WO2018014164A1 - 一种钠离子电池的补钠方法及制备得到的极片和电池 - Google Patents

一种钠离子电池的补钠方法及制备得到的极片和电池 Download PDF

Info

Publication number
WO2018014164A1
WO2018014164A1 PCT/CN2016/090328 CN2016090328W WO2018014164A1 WO 2018014164 A1 WO2018014164 A1 WO 2018014164A1 CN 2016090328 W CN2016090328 W CN 2016090328W WO 2018014164 A1 WO2018014164 A1 WO 2018014164A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
pole piece
ion battery
initial
metal
Prior art date
Application number
PCT/CN2016/090328
Other languages
English (en)
French (fr)
Inventor
梁成都
苏硕剑
郭永胜
李晓燕
罗莉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2016/090328 priority Critical patent/WO2018014164A1/zh
Priority to CN201680087749.1A priority patent/CN109478639A/zh
Publication of WO2018014164A1 publication Critical patent/WO2018014164A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of secondary batteries, and in particular to a method for sodium supplementation of a sodium ion battery and a prepared pole piece and battery.
  • the most effective method is to pre-supplement the pole piece.
  • the primary object of the present application is to provide a sodium supplementation method for a sodium ion battery.
  • a second object of the present application is to provide a sodium ion battery pole piece.
  • a third object of the present application is to propose a sodium ion battery.
  • the present application relates to a sodium supplementation method for a sodium ion battery, the sodium supplementation method comprising at least the following steps:
  • the sodium metal is prepared in a molten state under an inert atmosphere, and then molten sodium metal is prepared on the surface of the initial pole piece to form a metal sodium layer for sodium supplementation of a sodium ion battery.
  • the purity of the metallic sodium is ⁇ 97%, preferably the purity of the metallic sodium is ⁇ 99%.
  • the sodium metal is prepared by heating to a molten metal sodium, and the heating temperature is from 98 ° C to 300 ° C, preferably from 103 ° C to 150 ° C.
  • the prepared metal sodium layer has a thickness of from 0.5 ⁇ m to 50 ⁇ m, preferably from 1 ⁇ m to 30 ⁇ m.
  • molten sodium metal is coated or sprayed on the surface of the initial pole piece.
  • the coating is extrusion coating or gravure printing; the spraying is spraying the molten sodium onto the surface of the initial pole piece by a spray head, preferably, the molten sodium
  • the spray amount is 1.5 ⁇ 10 -7 g / mm 2 ⁇ s to 2.0 ⁇ 10 -5 g / mm 2 ⁇ s.
  • the metal sodium is melted in a solvent and then coated or sprayed, the solvent having a boiling point lower than the melting temperature of the metal sodium and not reacting with sodium.
  • the solvent is at least one selected from the group consisting of an aromatic hydrocarbon solvent, an ester solvent, and an ether solvent, more preferably toluene, xylene, ethylene carbonate, propylene carbonate, diethyl carbonate, ethyl methyl carbonate, and ethyl acetate.
  • an aromatic hydrocarbon solvent an ester solvent
  • an ether solvent more preferably toluene, xylene, ethylene carbonate, propylene carbonate, diethyl carbonate, ethyl methyl carbonate, and ethyl acetate.
  • the thickness of the formed metal sodium layer is uniform.
  • the metal sodium layer is formed in a middle portion of the initial pole piece in the width direction, and a blank area is formed along both sides in the width direction of the initial pole piece.
  • the width of the blank area is It is 1mm to 10mm.
  • the thickness of the formed metal sodium layer gradually decreases along the two side edges in the width direction of the initial pole piece.
  • the initial pole piece is prepared by coating a slurry on a current collector, and drying the initial pole piece, the water content of the initial pole piece. Not more than 100ppm, the initial pole piece is placed in a dry environment after drying;
  • the dry environment has an ambient humidity of less than 3%.
  • the initial pole piece is a cathode initial pole piece or an anode initial pole piece;
  • the initial anode pole piece contains an anode active material, a binder and a conductive agent;
  • the anode active material At least one selected from the group consisting of a carbon material, an alloy material, an over-plated metal oxide, an over-plated metal sulfide, a phosphorus-based material, or a titanate material;
  • the film of the initial cathode pole piece contains a cathode active material, and is viscous a binder and a conductive agent;
  • the cathode active material being at least one selected from the group consisting of a layered structural material, a tunnel type oxide material, a polyanionic material, or a blue sapphire.
  • the alloy material is selected from an alloy material composed of at least two of Si, Ge, Sn, Pb, and Sb; the over-metallized oxide and the over-plated metal sulfide have a chemical formula of M1 x N y Wherein M1 is selected from at least one of Fe, Co, Ni, Cu, Mn, Sn, Mo, Sb, V, and N is selected from O or S; and the phosphorus-based material is selected from the group consisting of red phosphorus, white phosphorus, and black phosphorus.
  • the titanate material is at least one selected from the group consisting of Na 2 Ti 3 O 7 , Na 2 Ti 6 O 13 , Na 4 Ti 5 O 12 , Li 4 Ti 5 O 12 , and NaTi 2 (PO 4 ) 3
  • the layered structural material and the tunnel-type oxide material each have a chemical formula of Na x M 2 O 2 , and M 2 is at least one selected from the group consisting of Ti, V, Mn, Co, Ni, Fe, Cr, and Cu;
  • the polyanionic material is selected from at least one of NaFePO 4 , Na 3 V 2 (PO 4 ) 3 , NaM3PO 4 F or Na 3 (VO x ) 2 (PO 4 ) 2 F 3-2x
  • M3 is selected from the group consisting of V and Fe.
  • the present application also relates to a obtained sodium ion battery pole piece prepared by the above sodium supplementation method, the sodium ion battery pole piece being a cathode pole piece and/or an anode pole piece.
  • the present application also relates to a sodium ion battery comprising a cathode pole piece, an anode pole piece, a separator interposed between the cathode pole piece and the anode pole piece, and an electrolyte, the cathode pole piece and/or anode
  • the pole piece is the sodium ion battery pole piece of the present application.
  • the sodium supplementation method of the present application adopts a method of melting sodium on the surface of the initial pole piece, thereby not only improving the first coulombic efficiency of the active material in the initial anode pole piece, thereby increasing the energy density, and also preventing the formation of voids inside the initial pole piece.
  • the sodium ion battery pole piece of the present application can also facilitate the deintercalation of sodium ions in the anode material during the charging and discharging process by pre-filling the sodium in the sodium-rich pole piece with the sodium ion path in the anode material. Increase the capacity retention rate of the battery.
  • the amount of sodium supplementation can be precisely controlled by controlling the thickness of the metal sodium layer, and the operation is simple and easy.
  • the sodium supplementation method of the present application uses sodium molten sodium for sodium supplementation, lower operating temperature, safer production operation, and lower energy consumption.
  • the present application provides a sodium supplementation method for a sodium ion battery, comprising at least the steps of: preparing an initial pole piece of a sodium ion battery, preparing the molten metal into a molten state under an inert atmosphere, and then A molten metal sodium is prepared on the surface of the initial pole piece to form a metal sodium layer for sodium supplementation of a sodium ion battery.
  • the present invention aims to improve the first coulombic efficiency of the active material in the initial anode pole piece during the formation process of the battery preparation process by reducing the sodium supplementation of the pole piece, and reducing the sodium ion in the corresponding cathode material during the first charge and discharge process.
  • the second purpose is to prevent the formation of holes in the initial pole piece.
  • the third purpose is to open the path of sodium ions in the anode material, so that sodium ions are more easily deintercalated in the anode material during charge and discharge, thereby improving the capacity retention rate of the battery.
  • the wet method of sodium supplementation is to drop the solution containing sodium ions on the surface of the pole piece, and then insert the sodium in the solution by chemical or electrochemical processes. The method of going into the pole piece. Although the process is simple, the process is long and the production efficiency is low.
  • the technical solution of sodium supplementation by molten metal sodium in the present application has the advantages of simple process, low cost, fast and effective.
  • a battery pole piece that has not been supplemented with sodium is referred to as an initial pole piece, and a battery pole piece after sodium supplementation is referred to as a sodium-rich pole piece.
  • the inert atmosphere is preferably argon or nitrogen, or helium. Since sodium metal itself has high activity, if it encounters water or carbon dioxide in the air, it is prone to explosion and other safety accidents, so it is necessary to operate in an inert atmosphere to ensure production safety.
  • the purity of the metallic sodium is ⁇ 97%, preferably the purity of the metallic sodium is ⁇ 99%.
  • sodium metal is prepared by heating to a molten metal sodium at a temperature of from 98 ° C to 300 ° C, preferably from 103 ° C to 150 ° C.
  • the sodium metal is preferably a sodium block, and the melting temperature thereof is not too high, otherwise the viscosity of the molten sodium is too low, and it is easy to flow after being coated or sprayed onto the surface of the sodium plate to be replenished, affecting the uniformity of sodium supplementation, and at the same time, excessive temperature is required. Consumption of more energy is not conducive to cost control; the melting temperature of the sodium block should not be too low, otherwise the molten sodium will solidify in advance during coating or spraying, which is not conducive to coating or spraying.
  • the amount of sodium supplemented in the sodium supplementation method of the present application is compatible with the sodium supplementation capacity of the initial anode pole piece.
  • sodium-suppressing capacity of the initial anode electrode piece in the present application means that the sodium-rich anode electrode piece is increased in the amount of the pole piece after the first effect is increased by the method of pre-supplementing the anode piece.
  • the prepared metal sodium layer has a thickness of from 0.5 ⁇ m to 50 ⁇ m, preferably from 1 ⁇ m to 30 ⁇ m.
  • the present application can achieve precise sodium supplementation by controlling the thickness of the metal sodium layer during the preparation process. If the thickness of the prepared metal sodium layer is too thin, the corresponding sodium supplementation effect is not obtained; if the thickness of the prepared metal sodium layer is too thick, excessive sodium may cause precipitation of sodium dendrites, which may affect battery safety.
  • molten sodium metal is coated or sprayed onto the surface of the initial pole piece.
  • the coating is extrusion coating or gravure printing
  • the spraying is to spray molten sodium onto the surface of the initial pole piece using a spray head.
  • extrusion coating or gravure printing The method is a relatively mature coating technology in industrial production, and has great advantages in production efficiency, coating weight control, and dimensional accuracy control.
  • the sprayed sodium sodium spray method has a certain amount of molten sodium particles sprayed. Kinetic energy, it is easier to stick to the surface of the pole piece.
  • the sodium metal is melted in a solvent and then coated or sprayed.
  • the metal sodium is melted in a solvent, dispersed uniformly and sprayed on the surface of the pole piece, and a uniform distribution of sodium beads can be formed on the surface of the pole piece, so that the electrolyte is more easily infiltrated into the pole piece, and the absorption of the sodium layer by the pole piece is accelerated.
  • Improve sodium supplementation efficiency improves the sodium supplementation efficiency.
  • the solvent is required to have a boiling point lower than the melting temperature of the metal sodium and does not react with sodium.
  • the solvent may be selected from at least one of an aromatic hydrocarbon solvent, an ester solvent or an ether solvent, and more preferably, it may be selected from the group consisting of toluene, xylene, ethylene carbonate, propylene carbonate, diethyl carbonate, and carbonic acid. At least one of ethyl ester, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • the spray amount of molten sodium is 1.5 ⁇ 10 -7 g / mm 2 ⁇ s to 2.0 ⁇ 10 -5 g / mm 2 ⁇ s.
  • the operation time for completing the sodium supplement amount of the general specification pole piece is 5 to 20 s. If the amount of molten sodium sprayed from the molten sodium nozzle is too small, the spraying time is too long, which affects the production efficiency; if the amount of molten sodium sprayed from the molten sodium nozzle is too large, the required spraying time is too short, which may affect the operation. Sex, while the amount of molten sodium sprayed per unit time is too large, the kinetic energy of the molten sodium sprayed is too large, and it is easy to damage the pole piece.
  • the thickness of the formed metal sodium layer is uniform.
  • a metal sodium layer is formed in a middle portion of the initial pole piece in the width direction, and a blank area is formed on both sides in the width direction of the initial pole piece, that is, the blank area is not covered and melted.
  • Sodium layer is formed in a middle portion of the initial pole piece in the width direction, and a blank area is formed on both sides in the width direction of the initial pole piece, that is, the blank area is not covered and melted.
  • the width of the blank area is from 1 mm to 10 mm. If the width of the blank area is too large, the amount of sodium supplementation is likely to be insufficient; if the width of the blank area is too small, sodium dendrites are easily precipitated at the edge of the pole piece, causing safety problems.
  • the thickness of the formed metal sodium layer gradually decreases along the two side edges in the width direction of the initial pole piece.
  • the mode is selected when the width of the blank area is large.
  • the initial pole piece is prepared by: coating the slurry Covered on the current collector, after drying, the initial pole piece is obtained, and the water content of the initial pole piece does not exceed 100 ppm. Because the metal sodium is highly active, if the water content in the initial pole piece is too high, the metal sodium reacts with water, causing safety problems such as burning and explosion, which affects the progress of production.
  • the initial pole piece After drying, the initial pole piece is placed in a dry environment to prevent the pole piece from reabsorbing the moisture in the environment.
  • the dry environment is an environment having a humidity of less than 3%.
  • the initial pole piece may be a pole piece before cold pressing, after cold pressing, after striping, or after welding the tab.
  • the initial pole piece is a cathode initial pole piece or an anode initial pole piece;
  • the initial anode pole piece contains an anode active material, a binder and a conductive agent;
  • the anode active material is selected from a carbon material, At least one of an alloy material, an over-plated metal oxide, an over-plated metal sulfide, a phosphorus-based material, or a titanate material;
  • the cathode of the initial cathode pole piece contains a cathode active material, a binder, and a conductive agent;
  • the active material is at least one of a layered structural material, a tunnel type oxide material, a polyanionic material, or a blue sapphire.
  • the alloy material is selected from the group consisting of alloy materials composed of at least two of Si, Ge, Sn, Pb, and Sb;
  • the overplated metal oxide and the overplated metal sulfide have a chemical formula of M1 x N y , wherein M1 is at least one selected from the group consisting of Fe, Co, Ni, Cu, Mn, Sn, Mo, Sb, and V, and N is selected from the group consisting of at least one selected from the group consisting of Fe, Co, Ni, Cu, Mn, Sn, Mo, Sb, and V. O or S;
  • the phosphorus-based material is selected from at least one of red phosphorus, white phosphorus, and black phosphorus;
  • the titanate material is at least one selected from the group consisting of Na 2 Ti 3 O 7 , Na 2 Ti 6 O 13 , Na 4 Ti 5 O 12 , Li 4 Ti 5 O 12 , and NaTi 2 (PO 4 ) 3 ;
  • the layered structural material and the tunnel-type oxide material have a chemical formula of Na x M 2 O 2 , and M 2 is at least one selected from the group consisting of Ti, V, Mn, Co, Ni, Fe, Cr, and Cu;
  • the polyanionic material is selected from at least one of NaFePO 4 , Na 3 V 2 (PO 4 ) 3 , NaM3PO 4 F or Na 3 (VO x ) 2 (PO 4 ) 2 F 3-2x , and M3 is selected from the group consisting of V and Fe. At least one of Mn and Ni, 0 ⁇ x ⁇ 1;
  • the Bruce blue material has a chemical formula of Na x M4Fe(CN) 6 , and M 4 is at least one selected from the group consisting of Ni, Cu, Fe, Mn, Co, and Zn.
  • the present application also provides a sodium-rich battery sodium-rich battery prepared by the above-mentioned sodium supplementation method, and the sodium ion-rich sodium battery pole piece is a cathode sodium-rich pole piece and/or an anode rich sodium. Polar film.
  • the application further provides a sodium ion battery comprising a cathode pole piece, an anode pole piece, a separator interposed between the cathode pole piece and the anode pole piece, and an electrolyte, wherein the cathode pole piece And/or the anode pole piece is the sodium ion battery rich sodium plate of the present application.
  • the active material, the binder and the conductive agent are uniformly mixed with the solvent to form a slurry (wherein, when preparing the anode initial pole piece: the binder is polyacrylic acid, the conductive agent is conductive carbon black, and the solvent is deionized water)
  • the binder is polyvinylidene fluoride, the conductive agent is conductive carbon black, the solvent is N-methylpyrrolidone
  • the slurry is coated on the front and back sides of the current collector and on each side
  • the coating amount is 100mg/1540mm 2 ; then drying, forming a film and making the water content of the film not exceed 100ppm; and then cold pressing, slitting, welding the corresponding tabs to obtain an initial pole piece with a width of 160mm .
  • the sodium block (purity) is melted, melted at a certain temperature, uniformly coated with a certain thickness in the middle of the initial pole piece along the width direction, and a blank area of a certain width is formed on both sides of the initial pole piece, and the temperature is cooled to room temperature. Get rich in sodium tablets.
  • the sodium block (purity) is melted and melted at a certain temperature, and then the molten sodium is uniformly sprayed on the central portion of the initial pole piece in the upward direction by a certain spray amount with a spray head, the spraying time is 10 seconds; and formed on both sides of the initial pole piece a blank area of a certain width, and the sodium is made to be cooled after the temperature is cooled to room temperature.
  • Polar film
  • DEC diethyl carbonate
  • the sodium-rich pole pieces 1 to 17 prepared by the coating method are shown in Table 1.
  • the initial pole pieces 1 to 6 are respectively used as the initial pole pieces of the sodium-rich pole piece 1 and the sodium-rich pole piece 8-12.
  • the sodium-rich pole pieces 18 to 33 prepared by the spray coating method are shown in Table 2.
  • Table 1 Sodium-rich pole pieces prepared by coating method
  • a metal layer with a uniform thickness reduction is applied to a blank area of 5 mm width.
  • Note 1 A metal layer with a uniform thickness reduction is applied to a blank area of 5 mm width.
  • the gram capacity of hard carbon is 200 mAh/g
  • the gram capacity of Sb/C composite is 610 mAh/g
  • the gram capacity of Na 2 Ti 3 O 7 is 200 mAh/g
  • Na 2 MnFe (CN) 6 has a gram capacity of 120 mAh/g
  • Na 2 MnFe(CN) 6 has a gram capacity of 120 mAh/g
  • Na 3 V 2 (PO4) 3 /C has a carbon content of 3.8% and a gram capacity of 108 mAh/ g
  • Na 0.90 Cu 0.22 Fe 0.30 Mn 0.48 O 2 has a gram capacity of 100 mAh/g.
  • the sodium ion battery was prepared according to the foregoing method using the pole pieces in Tables 1 and 2, as shown in Table 3:
  • Capacity test sodium ion batteries 1 to 33, and sodium ion batteries 1 to 5 were allowed to stand in a 25 ° C environment for 5 min; then charged at a constant current of 0.1 C to 4.0 V to obtain a charging capacity AGCO; standing for 5 min; The first discharge capacity DO was obtained by constant current discharge to 2.0 V with a discharge current of 0.1 C; the capacity test was completed after standing for 5 minutes.
  • the formula for calculating the first coulombic efficiency of the cell is: DO/(ICCO+AGCO), and the results are shown in Table 4.
  • Sodium ion battery 17 100% Sodium ion battery 18 100% Sodium ion battery 19 100% Sodium ion battery 20 98% Sodium ion battery 21 95% Sodium ion battery 22 100% Sodium ion battery 23 100% Sodium ion battery 24 99% Sodium ion battery 25 100% Sodium ion battery 26 100% Sodium ion battery 27 100% Sodium ion battery 28 100% Sodium ion battery 29 100% Sodium ion battery 30 100% Sodium ion battery 31 100% Sodium ion battery 32 100% Sodium ion battery 33 100% Contrast sodium ion battery 1 72% Contrast sodium ion battery 2 83% Contrast sodium ion battery 3 89% Contrast sodium ion battery 4 74% Contrast sodium ion battery 5 72%
  • the width of the blank region has a certain influence on the sodium supplementation effect.
  • the width of the blank area is small (such as sodium ion battery 1, 18), after the battery core is disassembled It can be found that slight sodium dendrite is generated at the edge of the pole piece, which is easy to cause safety problems; when the width of the blank area is large (such as sodium ion battery 3, 20), it is easy to cause insufficient sodium supplementation to achieve the best sodium supplementation. effect.
  • the coating thickness of the molten sodium has a significant effect on the sodium supplementation effect.
  • the thickness is too thin (such as sodium ion battery 4)
  • the sodium supplementation effect does not achieve the expected effect
  • the thickness is too thick (such as sodium ion battery 5)
  • the sodium supplementation is excessive, and the sodium supplementation position can be clearly found after the battery core is disassembled.
  • Sodium dendrite is produced; when the thickness falls between the preferred thickness (such as sodium ion battery 2), the effect of sodium supplementation is most significant, and no obvious sodium dendrite is found in the position of sodium supplementation after disassembling the cell.
  • the melting temperature of the molten sodium also has a certain influence on the sodium supplementation effect.
  • the temperature is too low (such as sodium ion battery 6, 24)
  • the sodium has just reached the molten state. Once the heat is uneven, the local part is easy to coagulate, which affects the coating effect;
  • the temperature is too high (such as sodium ion battery 7, 25)
  • molten sodium It has a small viscosity and is easy to flow after coating or spraying onto the surface of the pole piece, which affects the uniformity of sodium supplementation.
  • the temperature falls within the preferred temperature range (such as sodium ion batteries 2, 19)
  • the sodium supplementation effect is most significant.
  • the amount of molten sodium sprayed by the nozzle also has an effect on the sodium supplementation effect.
  • the amount of molten sodium sprayed by the nozzle is too small (such as sodium ion battery 21), it is easy to cause insufficient sodium supplementation, which does not achieve the best sodium supplementation effect; when the spray nozzle sprays a large amount of molten sodium (such as sodium ion battery) 26), it is easy to cause excessive sodium supplementation.
  • the spray nozzle sprays a large amount of molten sodium (such as sodium ion battery) 26)
  • the sodium supplementation method of the sodium ion battery of the present application can quickly and effectively supplement the sodium ion battery, improve the performance of the sodium ion battery, has a simple production process, low cost, and is easy to industrialize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种钠离子电池的补钠方法及制备得到的极片和电池,涉及二次电池领域。该补钠方法为:制备钠离子电池的初始极片;在惰性气氛下,将金属钠制备成熔融态,然后将熔融态的金属钠制备于初始极片的表面,形成用于钠离子电池补钠的金属钠层。该熔融补钠的方式可防止在初始极片内部形成孔洞,并且补钠的量可通过控制金属钠层的厚度来精确控制,操作简单易行。该方法采用熔融钠进行补钠,操作温度更低,生产操作更加安全,能耗更低。

Description

一种钠离子电池的补钠方法及制备得到的极片和电池 技术领域
本申请涉及二次电池领域,具体讲,涉及一种钠离子电池的补钠方法及制备得到的极片和电池。
背景技术
自从锂离子电池商业化以来,其以高能量密度、高电压、长寿命等优点迅速占据了手提电脑、手机等设备电源市场,且在近年来逐渐应用于电动车领域及大规模储能领域。然而,随着电动车行业和大规模储能行业的蓬勃发展,有限且分布不均的锂资源价格一直居高不下,这对于追求低成本、长寿命的大规模储能电池可能是一个瓶颈问题。因此,迫切需要开发一种新型的长寿命、低成本的储能器件。
金属钠在地壳中的储量非常的丰富(约占2.74%),且分布十分广泛,同时钠和锂具有很多相似的理化性质。与锂离子电池相比,室温钠离子电池具有明显的价格优势,因此室温钠离子电池有望应用于大规模储能领域。
与锂离子电池类似,对于钠离子电池阳极片来说,在电池的首次充电过程中也会由于固体电解质膜(SEI膜)的形成而消耗部分钠,因此造成阴极材料钠的损失,从而降低电池的容量及首次效率。这在常用的钠离子电池阳极材料——硬碳上的表现尤其明显。目前,大部分硬碳材料的首次库伦效率均不足80%。
为了减少电池在首次充电时由于SEI膜的形成造成的电池容量降低,提高电池的能量密度,最有效的做法是对极片进行预补钠。
鉴于此,特提出本申请。
发明内容
本申请的首要发明目的在于提出一种钠离子电池的补钠方法。
本申请的第二发明目的在于提出一种钠离子电池极片。
本申请的第三发明目的在于提出一种钠离子电池。
为了完成本申请的目的,采用的技术方案为:
本申请涉及一种钠离子电池的补钠方法,所述补钠方法至少包括以下步骤:
(1)制备钠离子电池的初始极片;
(2)在惰性气氛下,将金属钠制备成熔融态,然后将熔融态的金属钠制备于所述初始极片的表面,形成用于钠离子电池补钠的金属钠层。
优选的,在步骤(2)中,所述金属钠的纯度≥97%,优选金属钠的纯度≥99%。
优选的,在步骤(2)中,将所述金属钠通过加热制备成熔融态的金属钠,加热的温度为98℃~300℃,优选为103℃~150℃。
优选的,在步骤(2)中,制备得到的金属钠层的厚度为0.5μm~50μm,优选为1μm~30μm。
优选的,在步骤(2)中,将熔融态的金属钠涂布或喷洒于所述初始极片的表面。
优选的,在步骤(2)中,所述涂布为挤压涂布或凹版印刷;所述喷洒为采用喷头将熔融钠喷洒到所述初始极片的表面,优选的,所述熔融钠的喷洒量为1.5×10-7g/mm2·s~2.0×10-5g/mm2·s。
优选的,将金属钠熔融于溶剂中后进行涂布或喷洒,所述溶剂的沸点低于金属钠的熔融温度,且不与钠发生反应。
优选的,所述溶剂选自芳烃溶剂、酯类溶剂、醚类溶剂的至少一种,更优选甲苯、二甲苯、碳酸乙烯酯、碳酸丙稀酯、碳酸二乙酯、碳酸甲乙酯、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚中的至少一种。
优选的,在步骤(2)中,形成的金属钠层的厚度一致。
优选的,所述金属钠层形成于所述初始极片沿宽度方向上的中部,沿所述初始极片宽度方向上的两侧形成空白区,优选的,所述空白区的宽度 为1mm~10mm。
优选的,在步骤(2)中,所形成的金属钠层沿所述初始极片宽度方向上的两个侧边的厚度逐渐变小。
优选的,在步骤(1)中,所述初始极片的制备方法为:将浆料涂覆在集流体上,经烘干后制得所述初始极片,所述初始极片的水含量不超过100ppm,烘干后初始极片置于干燥环境中;
优选的,所述干燥环境为环境的湿度小于3%。
优选的,在步骤(1)中,所述初始极片为阴极初始极片或阳极初始极片;所述初始阳极极片中含有阳极活性物质、粘结剂和导电剂;所述阳极活性物质选自碳材料、合金材料、过镀金属氧化物、过镀金属硫化物、磷基材料或钛酸盐材料中的至少一种;所述初始阴极极片的膜片中含有阴极活性物质、粘结剂和导电剂;所述阴极活性物质选自层状结构材料、隧道型氧化物材料、聚阴离子型材料或布鲁士蓝的至少一种。
优选的,所述合金材料选自由Si、Ge、Sn、Pb和Sb中的至少两种组成的合金材料;所述过镀金属氧化物和所述过镀金属硫化物的化学式为M1xNy,其中M1选自Fe、Co、Ni、Cu、Mn、Sn、Mo、Sb、V的至少一种,N选自O或S;所述磷基材料选自红磷、白磷、黑磷中的至少一种;所述钛酸盐材料选自Na2Ti3O7、Na2Ti6O13、Na4Ti5O12、Li4Ti5O12、NaTi2(PO4)3的至少一种;所述层状结构材料和所述隧道型氧化物材料的化学式均为NaxM2O2,M2选自Ti、V、Mn、Co、Ni、Fe、Cr、Cu的至少一种;所述聚阴离子材料选自NaFePO4、Na3V2(PO4)3、NaM3PO4F或Na3(VOx)2(PO4)2F3-2x中的至少一种,M3选自V、Fe、Mn、Ni中的至少一种,0≤x≤1;所述布鲁士蓝材料的化学式为NaxM4Fe(CN)6,M4选自Ni、Cu、Fe、Mn、Co、Zn中的至少一种。
本申请还涉及采用上述补钠方法制备的得到的钠离子电池极片,所述钠离子电池极片为阴极极片和/或阳极极片。
本申请还涉及一种钠离子电池,包括阴极极片、阳极极片、间隔于所述阴极极片和所述阳极极片之间的隔离膜以及电解液,所述阴极极片和/或阳极极片为本申请的钠离子电池极片。
本申请的技术方案至少具有以下有益的效果:
本申请的补钠方法采用在初始极片表面进行熔融补钠的方式,不仅可以提高初始阳极极片中活性物质的首次库伦效率,从而提高能量密度,还可防止在初始极片内部形成孔洞。并且本申请的钠离子电池极片还可通过预补入到富钠极片中的钠打通阳极材料中钠离子的路径,使在充放电过程中钠离子更容易在阳极材料中进行脱嵌,提高电池的容量保持率。
在本申请的补钠方法中,补钠的量可通过控制金属钠层的厚度来精确控制,操作简单易行。本申请的补钠方法采用熔融钠进行补钠,操作温度更低,生产操作更加安全,能耗更低。
下面结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
具体实施方式
针对本申请的第一发明目的,本申请提出一种钠离子电池的补钠方法,至少包括以下步骤:制备钠离子电池的初始极片,在惰性气氛下,将金属钠制备成熔融态,然后将熔融态的金属钠制备于所述初始极片的表面,形成用于钠离子电池补钠的金属钠层。本申请通过对极片熔融补钠,其目之一是为了在电池制备过程的化成过程中提高初始阳极极片中活性物质的首次库伦效率,减少在首次充放电过程中对应阴极材料中钠离子因为材料本身的不可逆钠离子容量以及形成SEI膜过程中阴极钠离子的损失,有效提高钠离子电池电芯的首次库伦效率,从而提高电芯的能量密度。其目之二是为了防止在初始极片内部形成孔洞。其目的之三是为了打通阳极材料中钠离子的路径,使在充放电过程中钠离子更容易在阳极材料中进行脱嵌,从而提高电池的容量保持率。
相对于气相沉积或湿法补钠的方式而言,气相沉积法虽然可以沉积很薄的钠层,但该过程中金属钠层的厚度较难控制,而且整个过程必须在真空环境下,同时把金属钠蒸发需较大的能耗,成本较高。湿法补钠是把含钠离子的溶液滴在极片表面,然后通过化学或电化学过程把溶液中的钠嵌 入极片中去的方法。虽然该法工艺简单,但该过程较长,生产效率较低。而本申请的通过熔融态金属钠进行补钠的技术方案,具有工艺简单、成本低廉、快捷有效的优势。
在本申请中,为了描述的便利性,将未经补钠的电池极片称为初始极片,将经补钠后的电池极片成为富钠极片。
作为本申请补钠方法的一种改进,惰性气氛优选为氩气或氮气、或氦气。由于金属钠本身具有较高的活性,若遇到空气中的水或二氧化碳等,容易发生爆炸等安全事故,因此需要在惰性气氛中操作,以保证生产安全。
作为本申请补钠方法的一种改进,金属钠的纯度≥97%,优选金属钠的纯度≥99%。
作为本申请补钠方法的一种改进,将金属钠通过加热制备成熔融态的金属钠,加热的温度为98℃~300℃,优选为103℃~150℃。金属钠优选采用钠块,其熔融温度不能太高,否则熔融钠的粘度太低,涂布或喷洒到待补钠极片表面后容易流动,影响补钠的均匀性,同时过高的温度需要消耗更多的能量,不利于成本控制;钠块的熔融温度也不能太低,否则涂布或喷洒过程中熔融钠会提前发生凝固,不利于涂布或喷洒。
作为本申请补钠方法的一种改进,本申请补钠方法中所补的钠量与初始阳极极片的补钠容量相适应。其中,本申请中的“初始阳极极片的补钠容量”的含义是指通过预补钠的方式后,富钠阳极极片比初始极片提高首效后增加的极片容量。
作为本申请补钠方法的一种改进,制备得到的金属钠层的厚度为0.5μm~50μm,优选为1μm~30μm。本申请可通过制备过程中对金属钠层的厚度的控制实现精准的补钠。若制备的金属钠层的厚度太薄,则达不到相应的补钠效果;若制备的金属钠层的厚度太厚,则过量的钠会导致钠枝晶的析出,影响电池安全。
作为本申请补钠方法的一种改进,将熔融态的金属钠涂布或喷洒于初始极片的表面。
作为本申请补钠方法的一种改进,涂布为挤压涂布或凹版印刷,喷洒为采用喷头将熔融钠喷洒到初始极片的表面。其中,挤压涂布或凹版印刷 的方式为工业生产中比较成熟的涂布技术,在生产效率、涂布重量控制、尺寸精度控制方面都有着巨大的优势;采用喷头将熔融钠喷洒的方式,喷洒出的熔融钠颗粒具有一定的动能,更容易粘到极片表面。
作为本申请补钠方法的一种改进,将金属钠熔融于溶剂中后进行涂布或喷洒。将金属钠熔融在溶剂中,分散均匀后喷洒到极片表面,可在极片表面形成分布均匀的钠珠,从而使电解液更易浸润到极片内部,加快极片对补钠层的吸收,提高补钠效率。
在该方案中,要求溶剂的沸点低于金属钠的熔融温度,且不与钠发生反应。优选的,溶剂可选自芳烃溶剂、酯类溶剂或醚类溶剂的至少一种,更优选的,可选自甲苯、二甲苯、碳酸乙烯酯、碳酸丙稀酯、碳酸二乙酯、碳酸甲乙酯、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚中的至少一种。
作为本申请补钠方法的一种改进,熔融钠的喷洒量为1.5×10-7g/mm2·s~2.0×10-5g/mm2·s。在本申请设定的喷洒量条件下,完成一般规格极片的补钠量的操作时间为5~20s。若熔融钠喷头喷洒出的熔融钠量过小,则需要喷洒的时间过长,影响生产效率;若熔融钠喷头喷洒出的熔融钠量过大,则需要的喷洒时间太短,影响操作的可行性,同时单位时间内喷洒的熔融钠量过大会导致喷洒出的熔融钠动能过大,容易破坏极片。
作为本申请补钠方法的一种改进,形成的金属钠层的厚度一致。
作为本申请补钠方法的一种改进,金属钠层形成于初始极片沿宽度方向上的中部,沿所述初始极片宽度方向上的两侧形成空白区,即该空白区上未覆盖熔融钠层。
作为本申请补钠方法的一种改进,空白区的宽度为1mm~10mm。若空白区的宽度过大,则容易造成补钠的量不足;若空白区的宽度过小,则在极片的边缘容易析出钠枝晶,引起安全问题。
作为本申请补钠方法的一种改进,所形成的金属钠层沿初始极片宽度方向上的两个侧边的厚度逐渐变小。从而可避免未覆盖熔融钠层的部分没有补钠的效果。优选的,当空白区宽度较大时,选用本方式。
作为本申请补钠方法的一种改进,初始极片的制备方法为:将浆料涂 覆在集流体上,经烘干后制得初始极片,初始极片的水含量不超过100ppm。因为金属钠的活泼性较高,如果初始极片中的水含量太高,会使得金属钠与水发生反应,造成燃烧、爆炸等安全问题,影响生产的进行。
烘干后初始极片置于干燥环境中,避免极片再吸收环境中的水分。优选的,干燥环境为环境的湿度小于3%。
作为本申请补钠方法的一种改进,初始极片可以是烘干后冷压前、冷压后、分条后或者焊接极耳后的极片。
作为本申请补钠方法的一种改进,初始极片为阴极初始极片或阳极初始极片;初始阳极极片中含有阳极活性物质、粘结剂和导电剂;阳极活性物质选自碳材料、合金材料、过镀金属氧化物、过镀金属硫化物、磷基材料或钛酸盐材料中的至少一种;初始阴极极片的膜片中含有阴极活性物质、粘结剂和导电剂;阴极活性物质为层状结构材料、隧道型氧化物材料、聚阴离子型材料或布鲁士蓝的至少一种。
作为本申请补钠方法的一种改进,
在阳极活性物质中:
合金材料选自由Si、Ge、Sn、Pb和Sb中的至少两种组成的合金材料;
过镀金属氧化物和所述过镀金属硫化物的化学式为M1xNy,其中M1选自Fe、Co、Ni、Cu、Mn、Sn、Mo、Sb、V的至少一种,N选自O或S;
磷基材料选自红磷、白磷、黑磷中的至少一种;
钛酸盐材料选自Na2Ti3O7、Na2Ti6O13、Na4Ti5O12、Li4Ti5O12、NaTi2(PO4)3的至少一种;
在阴极活性物质中:
层状结构材料和隧道型氧化物材料的化学式为NaxM2O2,M2选自Ti、V、Mn、Co、Ni、Fe、Cr、Cu中的至少一种;
聚阴离子材料选自NaFePO4、Na3V2(PO4)3、NaM3PO4F或Na3(VOx)2(PO4)2F3-2x中的至少一种,M3选自V、Fe、Mn、Ni中的至少一种,0≤x≤1;
布鲁士蓝材料的化学式为NaxM4Fe(CN)6,M4选自Ni、Cu、Fe、Mn、 Co、Zn中的至少一种。
针对本申请的第二发明目的,本申请还提出采用上述补钠方法制备的得到的钠离子电池富钠极片,钠离子富钠电池极片为阴极富钠极片和/或阳极富钠极片。
针对本申请的第二发明目的,申请还提出一种钠离子电池,包括阴极极片、阳极极片、间隔于阴极极片和阳极极片之间的隔离膜以及电解液,其中,阴极极片和/或阳极极片为本申请的钠离子电池富钠极片。
接下来说明根据本申请的钠离子电池补钠方法的制备例、实施例和实验例。
制备例
1、制备初始极片
将活性物质、粘结剂、导电剂按照质量比与溶剂混合均匀制成浆料(其中,制备阳极初始极片时:粘结剂为聚丙烯酸,导电剂为导电碳黑,溶剂为去离子水;制备阴极初始极片时:粘结剂为聚偏氟乙烯,导电剂为导电碳黑,溶剂为N-甲基吡咯烷酮),将浆料涂覆在集流体的正反两面上且各面的涂覆量均为100mg/1540mm2;然后烘干,形成膜片并使膜片的水含量不超过100ppm;再经过冷压、分条、焊接相应极耳后制得宽度为160mm的初始极片。
2、制备富钠极片
(一)涂布法
将钠块(纯度)熔融,在一定温度下熔融,均匀涂布一定厚度于初始极片沿宽度向上的中部,并在初始极片两侧形成一定宽度的空白区,待温度冷却至室温后制得富钠极片。
(二)喷涂法
将钠块(纯度)熔融,在一定温度下熔融,然后用喷头采用一定喷洒量将熔融钠均匀喷洒于初始极片沿宽度向上的中部,喷涂时间为10秒;并在初始极片两侧形成一定宽度的空白区,待温度冷却至室温后制得富钠 极片。
3、制备钠离子电池:
将阳极极片与烘干后的隔膜以及阴极极片绕卷制备得到裸电芯,再将裸电芯入壳、注液,电解液为1mol/L NaPF6,溶剂为EC(碳酸乙烯酯):DEC(碳酸二乙酯)=1:1(体积比),之后在25℃的环境下静置,待电解液浸润后进行化成(化成容量为ICCO)、整形、除气工艺最终得到富钠电芯的钠离子电池。
实施例
采用涂布法制备的富钠极片1~17,具体如表1所示;其中初始极片1~6分别采用富钠极片1、富钠极片8~12的初始极片。采用喷涂法制备的富钠极片18~33,具体如表2所示。
表1:采用涂布法制备得到的富钠极片
Figure PCTCN2016090328-appb-000001
Figure PCTCN2016090328-appb-000002
注:在宽度为5mm的空白区喷涂有厚度均匀减小的金属钠层。
表2:采用喷涂法制备得到的富钠极片
Figure PCTCN2016090328-appb-000003
Figure PCTCN2016090328-appb-000004
注1:在宽度为5mm的空白区喷涂有厚度均匀减小的金属钠层。
注2:钠块熔融在甲苯中。
其中,在表1和表2中:硬碳的克容量为200mAh/g,Sb/C复合材料的克容量为610mAh/g,Na2Ti3O7的克容量为200mAh/g,Na2MnFe(CN)6的克容量为120mAh/g,Na2MnFe(CN)6的克容量为120mAh/g,Na3V2(PO4)3/C的含碳量为3.8%、克容量为108mAh/g,Na0.90Cu0.22Fe0.30Mn0.48O2的克容量为100mAh/g。
采用表1和表2中的极片按照前述方法制备钠离子电池,具体如表3所示:
表3:钠离子电池中极片的组成
编号 阳极极片 阴极极片
钠离子电池1 富钠极片1 初始极片4
钠离子电池2 富钠极片2 初始极片4
钠离子电池3 富钠极片3 初始极片4
钠离子电池4 富钠极片4 初始极片4
钠离子电池5 富钠极片5 初始极片4
钠离子电池6 富钠极片6 初始极片4
钠离子电池7 富钠极片7 初始极片4
钠离子电池8 富钠极片8 初始极片4
钠离子电池9 富钠极片9 初始极片4
钠离子电池10 初始极片1 富钠极片10
钠离子电池11 初始极片1 富钠极片11
钠离子电池12 初始极片1 富钠极片12
钠离子电池13 富钠极片13 初始极片4
钠离子电池14 富钠极片14 初始极片4
钠离子电池15 富钠极片15 初始极片4
钠离子电池16 富钠极片16 初始极片4
钠离子电池17 富钠极片17 初始极片4
钠离子电池18 富钠极片18 初始极片4
钠离子电池19 富钠极片19 初始极片4
钠离子电池20 富钠极片20 初始极片4
钠离子电池21 富钠极片21 初始极片4
钠离子电池22 富钠极片22 初始极片4
钠离子电池23 富钠极片23 初始极片4
钠离子电池24 富钠极片24 初始极片4
钠离子电池25 富钠极片25 初始极片4
钠离子电池26 富钠极片26 初始极片4
钠离子电池27 初始极片1 富钠极片27
钠离子电池28 初始极片1 富钠极片28
钠离子电池29 初始极片1 富钠极片29
钠离子电池30 富钠极片30 初始极片4
钠离子电池31 富钠极片31 初始极片4
钠离子电池32 富钠极片32 初始极片4
钠离子电池33 富钠极片33 初始极片4
对比钠离子电池1 初始极片1 初始极片4
对比钠离子电池2 初始极片2 初始极片4
对比钠离子电池3 初始极片3 初始极片4
对比钠离子电池4 初始极片1 初始极片5
对比钠离子电池5 初始极片1 初始极片6
实验例
性能检测方法:
容量测试:将钠离子电池1~33、对比钠离子电池1~5在25℃环境中静置5min;然后以0.1C的充电电流恒流充电至4.0V,得到充电容量AGCO;静置5min;再以0.1C的放电电流恒流放电至2.0V得到首次放电容量DO;静置5min之后完成容量测试。
计算电芯的首次库伦效率的公式为:DO/(ICCO+AGCO),所得结果见表4。
析钠现象:经过上述容量测试后,观察不同钠片或工艺的补钠效果及对极片截面和外观的影响。
表4:电池的首次库伦效率
编号 电池的首次库伦效率
钠离子电池1 100%
钠离子电池2 100%
钠离子电池3 99%
钠离子电池4 80%
钠离子电池5 100%
钠离子电池6 100%
钠离子电池7 99%
钠离子电池8 100%
钠离子电池9 100%
钠离子电池10 100%
钠离子电池11 100%
钠离子电池12 99%
钠离子电池13 100%
钠离子电池14 100%
钠离子电池15 100%
钠离子电池16 85%
钠离子电池17 100%
钠离子电池18 100%
钠离子电池19 100%
钠离子电池20 98%
钠离子电池21 95%
钠离子电池22 100%
钠离子电池23 100%
钠离子电池24 99%
钠离子电池25 100%
钠离子电池26 100%
钠离子电池27 100%
钠离子电池28 100%
钠离子电池29 100%
钠离子电池30 100%
钠离子电池31 100%
钠离子电池32 100%
钠离子电池33 100%
对比钠离子电池1 72%
对比钠离子电池2 83%
对比钠离子电池3 89%
对比钠离子电池4 74%
对比钠离子电池5 72%
由表4中可以看出,钠离子电池1~33的首次库伦效率均优于相应对比例的首次库伦效率,因此说明采用本申请的钠离子电池的补钠方法可以有效的提高电芯的首次库伦效率。
比较钠离子电池1~3、18~20,可以发现空白区的宽度对补钠效果有一定的影响。当空白区宽度较小时(如钠离子电池1、18),将电芯拆开后 可以发现极片边缘处有轻微钠枝晶产生,容易引起安全问题;当空白区宽度较大时(如钠离子电池3、20),容易引起补钠量不足而达不到最好的补钠效果。
比较钠离子电池2、4、5,可以发现熔融钠的涂布厚度对补钠效果影响显著。当厚度太薄(如钠离子电池4),补钠效果没有达到预期的效果;当厚度太厚(如钠离子电池5),则补钠过量,将电芯拆开后可以明显发现补钠位置有钠枝晶产生;当厚度落在优选厚度之间时(如钠离子电池2),补钠效果最为显著,拆开电芯后补钠位置也没有发现明显的钠枝晶产生。
比较钠离子电池2、6、7及19、24、25,可以发现熔融钠的熔融温度对补钠效果也有一定的影响。当温度太低(如钠离子电池6、24),钠刚刚达到熔融状态,一旦受热不均,局部容易凝结,影响涂布效果;当温度太高(如钠离子电池7、25),熔融钠活粘度较小,涂布或喷洒到极片表面后容易流动,影响补钠的均匀性;当温度落在优选温度范围时(如钠离子电池2、19),补钠效果最为显著。
比较钠离子电池19、21、26,可以发现喷头喷洒的熔融钠的量对补钠效果也有影响。当喷头喷洒的熔融钠的量太小(如钠离子电池21),容易造成补钠量不足,达不到最佳的补钠效果;当喷头喷洒的熔融钠的量太大(如钠离子电池26),容易造成补钠量过量,拆开电芯后可以发现补钠位置有钠枝晶的产生。
综上所述,本申请的钠离子电池的补钠方法可以快捷有效地对钠离子电池进行补钠,提高钠离子电池的性能,生产工艺简单,成本低廉,易于工业化生产。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (16)

  1. 一种钠离子电池的补钠方法,其特征在于,所述补钠方法至少包括以下步骤:
    (1)制备钠离子电池的初始极片;
    (2)在惰性气氛下,将金属钠制备成熔融态,然后将熔融态的金属钠制备于所述初始极片的表面,形成用于钠离子电池补钠的金属钠层。
  2. 根据权利要求1所述的补钠方法,其特征在于,在步骤(2)中,所述金属钠的纯度≥97%,优选金属钠的纯度≥99%。
  3. 根据权利要求1所述的补钠方法,其特征在于,在步骤(2)中,将所述金属钠通过加热制备成熔融态的金属钠,加热的温度为98℃~300℃,优选为103℃~150℃。
  4. 根据权利要求1所述的补钠方法,其特征在于,在步骤(2)中,制备得到的金属钠层的厚度为0.5μm~50μm,优选为1μm~30μm。
  5. 根据权利要求1所述的补钠方法,其特征在于,在步骤(2)中,将熔融态的金属钠涂布或喷洒于所述初始极片的表面。
  6. 根据权利要求5所述的补钠方法,其特征在于,在步骤(2)中,所述涂布为挤压涂布或凹版印刷;所述喷洒为采用喷头将熔融钠喷洒到所述初始极片的表面,优选的,所述熔融钠的喷洒量为1.5×10-7g/mm2·s~2.0×10-5g/mm2·s。
  7. 根据权利要求5所述的补钠方法,其特征在于,将金属钠熔融于溶剂中后进行涂布或喷洒,所述溶剂的沸点低于金属钠的熔融温度,且不与钠发生反应。
  8. 根据权利要求7所述的补钠方法,其特征在于,所述溶剂选自芳烃溶剂、酯类溶剂、醚类溶剂的至少一种,更优选甲苯、二甲苯、碳酸乙烯酯、碳酸丙稀酯、碳酸二乙酯、碳酸甲乙酯、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚中的至少一种。
  9. 根据权利要求1所述的补钠方法,其特征在于,在步骤(2)中,形成的金属钠层的厚度一致。
  10. 根据权利要求9所述的补钠方法,其特征在于,所述金属钠层形成于所述初始极片沿宽度方向上的中部,沿所述初始极片宽度方向上的两侧形成空白区,优选的,所述空白区的宽度为1mm~10mm。
  11. 根据权利要求1所述的补钠方法,其特征在于,在步骤(2)中,所形成的金属钠层沿所述初始极片宽度方向上的两个侧边的厚度逐渐变小。
  12. 根据权利要求1所述的补钠方法,其特征在于,在步骤(1)中,所述初始极片的制备方法为:将浆料涂覆在集流体上,经烘干后制得所述初始极片,所述初始极片的水含量不超过100ppm,烘干后初始极片置于干燥环境中;
    优选的,所述干燥环境为环境的湿度小于3%。
  13. 根据权利要求1所述的补钠方法,其特征在于,在步骤(1)中,所述初始极片为阴极初始极片或阳极初始极片;所述初始阳极极片中含有阳极活性物质、粘结剂和导电剂;所述阳极活性物质选自碳材料、合金材料、过镀金属氧化物、过镀金属硫化物、磷基材料或钛酸盐材料中的至少一种;所述初始阴极极片的膜片中含有阴极活性物质、粘结剂和导电剂;所述阴极活性物质选自层状结构材料、隧道型氧化物材料、聚阴离子型材料或布鲁士蓝的至少一种。
  14. 根据权利要求13所述的补钠方法,其特征在于,所述合金材料选自由Si、Ge、Sn、Pb和Sb中的至少两种组成的合金材料;所述过镀金属氧化物和所述过镀金属硫化物的化学式为M1xNy,其中M1选自Fe、Co、Ni、Cu、Mn、Sn、Mo、Sb、V的至少一种,N选自O或S;所述磷基材料选自红磷、白磷、黑磷中的至少一种;所述钛酸盐材料选自Na2Ti3O7、Na2Ti6O13、Na4Ti5O12、Li4Ti5O12、NaTi2(PO4)3的至少一种;所述层状结构材料和所述隧道型氧化物材料的化学式均为NaxM2O2,M2选自Ti、V、Mn、Co、Ni、Fe、Cr、Cu的至少一种;所述聚阴离子材料选自NaFePO4、Na3V2(PO4)3、NaM3PO4F或Na3(VOx)2(PO4)2F3-2x中的至少一种,M3选自V、Fe、Mn、Ni中的至少一种,0≤x≤1;所述布鲁士蓝材料的化学式为NaxM4Fe(CN)6,M4选自Ni、Cu、Fe、Mn、Co、Zn中的至少一种。
  15. 一种如权利要求1~14所述的补钠方法制备的得到的钠离子电池极片,所述钠离子电池极片为阴极极片和/或阳极极片。
  16. 一种钠离子电池,包括阴极极片、阳极极片、间隔于所述阴极极片和所述阳极极片之间的隔离膜以及电解液,其特征在于,所述阴极极片和/或阳极极片为权利要求15所述的钠离子电池极片。
PCT/CN2016/090328 2016-07-18 2016-07-18 一种钠离子电池的补钠方法及制备得到的极片和电池 WO2018014164A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/090328 WO2018014164A1 (zh) 2016-07-18 2016-07-18 一种钠离子电池的补钠方法及制备得到的极片和电池
CN201680087749.1A CN109478639A (zh) 2016-07-18 2016-07-18 一种钠离子电池的补钠方法及制备得到的极片和电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090328 WO2018014164A1 (zh) 2016-07-18 2016-07-18 一种钠离子电池的补钠方法及制备得到的极片和电池

Publications (1)

Publication Number Publication Date
WO2018014164A1 true WO2018014164A1 (zh) 2018-01-25

Family

ID=60991723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090328 WO2018014164A1 (zh) 2016-07-18 2016-07-18 一种钠离子电池的补钠方法及制备得到的极片和电池

Country Status (2)

Country Link
CN (1) CN109478639A (zh)
WO (1) WO2018014164A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878780A (zh) * 2018-06-08 2018-11-23 欣旺达电子股份有限公司 钠离子电池负极补钠方法及钠离子电池
CN112768699A (zh) * 2021-01-11 2021-05-07 湖南立方新能源科技有限责任公司 一种钠离子电池正极片及其制备方法、钠离子电池
CN113130896A (zh) * 2019-12-30 2021-07-16 珠海冠宇电池股份有限公司 一种钠离子电池用正极材料及包括该正极材料的钠离子电池
CN114583098A (zh) * 2022-03-16 2022-06-03 东莞新能安科技有限公司 电化学装置及其制备方法和电子装置
CN115395116A (zh) * 2022-10-26 2022-11-25 星恒电源股份有限公司 一种钠离子电池正极极片及其制备方法、钠离子电池
CN115882159A (zh) * 2023-03-08 2023-03-31 四川中科兴业高新材料有限公司 一种基于pps的钠电池隔膜的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888179B (zh) * 2019-03-29 2021-06-11 华中科技大学 一种高性能钠离子电池钛基负极、钠离子电池及制备方法
CN117223131A (zh) * 2022-01-14 2023-12-12 宁德时代新能源科技股份有限公司 一种用于锂离子二次电池的正极复合材料、正极和电池
CN114899410B (zh) * 2022-06-02 2023-10-27 江苏天合储能有限公司 集流体及其制作方法
CN115472784B (zh) * 2022-08-16 2023-07-14 北京航空航天大学 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077239A1 (ja) * 2011-11-25 2013-05-30 住友電気工業株式会社 ナトリウム電池用負極集電体とその製造方法、ナトリウム電池用負極およびナトリウム電池
CN203466256U (zh) * 2013-09-04 2014-03-05 东莞新能源科技有限公司 锂离子电池负极极片处理装置
CN103828095A (zh) * 2011-09-29 2014-05-28 日本曹达株式会社 用金属钠被覆的电极的制造方法
CN203800119U (zh) * 2014-02-11 2014-08-27 宁德新能源科技有限公司 一种用于向基材表面补锂的装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118984B (zh) * 2015-08-19 2017-08-29 厦门大学 钠离子电池层状‑隧道复合结构锰基正极材料的制备方法
CN105428597B (zh) * 2015-12-18 2017-09-19 苏州大学 钠离子电池负极的制备及改性方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828095A (zh) * 2011-09-29 2014-05-28 日本曹达株式会社 用金属钠被覆的电极的制造方法
WO2013077239A1 (ja) * 2011-11-25 2013-05-30 住友電気工業株式会社 ナトリウム電池用負極集電体とその製造方法、ナトリウム電池用負極およびナトリウム電池
CN203466256U (zh) * 2013-09-04 2014-03-05 东莞新能源科技有限公司 锂离子电池负极极片处理装置
CN203800119U (zh) * 2014-02-11 2014-08-27 宁德新能源科技有限公司 一种用于向基材表面补锂的装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878780A (zh) * 2018-06-08 2018-11-23 欣旺达电子股份有限公司 钠离子电池负极补钠方法及钠离子电池
CN113130896A (zh) * 2019-12-30 2021-07-16 珠海冠宇电池股份有限公司 一种钠离子电池用正极材料及包括该正极材料的钠离子电池
CN112768699A (zh) * 2021-01-11 2021-05-07 湖南立方新能源科技有限责任公司 一种钠离子电池正极片及其制备方法、钠离子电池
CN114583098A (zh) * 2022-03-16 2022-06-03 东莞新能安科技有限公司 电化学装置及其制备方法和电子装置
CN114583098B (zh) * 2022-03-16 2023-08-22 东莞新能安科技有限公司 电化学装置及其制备方法和电子装置
CN115395116A (zh) * 2022-10-26 2022-11-25 星恒电源股份有限公司 一种钠离子电池正极极片及其制备方法、钠离子电池
CN115395116B (zh) * 2022-10-26 2023-01-20 星恒电源股份有限公司 一种钠离子电池正极极片及其制备方法、钠离子电池
CN115882159A (zh) * 2023-03-08 2023-03-31 四川中科兴业高新材料有限公司 一种基于pps的钠电池隔膜的制备方法
CN115882159B (zh) * 2023-03-08 2023-05-12 四川中科兴业高新材料有限公司 一种基于pps的钠电池隔膜的制备方法

Also Published As

Publication number Publication date
CN109478639A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2018014164A1 (zh) 一种钠离子电池的补钠方法及制备得到的极片和电池
CN109390563B (zh) 改性磷酸铁锂正极材料及其制备方法、正极片、锂二次电池
CN102479949B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN112397682B (zh) 一种补锂的负极极片及其锂离子电池
US9806330B2 (en) Lithium-rich electrode plate of lithium-ion battery and preparation method thereof
CN102916164B (zh) 一种向锂离子电池正极片补锂的方法
US20190157681A1 (en) Cathode Slurry for Lithium Ion Battery
CN110224182B (zh) 一种锂离子电池预锂化的方法
WO2020078361A1 (zh) 二次电池
WO2018014165A1 (zh) 钠离子电池极片,其制备方法及含有该极片的钠离子电池
CN105932334A (zh) 一种高能量锂离子电池及其制备方法
CN110120493A (zh) 一种锂离子电池正极补锂方法
CN105977450A (zh) 一种锂离子电池负极片镀锂的方法
CN104362330A (zh) 一种表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法
CN112635712A (zh) 一种负极片和锂离子电池
CN111403750B (zh) 一种复合电极、其制备方法及在固态锂离子电池的用途
CN109786692A (zh) 一种金属锂电极的表面氮化修饰方法及获得的金属锂负极和用途
KR101697249B1 (ko) 리튬 이온 이차전지의 제조 장치 및 제조 방법
WO2024164684A1 (zh) 负极片及其制备方法、应用该负极片的锂离子电池
CN117559013A (zh) 一种补锂剂复合材料及其制备方法与应用
CN112086622A (zh) 锂电池负极片及其制备方法以及锂电池
WO2018053699A1 (zh) 二次电池及其阴极极片
CN109273670A (zh) 一种具有高比表面介孔保护膜的金属锂负极及其制备方法
CN111710865A (zh) 锂粉分散液及其制备方法和应用
CN104541390A (zh) 二次电池用正极、二次电池及二次电池用正极的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909095

Country of ref document: EP

Kind code of ref document: A1