90°であればさらに好ましく、88°~90°が最も好ましい。
 半導体装置の第1例では、SiC単結晶基板SWは、(0001)面が<11-20>方向に4°傾いた主面を有しており、オリエンテーションフラットOFと<11-20>方向との角度誤差は±θ以内となっている。ここでθは、(知見E)で前述したとおり、高さh、幅wのトレンチに対して、{arctan{k×(w/h)}}/13で定まる。ここでkは、少なくとも2より小さく、好ましくは0.9以下、さらに好ましくは0.5、さらにさらに好ましくは0.3以下である。±θ以内の一例として、±1°以内(-1°以上、かつ、1°以下)を代表的な値として挙げることができる。
 そして、エピタキシャル層に形成される複数のトレンチDTが延在する方向(x方向)と、SiC単結晶基板SWのオリエンテーションフラットOFの方向とが同じになるように、複数のトレンチDTは形成されている。従って、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差は±θ以内となる。なお、ここで、同じ方向とは、完全に一致した方向という意味ではなく、実質一致した方向またはほぼ一致した方向という意味であって、ばらつきを考慮した一定の範囲を含む。
 次に、本実施の形態1による半導体装置の第2例について、図2を用いて説明する。
 図2に示すように、半導体装置の第2例では、SiC単結晶基板SWは、(0001)面が<11-20>方向に4°傾いた主面を有しており、オリエンテーションフラットOFと<11-20>方向との角度誤差は上記±θよりも大きくなっている。そして、エピタキシャル層に形成される複数のトレンチDTが延在する方向(x方向)と、<11-20>方向とが同じになるように、複数のトレンチDTは形成されている。従って、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差は±θ以内となる。
 図3は、本実施の形態1による半導体装置の第1例および第2例、すなわち、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差が±θ以内の場合における、埋め込みエピタキシャル成長法による埋め戻し態様の一例を説明する概略図である。
 エピタキシャル成長の初期は、トレンチDTの底部およびエピタキシャル層EPの凸部の上面などから半導体層SMが成長して、トレンチDTの内部は埋め戻されていく。さらに、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差が±θ以内であることから、エピタキシャル成長が進んでも、半導体層SMの成長方向の傾きが小さく、トレンチDTの上部および延在方向の両端部が閉塞する前に、トレンチDTの内部を半導体層SMによって埋め戻すことができる。
 従って、トレンチDTの内部にボイドが形成されにくくなるので、埋め戻し不良による製造歩留りの低下を防止することができる。また、半導体装置の信頼性を向上させることができる。
 ≪半導体装置の構成≫
 本実施の実施例1による半導体装置について図4および図5を用いて説明する。図4は、本実施の形態1による半導体装置の構成を示す平面図である。図5は、図4のA-A´線で切断した断面図である。
 図4に示すように、本実施の形態1による半導体チップSCは、例えば矩形形状をしており、セル領域(活性部とも言う。)CRと、遷移領域TRと、周辺領域(周端部とも言う。)PERと、を有している。そして、セル領域CRの外側を囲むように遷移領域TRが配置され、さらに、遷移領域TRを囲むように周辺領域PERが配置されている。言い換えれば、周辺領域PERで囲まれた内側領域に、遷移領域TRを介してセル領域CRが配置されている。
 セル領域CRには、例えばスイッチング素子として機能する複数のスーパージャンクション構造のパワーMOSFETが形成されている。一方、周辺領域PERには、例えば周辺を斜めにエッチングするベベル構造、拡散リング構造、フィールドリング構造またはフィールドプレート構造に代表される周辺構造が形成されている。これらの周辺構造は、基本的に電界集中によってアバランシェ降伏現象を生じにくくする設計思想に基づいて形成されている。
 以上のように、本実施の形態1による半導体チップSCにおいては、中心領域を含む内側領域に複数のスーパージャンクション構造のパワーMOSFETが形成され、かつ内側領域を囲む外側領域に電界緩和構造である周辺構造が形成されている。
 以下、セル領域CR、遷移領域TRおよび周辺領域PERのそれぞれの構造について説明する。
 (1)セル領域CRの構造
 図5に示すように、セル領域CRは、基板SUBの主面上のエピタキシャル層EPに、x方向に延在するp型カラム領域PCとn型カラム領域NCとが、基板SUBの主面に沿ってx方向と直交するy方向に交互に配置されたスーパージャンクション構造を有している。さらに、前述したように、複数のp型カラム領域PCが形成される複数のトレンチDTの延在方向(x方向)と<11-20>方向との角度誤差は±θ以内である。ここでθは(知見E)で前述したように定まる。
 本実施の形態1によるセル領域CRでは、p型カラム領域PCのy方向の幅とn型カラム領域NCのy方向の幅との比が1:1の場合を例示しているが、これに限定されるものではなく、p型カラム領域PCのy方向の幅とn型カラム領域NCのy方向の幅とは互いに異なっていてもよい。
 以下、具体的に説明する。例えば窒素(N)、リン(P)または砒素(As)などのn型不純物を含有する炭化珪素(SiC)からなる基板SUBの主面上にエピタキシャル層EPが形成されている。このエピタキシャル層EPは、例えば窒素(N)、リン(P)または砒素(As)などのn型不純物が導入された炭化珪素(SiC)を主成分とする半導体層(S層)から構成されており、基板SUBと同様の結晶構造を有する。エピタキシャル層EPのn型不純物濃度は基板SUBの不純物濃度よりも低く、例えば3.0×1016/cmである。
 そして、エピタキシャル層EP内でy方向に互いに離間するように複数のp型カラム領域PCが形成されている。このp型カラム領域PCのそれぞれは、例えばアルミニウム(Al)またはボロン(B)などのp型不純物が導入された半導体層(SiC層)から構成されている。この半導体層は、エピタキシャル層EPと同じ結晶構造を持つ結晶層であり、p型カラム領域PCのp型不純物濃度は、例えば3.0×1016/cmである。そして、互いに隣り合うp型カラム領域PCで挟まれたエピタキシャル層EPの部分が、n型カラム領域NCになる。この複数のn型カラム領域NCを含むエピタキシャル層EPと基板SUBによって、パワーMOSFETのドレイン領域が構成されている。
 さらに、スーパージャンクション構造が形成されたエピタキシャル層EPの上面に素子部が形成されている。
 素子部には、エピタキシャル層EPの上面にp型カラム領域PCと接するチャネル領域CHが形成されており、このチャネル領域CHに内包されるようにソース領域SRが形成されている。このとき、チャネル領域CHは、例えばアルミニウム(Al)またはボロン(B)などのp型不純物が導入された半導体領域から構成され、ソース領域SRは、例えば窒素(N)、リン(P)または砒素(As)などのn型不純物が導入された半導体領域から構成されている。また、ソース領域SRの中央部分には、エピタキシャル層EPの上面からチャネル領域CHに達するボディコンタクト領域BCが形成されている。このボディコンタクト領域BCは、例えばアルミニウム(Al)またはボロン(B)などのp型不純物が導入された半導体領域から構成されており、ボディコンタクト領域BCの不純物濃度は、チャネル領域CHの不純物濃度よりも高くなっている。
 さらに、互いに隣り合うチャネル領域CHで挟まれる領域上にゲート絶縁膜GIが形成されており、このゲート絶縁膜GI上にゲート電極GEが形成されている。ゲート絶縁膜GIは、例えば酸化シリコン膜により形成されるが、これに限らず、例えば酸化シリコン膜よりも誘電率の高い高誘電率膜により形成することもできる。また、ゲート電極GEは、例えば多結晶シリコン膜により形成されている。このゲート電極GEは、ソース領域SRと整合するように形成されている。また、ゲート電極GEの上面および側壁を覆うように、例えば酸化シリコンからなる層間絶縁膜ILが形成されている。
 複数のゲート電極GEを覆う層間絶縁膜IL上にわたって、ソース電極SEが形成されている。ソース電極SEは、例えばチタンタングステン(TiW)からなるバリア導体膜とアルミニウム(Al)膜との積層膜により形成される。これにより、ソース電極SEは、ソース領域SRと電気的に接続されるとともに、ボディコンタクト領域BCを介してチャネル領域CHとも電気的に接続される。
 このとき、ボディコンタクト領域BCは、ソース電極SEとのオーミック接触を確保する機能を有し、このボディコンタクト領域BCが存在することにより、ソース領域SRとチャネル領域CHとは同電位で電気的に接続される。
 従って、ソース領域SRをエミッタ領域とし、チャネル領域CHをベース領域とし、かつ、n型カラム領域NCをコレクタ領域とする寄生npnバイポーラトランジスタのオン動作を抑制することができる。すなわち、ソース領域SRとチャネル領域CHとが同電位で電気的に接続されているということは、寄生npnバイポーラトランジスタのエミッタ領域とベース領域との間に電位差が生じていないこと意味し、これによって、寄生npnバイポーラトランジスタのオン動作を抑制することができる。
 ソース電極SEを部分的に覆うように、例えば酸化シリコンからなる表面保護膜PASが形成されており、ソース電極SEの一部領域は、表面保護膜PASから露出している。また、基板SUBの裏面(エピタキシャル層EPが形成された主面と反対側の面)には、金属からなるドレイン電極DEが形成されている。
 以上のようにして、セル領域CRに複数のスーパージャンクション構造のパワーMOSFETが形成されている。
 (2)遷移領域TRの構造
 図5に示すように、遷移領域TRも、複数のp型カラム領域PCとエピタキシシャル層EPからなる複数のn型カラム領域NCとがy方向に交互に配置されたスーパージャンクション構造を有している。さらに、前述したように、複数のp型カラム領域PCが形成される複数のトレンチDTの延在方向(x方向)と<11-20>方向との角度誤差は±θ以内である。ここでθは(知見E)で前述したように定まる。
 以下、具体的に説明する。セル領域CRと同様に遷移領域TRにおいても、複数のp型カラム領域PCおよび複数のn型カラム領域NCが同様に形成されている。さらに、セル領域CRのゲート電極GEと同層の多結晶シリコン膜により形成されたゲート引き出し部GPUが、チャネル領域CH上にゲート絶縁膜GIを介して形成されている。そして、このゲート引き出し部GPUの上面および側壁を覆うように層間絶縁膜ILが形成されており、この層間絶縁膜ILの一部にゲート引き出し部GPUの上面の一部を露出する開口部が形成されている。
 そして、セル領域CRのソース電極SEと同層の積層膜により形成されたゲート引き出し電極GPEが、上記開口部内を含む層間絶縁膜IL上に形成されている。ここで、ゲート引き出し部GPUは、複数のゲート電極GEと電気的に接続されており、ゲート引き出し電極GPEに印加されたゲート電圧は、ゲート引き出し部GPUを介して、複数のゲート電極GEのそれぞれに印加される。
 さらに、エピタキシャル層EPの上面には、セル領域CRから延在するチャネル領域CHが形成されており、このチャネル領域CHの内部に内包されるようにソース引き出し領域SPRが形成されている。また、チャネル領域CH上を覆うように、エピタキシャル層EPの上面上に層間絶縁膜ILが形成されており、この層間絶縁膜ILには、ソース引き出し領域SPRを露出するように開口部が形成されている。そして、ゲート引き出し電極GPEと同層の積層膜により形成されたソース引き出し電極SPEが、上記開口部内を含む層間絶縁膜IL上に形成されている。
 遷移領域TRにおいても、ゲート引き出し電極GPEおよびソース引き出し電極SPEを部分的に覆うように、例えば酸化シリコンからなる表面保護膜PASが形成されており、ゲート引き出し電極GPEの一部領域およびソース引き出し電極SPEの一部領域は、表面保護膜PASから露出している。
 以上のようにして、遷移領域TRに遷移構造が形成されている。
 (3)周辺領域PERの構造
 図5に示すように、周辺領域PERも、複数のp型カラム領域PCとエピタキシャル層EPからなる複数のn型カラム領域NCとがy方向に交互に配置されたスーパージャンクション構造を有している。さらに、前述したように、複数のp型カラム領域PCが形成される複数のトレンチDTの延在方向(x方向)と<11-20>方向との角度誤差は±θ以内である。ここでθは(知見E)で前述したように定まる。
 以下、具体的に説明する。セル領域CRと同様に周辺領域PERにおいても、複数のp型カラム領域PCおよび複数のn型カラム領域NCが同様に形成されている。さらに、セル領域CRのゲート電極GEと同層の多結晶シリコン膜により形成された複数のダミー電極FEが、セル領域CRのゲート絶縁膜GIと同層の酸化シリコン膜を介して、エピタキシャル層EPの上面上に形成されている。また、複数のダミー電極FEの上面および側壁を覆うように、エピタキシャル層EPの上面上に層間絶縁膜ILが形成されている。
 周辺領域PERにおいても、例えば酸化シリコンからなる表面保護膜PASが形成されている。
 以上のようにして、周辺領域PERに周辺構造が形成されている。
 ≪半導体装置の製造方法≫
 本実施の形態1による半導体装置の製造方法の一例について図6~図14を用いて説明する。図6~図14は、本実施の形態1による半導体装置の製造工程を示す断面図である。
 まず、図6に示すように、主面(表面、上面)上にn型半導体層からなる低濃度のエピタキシャル層EPを形成した基板(ウェハと称する平面略円形状の薄板)SUBを用意する。基板SUBは、例えば4Hポリタイプ型または6Hポリタイプ型の六方晶系SiC単結晶からなり、(0001)面が<11-20>方向に4°傾いた主面を有している。従って、エピタキシャル層EPもSiC単結晶からなり、基板SUBと同様の結晶構造を有する。
 エピタキシャル層EPには、例えば窒素(N)、リン(P)または砒素(As)などのn型不純物が導入されている。エピタキシャル層EPのn型不純物濃度は、例えば3.0×1016/cm程度であり、エピタキシャル層EPの厚さは、例えば20μm~30μm程度である。
 次に、図7に示すように、例えば絶縁材料からなるパターンをハードマスクとした選択的なエッチング法により、セル領域CR、遷移領域TRおよび周辺領域PERのエピタキシャル層EPに、x方向に延在し、y方向に互いに離間する複数のトレンチDTを形成する。
 例えばトレンチDTのエピタキシャル層EPの上面からの深さは、5μm以上であり、一例として、アスペクト比が10程度、エピタキシャル層EPの上面からの深さが20μm程度のトレンチDTを例示することができる。また、トレンチDTのテーパー角は、例えば88°~90°程度とすることにより、埋め戻し領域の半導体層の濃度分布を改善することができる。
 また、トレンチDTの延在方向(x方向)は<11-20>方向と±θ以内の角度誤差を有している。ここでθは(知見E)で前述したように定まる。
 トレンチDTの形成方法としては、予め準備された基板SUBの仕様によって異なり、以下の第1の方法(図1を用いて説明した第1例)および第2の方法(図2を用いて説明した第2例)を例示することができる。
 第1の方法: 基板SUBを準備する際に、オリエンテーションフラットの方向と<11-20>方向との角度誤差が±θ1以内(θ1:第1角度誤差)である基板SUBを準備する。現在標準的に入手できるSiC基板の上記角度誤差の標準仕様は、±5°と大きい。これに対して、例えば深さが10μmを超えるような深いトレンチDTを埋め戻す場合には、第1の方法では、例えば上記角度誤差が±0.5°以内となるような、特別仕様の基板SUBを準備することになる。
 次に、露光装置において、トレンチDTのエッチング用パターンを形成するための露光をフォトマスク(レチクル)を用いて行う。ここで、露光装置に起因するフォトマスクと基板SUBとの間のオフセットなどによる角度誤差(θ2:第2角度誤差)は、第1角度誤差に対して十分小さい、または予め測定して露光装置の調整などで補正されているものとしている。すなわち、露光工程では、第2角度誤差は第1角度誤差よりも十分小さい(θ2<<θ1)ことを前提としている。
 以上のとおり、第1の方法では、第1角度誤差が(知見E)で前述した±θ以内の基板SUBを準備することにより、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差を±θ以内とする。
 第2の方法: ここではまず、基板SUBを準備する際に、オリエンテーションフラットの方向と<11-20>方向との角度誤差が、標準仕様の基板SUBを準備する。例えば現在入手できる標準仕様のSiC基板の角度誤差は±5°以内である。
 次に、オリエンテーションフラットの方向と<11-20>方向との角度誤差(第1角度誤差)を、例えばX線回折などで測定して誤差データを得る。上記角度誤差の測定は、例えば基板SUBを切り出した結晶インゴット毎にバッチ処理で行ってもよく、または、基板SUBの個体毎に行ってもよい。前者の方が、測定回数が少ない点で有利であるが、基板SUBのバッチ管理が必要になる。後者は個体毎に測定するのでインライン測定装置などが必要になるが、個体毎に測定するので厳密な管理が可能である。以上の角度誤差の測定は、半導体装置の製造メーカが行ってもよい。また、基板メーカなどの第三者が角度誤差の測定を行い、上記誤差データが特定された基板SUBが製造メーカに納入されることで基板SUBを準備してもよい。
 さらに、露光工程で、予め得ている前述の誤差データを用いて、オリエンテーションフラットに対する角度補正を露光装置で行う。なお、第1の方法で説明したように、使用する露光装置ではθ2<<θ1が前提として満たされている。これにより、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差を±θ以内とする。ただし、予め準備された基板SUBのオリエンテーションフラットの方向と<11-20>方向との角度誤差は、露光装置において補正可能な範囲である。
 第1および第2の方法の併用: 要求されるθに応じて、前述の第1および第2の方法の併用が有効である。すなわち、この場合は、標準仕様より小さい第1角度誤差の基板SUBを準備し、その第1角度誤差の誤差データを測定し、その誤差データを用いて露光装置において角度補正を行う。この方法によれば、θを小さくできるので、極めてアスペクト比の大きいトレンチDT(例えばアスペクト比が10以上)の埋め戻しにも対応できるようになり、また、アスペクト比に依らずトレンチDTの内部の埋め戻し結晶領域の不純物濃度分布を均一にする効果も得られる。
 トレンチDTの形成には、例えばICPエッチング装置を用いる。また、基板SUBを搭載する下部電極のエッチング中の温度は、50℃以上に制御することが望ましく、これにより、所望する形状のトレンチDTを再現性よく、かつ、均一に形成することができる。
 次に、図8に示すように、例えば埋め込みエピタキシャル成長法により、セル領域CR、遷移領域TRおよび周辺領域PERのそれぞれのエピタキシャル層EPに形成された複数のトレンチDTの内部に、エピタキシャル層EPと同じ結晶構造を持つ結晶層であるp型半導体層を形成する。続いて、隣り合うトレンチDTの間を隔てるエピタキシャル層EP(n型カラム領域NC)の上面に成長したp型半導体層を研削し、さらに、例えばCMP(Chemical Mechanical Polishing)法により研磨することによって、複数のトレンチDTの内部のみにp型半導体層からなるp型カラム領域PCを形成する。y方向に互いに離間するトレンチDTの間が、エピタキシャル層EPからなるn型カラム領域NCとなる。
 複数のトレンチDTの延在方向と<11-20>方向との角度誤差は±θ以内であることから、アスペクト比が10程度のトレンチDTであっても、トレンチDTの上部および両端部が閉塞されず、ボイドを形成することなく、複数のトレンチDTの内部をp型半導体層によって埋め戻すことができる。
 さらに、埋め込みエピタキシャル成長法では、ガス種、ガス流量、温度および圧力などを制御することにより、複数のトレンチDTの内部に再現性よくp型半導体層を埋め戻すことができる。ガス種としては、例えば珪素(Si)源ガス、炭素(C)源ガス、水素(H)ガス、塩酸(HCl)ガスおよびドーピングガスを用いる。珪素(Si)源ガスとしては、例えばモノシラン(SiH)ガスなどを用いる。炭素(C)源ガスとしては、例えばエチレン(C)、メチルアセチレン(C)またはプロパン(C)などを用いる。また、p型のドーパントとしてアルミニウム(Al)を選択した場合は、ドーピングガスとして、例えばトリメチルアルミニウム(Trimethylaluminum:TMA)またはトリエチルアルミニウム(Triethylaluminum:TEA)などを用いる。
 埋め込みエピタキシャル成長法の条件として、HCl/SiH流量比は、例えば30以上、かつ、65以下とし、H/SiH流量比は、例えば500以上、かつ、7,000以下とする。
 図21は、埋め込みエピタキシャル成長法において、HCl/SiH流量比が33.3、50および66.7の場合の埋め戻し態様の一例を示す図である。H/SiH流量比は、5,000である。
 図21に示すように、HCl/SiH流量比が33.3であれば、トレンチDTの内部にp型半導体層が良好に埋め戻される。しかし、HCl/SiH流量比が30よりも小さくなると、トレンチDTの上部が閉塞傾向となり、ボイドが発生する。一方、HCl/SiH流量比が65よりも大きくなると、エッチングが過度に強くなり、初期のトレンチDTの形状が崩れる。また、H/SiH流量比が500よりも小さくなると、表面バンチングが顕著となる。一方、H/SiH流量比が7,000よりも大きくなると、過剰エッチングが起こる、またはボイドが発生する。
 さらに、エピタキシャル成長中の成長炉内の圧力は、例えば30kPa以上、かつ、100kPa以下とする。
 図22は、埋め込みエピタキシャル成長法において、エピタキシャル成長中の成長炉内の圧力が10kPaの場合の埋め戻し態様の一例を示す図である。
 図22に示すように、下限圧力となる30kPaより低い圧力では、特にトレンチDTの側面に対して、エッチングが過度に強くなり、初期のトレンチDTの形状が崩れる。一方、上限圧力は高い方が望ましいが、石英炉で安全なエピタキシャル成長を行うためには大気圧が上限圧力となる。
 なお、埋め込みエピタキシャル成長法の条件は、エピタキシャル成長中に変更することができ、ドーピングガス流量、SiH流量および炭素/珪素(C/Si)比などを、エピタキシャル成長中に適宜変更してもよい。これにより、埋め戻し領域のp型半導体層の濃度分布を一様にすることが可能となる。
 また、セル領域CR、遷移領域TRおよび周辺領域PERのそれぞれのp型カラム領域PCのp型不純物濃度、幅およびピッチは、チャージバランスがとれるように設定される。本実施の形態1による半導体装置では、p型カラム領域PCのy方向の幅とn型カラム領域NCのy方向の幅との比を1:1とした場合を例示する。この場合、p型カラム領域PCの総電荷量とn型カラム領域NCの総電荷量とが同じとなるように、p型カラム領域PCのp型不純物濃度は設定される。従って、p型カラム領域PCのp型不純物濃度は、n型カラム領域NCを構成するエピタキシャル層EPのn型不純物濃度と同じ、例えば3.0×1016/cm程度である。
 以上のようにして、本実施の形態1によれば、「トレンチ埋め込み法」によって、エピタキシャル層EPに、p型カラム領域PCとn型カラム領域NCとが交互に形成されたスーパージャンクション構造が形成される。
 次に、スーパージャンクション構造を形成したエピタキシャル層EPの上面に素子部を形成する工程について説明する。
 図9に示すように、エピタキシャル層EPの上面を平坦化した後、例えば絶縁材料からなるパターンをハードマスクとした選択的なイオン注入法により、セル領域CRおよび遷移領域TRにチャネル領域CHを形成する。このチャネル領域CHは、エピタキシャル層EPの内部に、例えばアルミニウム(Al)またはボロン(B)などのp型不純物を導入することにより形成されたp型半導体領域である。
 次に、例えば絶縁材料からなるパターンをハードマスクとした選択的なイオン注入法により、セル領域CRに複数のソース領域SRを形成し、遷移領域TRにソース引き出し領域SPRを形成する。ソース領域SRおよびソース引き出し領域SPRは、エピタキシャル層EPの内部に、例えば窒素(N)、リン(P)または砒素(As)などのn型不純物を導入することにより形成されたn型半導体領域である。セル領域CRに形成された複数のソース領域SRは、遷移領域TRに形成されたソース引き出し領域SPRと電気的に接続される。
 次に、例えば絶縁材料からなるパターンをハードマスクとした選択的なイオン注入法により、セル領域CRの複数のソース領域SRのそれぞれの中央部に、底部がチャネル領域CHに達するボディコンタクト領域BCを形成する。このボディコンタクト領域BCは、例えばエピタキシャル層EPの内部に、例えばアルミニウム(Al)またはボロン(B)などのp型不純物を導入することにより形成されたp型半導体領域であり、ボディコンタクト領域BCの不純物濃度がチャネル領域CHの不純物濃度よりも高くなるように形成される。
 なお、このような一連のイオン注入工程では、イオン注入によって生じる欠陥を抑制するため、基板SUBの温度を300℃以上に設定して、イオン注入を行ってもよい。また、ここでの説明は省略するが、高耐圧を確保するのためのイオン注入を行い、終端構造を形成してもよい。
 次に、一連のイオン注入工程の後、表面荒れを防ぐためのキャップ層、例えば1μm以上の厚さのカーボン膜をスパッタリング法などでエピタキシャル層EPの上面上に堆積させ、不純物活性化のために、例えば1600℃~1800℃程度の温度で熱処理を行う。その後、キャップ層は除去される。
 次に、図10に示すように、エピタキシャル層EPの上面上にゲート絶縁膜GIを形成し、このゲート絶縁膜GI上に導体膜PFを形成する。ゲート絶縁膜GIは、例えば酸化シリコンからなり、例えば熱酸化法により形成される。但し、ゲート絶縁膜GIは酸化シリコン膜に限らず、例えば酸化ハフニウム膜に代表される酸化シリコン膜よりも誘電率の高い高誘電率膜であってもよい。一方、ゲート絶縁膜GI上に形成される導体膜PFは、例えば多結晶シリコンからなり、例えばCVD(Chemical Vapor Deposition)法により形成される。
 次に、図11に示すように、例えばレジストパターンをマスクとした選択的なエッチング法により、導体膜PFをパターニングする。これにより、セル領域CRに複数のゲート電極GEが形成され、遷移領域TRにゲート引き出し部GPUが形成され、周辺領域PERに複数のダミー電極FEが形成される。ゲート引き出し部GPUは、複数のゲート電極GEと電気的に接続するように形成される。
 次に、複数のゲート電極GE、ゲート引き出し部GPUおよび複数のダミー電極FEを覆う層間絶縁膜ILをエピタキシャル層EPの上面上に形成する。この層間絶縁膜ILは、例えば酸化シリコンからなり、例えばCVD法により形成される。
 次に、例えばレジストパターンをマスクとした選択的なエッチング法により、セル領域CRの互いに隣り合うゲート電極GEの間において、底部がソース領域SRおよびボディコンタクト領域BCに達する開口部を層間絶縁膜ILに形成するとともに、遷移領域TRのゲート引き出し部GPUの一部を露出する開口部を形成する。また、遷移領域TRにおいては、層間絶縁膜ILに開口部を形成することにより、ソース引き出し領域SPRを露出する。
 次に、図12に示すように、ソース領域SRおよびボディコンタクト領域BCを露出する開口部、ゲート引き出し部GPUを露出する開口部およびソース引き出し領域SPRを露出する開口部を含む層間絶縁膜IL上に金属膜を形成する。この金属膜は、例えばチタンタングステン(TiW)膜とアルミニウム(Al)膜との積層膜から形成され、例えばスパッタリング法により形成される。
 そして、例えばレジストパターンをマスクとした選択的なエッチング法により、上記金属膜をパターニングする。これにより、セル領域CRには、ソース領域SRおよびボディコンタクト領域BCに電気的に接続するソース電極SEが形成され、遷移領域TRには、ゲート引き出し部GPUと電気的に接続されるゲート引き出し電極GPEおよびソース引き出し領域SPRと電気的に接続されるソース引き出し電極SPEが形成される。
 次に、図13に示すように、ソース電極SE、ゲート引き出し電極GPEおよびソース引き出し電極SPEを覆うように表面保護膜PASを形成する。そして、例えばレジストパターンをマスクとした選択的なエッチング法により、表面保護膜PASをパターニングして、ソース電極SEの一部領域、ゲート引き出し電極GPEの一部領域およびソース引き出し電極SPEの一部領域を表面保護膜PASから露出させる。これにより、表面保護膜PASから露出した領域を外部接続領域として機能させることができる。
 次に、図14に示すように、基板SUBの主面と反対側の裏面から基板SUBを研削して、基板SUBを薄くする。そして、基板SUBの裏面に、ドレイン電極DEとなる金属膜をスパッタリング法または蒸着法により形成する。その後、低抵抗なコンタクトを得るため、例えば1,000℃程度の熱処理相当のレーザーアニール処理を行う。
 以上のようにして、実施の形態1によるスーパージャンクション構造のパワーMOSFETを有する半導体装置を製造することができる。
 なお、本実施の形態1では、(0001)面が<11-20>方向に4°傾いた主面(オフ角)を有するSiC単結晶基板を例示したが、これに限定されるものではない。例えば(0001)面が<11-20>方向に1°以上、かつ、5°以下傾いた主面を有するSiC単結晶基板を用いてもよい。また、(0001)面に替えて、(000-1)面の結晶主面にオフ角が設けられたSiC単結晶基板を用いてもよい。
 また、結晶主面が<11-20>方向に傾いた主面を有する六方晶系SiC単結晶基板を例示したが、これに限定されるものではない。例えば結晶主面が<11-20>方向に直交する<1-100>方向に傾いた主面を有する六方晶系SiC単結晶基板を用いてもよい。また必要があれば、オフ角を設ける結晶方向は上記以外であってもよい。このため、<11-20>方向などのオフ角を設ける所定の結晶方向をより一般的に基準結晶方向と呼ぶことができる。
 さらに、六方晶系SiC単結晶基板として、現在主流である4HポリタイプのSiC基板(4H-SiC)を例示したが、オフ角のある6HポリタイプのSiC基板(6H-SiC)を用いた場合にも本発明を適用できる。
 また、六方晶系基板として、窒素ガリウム(GaN)などの他のワイドギャップ化合物半導体にも同様に本発明を適用できる可能性がある。また、3C-SiC、酸化ガリウム(Ga)など結晶構造が違っても、同様の課題に対して本発明を適用できる可能性がある。
 また、前述の≪半導体装置の製造方法≫においては、オリエンテーションフラットOFを<11-20>方向に対する基準マークとして用いた。ところで、現在市販される4インチのSiC基板では、プライマリー・フラットまたはセカンダリー・フラットと呼ばれる基準マークが設けられている。従って、オリエンテーションフラットとは、プライマリー・フラットおよびセカンダリー・フラットを含む総称である。また、大型のSi基板では、同様な基準マークとしてノッチが用いられる場合がある。従って、本実施の形態1で記載したオリエンテーションフラットOFは、より一般的には基板に設けらた特定結晶方位を示すための基準マークを意味する。
 このように、本実施の形態1では、トレンチDTの延在方向と<11-20>方向との角度誤差を±θ以内とする。ここでθは(知見E)で前述したように定まる。これにより、トレンチ埋め込み法によりp型カラム領域PCとn型カラム領域NCとを交互に配置したスーパージャンクション構造のパワーMOSFETを形成する際、複数のトレンチDTの内部を、ボイドを形成することなく良好に埋め戻すことができる。その結果、半導体装置の製造歩留りおよび信頼性を向上させることができる。
 なお、以上の本実施の形態1から、特許請求の範囲に記載の発明に加えて、以下〔付記A〕~〔付記B〕のような発明も把握される。また、これらの発明と特許請求の範囲に記載の発明との組み合わせの発明も把握される。
〔付記A〕 所定の結晶主面(例えば(0001)面または(000-1)面)に対して、所定の基準結晶方向(例えば<11-20>方向または<1-100>方向)に傾斜するオフ角が設けられた主面を有する基板と、前記基板の前記主面に沿う第1方向に延在し、前記基板の前記主面に沿って前記第1方向と直交する第2方向に互いに離間して、前記基板に設けられた複数のトレンチと、前記トレンチの内部に設けられ、前記基板と同じ結晶構造を持つ結晶層からなる第1カラム領域と、前記第2方向に互いに隣り合う前記トレンチの間の前記基板の部分からなる第2カラム領域と、を備え、
 前記基準結晶方向と前記第1方向との角度誤差が±θ以内であり、前記θは、前記トレンチの深さをh、前記トレンチの幅をw、kを0より大きく2より小さい係数とするとき、
   θ={arctan{k×(w/h)}}/13
で定まる半導体装置。
〔付記B〕付記Aにおいて、前記トレンチは、深くなるほど狭くなる先細り形状であって、トレンチの底面と側面とがなすテーパー角は80°~90°である、半導体装置。
 (実施の形態2)
 本実施の形態2による半導体装置について図15および図16を用いて説明する。図15は、本実施の形態2による基板に形成された複数のトレンチを示す平面図である。図16は、本実施の形態2による基板に形成されたトレンチの端部を拡大して示す断面図である。
 (1)第1の特徴およびその効果
 図15に示すように、スーパージャンクション構造を構成する複数のトレンチDTは、エピタキシャル層EPに形成されている。複数のトレンチDTは、x方向に延在し、y方向に互いに離間して形成されており、複数のトレンチDTの内部に埋め込みエピタキシャル成長法により半導体層が埋め戻されている。
 さらに、トレンチDTのx方向の中央部分A1では、平面視においてy方向に一定の幅を有しているが、トレンチDTのx方向の両端部の第1先端部分B1および第2先端部分B2では、平面視においてトレンチDTの側面がx方向に対して傾斜しており、半導体装置の外周に近づくに従ってy方向の幅が徐々に小さくなっている。平面視においてトレンチDTの側面がx方向に対して傾斜した形状を「テーパー形状」という。
 前述の実施の形態1と同様、トレンチDTの延在方向(x方向)と<11-20>方向との角度誤差は±θ以内である。ここでθは(知見E)で前述したように定まる。
 また、図16に示すように、トレンチDTの第1先端部分B1および第2先端部分B2では、トレンチDTの底面がエピタキシャル層EPの上面(x方向とy方向とからなる水平面)に対して傾斜しており、半導体装置の外周に近づくに従ってz方向の深さが徐々に浅くなっている。
 埋め込みエピタキシャル成長法を用いてトレンチDTの内部に半導体層SMを埋め戻す際、トレンチDTの第1先端部分B1および第2先端部分B2では、原料ガスに含まれる珪素(Si)または炭素(C)が消費されやすく、トレンチDTの中央部分A1に比べて、半導体層SMが埋まりにくい傾向がある。しかし、本実施の形態2では、トレンチDTの第1先端部分B1および第2先端部分B2において、トレンチDTの側面および底面に傾斜をつけたことにより、半導体装置の外周に近づくに従ってトレンチDTの体積が徐々に減少するので、埋め込みエピタキシャル成長法によって埋め戻される半導体層SMが減少しても、トレンチDTの内部を半導体層SMによって埋め戻すことができる。
 (2)第2の特徴およびその効果
 図15に示すように、トレンチDTの第1先端部分B1のx方向の長さL1と、トレンチDTの第2先端部分B2のx方向の長さL2とは互いに異なっており、<11-20>方向に位置する第1先端部分B1の長さL1が、<11-20>方向と反対方向に位置する第2先端部分B2の長さL2よりも短くなっている。言い換えると、<11-20>方向に位置する第1先端部分B1の側面とx方向とがなす角度θ11は、<11-20>方向と反対方向に位置する第2先端部分B2の側面とx方向とがなす角度θ12よりも大きくなっている。
 埋め込みエピタキシャル成長法を用いてトレンチDTの内部に半導体層を埋め戻す際、<11-20>方向と反対方向に位置する第2先端部分B2では、<11-20>方向に位置する第1先端部分B1比べて、半導体層が埋まりにくい傾向がある。このため、ほぼ同時に、<11-20>方向に位置する第1先端部分B1と、<11-20>方向と反対方向に位置する第2先端部分B2とを半導体層で埋め戻しできないことが懸念された。
 しかし、本実施の形態2では、<11-20>方向に位置する第1先端部分B1と、<11-20>方向と反対方向に位置する第2先端部分B2とを互いに異なる形状とする。そして、<11-20>方向に位置する第1先端部分B1よりも<11-20>方向と反対方向に位置する第2先端部分B2をより半導体層が埋まりやすい形状とすることにより、ほぼ同時に、<11-20>方向に位置する第1先端部分B1と、<11-20>方向と反対方向に位置する第2先端部分B2とを半導体層で埋め戻すことができる。
 (3)第3の特徴およびその効果
 図15に示すように、y方向に互いに隣り合うトレンチDTの第1先端部分B1の間にトレンチの第1ダミーパターンDTR1が形成され、y方向に互いに隣り合うトレンチDTの第2先端部分B2の間にトレンチの第2ダミーパターンDTR2が形成されている。そして、第1ダミーパターンDTR1および第2ダミーパターンDTR2のそれぞれの内部にも、埋め込みエピタキシャル成長法を用いて半導体層が埋め戻されている。
 第1ダミーパターンDTR1は、y方向に互いに隣り合うトレンチDTの第1先端部分B1と離間して配置され、第2ダミーパターンDTR2は、y方向に互いに隣り合うトレンチDTの第2先端部分B2と離間して配置されている。
 平面視において第1ダミーパターンDTR1および第2ダミーパターンDTR2の形状は、三角形である。トレンチDTの第1先端部分B1の側面に対向する第1ダミーパターンDTR1の側面は、当該第1先端部分B1の側面と平行となるように形成され、同様に、トレンチDTの第2先端部分B2の側面に対向する第2ダミーパターンDTR2の側面は、当該第2先端部分B2の側面と平行となるように形成されている。
 本発明者らは、比較例として、Si(珪素)単結晶からなる基板(以下、Si単結晶基板と言う。)に複数のトレンチを形成し、埋め込みエピタキシャル成長法により複数のトレンチの内部に半導体層を埋め戻す技術を検討した。その場合、トレンチDTに埋め戻された半導体層の態様に、ダミーパターンの有無による影響は顕著に現れなかった。しかし、SiC単結晶基板の場合は、トレンチDTに埋め戻された半導体層の態様に、ダミーパターンの有無による影響が顕著に現れ、第1ダミーパターンDTR1および第2ダミーパターンDTR2を設けることにより、半導体層の良好な埋め戻しが可能となった。
 (4)変形例
 図17に、本実施の形態2の変形例による半導体装置について図17を用いて説明する。図17は、本実施の形態2の変形例による基板に形成された複数のトレンチを示す平面図である。
 図17に示すように、平面視において第1ダミーパターンDTR1および第2ダミーパターンDTR2の形状は、台形であってもよい。この場合であっても、トレンチDTの第1先端部分B1の側面に対向する第1ダミーパターンDTR1の側面は、当該第1先端部分B1の側面と平行となるように形成され、同様に、トレンチDTの第2先端部分B2の側面に対向する第2ダミーパターンDTR2の側面は、当該第2先端部分B2の側面と平行となるように形成されている。
 図29の(a)、(b)および(c)は、実施の形態2および実施の形態2の変形例に示すトレンチの先端形状の変形例を示す平面図である。即ち、図15および図17中のトレンチDTの先端形状の変形例を示す。図15のトレンチDTは、第1および第2先端部分において先端が切れた形状(先端で有限の幅を持つ形状)とされている。
 これに対して、図29(a)のトレンチDTは、先端が尖った形状(理想的には先端で幅がゼロとなる形状)とされ、それ以外の点では図15と同様とされる。なお、図29(a)のように先端が尖ったパターンのフォトマスクを使って、通常の方法にてトレンチを形成した場合には、フォトマスク工程で起こるパターンの「鈍り」およびエッチング工程での「鈍り」等により、結果として形成されるトレンチDTは、図15のように先端で有限の幅を持つ鈍った形状になってしまう。
 このため図29(a)の先端をできるだけ尖らせた形状は、オプティカル・プロキシミティ・コレクションOPC(Optical Proximity Correction)などのテクニックを利用して実現される。図29(a)に示すトレンチDTの第1先端部分B1と、トレンチDTの第2先端部分B2とについて、側面とx方向とがなす角度(ここでは、中心線からの角度となる)を、それぞれ、θ11、 θ12とする。図29(a)に示す先端が尖った形状を採用することで、角度θ11、角度θ12に応じて、メサトップ上での傾斜成長が促進され、平坦化後のウエハ表面におけるトレンチ端部の窪み(凹み)を抑制することができる。
 図29(b)は、先端部に、先が尖った形状の凹部を有する例である。これは、先端が尖った形状の凹部が図29(a)とは逆方向に形成されたものである。ここで、図29(a)に示す状態について、トレンチの先端形状は、トレンチ中心線から見て「正の曲率」を持つと定義し、図29(b)に示す状態について、トレンチの先端形状は、トレンチ中心線から見て「負の曲率」を持つと定義することとする。
 図29(b)に示すトレンチDTの第1先端部分B1と、トレンチDTの第2先端部分B2とについて、側面と中心線とがなす角度を、それぞれ、θ11、 θ12とする。図29(b)に示す先端が尖った形状の凹部を有する形状を採用することで、トレンチの端部からトレンチの中心へ向けての原料ガスの拡散が促進され、平坦化後のウエハ表面におけるトレンチ端部の窪み(凹み)を抑制することができる。
 図29(c)は、トレンチの中心線に対して、先端形状を非対称とした例である。この形状は、先端形状を直角三角形にしたものととらえることもできる。図29(c)に示すトレンチDTの第1先端部分B1と、トレンチDTの第2先端部分B2とについて、先端部の角度(直角三角形のうち中央部分A1と接していない角度)を、それぞれ、θ22、 θ21とする。なお、図29(c)のトレンチの形状は、略ひし形状であるが、台形状とすることもできる。図29(c)に示す形状を採用することで、前述の図29(a)の場合と同様の効果を得ることができる。
 図29(a)~(c)におけるθ11、 θ12、 θ21、 θ22として適切な範囲は、式(7)で決まるθより大きく、90度より小さい。好ましくは45度以下であり、さらに好ましくは30度以下である。また、上記(実施の形態2)の「(2)第2の特徴およびその効果」の欄で述べたとおり、θ11> θ12、θ21> θ22の関係を満たすとさらに好ましい。
 (5)付記
 本実施の形態2は、少なくとも以下の実施の形態を含み、角度誤差θの条件のない発明も把握される。なお、これらの発明と前述の実施の形態1で把握される発明との組合せの発明を排除するものではない。
 〔付記1〕
 所定の結晶主面(例えば(0001)面または(000-1)面)に対して、所定の基準結晶方向(例えば<11-20>方向または<1-100>方向)に傾斜するオフ角が設けられた主面を有する単結晶の基板と、
 前記基板の前記主面に沿う第1方向に延在し、前記基板の前記主面に沿って前記第1方向と直交する第2方向に互いに離間して、前記基板に設けられた複数のトレンチと、
 前記トレンチの内部に設けられ、前記基板と同じ結晶構造を持つ結晶層からなる第1カラム領域と、
 前記第2方向に互いに隣り合う前記トレンチの間の前記基板の部分からなる第2カラム領域と、
を備え、
 前記トレンチの前記第1方向の両端部に位置する第1先端部分および第2先端部分は、前記第2方向に第1幅および第2幅をそれぞれ有し、
 前記第1先端部分と前記第2先端部分との間の前記トレンチの中央部分は、前記第2方向に第3幅を有し、
 前記第1幅および前記第2幅は、前記第3幅よりも小さい、半導体装置。
 〔付記2〕
 付記1記載の半導体装置において、
 前記第1幅および前記第2幅が、前記基板の外周方向に向かうに従って小さくなる、半導体装置。
 〔付記3〕
 付記1記載の半導体装置において、
 前記第1先端部分の前記第1方向の長さと、前記第2先端部分の前記第1方向の長さとが互いに異なる、半導体装置。
 〔付記4〕
 付記1記載の半導体装置において、
 前記第2方向に互いに隣り合う前記トレンチの前記第1先端部分の間および前記第2先端部分の間には、前記トレンチと離間して第1ダミーパターンおよび第2ダミーパターンがそれぞれ配置されている、半導体装置。
 〔付記5〕
 付記4記載の半導体装置において、
 前記第1ダミーパターンおよび前記第2ダミーパターンは、平面視において、三角形または台形である、半導体装置。
 〔付記6〕
 付記1記載の半導体装置において、
 前記トレンチの前記第1方向の両端部に位置する第1先端部分および第2先端部分は、第1深さおよび第2深さをそれぞれ有し、
 前記第1先端部分と前記第2先端部分との間の前記トレンチの中央部分は、第3深さを有し、
 前記第1深さおよび前記第2深さは、前記第3深さよりも浅い、半導体装置。
 〔付記7〕
 付記6記載の半導体装置において、
 前記第1深さおよび前記第2深さが、前記基板の外周方向に向かうに従って浅くなる、半導体装置。
 このように、本実施の形態2によれば、トレンチDTの延在方向と<11-20>方向との角度誤差を考慮したことに加えて、トレンチDTの中央部分A1と第1先端部分B1および第2先端部分B2とを互いに異なる形状とし、さらに、第1ダミーパターンDTR1および第2ダミーパターンDTR2を配置したことにより、複数のトレンチDTに半導体層を良好に埋め込むことができる。その結果、半導体装置の製造歩留りおよび信頼性を向上させることができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 例えば前記実施の形態では、n型の基板上のn型エピタキシャル層に複数のトレンチを形成した後、複数のトレンチの内部にp型半導体層を埋め戻すことにより複数のp型カラム領域を形成した。これにより、複数のp型カラム領域と、互いに隣り合うp型カラム領域の間のn型エピタキシャル層からなる複数のn型カラム領域と、によって、スーパージャンクション構造を構成した。しかし、これに限定されるものではない。例えばn型の基板上のp型エピタキシャル層に複数のトレンチを形成した後、複数のトレンチの内部にn型半導体層を埋め戻すことにより複数のn型カラム領域を形成してもよい。これにより、複数のn型カラム領域と、互いに隣り合うn型カラム領域の間のp型エピタキシャル層からなる複数のp型カラム領域と、によって、スーパージャンクション構造は構成される。
 また、前記実施の形態は、スーパージャンクション構造の製造のみには限定されず、比較的深いトレンチの内部を結晶成長で埋め戻すための基盤技術である。従って、基板とトレンチの内部を埋め込む結晶層が同じ結晶構造を持つものであれば、基板と埋め込み結晶層が同一導電型であっても適用できる。このような応用として、例えばMEMS(Micro Electro Mechanical Systems)デバイスが想定できる。
A1 中央部分
B1 第1先端部分
B2 第2先端部分
BC ボディコンタクト領域
CH チャネル領域
CR セル領域
DE ドレイン電極
DT トレンチ
DTR1 第1ダミーパターン
DTR2 第2ダミーパターン
EP エピタキシャル層
FE ダミー電極
GE ゲート電極
GI ゲート絶縁膜
GPE ゲート引き出し電極
GPU ゲート引き出し部
IL 層間絶縁膜
NC n型カラム領域
OF オリエンテーションフラット
PAS 表面保護膜
PC p型カラム領域
PER 周辺領域
PF 導体膜
SC 半導体チップ
SE ソース電極
SM 半導体層
SPE ソース引き出し電極
SPR ソース引き出し領域
SR ソース領域
SUB 基板
SW SiC単結晶基板
TR 遷移領域
VO ボイド

Claims (19)

  1.  (0001)面または(000-1)面の結晶主面に対して、<11-20>方向または<1-100>方向の基準結晶方向に傾斜するオフ角が設けられた主面を有する基板と、
     前記基板の前記主面に沿う第1方向に延在し、前記基板の前記主面に沿って前記第1方向と直交する第2方向に互いに離間して、前記基板に設けられた複数のトレンチと、
     前記トレンチの内部に設けられ、前記基板と同じ結晶構造を持つ結晶層からなる第1カラム領域と、
     前記第2方向に互いに隣り合う前記トレンチの間の前記基板の部分からなる第2カラム領域と、
    を備え、
     前記基準結晶方向と前記第1方向との角度誤差が±θ以内であり、
     前記θは、前記トレンチの深さをh、前記トレンチの幅をw、kを0より大きく2より小さい係数とするとき、
       θ={arctan{k×(w/h)}}/13
    で定まり、
     前記トレンチの前記第1方向の一端の第1先端部分は、平面視において先端に向けて幅が狭くなる第1テーパー形状を有し、
     前記トレンチの前記第1方向の他端の第2先端部分は、平面視において先端に向けて幅が狭くなる第2テーパー形状を有し、
     前記第1テーパー形状の前記第1方向に対する傾斜角度は、前記第2テーパー形状の前記第1方向に対する傾斜角度よりも小さい、半導体装置。
  2.  請求項1記載の半導体装置において、
     前記kは、0.9以下、0.5以下または0.3以下のいずれか1つである、半導体装置。
  3.  請求項1または2に記載の半導体装置において、
     前記トレンチの深さhは、5μm以上または10μm以上である、半導体装置。
  4.  請求項1~3のいずれか1項に記載の半導体装置において、
     前記トレンチのアスペクト比(h/w)は、5以上または10以上である、半導体装置。
  5.  請求項1~4のいずれか1項に記載の半導体装置において、
     前記基板は、六方晶系の炭化珪素単結晶基板を含み、
     前記基準結晶方向は、<11-20>方向であり、
     前記結晶主面は、(0001)面であり、
     前記結晶層は、炭化珪素結晶層である、半導体装置。
  6.  請求項5記載の半導体装置において、
     前記基板は、第1導電型を有し4Hポリタイプまたは6Hポリタイプの炭化珪素単結晶基板、および前記炭化珪素単結晶基板上に設けられた前記第1導電型のエピタキシャル層を含み、
     前記オフ角は、1°以上、かつ、5°以下であり、
     前記炭化珪素結晶層は、前記第1導電型とは異なる第2導電型を有し、
     前記半導体装置は、前記第1カラム領域および前記第2カラム領域で形成されるスーパージャンクション構造を有するMOSFETである、半導体装置。
  7.  請求項1~6のいずれか1項に記載の半導体装置において、
     前記トレンチは、深くなるほど狭くなる先細り形状であって、前記トレンチの底面と側面とがなすテーパー角は88°~90°である、半導体装置。
  8.  請求項1~7のいずれか1項に記載の半導体装置において、
     前記第2方向に互いに隣り合う前記複数のトレンチの前記第1先端部分の間のそれぞれに、前記トレンチと離間した第1ダミーパターンを有し、
     前記第2方向に互いに隣り合う前記複数のトレンチの前記第2先端部分の間のそれぞれに、前記トレンチと離間した第2ダミーパターンを有する、半導体装置。
  9.  (0001)面または(000-1)面の結晶主面に対して、<11-20>方向または<1-100>方向の基準結晶方向に傾斜するオフ角が設けられた主面、および前記基準結晶方向に対して第1角度誤差を持って設けられた基準マークを有する基板を準備し、
     前記基板の前記主面に沿う第1方向に延在し、前記基板の前記主面に沿って前記第1方向と直交する第2方向に互いに離間する複数のトレンチを前記基板に形成するために、前記基板上にエッチング用パターンを形成するためのフォトマスクを準備し、
     前記フォトマスクを用いて前記基板上に前記エッチング用パターンを形成し、
     前記エッチング用パターンを用いて前記基板に前記複数のトレンチを形成し、
     前記複数のトレンチの内部を結晶成長法により前記基板と同じ結晶構造を持つ結晶層で埋め込み、
     前記基板を準備する際に、前記第1角度誤差が±θ以内である前記基板を選択して準備し、
     前記θは、前記トレンチの深さをh、前記トレンチの幅をw、kを0より大きく2より小さい係数とするとき、
       θ={arctan{k×(w/h)}}/13
    で定まる、半導体装置の製造方法。
  10.  (0001)面または(000-1)面の結晶主面に対して、<11-20>方向または<1-100>方向の基準結晶方向に傾斜するオフ角が設けられた主面、および前記基準結晶方向に対して第1角度誤差を持って設けられた基準マークを有する基板を準備し、
     前記基板の前記主面に沿う第1方向に延在し、前記基板の前記主面に沿って前記第1方向と直交する第2方向に互いに離間する複数のトレンチを前記基板に形成するために、前記基板上にエッチング用パターンを形成するためのフォトマスクを準備し、
     前記フォトマスクを用いて前記基板上に前記エッチング用パターンを形成し、
     前記エッチング用パターンを用いて前記基板に前記複数のトレンチを形成し、
     前記複数のトレンチの内部を結晶成長法により前記基板と同じ結晶構造を持つ結晶層で埋め込み、
     前記基板を準備する際に、前記基板における前記第1角度誤差の誤差データを測定し、または前記第1角度誤差の誤差データが特定された前記基板を準備し、
     前記フォトマスクを用いて前記エッチング用パターンを形成する際に、前記誤差データを用いて前記基準マークに対する角度補正を露光装置で行い、
     前記基準結晶方向と前記第1方向との角度誤差が±θ以内であり、
     前記θは、前記トレンチの深さをh、前記トレンチの幅をw、kを0より大きく2より小さい係数とするとき、
       θ={arctan{k×(w/h)}}/13
    で定まる、半導体装置の製造方法。
  11.  請求項10記載の半導体装置の製造方法において、
     前記基板を準備する際に、前記第1角度誤差が±θ以内である前記基板を選択して準備する、半導体装置の製造方法。
  12.  請求項10または11記載の半導体装置の製造方法において、
     前記第1角度誤差の測定は、前記基板を切り出した結晶インゴット毎にバッチ処理で行う、または前記基板の個体毎に行う、半導体装置の製造方法。
  13.  請求項9~12のいずれか1項に記載の半導体装置の製造方法において、
     前記kは、0.9以下、0.5以下または0.3以下のいずれか1つである、半導体装置の製造方法。
  14.  請求項9~13のいずれか1項に記載の半導体装置の製造方法において、
     前記トレンチの深さhは、5μm以上または10μm以上である、半導体装置の製造方法。
  15.  請求項9~14のいずれか1項に記載の半導体装置の製造方法において、
     前記トレンチのアスペクト比(h/w)は、5以上または10以上である、半導体装置の製造方法。
  16.  請求項9~15のいずれか1項に記載の半導体装置の製造方法において、
     前記基板は、六方晶系の炭化珪素単結晶基板を含み、
     前記基準結晶方向は、<11-20>方向であり、
     前記結晶主面は、(0001)面であり、
     前記結晶層は、炭化珪素結晶層である、半導体装置の製造方法。
  17.  請求項16記載の半導体装置の製造方法において、
     前記基板は、第1導電型を有し4Hポリタイプまたは6Hポリタイプの炭化珪素単結晶基板、および前記炭化珪素単結晶基板上に設けられた前記第1導電型のエピタキシャル層を含み、
     前記オフ角は、1°以上、かつ、5°以下であり、
     前記炭化珪素結晶層は、前記第1導電型とは異なる第2導電型を有し、
     前記基準マークは、前記基板のオリエンテーションフラットまたはノッチであり、
     前記半導体装置は、前記炭化珪素結晶層で埋め込まれた前記トレンチをスーパージャンクション構造とするMOSFETである、半導体装置の製造方法。
  18.  請求項16記載の半導体装置の製造方法において、
     前記複数のトレンチの内部を埋め込むように前記炭化珪素結晶層を成長させるために用いるガスは、Hガス、HClガスおよびSiHガスを含み、HCl/SiH流量比が、30以上、かつ、65以下であり、H/SiH流量比が、500以上、かつ、7,000以下である、半導体装置の製造方法。
  19.  請求項16記載の半導体装置の製造方法において、
     前記複数のトレンチの内部を埋め込むように前記炭化珪素結晶層を成長させるために用いるガスは、Hガス、HClガスおよびSiHガスを含み、エピタキシャル成長中の成長炉内の圧力が、30kPa以上、かつ、100kPa以下である、半導体装置の製造方法。
PCT/JP2017/020610 2016-07-19 2017-06-02 半導体装置およびその製造方法 WO2018016201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/308,913 US10741648B2 (en) 2016-07-19 2017-06-02 Semiconductor device and manufacturing method thereof
CN201780040949.6A CN109417096B (zh) 2016-07-19 2017-06-02 半导体装置及其制造方法
DE112017003089.7T DE112017003089T5 (de) 2016-07-19 2017-06-02 Halbleitervorrichtung und deren herstellungsverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016141048 2016-07-19
JP2016-141048 2016-07-19
JP2016184043A JP6164672B1 (ja) 2016-07-19 2016-09-21 半導体装置およびその製造方法
JP2016-184043 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018016201A1 true WO2018016201A1 (ja) 2018-01-25

Family

ID=59351351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020610 WO2018016201A1 (ja) 2016-07-19 2017-06-02 半導体装置およびその製造方法

Country Status (6)

Country Link
US (1) US10741648B2 (ja)
JP (2) JP6164672B1 (ja)
CN (1) CN109417096B (ja)
DE (1) DE112017003089T5 (ja)
TW (1) TWI645561B (ja)
WO (1) WO2018016201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081641A (zh) * 2018-10-22 2020-04-28 三菱电机株式会社 半导体装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10636675B2 (en) * 2017-09-27 2020-04-28 Applied Materials, Inc. Methods of etching metal-containing layers
JP7081876B2 (ja) * 2017-12-19 2022-06-07 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
JP7297976B2 (ja) * 2017-12-19 2023-06-26 ラピスセミコンダクタ株式会社 半導体装置
JP7073767B2 (ja) * 2018-02-09 2022-05-24 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素基板の製造方法
WO2019160086A1 (ja) * 2018-02-19 2019-08-22 国立研究開発法人産業技術総合研究所 半導体装置
US10580868B2 (en) * 2018-03-27 2020-03-03 Alpha And Omega Semiconductor (Cayman) Ltd. Super-junction corner and termination structure with improved breakdown and robustness
CN112655096A (zh) * 2018-11-29 2021-04-13 富士电机株式会社 超结碳化硅半导体装置及超结碳化硅半导体装置的制造方法
CN113050365A (zh) * 2019-12-27 2021-06-29 中芯国际集成电路制造(上海)有限公司 光学邻近修正方法及系统、掩模版、设备与介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001398A (ja) * 1998-06-09 2000-01-07 Fuji Electric Co Ltd 炭化けい素半導体基板の製造方法
JP2008311261A (ja) * 2007-06-12 2008-12-25 Panasonic Corp 半導体装置およびその製造方法
JP2013089723A (ja) * 2011-10-17 2013-05-13 Rohm Co Ltd 半導体装置
JP2016066669A (ja) * 2014-09-24 2016-04-28 住友電気工業株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001389A (ja) 1998-03-31 2000-01-07 Ngk Insulators Ltd 単結晶の製造方法および単結晶の育成装置
TW200302511A (en) * 2002-01-28 2003-08-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP2005072045A (ja) * 2003-08-26 2005-03-17 Toshiba Corp 半導体装置およびその製造方法
US7825007B2 (en) 2007-05-11 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method of joining a plurality of SOI substrates on a glass substrate by a heat treatment
JP5849894B2 (ja) 2011-12-01 2016-02-03 株式会社デンソー 半導体装置
CN105789271B (zh) * 2011-09-27 2019-01-01 株式会社电装 半导体器件
JP5848142B2 (ja) * 2012-01-25 2016-01-27 ルネサスエレクトロニクス株式会社 縦型プレーナパワーmosfetの製造方法
JP5649152B1 (ja) * 2013-04-30 2015-01-07 パナソニック株式会社 半導体装置及びその製造方法
JP2015032611A (ja) 2013-07-31 2015-02-16 住友電気工業株式会社 炭化珪素半導体装置の製造方法
DE102014119465B3 (de) * 2014-12-22 2016-05-25 Infineon Technologies Ag Halbleitervorrichtung mit streifenförmigen trenchgatestrukturen, transistormesas und diodenmesas
DE102015103070B4 (de) * 2015-03-03 2021-09-23 Infineon Technologies Ag Leistungshalbleitervorrichtung mit trenchgatestrukturen mit zu einer hauptkristallrichtung geneigten längsachsen und herstellungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001398A (ja) * 1998-06-09 2000-01-07 Fuji Electric Co Ltd 炭化けい素半導体基板の製造方法
JP2008311261A (ja) * 2007-06-12 2008-12-25 Panasonic Corp 半導体装置およびその製造方法
JP2013089723A (ja) * 2011-10-17 2013-05-13 Rohm Co Ltd 半導体装置
JP2016066669A (ja) * 2014-09-24 2016-04-28 住友電気工業株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081641A (zh) * 2018-10-22 2020-04-28 三菱电机株式会社 半导体装置
CN111081641B (zh) * 2018-10-22 2023-10-17 三菱电机株式会社 半导体装置

Also Published As

Publication number Publication date
JP6164672B1 (ja) 2017-07-19
TW201813086A (zh) 2018-04-01
JP2018019069A (ja) 2018-02-01
US20190157399A1 (en) 2019-05-23
DE112017003089T5 (de) 2019-04-04
JP6760604B2 (ja) 2020-09-23
JP2018019053A (ja) 2018-02-01
US10741648B2 (en) 2020-08-11
CN109417096A (zh) 2019-03-01
CN109417096B (zh) 2022-02-18
TWI645561B (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6164672B1 (ja) 半導体装置およびその製造方法
US9818860B2 (en) Silicon carbide semiconductor device and method for producing the same
JP5673393B2 (ja) 炭化珪素半導体装置
EP2763180B1 (en) Silicon carbide semiconductor device
JP2016066669A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US11282919B2 (en) Semiconductor device
KR20140060264A (ko) 탄화규소 반도체 장치 및 그 제조 방법
US20180374741A1 (en) Method for Forming an Alignment Mark
JP2011142269A (ja) 半導体装置および半導体装置の製造方法
US20130130482A1 (en) Method for manufacturing silicon carbide semiconductor device
JP6508369B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5814881B2 (ja) トランジスタ及びその製造方法
CN104919594B (zh) 制造半导体器件的方法
US10355122B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JP5715461B2 (ja) 半導体装置の製造方法
KR102100863B1 (ko) SiC MOSFET 전력 반도체 소자
JP7067698B2 (ja) 半導体装置
JP2015099920A (ja) 横チャネル領域を有する接合型電界効果トランジスタセル
JP2010028018A (ja) 半導体ウエハおよび半導体装置と半導体装置の製造方法
US9966437B2 (en) Method for manufacturing silicon carbide semiconductor device
US20190319102A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830721

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17830721

Country of ref document: EP

Kind code of ref document: A1