WO2018011981A1 - 光学式内面測定装置 - Google Patents

光学式内面測定装置 Download PDF

Info

Publication number
WO2018011981A1
WO2018011981A1 PCT/JP2016/071012 JP2016071012W WO2018011981A1 WO 2018011981 A1 WO2018011981 A1 WO 2018011981A1 JP 2016071012 W JP2016071012 W JP 2016071012W WO 2018011981 A1 WO2018011981 A1 WO 2018011981A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
rotation
side optical
measured
optical
Prior art date
Application number
PCT/JP2016/071012
Other languages
English (en)
French (fr)
Inventor
大志 山崎
拓也 舘山
憲士 成田
隆文 淺田
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to PCT/JP2016/071012 priority Critical patent/WO2018011981A1/ja
Priority to JP2018527359A priority patent/JP6755557B2/ja
Publication of WO2018011981A1 publication Critical patent/WO2018011981A1/ja
Priority to US16/240,920 priority patent/US10401157B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • the size and the finished finishing accuracy of the inner surface greatly affect the product performance.
  • a nozzle hole diameter measuring machine that combines a linear scale with a CCD camera, observe the CCD camera from the outside of the hole, and measure the distance from the edge of one end of the hole to the edge of the other end by sliding the linear scale. It was common to measure only the diameter value.
  • optical measurement technology that measures the geometric accuracy of the inner surface of the object to be measured in a non-contact manner has appeared, and there is a possibility that the measurement accuracy can be applied to measure the diameter accuracy and geometric accuracy of the inner peripheral surface of the nozzle.
  • the optical displacement meter shown in Patent Document 2 indicates that high-precision measurement is performed by measuring the distance to the object to be measured with reference to the light emission side end face (33). However, the shape and dimensions of the inner peripheral surface of the object to be measured could not be measured with this apparatus.
  • optical inner surface measurement can be performed accurately and accurately by measuring the inner surface of a narrow hole with a diameter of 0.1 mm, which could not be measured in the past, by eliminating the effects of fluctuations in the optical system and the effects of motor shaft runout. Is to provide a device.
  • an optical inner surface measuring apparatus for observing and measuring an object to be measured, comprising: a rotating optical fiber that is rotated by a motor; and a fixed optical fiber that is not rotated with respect to the rotating optical fiber.
  • the rotating optical fiber has an optical path changing means at the tip of the rotating optical fiber, and the rotating optical joint is configured by making both end faces of the rotating optical fiber and the fixed optical fiber face each other with a slight gap behind the motor.
  • it has a shake detection sensor that measures the shake amount of the rotation side optical fiber, and reflects the reflected light from the inner peripheral surface of the object captured by the optical path changing means to the measuring instrument main body via the rotation side optical fiber and the fixed side optical fiber.
  • the inner surface measurement data is obtained by analyzing by a computer and the inner surface measurement data is corrected by the shake amount detected by the shake detection sensor.
  • the measurement of the inner surface of a narrow hole having a diameter on the order of 0.1 mm eliminates the influence of the fluctuation of the optical system and the influence of the shake of the optical fiber on the rotating side. It can be done correctly and precisely.
  • FIG. 1 is a configuration diagram of an optical inner surface measuring apparatus according to an embodiment of the present invention.
  • Cross-sectional view of the optical probe of the optical inner surface measuring device Acquisition distance waveform explanatory diagram of the same optical probe Illustration of calibration method for the same optical probe Illustration of influence of motor shaft runout of optical probe Deflection of the optical fiber on the rotation side of the optical probe and explanation of the correction method
  • Polar coordinate conversion data explanatory diagram of the same optical inner surface measuring device Calibration value explanatory diagram for each Z position of the optical inner surface measuring device Measurement variation explanation of the optical inner surface measuring device Sectional view of an optical probe of Example 2 of the same optical inner surface measuring apparatus
  • the tip of the optical fiber can be configured to have a small diameter, for example, on the order of 0.1 millimeters. Therefore, by inserting an optical fiber into a thin nozzle hole, a light beam is emitted from the inside of the hole. Accurate measurement with almost no effect. Further, the measurement of the inner surface of the narrow hole can be performed accurately and accurately without the influence of the motor shaft runout.
  • the optical path changing means is composed of a prism made of a translucent material having a refractive index different from that of the rotation side optical fiber, and the length of the light beam from the tip of the rotation side optical fiber to the surface of the object to be measured is determined. It was made to measure. With this configuration, the influence of fluctuation fluctuations in the interference optical system of the measuring machine main body can be eliminated, and accurate and accurate geometric accuracy measurement of the inner diameter and inner peripheral surface can be performed.
  • FIG. 1 to 9 show an embodiment of an optical inner surface measuring apparatus according to the present invention.
  • FIG. 2 is a sectional view of the tip of the optical probe 20 of the optical inner surface measuring apparatus according to the embodiment of the present invention.
  • the fixed-side optical fiber 1 that guides the light beam from the rear end side to the front end side of the optical probe 20 is inserted into a sufficiently long tube 5 b and fixed by an optical fiber fixture 17.
  • the rotation-side optical fiber 2 is composed of optical fibers 2a, 2b, and 2c joined directly or indirectly.
  • a rotation-side optical fiber 2 (2a, 2b, 2c) is rotatably arranged on the distal end side of the fixed-side optical fiber 1, and a further hemispherical or substantially cylindrical prism is formed on the further distal end side of the rotation-side optical fiber 2.
  • the optical path changing means 4a is integrally received, and is configured to radiate light rays 360 degrees around the circumference by rotating by the motor 12.
  • the motor coil 8 and the bearings 10a and 10b are fixed to the motor case 9, and the hollow rotary shaft 6 to which the motor magnet 7 is attached is rotatably supported by the bearings 10a and 10b.
  • a voltage is applied to the motor coil 8 from the electric wire 11, and the rotation-side optical fiber 2a is inserted and fixed in the hole of the rotating hollow rotating shaft 6 so as to be rotatable.
  • An optical fiber is interposed between the rotation-side optical fiber 2a and the optical path changing means 4a.
  • the light transmitting flat plate 3 made of a material such as quartz having a different refractive index and light transmitting is fixed, and the optical fibers are formed by joining the rotation side fibers 2b and 2c as necessary.
  • the rotation shake of the rotation side optical fiber 2 or the optical path changing means 4 a is detected by the shake detection sensors 14 a and 14 b, and the signal is sent to the computer 89.
  • FIG. 5 shows the positional relationship between the shake amount of the rotation-side optical fiber 2 caused by the axial shake of the motor 12 built in the optical probe 20 and the measured object inner surface 100a in this optical inner surface measuring apparatus.
  • the optical path changing means 4a of the optical probe 20 is inserted into the inner surface 100a of the object to be measured, and the motor 12 is rotated to radiate light rays and detect reflected light. Since the optical path changing means 4a and the rotation-side optical fiber 1 rotate while rotating as shown by the symbol ⁇ r in the figure, the rotation detection sensors 14a and 14b detect this rotation shake.
  • FIG. 6 illustrates a correction calculation method for the rotational shake amount (e) of the tip of the optical probe 20 (the rotation-side optical fiber 2 or the optical path changing means 4a) and the required radial distance (R).
  • ex and ey are outputs of the shake detection sensors 14a and 14b
  • e is a calculated vector value of the shake.
  • S is a distance to the inner surface 100a obtained by the optical inner surface measuring machine
  • R in the figure is a correct dimension value after the measurement distance S is corrected using the data of the shake detection sensors 14a and 14b.
  • the shape of the inner surface 100a and the diameters of the inscribed circle Din and the circumscribed circle Dout thus obtained are shown in FIG.
  • FIG. 10 shows an optical probe 20b of the optical surface measuring apparatus according to this embodiment.
  • the optical path changing means 4 b is composed of, for example, a prism or the like processed with quartz having a refractive index different from that of the rotation side optical fiber 2 at the tip of the rotation side optical fibers 2 a and 2 c rotated by the motor 12.
  • quartz having a refractive index different from that of the rotation side optical fiber 2 at the tip of the rotation side optical fibers 2 a and 2 c rotated by the motor 12.
  • a part of the light beams traveling through the rotation side optical fibers 2a and 2c are reflected from the joint surface between the optical path changing means 4b and the rotation side optical fiber 2c and returned to the measuring machine main body 85 side, and most of the remaining light beams are measured.
  • the inner surface 100a is irradiated in a substantially right angle direction, and the reflected light is similarly returned to the measuring machine main body 85 side.
  • the slider motor 83 moves the optical path conversion means 4 a and 4 b up and down in the direction of the arrow Z in the figure together with the slider 82 and the rotation side optical fiber 2 c, and a plurality of locations on the measured object inner surface 100 a
  • the diameter, roundness, cylindricity, and the inclination angle of the slider 82 with respect to the inner surface 100a to be measured can be calculated and displayed on the monitor 90.
  • the diameter of the rotation-side optical fiber 1 at the tip is about 80 micrometers, and the diameter of the rotation-side optical fiber 2a at the portion inserted into the hollow rotary shaft 6 of the motor 12 is about 125 micrometers.
  • the hollow rotating shaft 6 shown in FIGS. 2 and 10 is made of metal or a ceramic material, and is formed into a hollow shape by drawing with a molten metal die or extruding with a ceramic die before firing, and is polished after curing. Finished by a processing method.
  • an optical inner surface measuring apparatus for observing and measuring an object to be measured
  • measurement of the inner surface of a narrow hole having a diameter on the order of 0.1 mm is affected by fluctuation of the optical system and the motor. It is possible to carry out correctly and accurately by eliminating the influence of shaft runout.
  • the optical inner diameter measuring device of the present invention can measure the inner surface of a narrow hole on the order of 0.1 mm in diameter, it is possible to measure the size and geometric accuracy of fine holes such as automobile fuel injection nozzles and inkjet nozzles. Application to an industrial measuring device for measuring a simple shape is expected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】 被測定物である細いノズル穴の内周面の観察および測定を行う光学式内面測定装置において、高精度な測定を実現する。 【解決手段】 モータによって回転する回転側光ファイバーと、回転側光ファイバーに対して回転しない固定側光ファイバーを備え、回転側光ファイバーの先端に光路変換手段を有し、モータの後方において、回転側光ファイバーと固定側光ファイバーの両端面を微少隙間を隔てて対向させることで回転光ジョイントを構成する。回転側光ファイバーの振れ量を測る振れ検出センサを有し、光路変換手段が捉えた被測定物内周面の反射光を、回転側光ファイバーと固定側光ファイバーを経由して測定機本体に導き、コンピュータで解析して内面測定データを得ると共に、振れ検出センサが検出した振れ量を内面測定データに加算することで、回転振れと光学系のゆらぎ変動の影響を排除して、高精度な測定を行える。

Description

光学式内面測定装置
 本発明は、被測定物の内周面に、光学式測定プローブを進入および回転させ、内面に光線を放射し、反射光を取り込んで内部形状の観察及び寸法精度を測定するための光学式内面測定装置に関するものである。
 
 例えば自動車用エンジンに用いられる燃料噴射ノズルの細穴内面や、インクジェット部品の細径ノズル穴において、その寸法や内面の加工仕上がり精度は商品性能に大きく影響するが、これらの検査は一般にはCCDカメラとリニヤスケールを組合せたノズル穴径測定機を用い、穴の外部からCCDカメラで観察し、穴の片端部のエッジから他端部のエッジまでの距離をリニヤスケールをスライドさせて測る方法等により、その直径値のみを測定するのが一般的であった。
 しかし近年、被測定物内面の幾何学精度を非接触で測る光学式測定技術が登場し、その測定方式を応用してノズルの細径内周面の直径精度及び幾何学精度が測れる可能性が出ている。例えば非接触で被測定物内面の計測および検査する手段として、画像診断技術(光イメージング技術)は、装置機械、医療現場などにおいて広く利用されている技術であり、精密機器などの製造現場においてこれら技術を応用し、深穴内面の検査や画像診断の手法として、光線を内面に照射しその反射光を捉え、コンピュータで解析して内面形状を計測する方法が採用されている。その代表的な構造は、例えば、特許文献1から3に示す通りである。
 特許文献1に示す内径形状計測センサでは、被測定物の穴内で反射ミラーを回転させスリット光(23)を放射し、内周面を計測している。
 しかしながら、回転ケーシング(27)とモータ(26)の軸振れが、収集した画像データにピント外れと画像のゆがみを与えてしまうため、高精度な測定は行えなかった。
 特許文献2に示す光学式変位計は、光線の出射側端面(33)を基準にして被測定物までの距離を計測することにより高精度な測定を行うことを示している。
 しかしながら、この装置で被測定物の内周面の形状や寸法を測定することはできなかった。
 特許文献3の光イメージング用プローブを用いて細孔内面を測定する方法では、被測定物孔の内周面にプローブを挿入し、集光レンズ(3)からの光線を光路変換手段であるミラー(18)が回転し360度回転すると共に、遠心力の変化によりミラーの角度が変化し光線の放射角が変わることにより光線を三次元方向に放射して立体形状を計測する。
 しかしながら、被測定物の内部に挿入される光プローブは、内部に回転するモータを内蔵しているため先端部の直径は1.5ミリメートル以上程度必要であるため、直径が0.1ミリメートルの細いノズル穴内面の形状寸法を測定することができなかった。
日本実開平04-55504号公報 日本特許第5060678号 日本特開2015-008995号公報
 本発明は上記従来事情に鑑みてなされたものであり、その課題とするところは、被測定物である細いノズル穴の内周面に、そのノズル穴より細い測定用プローブ又は光ファイバーを進入させ光線を回転放射し、その反射光を立体的に収集し、コンピュータが処理することにより画像データを観察、または寸法及び幾何学精度を測定すること。そして、測定内周面に回転放射する測定プローブ自身に生じる軸振れの影響を完全に排除し、ばらつきの無い測定データを得ることである。これら課題解決により、従来、測定できなかった直径0.1ミリメートルオーダの細穴内面の測定が、光学系のゆらぎの影響とモータ軸振れの影響を排除して、正しく精密に行える光学式内面測定装置を提供することである。
 上記課題を解決するための一手段は、被測定物の観察および測定を行う光学式内面測定装置において、モータによって回転する回転側光ファイバーと、この回転側光ファイバーに対して回転しない固定側光ファイバーを備え、回転側光ファイバーの先端に光路変換手段を有し、モータの後方において、回転側光ファイバーと固定側光ファイバーの両端面を微少隙間を隔てて対向させることで回転光ジョイントを構成する。そして、回転側光ファイバーの振れ量を測る振れ検出センサを有し、光路変換手段が捉えた被測定物内周面からの反射光を、回転側光ファイバーと固定側光ファイバーを経由して測定機本体に導き、コンピュータで解析して内面測定データを得ると共に、振れ検出センサが検出した振れ量によりこの内面測定データを補正するものである。
 本発明の光学式内面測定装置によれば、従来、測定できなかった直径0.1ミリメートルオーダの細穴内面の測定が、光学系のゆらぎの影響と回転側光ファイバーの振れの影響を排除して、正しく精密に行うことが可能である。
本発明の実施の形態に係る光学式内面測定装置の構成図 同光学式内面測定装置の光プローブ断面図 同光プローブの取得距離波形説明図 同光プローブ校正方法説明図 同光プローブのモータ軸振れの影響説明図 同光プローブの回転側光ファイバーの振れ量と補正方法説明図 同光学式内面測定装置の極座標変換データ説明図 同光学式内面測定装置のZ位置毎の校正値説明図 同光学式内面測定装置の測定ばらつき説明図 同光学式内面測定装置の実施例2の光プローブ断面図
 本実施の光学測定法を用いて被測定物内周面の観察および測定を行う光学式内面測定装置の第1の特徴は、被測定物の観察および測定を行う光学式内面測定装置において、モータによって回転する回転側光ファイバーと、この回転側光ファイバーに対して回転しない固定側光ファイバーを備え、回転側光ファイバーの先端に光路変換手段を有し、モータの後方において、回転側光ファイバーと固定側光ファイバーの両端面を微少隙間を隔てて対向させることで回転光ジョイントを構成する。そして、回転側光ファイバーの振れ量を測る振れ検出センサを有し、光路変換手段が捉えた被測定物内周面からの反射光を、回転側光ファイバーと固定側光ファイバーを経由して測定機本体に導き、コンピュータで解析して内面測定データを得ると共に、振れ検出センサが検出した振れ量によりこの内面測定データを補正するように構成した。
 この構成により、光ファイバーの先端が例えば0.1ミリメートルオーダの細径に構成できるため、細いノズル穴に光ファイバーを挿入することにより、穴の内部から光線を放射する為、被測定物の粗さの影響をほとんど受けずに正確に測定が行える。また、細穴内面の測定が、モータ軸振れの影響を排除して、正しく精密に行うことが可能である。
 第2の特徴としては、回転側光ファイバーの光路変換手段より後ろ側の少なくとも一部に、回転側光ファイバーとは屈折率が異なる材料からなる透光性平板を一体的に有し、透光性平板から被測定物表面までの光線の長さを測定するように構成した。尚、回転側光ファイバーの光路変換手段より「後ろ側」は、光プローブの先端側(前側)に対して、光源のある測定機本体側を示している。
 この構成により、測定機本体の干渉光学系のゆらぎ変動の影響が排除でき、正しく精密な内径および内周面の幾何学精度測定が可能である。
 第3の特長としては、光路変換手段は、回転側光ファイバーとは屈折率が異なる透光性材料からなるプリズムで構成し、回転側光ファイバーの先端から被測定物の表面までの光線の長さを測定するようにした。
 この構成により、測定機本体の干渉光学系のゆらぎ変動の影響が排除でき、正しく精密な内径および内周面の幾何学精度測定が可能である。
 次に本発明の好適な実施形態について図面を参照しながら説明する。
 本発明に関わる光学式内面測定装置の実施形態について説明する。
 図1~図9は本発明に係る光学式内面測定装置の実施形態を示している。
 図1は本発明の実施の形態に係る光学式内面測定装置の構成図である。測定機ベース80にスタンド81が固定され、スライダ用モータ83によりスライダ82が光プローブ20と共に上下に移動する。被検査物100はワーク角度調整機15とワークXYスライダ16により取付位置と角度が調整され、測定機ベース80上にセットされており、光プローブ20は被検査物100の深穴100aに出入りするよう構成されている。回転側光ファイバー2は振れ検出センサ14a、14bにより回転中の振れ量が検出され、またリニヤスケール22はスライダ82または光プローブ20の上下方向(Z軸方向)の位置を検出している。測定機本体85で発光した近赤外光またはレーザ光等の光線は、光路変換4から放出され被測定物内面100aで反射し、この反射光は回転側光ファイバー2に導かれモータケース9内とチューブ5bの中を通過し、さらに測定機本体85の接続部84を通過して、光干渉解析部88に入り、コンピュータ89で解析してモニタ90に画像もしくは測定数値を表示する。
 図2は本発明の実施形態に係る光学式内面測定装置の光プローブ20の先端部断面図である。光プローブ20の後端側から先端側に光線を導く固定側光ファイバー1は十分に長いチューブ5bの内部に挿通され、光ファイバー固定具17により固定されている。回転側光ファイバー2は直接又は間接的に接合された光ファイバー2a、2b、2cによって構成されている。固定側光ファイバー1の先端側には、回転側光ファイバー2(2a、2b、2c)が回転自在に配置され、回転側光ファイバー2のさらに先端側には略半球状や略円筒状のプリズム等からなる光路変換手段4aが一体的に取り受けられ、モータ12により回転する事で光線を360度の全周方向に放射するよう構成されている。
 回転側光ファイバー2と固定側光ファイバー1のそれぞれの平滑な端面は5ミクロン程度の微小距離を隔てて対向し、回転遮光板18、光ファイバー固定具17を含めて回転光ジョイント19を構成し、回転側光ファイバー2と固定側光ファイバー1の間は高い透過率が維持でき、ほとんど損失なく光学的に接続されている。
 モータ12は、モータケース9にモータコイル8、軸受10a、10bが固定され、モータ磁石7が取り付けられた中空回転軸6が軸受10a、10bに回転自在に支持されている。モータコイル8には電線11から電圧が印加され、回転する中空回転軸6の穴には回転側光ファイバー2aが挿通固定され回転可能にし、回転側光ファイバー2aと光路変換手段4aの間には、光ファイバーとは屈折率が異なりかつ透光性のある石英等の材質で形成された透光性平板3が固定され、必要に応じて回転側ファイバー2b、2cを接合して光路を形成している。回転側光ファイバー2または、光路変換手段4aの回転振れは振れ検出センサ14a、14bにより検出され、その信号はコンピュータ89に送られている。
 図2のモータ12には図1に示す回転モータドライバ回路86から電力が供給されて回転駆動され、スライダ用モータ83はスライドモータドライバ回路87から電圧が印加されて回転駆動される。 
 次に上述した図2の光プローブ12を用いた図1の光学式内面測定装置について、その特徴的な作用効果を詳細に説明する。
 図1および図2において測定機本体85内から発光された光線はチューブ5bに内蔵された固定側光ファイバー1の中を通過して進む。電線11から電力が供給され、モータ12が回転すると、導かれた光線は回転光ジョイント19と回転側光ファイバー2、透光性平板3を通過し,光路変換手段4aから略直角方向に放出される。光線は被検査物内周面100aの表面で反射し、この反射光は上記と同じ光路を逆方向に、光路変換手段4a⇒回転側光ファイバー2⇒回転光ジョイント19⇒固定側光ファイバー1を通過して光干渉解析部88に導かれる。
 図3は測定機本体85の光測定解析部88の信号をコンピュータ89が解析した結果の一例であり、距離と信号出力(光量)関係を示している。図中L1は固定側ファイバー1から見て透光性平板3までの距離、図中L2は透光性平板3の先端側面までの距離、L3は被測定内面100aまでの距離を示す取得波形である。
 本発明の光学式内面測定装置において、被測定内面100aの内径測定を行う手順は次のとおりである。
 まず、測定を行う前の準備として校正(キャリブレーション)を行う。図4はこの光学式内面測定装置を使う前の準備として、測定値の校正に用いるボアゲージ21を示している。ボアゲージ21の内径に光プローブ20の先端の光路変換手段4aを侵入させ、光線を回転放射し、内面100aまでの距離(図中R0deg、R180deg)を計測し、ボアゲージ21の内径寸法Dtによってその光プローブ20の校正値を求める。校正値は具体的には図8に示すようなディジタルデータである。このような校正は1ケ月に1回程度定期的に行うものであり、その数値の計算方法は、次のとおりである。
<記号の説明>
・ボアゲージ21内径      Dt [mm]
・XY振れセンサ14検出量   Δrx、Δry [mm]
・光プローブ回転角       θ  [mm]
・リニヤスケール20 Z方向位置  Z [mm]
・装置85検出距離       R=(L3-L2)[mm]
・光プローブ20検出距離 L1, L2, L3 [mm]
<校正(キャリブレーション)方法(計算式)>
・校正値  : Lc [mm]
・θ=0degにおいて R0deg = (L3-L2)-Lc
・θ=180degにおいてR180deg=(L3’-L2’)-Lc 
・Dt=R0deg-R180deg
・Dt=(L3-0deg-L2-180deg)-(L3-180deg-L2-0deg)-2×Lc
・Lc=Dt-((L3-0deg-L2-180deg)+(L3-180deg-L2-0deg))
・ベクトル振れ量 e=√(ex^2+ey^2
 Z=0~Z[mm]の間で校正値(Lc)の数値を校正データとしてコンピュータに記憶させる。
 校正が終わると次に測定を開始する。図5は本光学式内面測定装置において、光プローブ20に内蔵されたモータ12の軸振れにより生じる回転側光ファイバー2の振れ量と、被測定物内面100aの位置関係を示している。被測定物内面100aに光プローブ20の光路変換手段4a挿入し、モータ12を回転させ光線を回転放射し反射光を検出する。光路変換手段4aおよび回転側光ファイバー1は回転しつつ図中、記号Δrに示すように振れながら回転するため、この回転振れを振れ検出センサ14a、14bが検出している。
 図6は光プローブ20の先端部(回転側光ファイバー2又は光路変換手段4a)の回転振れ量(e)と求める半径距離(R)の補正計算方法を図示している。図中exとeyは振れ検出センサ14a、14bの出力、eはその振れのベクトル値を計算し表示している。図中Sは光学内面測定機が求めた内面100aまでの距離、図中Rはこの測定距離Sに、振れ検出センサ14a、14bのデータを用いて補正した後の正しい寸法値である。このように求めた内面100aの形状と内接円Dinと外接円Doutの直径は図7に示す。
 ここで、実測値(R)の算出方法は次の式のとおりである。
 <実測方法>
・実測値は  R=(L3-L2)-e-Lc  [mm]
 この半径距離R[mm]のデータを360度全周取得することで図7に示す内接円(Din)と外接円(Dout)の値を求め、モニタ90に表示される。
 この構成により、光プローブ20aの先端が0.1ミリメートルオーダの細径に構成することが可能であり細径ノズル内周面の測定が可能になる。また、透光性平板3を基準に被測定物内周面100aまでの距離を求めることで、光学系の温度等による変動または光学系のゆらぎ変動が測定値から排除でき、また、振れ検出センサの出力を用いて光路変換手段4aの回転振れ(実際には回転側光ファイバー2の振れ量を検出して光路変換手段4aの回転振れを類推している。)を除外することができるため、図9の測定値ばらつきデータに示すように、ばらつきが少ない高精度な内周面の測定が可能になる。このようにばらつきが少ないシャープな測定分布が得られるのは、先に説明した光学系ゆらぎの影響と回転側光ファイバー2の振れを排除しているからである。
 図10は本実施例の光学式面測定装置の光プローブ20bを示している。
 図10においては、モータ12により回転する回転側光ファイバー2a、2cの先端に、回転側光ファイバー2とは屈折率が異なりかつ透光性の例えば石英等で加工したプリズム等からなるが光路変換手段4bが接合されている。従って回転側光ファイバー2a、2cを進行してきた光線の一部は光路変換手段4bと回転側光ファイバー2cとの接合面から反射して測定機本体85側に戻され、残りの大半の光線は被測定内面100aに略直角方向に照射され、その反射光が同様に測定機本体85側に戻される。
 図10において、その他の構成と機能、および動作は図2の光プローブと同じである。尚、図1、図2、図10において、スライダ用モータ83によりスライダ82および回転側光ファイバー2cと共に光路変換手段4a、4bが図中矢印Z方向に上下し、被測定物内面100aにおいて複数の箇所の内周面を計測する事で、直径、真円度、円筒度、被測定物内面100aに対するスライダ82の傾斜角度を算出し、モニタ90に表示することができる。
 図2と図10において先端部の回転側光ファイバー1の直径は約80マイクロメートル、モータ12の中空回転軸6の中に挿通される部分の回転側光ファイバー2aの直径は約125マイクロメートルである。
 図2および図10に示される中空回転軸6は、金属またはセラミックス材料からなり、溶融金属のダイによる引き抜き加工か、または焼成前のセラミックスのダイによる押し出し加工で中空に成形され、硬化処理後に研磨加工法等により仕上げ加工される。
 本発明によれば、被測定物の観察および測定を行う光学式内面測定装置において、従来、測定できなかった直径0.1ミリメートルオーダの細穴内面の測定が、光学系のゆらぎの影響とモータ軸振れの影響を排除して、正しく精密に行うことが可能である。
 本発明の光学式内径測定装置は、直径0.1ミリメートルオーダの細穴の内面計測が行えるため、自動車燃料噴射ノズル、インクジェットノズル等の細穴の寸法および幾何学精度測定が可能であり、微細な形状の測定をするための工業用測定装置への適用が期待される。
1 固定側光ファイバー
2、2a、2b、2c 回転側光ファイバー
3 透光性平板
4a、4b 光路変換手段
5a、5b チューブ
6 中空回転軸
7 モータ磁石
8 モータコイル
9 モータケース
10a、10b 軸受
11 電線
12 モータ
13 ワーク固定治具
14a、14b 振れ検出センサ
15a、15b ワーク角度調整部
16a、16b ワークXYスライダ 
17 ファイバー固定具
18 回転遮光板
19 回転光ジョイント
20a、20b 光プローブ
21 ボアゲージ
22 リニヤスケール
80 測定機ベース
81 スタンド
82 スライダ
83 スライダ用モータ
84 接続部
85 測定機本体
86 回転モータドライバ回路
87 スライドモータドライバ回路
88 光測定解析部
89 コンピュータ
90 モニタ
100 被測定物
100a 被測定内面

Claims (3)

  1.  被測定物の観察および測定を行う光学式内面測定装置において、
     モータによって回転する回転側光ファイバーと、前記回転側光ファイバーに対して回転しない固定側光ファイバーを備え、
     前記回転側光ファイバーの先端に光路変換手段を有し、
     前記モータの後方において、前記回転側光ファイバーと前記固定側光ファイバーの両端面を微少隙間を隔てて対向させることで回転光ジョイントを構成し、
     前記回転側光ファイバーの振れ量を測る振れ検出センサを有し、
     光路変換手段が捉えた被測定物内周面からの反射光を、前記回転側光ファイバーと前記固定側光ファイバーを経由して測定機本体に導き、コンピュータで解析して内面測定データを得ると共に、前記振れ検出センサが検出した振れ量によりこの内面測定データを補正することを特徴とする光学式内面測定装置。
  2.  前記回転側光ファイバーの前記光路変換手段より後ろ側の少なくとも一部に、前記回転側光ファイバーとは屈折率が異なる材料からなる透光性平板を一体的に有し、前記透光性平板から被測定物表面までの光線の長さを測定することを特徴とする請求項1記載の光学式内面測定装置。
  3.  前記光路変換手段は、前記回転側光ファイバーとは屈折率が異なる透光性材料からなるプリズムで構成し、前記回転側光ファイバーの先端から被測定物の表面までの光線の長さを測定することを特徴とする請求項1又は2記載の光学式内面測定装置。
PCT/JP2016/071012 2016-07-15 2016-07-15 光学式内面測定装置 WO2018011981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/071012 WO2018011981A1 (ja) 2016-07-15 2016-07-15 光学式内面測定装置
JP2018527359A JP6755557B2 (ja) 2016-07-15 2016-07-15 光学式内面測定装置
US16/240,920 US10401157B2 (en) 2016-07-15 2019-01-07 Optical inner surface measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071012 WO2018011981A1 (ja) 2016-07-15 2016-07-15 光学式内面測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/240,920 Continuation US10401157B2 (en) 2016-07-15 2019-01-07 Optical inner surface measurement device

Publications (1)

Publication Number Publication Date
WO2018011981A1 true WO2018011981A1 (ja) 2018-01-18

Family

ID=60951980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071012 WO2018011981A1 (ja) 2016-07-15 2016-07-15 光学式内面測定装置

Country Status (3)

Country Link
US (1) US10401157B2 (ja)
JP (1) JP6755557B2 (ja)
WO (1) WO2018011981A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489387A (zh) * 2018-04-03 2018-09-04 电子科技大学 一种光纤干涉式小孔内表面三维成像检测系统
CN108489388A (zh) * 2018-04-03 2018-09-04 电子科技大学 一种基于光谱共焦位移测量技术的小孔内表面三维成像检测系统
JP2020085717A (ja) * 2018-11-28 2020-06-04 株式会社日立製作所 形状測定システム、プローブ先端部、及び形状測定方法。
WO2021115300A1 (zh) * 2019-12-12 2021-06-17 左忠斌 一种用于3d信息采集的智能控制方法
JP2021148498A (ja) * 2020-03-17 2021-09-27 株式会社東京精密 内面形状測定機、及び内面形状測定機のアライメント方法
CN115014255A (zh) * 2022-07-22 2022-09-06 重庆交通大学 一种桥梁伸缩缝的探测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782191B (zh) * 2019-11-01 2021-11-12 广东技术师范大学 一种陶瓷套管表面质量视觉检测装置及其检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008995A (ja) * 2013-06-29 2015-01-19 並木精密宝石株式会社 光イメージング用プローブ
WO2016084638A1 (ja) * 2014-11-25 2016-06-02 並木精密宝石株式会社 光学式内面測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588380B1 (fr) * 1985-10-07 1988-05-27 Commissariat Energie Atomique Dispositif d'examen a distance de defauts debouchant a la surface interne d'une cavite profonde
JP2524816Y2 (ja) 1990-09-20 1997-02-05 三菱重工業株式会社 内径形状計測センサ
US8460195B2 (en) * 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
WO2009009802A1 (en) * 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
JP5052279B2 (ja) * 2007-09-28 2012-10-17 富士フイルム株式会社 光断層画像化装置
JP5529384B2 (ja) * 2007-09-28 2014-06-25 テルモ株式会社 光ロータリアダプタおよびこれを用いる光断層画像化装置
JP2009236614A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 光ロータリアダプタ及びこれを用いる光断層画像化装置
JP5060678B2 (ja) 2008-05-08 2012-10-31 株式会社キーエンス 光学式変位計
WO2010029935A1 (ja) * 2008-09-12 2010-03-18 コニカミノルタオプト株式会社 回転光ファイバユニット及び光コヒーレンス断層画像生成装置
US9364167B2 (en) * 2013-03-15 2016-06-14 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities
JP5961891B2 (ja) * 2013-08-10 2016-08-03 並木精密宝石株式会社 光イメージング用プローブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008995A (ja) * 2013-06-29 2015-01-19 並木精密宝石株式会社 光イメージング用プローブ
WO2016084638A1 (ja) * 2014-11-25 2016-06-02 並木精密宝石株式会社 光学式内面測定装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489387A (zh) * 2018-04-03 2018-09-04 电子科技大学 一种光纤干涉式小孔内表面三维成像检测系统
CN108489388A (zh) * 2018-04-03 2018-09-04 电子科技大学 一种基于光谱共焦位移测量技术的小孔内表面三维成像检测系统
JP2020085717A (ja) * 2018-11-28 2020-06-04 株式会社日立製作所 形状測定システム、プローブ先端部、及び形状測定方法。
JP7193992B2 (ja) 2018-11-28 2022-12-21 株式会社日立製作所 形状測定システム、プローブ先端部、形状測定方法、及びプログラム
WO2021115300A1 (zh) * 2019-12-12 2021-06-17 左忠斌 一种用于3d信息采集的智能控制方法
JP2021148498A (ja) * 2020-03-17 2021-09-27 株式会社東京精密 内面形状測定機、及び内面形状測定機のアライメント方法
CN115014255A (zh) * 2022-07-22 2022-09-06 重庆交通大学 一种桥梁伸缩缝的探测装置

Also Published As

Publication number Publication date
JP6755557B2 (ja) 2020-09-16
JPWO2018011981A1 (ja) 2019-04-25
US20190137263A1 (en) 2019-05-09
US10401157B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6755557B2 (ja) 光学式内面測定装置
JP6739780B2 (ja) 光学式内面測定装置
JP6232552B2 (ja) 光学式内面測定装置
US8964023B2 (en) Device and method for measuring form attributes, position attributes and dimension attributes of machine elements
KR102005626B1 (ko) 스핀들의 자유도 오차를 검측하는 광학식 검측 장치 및 그 방법
JP5884838B2 (ja) 内径測定装置
JP6232550B2 (ja) 光学式内面測定装置
JP6755553B2 (ja) 光学式測定装置
JP2010223915A (ja) 回転中心線の位置変動測定方法および装置
CN108351198B (zh) 检测圆柱形中空壳体的表面的传感器装置和方法
TWI405057B (zh) Dynamic path detection method and device for five - axis machine
JP7223457B2 (ja) 光学式内面測定装置及び光学式内面測定方法
WO2018003097A1 (ja) 光学式内面測定装置
JP7058869B2 (ja) 光イメージング用プローブ及び光学式測定装置
JP2021156852A (ja) 光学式内面測定装置および光学式内面測定方法
JP2017215211A (ja) 内面測定機用校正装置
JP2020187052A (ja) 光学式測定装置及び光学式測定方法
JP2020085468A (ja) 光学式内周面表面気孔測定装置及び気孔率の測定方法
JP2019191417A (ja) 光イメージング用プローブ
TWM545243U (zh) 光學式轉軸多自由度誤差檢測裝置
CN117128838A (zh) 管件同心度测量方法
CN112504168A (zh) 光学仪器镜面垂直度检测装置及方法
Niu et al. Evaluation of relative vertical error motions of a bench center by using an optical micrometer
JPH04318410A (ja) 細管用真直度測定装置
Kim et al. Automatic inspection of geometric accuracy of optical fiber ferrules by machine vision

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527359

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908882

Country of ref document: EP

Kind code of ref document: A1