WO2018014522A1 - 液压快锻机组 - Google Patents

液压快锻机组 Download PDF

Info

Publication number
WO2018014522A1
WO2018014522A1 PCT/CN2017/070940 CN2017070940W WO2018014522A1 WO 2018014522 A1 WO2018014522 A1 WO 2018014522A1 CN 2017070940 W CN2017070940 W CN 2017070940W WO 2018014522 A1 WO2018014522 A1 WO 2018014522A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
main hydraulic
oil
electro
pressure accumulator
Prior art date
Application number
PCT/CN2017/070940
Other languages
English (en)
French (fr)
Inventor
张连华
张晖
马海军
Original Assignee
中聚信海洋工程装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中聚信海洋工程装备有限公司 filed Critical 中聚信海洋工程装备有限公司
Priority to US15/765,265 priority Critical patent/US10850468B2/en
Priority to ES17748373T priority patent/ES2744853T3/es
Priority to PL17748373T priority patent/PL3290718T3/pl
Priority to EP17748373.2A priority patent/EP3290718B1/en
Priority to JP2018535862A priority patent/JP6648284B2/ja
Publication of WO2018014522A1 publication Critical patent/WO2018014522A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/161Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/10Drives for forging presses
    • B21J9/12Drives for forging presses operated by hydraulic or liquid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/163Control arrangements for fluid-driven presses for accumulator-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/22Control arrangements for fluid-driven presses controlling the degree of pressure applied by the ram during the pressing stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/0275Installations or systems with accumulators having accumulator charging devices with two or more pilot valves, e.g. for independent setting of the cut-in and cut-out pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators

Definitions

  • the invention relates to the technical field of hydraulic transmission control, in particular to a hydraulic fast forging unit.
  • Hydraulic fast forging unit is a new type of forging equipment. Because of its high degree of automation, good control precision and saving raw materials, it is the first choice for high-end forging industry at home and abroad. It is widely used in machinery manufacturing and forging of high quality and high performance materials. . At present, the components of the fast forging unit in China are designed and manufactured according to the international advanced level, and the key components are imported foreign brand products, so the equipment cost is very expensive. Because the forging machinery consumes a lot of energy, especially the power load is too large, it not only increases the investment scale of the enterprise, but also affects the economic benefits of the production and operation of the enterprise.
  • Start-up six main hydraulic pumps are started at no load (the rated power of each main hydraulic pump is 250KW);
  • Calendering The low-pressure accumulator is closed, and the six main hydraulic pumps continue to supply oil to the main hydraulic cylinder. As the resistance of the workpiece increases, the pressure of the six main hydraulic pumps increases, when the pressure of the main hydraulic pump reaches the set value. Five of the main hydraulic pumps are operated at no load, and only one main hydraulic pump continues to work. At this time, the calendering speed is rapidly reduced. When the workpiece size reaches the required level (or when the pressure is not applied), the calendering ends.
  • the invention proposes an improved hydraulic fast forging unit.
  • the present invention provides a hydraulic fast forging unit, which comprises a forging hammer, a movable beam, a main hydraulic cylinder, a single lift lifting hydraulic cylinder, a plurality of main hydraulic pumps, a high pressure accumulator, and a medium pressure.
  • the master cylinder is a plunger hydraulic cylinder, a single rod lifts one end of a single rod in the hydraulic cylinder, and a plunger in the master cylinder One end and a forging hammer are fixedly coupled to the movable beam.
  • the programmable controller controls the valve control system to realize that: the hydraulic oil in the rod cavity of the single rod lifting hydraulic cylinder is supplied by the main hydraulic pump, and the main hydraulic cylinder is stored The oil is discharged into the medium pressure accumulator; when the forging hammer is free to descend, the programmable controller controls the valve control system to realize that the hydraulic oil in the main hydraulic cylinder is independently supplied by the medium pressure accumulator The oil in the rod chamber of the single rod lifting hydraulic cylinder is discharged into the oil tank, and the main hydraulic pump supplies oil to the high pressure accumulator; when the forging hammer is pressed, the programmable controller controls the valve The control system realizes that the hydraulic oil in the main hydraulic cylinder is superimposed and supplied by the main hydraulic pump and the high-pressure accumulator at the same time, and the programmable pressure is increased when the pressure in the main hydraulic cylinder reaches the first set value, and the programmable control is performed.
  • the valve control system controls the high pressure accumulator
  • the programmable controller controls the valve control system to realize: high pressure storage
  • the energy device stops supplying hydraulic oil to the main hydraulic cylinder, and the hydraulic oil in the main hydraulic cylinder is supplied by all the main hydraulic pumps; when the pressure resistance of the forging hammer increases, the pressure in the main hydraulic cylinder further reaches the second set value,
  • the programmable controller controls the valve control system to realize that: part of the main hydraulic pump switches to supply oil to the high-pressure accumulator, and the hydraulic oil in the main hydraulic cylinder is supplied by a part of the main hydraulic pump, wherein the first set value Less than the second set value.
  • the programmable controller controls the valve control system to realize: all the main hydraulic pumps are switched to the high pressure storage
  • the energy storage device stores the third set value greater than the second set value.
  • the valve control system includes: output hydraulic oil respectively disposed on a plurality of main hydraulic pumps a plurality of electromagnetic reversing valves on the pipeline, wherein the programmable controller realizes whether each main hydraulic pump supplies oil to the main hydraulic cylinder or the single-lift lifting cylinder, or to the high-pressure accumulator by separately providing each electromagnetic reversing valve Supplying oil; a first electro-hydraulic proportional valve disposed on a pipeline for supplying pressurized oil to the main hydraulic cylinder of the high-pressure accumulator to realize opening or closing of the pipeline therein; and being disposed at the main hydraulic pump to supply hydraulic oil to the main hydraulic cylinder a second electro-hydraulic proportional valve on the pipeline to open or close the pipeline therein; a third electro-hydraulic proportional valve disposed on the pipeline for supplying hydraulic oil to the rod chamber of the single-lift lift hydraulic cylinder of the main hydraulic pump, Realizing the opening or closing of the pipeline in which it is located; the fourth electro-hydraulic proportional valve disposed on the pipeline between
  • the hydraulic fast forging unit further comprises: a remote control station, and the programmable controller sends the electromagnetic signal to the electromagnetic reversing valve and the electro-hydraulic proportional valve respectively based on the sensing signals of the first sensor and the second sensor and the input signals of the remote console An instruction to turn it on or off.
  • the programmable controller issues a start command to control all of the main hydraulic pumps to start unloaded; when the forging hammer returns, the programmable controller issues a command to control the third electro-hydraulic proportional valve and the fifth electric
  • the liquid proportional valve is opened, the left side of each electromagnetic reversing valve is opened, the first electro-hydraulic proportional valve, the second electro-hydraulic proportional valve and the fourth electro-hydraulic proportional valve are closed, and all the main hydraulic pumps pass the left side of the electromagnetic reversing valve
  • the third electro-hydraulic proportional valve supplies hydraulic oil to the rod cavity of the single-lift lifting hydraulic cylinder, the forging hammer rises, and the oil stored in the main hydraulic cylinder is discharged into the intermediate pressure accumulator through the fifth electro-hydraulic proportional valve;
  • the programmable controller issues a command to control the fourth electro-hydraulic proportional valve and the fifth electro-hydraulic proportional valve to open, the right
  • the programmable controller When the value is fixed, the programmable controller issues a command to control the first electro-hydraulic proportional valve to be closed, and the left path of each electromagnetic reversing valve is continuously opened. At this time, the high-pressure accumulator stops supplying hydraulic oil to the main hydraulic cylinder, and the main hydraulic cylinder The hydraulic oil is supplied by all the main hydraulic pumps.
  • the programmable controller issues a command, and the control part of the electromagnetic reversing valve opens to the right. Some of the main hydraulic pumps are switched to supply oil to the high-pressure accumulator, and some of the main hydraulic pumps supply hydraulic oil to the main hydraulic cylinder to maintain the rolling.
  • the programmable controller issues a command to control all the electromagnetic reversing valves to open to the right, and all the main hydraulic pumps are switched to the high pressure storage. Energy storage for oil.
  • the accumulator pressure of the medium pressure accumulator is 0.3-3 MPa.
  • the high-pressure accumulator has an energy storage pressure of 3 MPa to 35 MPa.
  • the invention reduces the configuration quantity of the main hydraulic pump of the conventional hydraulic fast forging unit by setting a high-pressure accumulator, and increases the memory accumulating pressure of the low-pressure accumulator of the conventional fast-forging hydraulic unit, and the following beneficial effects can be obtained:
  • the hydraulic pump power is reasonably distributed by the main hydraulic pump approaching the full load, that is, the hydraulic oil is supplied to the high-pressure accumulator by the idle operation condition of the main hydraulic pump, and the main hydraulic pump is required when the maximum oil quantity is required to be output. Simultaneously supplying pressure with the high-pressure accumulator, thereby achieving the effect of simultaneous pressure supply of multiple main hydraulic pumps of the conventional fast-forging hydraulic unit, optimizing resource allocation, reducing equipment investment, and reducing energy consumption of the hydraulic pump idle operation;
  • the traditional fast-forging hydraulic unit is provided with hydraulic oil from the main hydraulic pump and the low-pressure accumulator to the main hydraulic cylinder at the same time, so that the forging pressure hammer closes quickly and approaches the working condition of the workpiece, and the change is independent of the medium-pressure accumulator.
  • the hydraulic oil is supplied to the main hydraulic cylinder to realize the working condition of the forging hammer with a short-range approach to the workpiece, which avoids the energy waste of the large-marathon trolley.
  • the invention has the significant advantages of reasonable resource allocation, simple structure setting, low equipment investment and high energy utilization rate.
  • 1 is a schematic view showing the hydraulic control principle of the hydraulic fast forging unit of the present invention.
  • 1, 1 ', 1" is the main hydraulic pump
  • 2, 2', 2" are electromagnetic reversing valves
  • 3, 4 are relief valves
  • 5 are high-pressure accumulators
  • 6, 7 are sensors 8
  • 8, 10, 11, 12, 13 are electro-hydraulic proportional valves
  • 14 is a medium-pressure accumulator
  • 15, 15' is a single-lift lifting hydraulic cylinder
  • 16 is a main hydraulic cylinder
  • 17 is a forging hammer
  • 18 is the movable beam
  • 19 is the PLC (programmable controller)
  • 20 is the remote control console.
  • the hydraulic fast forging unit comprises a forging hammer 17, a movable beam 18, a main hydraulic cylinder 16, a single rod lifting hydraulic cylinder 15, 15', a plurality of main hydraulic pumps 1, 1 ', 1", a high pressure accumulator 5 Medium voltage accumulator 14, first sensor 6, second sensor 7, programmable controller 19, plurality of electromagnetic reversing valves 2, 2', 2", a plurality of electro-hydraulic proportional valves 8, 9, 10, 11, 12, 13 and pipeline.
  • the electro-hydraulic proportional valves 8, 9, 10, 11 may be referred to as a first electro-hydraulic proportional valve, a second electro-hydraulic proportional valve, a third electro-hydraulic proportional valve, a fourth electro-hydraulic proportional valve, and an electro-hydraulic proportional valve, respectively. 13, can be referred to as a fifth electro-hydraulic proportional valve.
  • the master cylinder 16 is a plunger type hydraulic cylinder
  • the forging hammer 17 of the fast forging hydraulic unit is connected to the plunger of the master cylinder 16 via the movable beam 18, and when the plunger is filled with hydraulic oil at one end.
  • the single-lift lifting hydraulic cylinders 15, 15' are placed on both sides of the main hydraulic cylinder 16, and the single-out rod in the same is connected with the forging hammer 17 through the movable beam 18, when there is a rod
  • the forging hammer 17 is upwardly returned when the chamber is filled with hydraulic oil.
  • the rod chambers of the two single rod hydraulic cylinders 15 and 15' are in communication with the oil tank, and the pipeline is opened or closed by providing an electro-hydraulic proportional valve 11 on the communicating pipeline;
  • the number of main hydraulic pumps is three, 1, 1', 1". In other embodiments, two, four, five, etc.
  • the accumulator pressure of the medium-pressure accumulator is 0.3 to 3Mpa; when the forging hammer 17 is turned back upward, the hydraulic oil in the rod chamber of the single rod lifting hydraulic cylinders 15 and 15' is simultaneously supplied by the configured main hydraulic pumps 1, 1', 1", and the main hydraulic cylinder 16 is The oil is discharged into the medium-pressure accumulator 14; the hydraulic oil in the master cylinder 16 is independently supplied by the medium-pressure accumulator 14 when the forging hammer 17 is lost in speed, and the single-lift lift cylinders 15 and 15' The oil stored in the rod chamber is discharged into the oil tank, and the main hydraulic pump 1, 1 ', 1" supplies oil to the high pressure accumulator 5; the forging hammer 17 presses the hydraulic oil in the main hydraulic cylinder 1 by configuration The main hydraulic pump 1, 1', 1" and the high-pressure accumulator 5 are simultaneously superimposedly supplied; the forging pressure of the forging hammer 17 is increased to make the main hydraulic cylinder 16 When
  • the main hydraulic pump 1, 1', 1" outputs the hydraulic oil, and supplies oil to the main hydraulic cylinder 16, the single rod lifting hydraulic cylinders 15 and 15' by respectively providing the electromagnetic reversing valves 2, 2', 2". Or switching the oil supply to the high-pressure accumulator 5; the main hydraulic pump 1, 1', 1" is supplied to the pipeline for supplying the hydraulic oil to the rod-shaped chamber of the single-lift lift cylinders 15 and 15', and the electro-hydraulic proportional valve is provided.
  • the opening or closing of the pipeline is realized;
  • the medium pressure accumulator 14 is connected to the pipeline of the main hydraulic cylinder 16, and the electrohydraulic proportional valves 12, 13 are provided to realize the opening or closing of the pipeline;
  • the main hydraulic pump 1, 1', 1" is supplied to the main hydraulic cylinder 16 on the line of the hydraulic oil, and the electric liquid proportional valve 9 is provided to open or close the line;
  • the high-pressure accumulator 5 supplies the hydraulic oil to the main hydraulic cylinder 16
  • the opening/closing of the pipeline is realized by providing the electro-hydraulic proportional valve 8;
  • the sensor 6 is disposed on a pipeline for outputting hydraulic oil to the high-pressure accumulator 5, and
  • the sensor 7 is disposed on the connecting pipeline communicating with the master cylinder 16
  • the PLC 19 passes the sensing signals of the first sensor 6, the second sensor 7, and the remote console 20 Input signals to the electromagnetic valve, electro-hydraulic proportional valve to issue an instruction to open or close.
  • the PLC 19 issues an instruction to start the three main hydraulic pumps 1, 1', 1", and the three main hydraulic pumps 1, 1', 1" are started at no load;
  • the PLC 19 issues an instruction to control the opening of the electro-hydraulic proportional valves 10, 12, 13 , the left turn of the electromagnetic reversing valves 2, 2', 2" and the closing of the electro-hydraulic proportional valves 8, 9, 11 and the three main hydraulic pumps 1 , 1', 1", the left side of the electromagnetic reversing valve 2, 2', 2" and the electro-hydraulic proportional valve 10 supply hydraulic oil to the rod chamber of the single rod lifting hydraulic cylinders 15 and 15', the forging hammer 17 Ascending, the oil stored in the master cylinder 16 is discharged into the intermediate pressure accumulator 14 through the electro-hydraulic proportional valves 12, 13.
  • the PLC 19 issues an instruction to control the opening of the electro-hydraulic proportional valves 11, 12, 13 , the right turn of the electromagnetic reversing valves 2, 2', 2" and the closing of the electro-hydraulic proportional valves 8, 9, 10, and the intermediate pressure accumulator 14 Electro-hydraulic ratio
  • the valves 12, 13 supply hydraulic oil to the main hydraulic cylinder 16, and the forging hammer 17 quickly contacts the workpiece quickly, and the rod chamber memory oil of the single rod lifting hydraulic cylinders 15 and 15' is discharged through the electro-hydraulic proportional valve 11.
  • the fuel tank, the three main hydraulic pumps 1, 1', 1" are supplied with oil to the high-pressure accumulator 5 via the right path of the electromagnetic reversing valves 2, 2', 2".
  • the PLC 19 issues a command to control the right-hand closing of the electromagnetic reversing valves 2, 2', 2", and the three main hydraulic pumps 1, 1 ', 1' runs at no load.
  • PLC19 issues a command to control the electro-hydraulic proportional valves 10, 12, 13 to close, the electro-hydraulic proportional valves 8, 9 open and the electromagnetic reversing valves 2, 2', 2" open to the left, three main hydraulic pumps 1, 1 ' 1" simultaneously supplies hydraulic oil to the master cylinder 16 through the electro-hydraulic proportional valve 8 through the electro-hydraulic proportional valve 9 and the high-pressure accumulator 5, and the pressure of the main hydraulic pump 1, 1', 1" increases as the workpiece resistance increases.
  • the PLC 19 issues a command to control the electro-hydraulic proportional valve 8 to be closed, and at this time, the electro-hydraulic proportional valve 9 is kept open, and the electro-hydraulic The proportional valves 10, 12, 13 are closed, the left side of the electromagnetic reversing valves 2, 2', 2" is opened, the high-pressure accumulator stops supplying hydraulic oil to the main hydraulic cylinder 16, and the main hydraulic pumps 1, 1', 1" pass The electro-hydraulic proportional valve 9 supplies hydraulic oil to the main hydraulic cylinder 16.
  • the PLC 19 issues an instruction to control the electromagnetic reversing valve 2', 2"
  • the right path is opened, and the remaining electro-hydraulic proportional valves and the state of the electromagnetic reversing valve 2 remain unchanged.
  • the main hydraulic pump 1', 1" Switching to the state of supply and storage to the high-pressure accumulator 5, only the main hydraulic pump 1 supplies hydraulic oil to the main hydraulic cylinder 16 to continue to maintain the rolling, and when the workpiece size reaches the end of the required rolling, the sensor 7 measures the main hydraulic cylinder 16
  • the programmable controller 19 issues a command to control the main hydraulic pump 1 to be closed to the left and the right to open, and the three main hydraulic pumps 1, 1 ', 1" are all switched to the high pressure storage.
  • the heater 5 is pressurized to enter the state of energy storage.
  • the first set value is smaller than the second set value
  • the second set value is smaller than the third set value
  • the fourth set value is greater than the first set value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Presses (AREA)
  • Forging (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

一种液压快锻机组,其包括锻压锤头(17)、活动梁(18)、主液压缸(16)、单出杆提升液压缸(15,15')、多个主液压泵(1,1',1")、高压蓄能器(5)、中压蓄能器(14)、油箱、可编程控制器(19)以及设置于管路上的阀控系统。当锻压锤头(17)回程时,单出杆提升液压缸(15,15')内液压油由主液压泵(1,1',1")供给,主液压缸(16)内存油排入中压蓄能器(14)内;当锻压锤头(17)空程快降时,主液压缸(16)内液压油由中压蓄能器(14)独立供给,单出杆提升液压缸(15,15')内存油排入油箱,主液压泵(1,1',1")向高压蓄能器供油;当锻压锤头(17)压延时,主液压缸(16)内的液压油由主液压泵(1,1',1")和高压蓄能器(5)叠加供给,若主液压缸(16)压力达到第一设定值时,高压蓄能器(5)停止供油,主液压缸(16)内的液压油由主液压泵(1,1',1")供给。该液压快锻机组结构设置简单、设备投入少、能源利用率高。

Description

液压快锻机组 技术领域
本发明涉及一种液压传动控制技术领域,尤其涉及一种液压快锻机组。
背景技术
液压快锻机组是一种新型锻压设备,由于其具有自动化程度高,控制精度好,节约原材料等优点,而被国内外高端锻造业首选,广泛用于机械制造以及高品质,高性能材料的锻造。目前国内较好的快锻机组的零部件是按照国际先进水平进行设计制造,且关键部件为进口国外品牌产品,故设备造价非常昂贵。由于该锻压机械能耗较大,特别是电力负荷投入太大,不但增加了企业的投资规模,还影响了企业生产经营的经济效益。
以16MN快锻机组为例说明传统液压锻造机组的运行过程。
1.启动:六台主液压泵空载启动(每台主液压泵的额定功率为250KW);
2.回程:三台主液压泵向两侧单出杆提升液压缸供油,锤头上升,主液压缸内存油排入低压蓄能器中,其余三台主液压泵空载运行。
3.空程快降:六台主液压泵和低压蓄能器同时向主液压缸供油,锤头迅速下降直至锤头接触到工件,同时两侧单出杆提升液压缸内存油排入油箱。
4.压延:低压蓄能器关闭,六台主液压泵继续向主液压缸供油,随着工件抗力不断增加,六台主液压泵的压力随之增加,当主液压泵压力达到设定值时,其中五台主液压泵空载运行,只有一台主液压泵继续工作,此时压延速度迅速降低,当工件尺寸达到要求后(或压不动时),压延结束。
从上述16MN快锻液压机组的运行方式可见传统的锻压机组存在:a、压机锤头向上(回程)时三台主液压泵空载运行,其空载运行功率达到100KW×3=300KW左右;b、压延过程中,当主液压泵压力达到设定值时,其中五台主液压泵空载运行,只有一台主液压泵继续工作,其空载运行功率达100KW×5=500KW左右。显而易见,传统快锻液压机组多台主液压泵的资源配置不合理,其中液压泵空运转的电能消耗大;由于设置的泵数量较多,导致设备投入成本增大,而且需要配置的电力增容增加,又因增容大而承担的基本电费(每KW每月30元)增加,还直接导致供电设施投入增大而浪费资源。
发明内容
针对传统液压快锻机组中液压泵数量及配置方式的不合理,而造成设备投入增加及电力增容扩大,空载消耗能源较多的技术不足,本发明提出一种改进的液压快锻机组。
为解决上述问题,本发明提出一种一种液压快锻机组,其包括锻压锤头、活动梁、主液压缸、单出杆提升液压缸、多个主液压泵、高压蓄能器、中压蓄能器、油箱、可编程控制器、设置于主液压缸、单出杆提升液压缸、多个主液压泵、高压蓄能器、中压蓄能器和油箱之间的用于输送液压油的管路,以及设置于所述管路上的阀控系统,所述主液压缸为柱塞式液压缸,单出杆提升液压缸中的单出杆的一端、主液压缸中的柱塞的一端和锻压锤头固定连接在所述活动梁上。当锻压锤头向上实现回程时,所述可编程控制器控制所述阀控系统以实现:单出杆提升液压缸的有杆腔内的液压油由主液压泵供给,主液压缸内的存油排入中压蓄能器内;当锻压锤头空程快降时,所述可编程控制器控制所述阀控系统以实现:主液压缸内的液压油由中压蓄能器独立供给,单出杆提升液压缸的有杆腔内的存油排入油箱,同时主液压泵向高压蓄能器供油蓄能;当锻压锤头压延时,所述可编程控制器控制所述阀控系统以实现主液压缸内的液压油由主液压泵和高压蓄能器同时叠加供给,锻压锤头压延抗力增加使主液压缸内的压力达到第一设定值时,所述可编程控制器控制所述阀控系统以实现:高压蓄能器停止向主液压缸提供液压油,主液压缸内的液压油由主液压泵供给。
进一步的,在锻压锤头压延抗力增加使主液压缸内的压力达到第一设定值而未达到第二设定值时,所述可编程控制器控制所述阀控系统以实现:高压蓄能器停止向主液压缸提供液压油,主液压缸内的液压油由全部的主液压泵供给;在锻压锤头压延抗力增加使主液压缸内的压力进一步达到第二设定值时,所述可编程控制器控制所述阀控系统以实现:部分主液压泵切换向高压蓄能器供油蓄能,主液压缸内的液压油由部分的主液压泵供给,其中第一设定值小于第二设定值。
进一步的,在锻压锤头压延抗力增加使主液压缸内的压力进一步达到第三设定值时,所述可编程控制器控制所述阀控系统以实现:全部的主液压泵切换向高压蓄能器供油蓄能,其中第三设定值大于第二设定值。
进一步的,所述阀控系统包括:分别设置于多个主液压泵的输出液压油的 管路上的多个电磁换向阀,所述可编程控制器通过分别设置各个电磁换向阀实现各个主液压泵是向主液压缸或单出杆提升液压缸供油,还是向高压蓄能器供油;设置于高压蓄能器向主液压缸供给压力油的管路上的第一电液比例阀,实现其所在管路的开启或关闭;设置于主液压泵向主液压缸供给液压油的管路上的第二电液比例阀,实现其所在管路的开启或关闭;设置于主液压泵向单出杆提升液压缸的有杆腔供给液压油的管路上的第三电液比例阀,实现其所在管路的开启或关闭;设置于单出杆液压缸的有杆腔与油箱之间的管路上的第四电液比例阀,实现其所在管路开启或关闭;和设置于中压蓄能器连接主液压缸的管路上的第五电液比例阀,实现其所在管路的开启或关闭,所述可编程控制器控制各个电液比例阀的开启或关闭。所述液压快锻机组还包括:设置在高压蓄能器向外输出液压油的管路上的第一传感器;和设置在与主液压缸相通的管路上的第二传感器。
进一步的,所述液压快锻机组还包括:远程操控台,可编程控制器基于第一传感器和第二传感器的感应信号和远程操控台的输入信号分别向电磁换向阀、电液比例阀发出开启或关闭的指令。
进一步的,在启动时,可编程控制器发出启动指令,控制全部的主液压泵空载启动;在锻压锤头回程时,可编程控制器发出指令,控制第三电液比例阀和第五电液比例阀开启、各个电磁换向阀的左路开启、第一电液比例阀、第二电液比例阀和第四电液比例阀关闭,全部的主液压泵通过电磁换向阀的左路以及第三电液比例阀向单出杆提升液压缸的有杆腔供给液压油,锻压锤头上升,主液压缸内的存油通过第五电液比例阀排入中压蓄能器中;在锻压锤头空程快降时,可编程控制器发出指令,控制第四电液比例阀和第五电液比例阀开启,各个电磁换向阀的右路开启以及第一电液比例阀、第二电液比例阀、第三电液比例阀关闭,中压蓄能器通过第五电液比例阀向主液压缸供给液压油,锻压锤头空程快降迅速接触到工件,单出杆提升液压缸的有杆腔内存油通过第四电液比例阀排入油箱,同时全部的主液压泵通过电磁换向阀的右路向高压蓄能器供油蓄能,当第一传感器测得高压蓄能器内的压力达到第四设定值时,可编程控制器发出指令,控制电磁换向阀的右路关闭,全部的主液压泵空载运行;在锻压锤头压延时,可编程控制器发出指令,控制第三电液比例阀、第五电液比例阀关闭,第一电液比例阀和第二电液比例阀开启,以及各个电磁换向阀的左路 开启,全部的主液压泵通过第二电液比例阀和高压蓄能器通过第一电液比例阀同时向主液压缸供给液压油,当第二传感器测得主液压缸内的压力达到第一设定值时,可编程控制器发出指令,控制第一电液比例阀关闭,维持各个电磁换向阀的左路持续开启,此时高压蓄能器停止向主液压缸提供液压油,主液压缸内的液压油由全部的主液压泵供给,当第二传感器测得主液压缸内的压力达到第二设定值时,可编程控制器发出指令,控制部分电磁换向阀右路开启,此时部分主液压泵切换到向高压蓄能器供油蓄能,部分主液压泵向主液压缸供给液压油继续维持压延。
进一步的,当第二传感器测得主液压缸内的压力达到第三设定值时,可编程控制器发出指令,控制全部电磁换向阀右路开启,此时全部主液压泵切换到向高压蓄能器供油蓄能。
进一步的,中压蓄能器的蓄能压力为0.3—3Mpa。
进一步的,高压蓄能器的蓄能压力为3Mpa-35Mpa。
本发明采用以下技术方案:
本发明通过设置高压蓄能器将传统液压快锻机组主液压泵的配置数量减少,并将传统快锻液压机组中低压蓄能器的内存蓄能压力增加,可获得以下有益效果:
1、通过主液压泵接近满负荷的工作,使液压泵动力得到合理分配,即:利用主液压泵的空运转工况向高压蓄能器提供液压油,需要输出最大油量时,主液压泵与高压蓄能器同时供压,从而达到传统快锻液压机组多台主液压泵同时供压的效果,优化了资源配置、减少了设备投资、减少了液压泵空运转的能源消耗;
2、将传统快锻液压机组由多台主液压泵和低压蓄能器同时向主液压缸提供液压油,实现锻压锤头空程快降接近工件的工况,改变由中压蓄能器独立向主液压缸提供液压油,实现锻压锤头空程快降接近工件的工况,避免了大马拉小车的能源浪费现象。
本发明具有资源配置合理、结构设置简单、设备投入少、能源利用率高等显著优点。
附图说明
图1为本发明的液压快锻机组的液压控制原理示意图。
在附图中:1、1’、1”为主液压泵,2、2’、2”为电磁换向阀,3、4为溢流阀,5为高压蓄能器,6、7为传感器,8、9、10、11、12、13为电液比例阀,14为中压蓄能器,15、15’为单出杆提升液压缸,16为主液压缸,17为锻压锤头,18为活动梁,19为PLC(可编程控制器),20为远程操控台。
具体实施方式
以下结合附图对本发明作进一步解释说明:
所述液压快锻机组包括锻压锤头17、活动梁18、主液压缸16、单出杆提升液压缸15、15’、多个主液压泵1、1’、1”、高压蓄能器5、中压蓄能器14、第一传感器6、第二传感器7、可编程控制器19、多个电磁换向阀2、2’、2”、多个电液比例阀8、9、10、11、12、13及管路。其中电液比例阀8、9、10、11分别可以被称为第一电液比例阀、第二电液比例阀、第三电液比例阀、第四电液比例阀,电液比例阀12、13可以被称为第五电液比例阀。
如附图1所示,主液压缸16为柱塞式液压缸,快锻液压机组的锻压锤头17通过活动梁18连接在主液压缸16的柱塞上,且当柱塞一端充满液压油时锻压锤头17空程下降;单出杆提升液压缸15、15’分置于主液压缸16的两边,其内的单出杆通过活动梁18与锻压锤头17相联动,当有杆腔内充满液压油时锻压锤头17向上实现回程。
当锻压锤头17空程下降时两只单出杆液压缸15和15’的有杆腔与油箱相连通,并且在连通的管路上通过设置一电液比例阀11实现管路开启或关闭;主液压泵配置数量为三台1、1’、1”,在其他实施例中,根据需求也可以是配置两台、四台、五台等;中压蓄能器的蓄能压力为0.3至3Mpa;锻压锤头17向上实现回程时,单出杆提升液压缸15和15’的有杆腔内的液压油由配置的主液压泵1、1’、1”同时供给,主液压缸16内的存油排入中压蓄能器14内;锻压锤头17空程快降时主液压缸16内的液压油由中压蓄能器14独立供给,单出杆提升液压缸15和15’的有杆腔内的存油排入油箱,同时主液压泵1、1’、1”向高压蓄能器5供油蓄能;锻压锤头17压延时主液压缸1内的液压油由配置的主液压泵1、1’、1”和高压蓄能器5同时叠加供给;锻压锤头17压延抗力增加使所述主液压缸16内的压力达到第一设定值时,高压蓄能器5停止向主液压缸 16提供液压油,主液压缸16内的液压油由主液压泵1、1’、1”供给;在锻压锤头17压延抗力增加使所述主液压缸16内的压力进一步达到第二设定值时,部分主液压泵1、1’或1”切换向高压蓄能器5供油蓄能,主液压缸16内的液压油由剩余部分的主液压泵供给。
主液压泵1、1’、1”输出液压油的管路上,通过分别设置电磁换向阀2、2’、2”实现向主液压缸16、单出杆提升液压缸15和15’供油或向高压蓄能器5供油的切换;主液压泵1、1’、1”向单出杆提升液压缸15和15’的有杆腔供给液压油的管路上,通过设置电液比例阀10,实现该管路的开启或关闭;中压蓄能器14连接主液压缸16的管路上,通过设置电液比例阀12、13,实现该管路的开启或关闭;主液压泵1、1’、1”向主液压缸16供给液压油的管路上,通过设置电液比例阀9,实现该管路的开启或关闭;高压蓄能器5向主液压缸16供给液压油的管路上,通过设置电液比例阀8,实现该管路的开启或关闭;传感器6设置在高压蓄能器5向外输出液压油的管路上,传感器7设置在与主液压缸16相通的连接管路上;PLC 19通过第一传感器6、第二传感器7的感应信号和远程操控台20的输入信号分别向电磁换向阀、电液比例阀发出开启或关闭的工作指令。
以16MN快锻机组为例,工作时:
1、启动:
PLC 19发出三台主液压泵1、1’、1”启动的指令,三台主液压泵1、1’、1”空载启动;
2、回程:
PLC 19发出指令,控制电液比例阀10、12、13开启、电磁换向阀2、2’、2”的左路开启以及电液比例阀8、9、11关闭,三台主液压泵1、1’、1”通过电磁换向阀2、2’、2”的左路以及电液比例阀10向单出杆提升液压缸15和15’的有杆腔供给液压油,锻压锤头17上升,主液压缸16内的存油通过电液比例阀12、13排入中压蓄能器14中。
3、锻压锤头空程快降:
PLC 19发出指令,控制电液比例阀11、12、13开启、电磁换向阀2、2’、2”的右路开启以及电液比例阀8、9、10关闭,中压蓄能器14通过电液比例 阀12、13向主液压缸16供给液压油,锻压锤头17空程快降迅速接触到工件,单出杆提升液压缸15和15’的有杆腔内存油通过电液比例阀11排入油箱,三台主液压泵1、1’、1”通过电磁换向阀2、2’、2”的右路向高压蓄能器5供油蓄能。当传感器6测得高压蓄能器5内的压力达到第四设定值时,PLC19发出指令,控制电磁换向阀2、2’、2”的右路关闭,三台主液压泵1、1’、1”空载运行。
4、压延:
PLC19发出指令,控制电液比例阀10、12、13关闭,电液比例阀8、9开启以及电磁换向阀2、2’、2”的左路开启,三台主液压泵1、1’、1”通过电液比例阀9和高压蓄能器5通过电液比例阀8同时向主液压缸16供给液压油,随着工件抗力不断增加,主液压泵1、1’、1”的压力随之增加,当传感器6测得所述主液压缸16内的压力达到第一设定值时,PLC19发出指令,控制电液比例阀8关闭,此时保持电液比例阀9开启,电液比例阀10、12、13关闭,电磁换向阀2、2’、2”的左路开启,高压蓄能器停止向主液压缸16提供液压油,主液压泵1、1’、1”通过电液比例阀9向主液压缸16供给液压油。当传感器7测得所述主液压缸16内的压力达到第二设定值时,PLC19发出指令,控制电磁换向阀2’、2”的右路开启,其余的电液比例阀以及电磁换向阀2的状态维持不变,此时主液压泵1’、1”切换到向高压蓄能器5供压蓄能状态,只有主液压泵1向主液压缸16供给液压油继续维持压延,当工件尺寸达到要求压延结束时,传感器7测得所述主液压缸16内的压力达到第三设定值时,可编程控制器19发出指令,控制主液压泵1左路关闭、右路开启,三台主液压泵1、1’、1”全部切换到向高压蓄能器5供压进入蓄能状态。其中第一设定值小于第二设定值,第二设定值小于第三设定值,第四设定值大于第一设定值。
需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (9)

  1. 一种液压快锻机组,其特征在于,其包括锻压锤头、活动梁、主液压缸、单出杆提升液压缸、多个主液压泵、高压蓄能器、中压蓄能器、油箱、可编程控制器、设置于主液压缸、单出杆提升液压缸、多个主液压泵、高压蓄能器、中压蓄能器和油箱之间的用于输送液压油的管路,以及设置于所述管路上的阀控系统,所述主液压缸为柱塞式液压缸,单出杆提升液压缸中的单出杆的一端、主液压缸中的柱塞的一端和锻压锤头固定连接在所述活动梁上,
    当锻压锤头向上实现回程时,所述可编程控制器控制所述阀控系统以实现:单出杆提升液压缸的有杆腔内的液压油由主液压泵供给,主液压缸内的存油排入中压蓄能器内;
    当锻压锤头空程快降时,所述可编程控制器控制所述阀控系统以实现:主液压缸内的液压油由中压蓄能器独立供给,单出杆提升液压缸的有杆腔内的存油排入油箱,同时主液压泵向高压蓄能器供油蓄能;
    当锻压锤头压延时,所述可编程控制器控制所述阀控系统以实现主液压缸内的液压油由主液压泵和高压蓄能器同时叠加供给,锻压锤头压延抗力增加使主液压缸内的压力达到第一设定值时,所述可编程控制器控制所述阀控系统以实现:高压蓄能器停止向主液压缸提供液压油,主液压缸内的液压油由主液压泵供给。
  2. 根据权利要求1所述的液压快锻机组,其特征在于,
    在锻压锤头压延抗力增加使主液压缸内的压力达到第一设定值而未达到第二设定值时,所述可编程控制器控制所述阀控系统以实现:高压蓄能器停止向主液压缸提供液压油,主液压缸内的液压油由全部的主液压泵供给,
    在锻压锤头压延抗力增加使主液压缸内的压力进一步达到第二设定值时,所述可编程控制器控制所述阀控系统以实现:部分主液压泵切换向高压蓄能器供油蓄能,主液压缸内的液压油由部分的主液压泵供给,其中第一设定值小于第二设定值。
  3. 根据权利要求2所述的液压快锻机组,其特征在于,在锻压锤头压延抗力增加使主液压缸的供油压力进一步达到第三设定值时,所述可编程控制器控制所述阀控系统以实现:全部的主液压泵切换向高压蓄能器供油蓄能,其中第 三设定值大于第二设定值。
  4. 根据权利要求1所述的液压快锻机组,其特征在于,
    所述阀控系统包括:
    分别设置于多个主液压泵的输出液压油的管路上的多个电磁换向阀,所述可编程控制器通过分别设置各个电磁换向阀实现各个主液压泵是向主液压缸或单出杆提升液压缸供油,还是向高压蓄能器供油;
    设置于高压蓄能器向主液压缸供给压力油的管路上的第一电液比例阀,实现其所在管路的开启或关闭;
    设置于主液压泵向主液压缸供给液压油的管路上的第二电液比例阀,实现其所在管路的开启或关闭;
    设置于主液压泵向单出杆提升液压缸的有杆腔供给液压油的管路上的第三电液比例阀,实现其所在管路的开启或关闭;
    设置于单出杆液压缸的有杆腔与油箱之间的管路上的第四电液比例阀,实现其所在管路开启或关闭;和
    设置于中压蓄能器连接主液压缸的管路上的第五电液比例阀,实现其所在管路的开启或关闭,所述可编程控制器控制各个电液比例阀的开启或关闭;
    所述液压快锻机组还包括:
    设置在高压蓄能器向外输出液压油的管路上的第一传感器;和
    设置在与主液压缸相通的管路上的第二传感器。
  5. 根据权利要求4所述的液压快锻机组,其特征在于:其还包括:
    远程操控台,可编程控制器基于第一传感器和第二传感器的感应信号和远程操控台的输入信号分别向电磁换向阀、电液比例阀发出开启或关闭的指令。
  6. 根据权利要求4所述的液压快锻机组,其特征在于:
    在启动时,可编程控制器发出启动指令,控制全部的主液压泵空载启动;
    在锻压锤头回程时,可编程控制器发出指令,控制第三电液比例阀和第五电液比例阀开启、各个电磁换向阀的左路开启、第一电液比例阀、第二电液比例阀和第四电液比例阀关闭,全部的主液压泵通过电磁换向阀的左路以及第三 电液比例阀向单出杆提升液压缸的有杆腔供给液压油,锻压锤头上升,主液压缸内的存油通过第五电液比例阀排入中压蓄能器中,
    在锻压锤头空程快降时,可编程控制器发出指令,控制第四电液比例阀和第五电液比例阀开启,各个电磁换向阀的右路开启以及第一电液比例阀、第二电液比例阀、第三电液比例阀关闭,中压蓄能器通过第五电液比例阀向主液压缸供给液压油,锻压锤头空程快降迅速接触到工件,单出杆提升液压缸的有杆腔内存油通过第四电液比例阀排入油箱,同时全部的主液压泵通过电磁换向阀的右路向高压蓄能器供油蓄能,当第一传感器测得高压蓄能器内的压力达到第四设定值时,可编程控制器发出指令,控制电磁换向阀的右路关闭,全部的主液压泵空载运行;
    在锻压锤头压延时,可编程控制器发出指令,控制第三电液比例阀、第五电液比例阀关闭,第一电液比例阀和第二电液比例阀开启,以及各个电磁换向阀的左路开启,全部的主液压泵通过第二电液比例阀和高压蓄能器通过第一电液比例阀同时向主液压缸供给液压油,当第二传感器测得主液压缸内的压力达到第一设定值时,可编程控制器发出指令,控制第一电液比例阀关闭,维持各个电磁换向阀的左路持续开启,此时高压蓄能器停止向主液压缸提供液压油,主液压缸内的液压油由全部的主液压泵供给,当第二传感器测得主液压缸内的压力达到第二设定值时,可编程控制器发出指令,控制部分电磁换向阀右路开启,此时部分主液压泵切换到向高压蓄能器供油蓄能,部分主液压泵向主液压缸供给液压油继续维持压延。
  7. 根据权利要求6所述的液压快锻机组,其特征在于:当第二传感器测得主液压缸内的压力达到第三设定值时,可编程控制器发出指令,控制全部电磁换向阀右路开启,此时全部主液压泵切换到向高压蓄能器供油蓄能。
  8. 根据权利要求1所述的液压快锻机组,其特征在于:
    中压蓄能器的蓄能压力为0.3—3Mpa。
  9. 根据权利要求1所述的液压快锻机组,其特征在于:
    高压蓄能器的蓄能压力为3Mpa-35Mpa。
PCT/CN2017/070940 2016-07-22 2017-01-12 液压快锻机组 WO2018014522A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/765,265 US10850468B2 (en) 2016-07-22 2017-01-12 High-speed hydraulic forging press
ES17748373T ES2744853T3 (es) 2016-07-22 2017-01-12 Unidad hidráulica de forja rápida
PL17748373T PL3290718T3 (pl) 2016-07-22 2017-01-12 Hydrauliczna szybka jednostka kuźnicza
EP17748373.2A EP3290718B1 (en) 2016-07-22 2017-01-12 Hydraulic fast forging unit
JP2018535862A JP6648284B2 (ja) 2016-07-22 2017-01-12 高速液圧鍛造プレス装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610582538.7 2016-07-22
CN201610582538.7A CN106015124A (zh) 2016-07-22 2016-07-22 一种液压泵与高压蓄能器叠加供压的液压快锻机组

Publications (1)

Publication Number Publication Date
WO2018014522A1 true WO2018014522A1 (zh) 2018-01-25

Family

ID=57117358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070940 WO2018014522A1 (zh) 2016-07-22 2017-01-12 液压快锻机组

Country Status (7)

Country Link
US (1) US10850468B2 (zh)
EP (1) EP3290718B1 (zh)
JP (1) JP6648284B2 (zh)
CN (2) CN106015124A (zh)
ES (1) ES2744853T3 (zh)
PL (1) PL3290718T3 (zh)
WO (1) WO2018014522A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015124A (zh) * 2016-07-22 2016-10-12 中聚信海洋工程装备有限公司 一种液压泵与高压蓄能器叠加供压的液压快锻机组
CN106402061B (zh) * 2016-11-21 2018-01-30 江苏华威机械制造有限公司 液压快锻机空程快降独立补油的液压回路
CN107588047A (zh) * 2017-11-02 2018-01-16 中科聚信洁能热锻装备研发股份有限公司 一种由蓄能器独立供给压力油的液压机
CN107829988A (zh) * 2017-11-02 2018-03-23 中科聚信洁能热锻装备研发股份有限公司 一种液压机回程的无泵蓄能器闭式油路及其控制方法
CN109058197B (zh) * 2018-08-29 2024-05-28 太原科技大学 一种新型节能快速锻造机溢流收集装置及其方法
CN109058196B (zh) * 2018-08-29 2023-10-31 太原科技大学 一种新型节能快速锻造机液压系统及其控制方法
CN110925246B (zh) * 2018-09-20 2023-10-20 华澳科技(苏州)股份有限公司 一种蓄能再生节能开合模系统及开合模控制方法
CN109175183B (zh) * 2018-10-16 2024-02-06 南京迪威尔高端制造股份有限公司 大型模锻液压机混合动力液压传动系统及方法
US11191212B2 (en) * 2019-04-23 2021-12-07 Deere & Company Controlled float on an agricultural harvester for header leveling
CN114483680B (zh) * 2022-01-20 2024-01-05 佛山市玛盛机械科技有限公司 一种具有液压储能的大吨位金属热锻成型设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634205B2 (en) * 2000-11-30 2003-10-21 Kawasaki Hydromechanics Corporation Hydraulic control method for hydraulic press
CN101249730A (zh) * 2008-03-24 2008-08-27 中南大学 多点驱动大型液压机液压控制系统
CN102364120A (zh) * 2011-06-30 2012-02-29 天津市天锻压力机有限公司 活塞式蓄能器控制液压系统
CN106015124A (zh) * 2016-07-22 2016-10-12 中聚信海洋工程装备有限公司 一种液压泵与高压蓄能器叠加供压的液压快锻机组
CN205841339U (zh) * 2016-07-22 2016-12-28 中聚信海洋工程装备有限公司 一种液压泵与高压蓄能器叠加供压的液压快锻机组

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380153A (en) * 1941-04-30 1945-07-10 Oilgear Co Hydraulic draw press
US2594204A (en) * 1947-06-26 1952-04-22 Alois K Nowak Actuating means for forging presses
GB880874A (en) * 1957-12-10 1961-10-25 Loewy Eng Co Ltd Pressure-liquid supply system for hydraulic presses
GB895434A (en) * 1958-11-25 1962-05-02 Schloemann Ag Improvements in hydraulic forging presses having control means
DE1145462B (de) * 1959-05-20 1963-03-14 Hydraulik Gmbh Hydraulische Schmiedpresse in Unterflur-Bauart
DE2607762A1 (de) * 1976-02-26 1977-09-01 Smg Sueddeutsche Maschinenbau Hydraulische presse
DE2747548C2 (de) * 1977-10-22 1986-04-17 Thyssen Industrie Ag, 4300 Essen Presse mit Regelkreis
DE2852303A1 (de) * 1978-12-02 1980-06-04 Schloemann Siemag Ag Schmiedepresse, insbesondere freiform- schmiedepresse, in unterflurbauart
DE3728418A1 (de) * 1987-08-26 1989-03-09 Horst Baltschun Dynamisch vorgespannte druckmittelbetaetigte presse
DE4436666A1 (de) * 1994-10-13 1996-04-18 Rexroth Mannesmann Gmbh Hydraulisches Antriebssystem für eine Presse
CN2537848Y (zh) * 2002-04-26 2003-02-26 张作武 双柱塞液压锤
CA2539642A1 (en) * 2003-10-09 2005-04-21 The Coe Manufacturing Company Platen press
CN201659239U (zh) * 2009-12-09 2010-12-01 安阳锻压机械工业有限公司 锻造液压机的快速回升弹簧装置
CN102078911A (zh) * 2010-12-06 2011-06-01 中国重型机械研究院有限公司 快锻油压机快速回程系统
CN201880838U (zh) * 2010-12-06 2011-06-29 中国重型机械研究院有限公司 快锻油压机快速回程装置
CN202291180U (zh) * 2011-09-26 2012-07-04 阎善武 水压快速锻造机组
DE202012101725U1 (de) * 2012-05-10 2013-07-11 Dieffenbacher GmbH Maschinen- und Anlagenbau Vorrichtung zur adaptiven Steuerung einer hydraulischen Presse
DE102012104124A1 (de) * 2012-05-10 2013-11-14 Dieffenbacher GmbH Maschinen- und Anlagenbau Verfahren und Vorrichtung zur adaptiven Steuerung einer hydraulischen Presse
CN204020051U (zh) * 2014-07-04 2014-12-17 青岛华东工程机械有限公司 快速锻造压机快速回程装置及快速锻造压机
DE102014218887B3 (de) * 2014-09-19 2016-01-28 Voith Patent Gmbh Hydraulischer Antrieb mit Eilhub und Lasthub
CN204470508U (zh) * 2014-11-19 2015-07-15 天津市天锻压力机有限公司 模锻液压机滑块力偶调平控制系统
CN105221497B (zh) * 2015-10-27 2017-07-14 天津市天锻压力机有限公司 高速预成型液压机液压控制系统
JP6397063B2 (ja) * 2017-01-27 2018-09-26 アイダエンジニアリング株式会社 液圧ノックアウト装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634205B2 (en) * 2000-11-30 2003-10-21 Kawasaki Hydromechanics Corporation Hydraulic control method for hydraulic press
CN101249730A (zh) * 2008-03-24 2008-08-27 中南大学 多点驱动大型液压机液压控制系统
CN102364120A (zh) * 2011-06-30 2012-02-29 天津市天锻压力机有限公司 活塞式蓄能器控制液压系统
CN106015124A (zh) * 2016-07-22 2016-10-12 中聚信海洋工程装备有限公司 一种液压泵与高压蓄能器叠加供压的液压快锻机组
CN205841339U (zh) * 2016-07-22 2016-12-28 中聚信海洋工程装备有限公司 一种液压泵与高压蓄能器叠加供压的液压快锻机组

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, JIE ET AL.: "Simulation of Forging Manipulator Valve-Controlled Motor System Based on Virtual Prototype", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 August 2010 (2010-08-15), pages 25 - 26, XP009502965 *
MENG, XINJIA: "Numerical Simulation of Working Process and Study of Hydraulic Control Strategy Control Strategy of a Fast Forging Hydraulic Press", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 July 2010 (2010-07-15), pages 16 - 20, XP055442804 *
WANG, CHANGLEI: "Research on Electronic Control System of 31.5 MN Fast Forging Press", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 March 2013 (2013-03-15), pages 15 - 18, XP009502966 *

Also Published As

Publication number Publication date
EP3290718A1 (en) 2018-03-07
CN106015124A (zh) 2016-10-12
PL3290718T3 (pl) 2019-11-29
EP3290718A4 (en) 2018-05-16
CN106545530B (zh) 2017-12-12
US10850468B2 (en) 2020-12-01
ES2744853T3 (es) 2020-02-26
US20180281332A1 (en) 2018-10-04
JP2019507017A (ja) 2019-03-14
JP6648284B2 (ja) 2020-02-14
EP3290718B1 (en) 2019-06-12
CN106545530A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2018014522A1 (zh) 液压快锻机组
CN103801751B (zh) 基于plc控制的全自动剪板机液压系统
CN107477051B (zh) 载荷差异油电液复合背压调控双执行器系统
CN201507500U (zh) 一种步进式加热炉液压平衡节能装置
CN204099304U (zh) 一种小型压力机液压驱动系统
CN104929992A (zh) 变负载伺服控制系统的节能设计方法
CN109849401B (zh) 一种节能式液压机及其加工方法
CN111805962A (zh) 一种液压机专用伺服液压垫控制系统及控制方法
CN108687283B (zh) 一种热挤压成型液压机的电液控制系统与工艺成型方法
CN108638568B (zh) 一种用于液压机的节能液压垫控制系统
CN202116932U (zh) 浆包压机液压系统
CN102536924A (zh) 单液压缸单作用增压器液压系统
CN205841339U (zh) 一种液压泵与高压蓄能器叠加供压的液压快锻机组
CN207333364U (zh) 一种自蓄能式液压站
CN203948706U (zh) 负载传感多路阀
CN207647889U (zh) 应用电比例控制排量油泵的水泥篦冷机驱动油缸液压装置
CN218266548U (zh) 一种快锻液压机组的节能改造装置
CN208918942U (zh) 一种高速节能液压系统
CN217301065U (zh) 一种多机组液压站并联互通装置
CN217107641U (zh) 一种双阀芯控制的多路阀
CN213628209U (zh) 一种伺服泵-阀控折弯机液压系统
CN218894815U (zh) 一种液压锻造机回程适配供液装置
CN217301074U (zh) 一种多机组联合供液装置
CN211165431U (zh) 改进的压榨机液压系统
CN108443252A (zh) 多工位冲剪生产线的液压系统

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017748373

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15765265

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018535862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE