WO2018011917A1 - 電動送風機及び電気機器 - Google Patents
電動送風機及び電気機器 Download PDFInfo
- Publication number
- WO2018011917A1 WO2018011917A1 PCT/JP2016/070713 JP2016070713W WO2018011917A1 WO 2018011917 A1 WO2018011917 A1 WO 2018011917A1 JP 2016070713 W JP2016070713 W JP 2016070713W WO 2018011917 A1 WO2018011917 A1 WO 2018011917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- centrifugal fan
- electric blower
- casing
- opening
- fan
- Prior art date
Links
- 238000005192 partition Methods 0.000 claims description 110
- 238000004891 communication Methods 0.000 claims description 86
- 230000000694 effects Effects 0.000 description 34
- 230000005855 radiation Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 25
- 230000017525 heat dissipation Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 239000000428 dust Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25F—COMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
- B25F5/00—Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
- B25F5/008—Cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/16—Centrifugal pumps for displacing without appreciable compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
- F04D25/082—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
- F04D25/166—Combinations of two or more pumps ; Producing two or more separate gas flows using fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/051—Axial thrust balancing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/053—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/44—Centrifugal pumps
Definitions
- the present invention relates to an electric blower and an electric device including the same.
- the electric blower can be mainly composed of a motor and a fan attached to the rotating shaft of the motor.
- noise caused by vibration is generated from a bearing that rotatably supports the fan, the motor, and the rotating shaft when the fan rotates.
- One way to reduce this noise is to reduce the clearance (clearance) between the inner and outer rings of the bearing during rotation.
- the fan is not an axial fan but a centrifugal fan having high aerodynamic efficiency.
- the electric blower is provided with a centrifugal fan to increase the static pressure, a negative pressure load is applied to the fan due to a pressure difference. The force is received by the bearing that rotatably supports the rotating shaft via the rotating shaft, which affects the life of the bearing.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electric blower capable of reducing the axial force applied to the rotating shaft of the motor when the centrifugal fan rotates, and its An object of the present invention is to provide an electric device including an electric blower.
- An electric blower includes a motor having a rotating shaft, a first centrifugal fan fixed to a first end side of the rotating shaft, and a side opposite to the first end side of the rotating shaft.
- a second centrifugal fan fixed to the second end side, and a casing surrounding the motor, the first centrifugal fan, and the second centrifugal fan, and the rotation shaft rotates during the rotation of the rotary shaft.
- a first force applied by a single centrifugal fan to the rotary shaft in a first direction that is an axial direction of the rotary shaft, and an axis of the rotary shaft with respect to the rotary shaft by the second centrifugal fan The second force applied in the second direction which is the direction is opposite to each other.
- FIG. It is a figure which shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 1.
- FIG. It is a figure which shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 1.
- FIG. It is a figure which shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 1.
- FIG. It is a figure which shows the cross-section of the example of 1 structure of the electric blower concerning Embodiment 2.
- FIG. It is a figure which shows roughly the airflow in the electric blower shown by FIG.
- FIG. It is a figure which shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 2.
- FIG. 1 shows the cross-section of the example of 1 structure of the electric blower which concerns on Embodiment 5.
- FIG. It is a figure which shows the cross-section of the example of 1 structure of the electric blower concerning Embodiment 6.
- FIG. It is a figure which shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 6.
- FIG. It is a figure which shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 6.
- FIG. 6 shows the cross-section of the other structural example of the electric blower which concerns on Embodiment 6.
- FIG. 10 is a diagram illustrating a cross-sectional structure of a configuration example of an electric blower according to an eighth embodiment. It is a perspective view which shows an example of the cleaner as an electric equipment which concerns on Embodiment 9.
- FIG. 38 is a perspective view illustrating an example of a jet towel as an electric device according to a ninth embodiment.
- FIGS. 1 is a diagram illustrating a cross-sectional structure of a configuration example of the electric blower according to Embodiment 1
- FIG. 2 is a perspective view illustrating a configuration example of a first centrifugal fan in the electric blower 1 illustrated in FIG.
- FIG. 3 is a diagram schematically showing an air flow in the electric blower 1 shown in FIG. 1.
- FIG. 3 although the state of an airflow is shown by the broken line arrow and the solid line arrow, the illustrated arrow is only what showed the example of an airflow roughly, and the similar broken line arrow and solid line arrow mentioned later are the same. The same is true for the drawings.
- the electric blower 1 includes a motor 10 having a rotating shaft 13, a first centrifugal fan 31 fixed to the first end side of the rotating shaft 13, and a rotating shaft. 13, a second centrifugal fan 32 fixed to a second end side opposite to the first end side, and a casing (housing) 20.
- the motor 10 can include, for example, a stator 11 and a rotor 14 that is provided inside the stator 11 and includes a rotating shaft 13 and a rotor core 12 that is fixed to the rotating shaft 13.
- the rotor 14 is configured by fixing the rotating shaft 13 in a shaft hole provided in the central portion of the rotor core 12.
- the electric blower 1 includes a drive circuit, a power supply, and electrical wiring in order to drive the motor 10.
- the first centrifugal fan 31 is fixed to the first end (right end in FIG. 1) of the rotary shaft 13, and the second centrifugal fan 32 is fixed to the second end (see FIG. 1). 1 at the left end).
- the first centrifugal fan 31 may be fixed in a state where the right end of the rotating shaft 13 protrudes from the first centrifugal fan 31, or the left end of the rotating shaft 13 protrudes from the second centrifugal fan 32.
- the second centrifugal fan 32 may be fixed in a state.
- the first centrifugal fan 31 and the second centrifugal fan 32 are simply referred to as centrifugal fans 31 and 32.
- the second centrifugal fan 32 can also have the same shape as the first centrifugal fan 31, but both rotate with the rotary shaft 13 as a common rotation axis. 2, it is preferable that the second centrifugal fan 32 has a shape that is axisymmetrically reversed on the paper surface of FIG. 2 from the viewpoint that the same level of airflow can be generated. It can be said.
- the centrifugal fans 31 and 32 may be a fan having forward blades or a fan having backward blades, and particularly have blades in the same direction when viewed in a state before being attached to the rotary shaft 13. For example, it can also be made into the completely same shape.
- the shape of the centrifugal fans 31 and 32 is mainly defined by the shape and number of blades of the centrifugal fans 31 and 32. As described above, an airflow having a centrifugal direction component can be generated during rotation. Any shape is acceptable. Therefore, the centrifugal fans 31 and 32 may be mixed flow fans that generate an airflow having a centrifugal component and a component parallel to the axial direction (axial component). That is, the concept of the centrifugal fan described here includes a mixed flow fan. Centrifugal fans 31 and 32 can be said to be a kind of moving blade because a plurality of blades serving as blades rotate.
- the casing 20 surrounds the motor 10, the first centrifugal fan 31, and the second centrifugal fan 32. As shown in FIG. 1, for example, at least around the rotational axis of the rotational shaft 13, the motor 10 , A member that surrounds the first centrifugal fan 31 and the second centrifugal fan 32.
- the stator 11 can be fixed to the inner wall of the casing 20, for example.
- the casing 20 is provided between the first centrifugal fan 31 and the second centrifugal fan 32 and has at least one opening (referred to as a third opening for convenience) serving as an airflow passage. .
- the third opening is an opening provided in the casing 20 and can be referred to as a casing opening.
- the third opening can be, for example, two openings 27 and 28 as shown in FIG.
- the airflow passage port refers to either the gas outlet or the inlet, and in Embodiment 1, the gas outlet. That is, the 3rd opening parts 27 and 28 in the electric blower 1 become a gas exit (opening part located in the downstream of an airflow), as FIG.1 and FIG.3 shows. Moreover, although it is common that gas is air, it is not restricted to this, A specific gas may be sufficient. As described above, the third openings 27 and 28 are different from the first opening 21a and the second opening 22a described later shown in FIGS. 1 and 3.
- the third opening 27 can be formed at an axial position between the rotor core 12 and the first centrifugal fan 31, and in particular, the first centrifugal fan 31 and the first support member described later.
- 25 (or the first bearing 23) can be formed at an axial position.
- the third opening 28 can be formed at an axial position between the rotor core 12 and the second centrifugal fan 32, and in particular, a second centrifugal fan 32 and a second support member described later.
- 26 (or the second bearing 24) can be formed at an axial position.
- the casing 20 can have the 1st opening part 21a and the 2nd opening part 22a, as FIG. 1 shows.
- the first opening 21 a is an opening provided on the first end side of the casing 20, and the second opening 22 a is an opening provided on the second end side of the casing 20.
- the first opening 21 a can pass the air flow generated by the first centrifugal fan 31, and the second opening 22 a can pass the air flow generated by the second centrifugal fan 32.
- openings 21a and 22a can be referred to as casing openings as with the third openings 27 and 28, but can also be referred to as cover openings.
- the casing 20 includes a first fan cover 21 that is provided with a first opening 21 a and directs a centrifugal air flow generated by the first centrifugal fan 31 in an axial direction. be able to.
- the first fan cover 21 is a cover that covers a part of the first centrifugal fan 31 (at least a portion excluding the first opening 21a).
- the casing 20 includes a second fan cover 22 that is provided with a second opening 22 a and directs the centrifugal airflow generated by the second centrifugal fan in the axial direction. be able to.
- the second fan cover 22 is a cover that covers a part of the second centrifugal fan 32 (at least a portion excluding the second opening 22a). However, even if the casing 20 has a structure that does not have an obliquely disposed cover such as the first fan cover 21 and the second fan cover 22, the first opening 21a and the second opening. What is necessary is just to have 22a.
- first fan cover 21 and the second fan cover 22 are described without being distinguished from each other, they are simply referred to as fan covers 21 and 22.
- the first fan cover 21 has a first opening 21 a as a gas suction port, and an air flow (a discharged gas) generated from the first centrifugal fan 31 in the centrifugal direction. ) Collide with the inclined surface (first inclined surface). Due to such a configuration and the positional relationship with the first centrifugal fan 31, the first fan cover 21 causes the gas sucked from the first opening 21 a by the rotation of the first centrifugal fan 31 to flow in the centrifugal direction. In addition, it functions as a wind direction changing member (wind direction adjustment changing plate) that changes the direction (wind direction) of the airflow on the first inclined surface. In this example, the air flow is changed in the direction toward the rotor core 12 by the first inclined surface, that is, it is changed so as to have an axial component as in the air flow indicated by the broken-line arrow in FIG. it can.
- wind direction changing member wind direction adjustment changing plate
- the second fan cover 22 has a second opening 22 a as a port for sucking gas, and is centrifuged from the second centrifugal fan 32, similarly to the first fan cover 21. It has an inclined surface (second inclined surface) on which the airflow generated in the direction collides, and functions as a wind direction changing member. In this example, the airflow can be changed toward the rotor core 12 by the second inclined surface, as in the airflow indicated by the solid arrow in FIG. As shown in FIG. 1, the second fan cover 22 also has a smaller diameter as the distance from the rotor core 12 increases with the rotation axis of the rotation shaft 13 as the center, similarly to the first fan cover 21.
- the present invention is not limited to this. Note that the second fan cover 22 does not cover the second centrifugal fan 32 at least in the second opening 22a. Also, the second fan cover 22 can be fixed to the inner peripheral wall of the main body of the casing 20, for example, similarly to the first fan cover 21.
- the first centrifugal fan 31 is a mixed flow fan
- an air flow including an axial component can be generated by the mixed flow fan alone at the time of rotation.
- the casing 20 includes the first fan.
- a cover 21 can be provided.
- the case where the second centrifugal fan 32 is a mixed flow fan can also be described in the same manner as the first centrifugal fan 31.
- the electric blower 1 includes a first bearing 23, a second bearing 24, a first support member (first bearing support member) 25, and a second support member (first support member). 2 bearing support members) 26.
- first bearing 23 and the second bearing 24 are described without distinction, they are simply referred to as bearings 23 and 24.
- first support member 25 and the second support member 26 are simply referred to as support members 25 and 26.
- the first bearing 23 is a bearing that rotatably supports the rotary shaft 13 on the first end side, and is located at a position between the first centrifugal fan 31 and the rotor core 12 as shown in FIG. Can be arranged. Further, the first support member 25 is fixed in the casing 20 and supports the first bearing 23.
- the second bearing 24 is a bearing that rotatably supports the rotary shaft 13 on the second end side, and is located at a position between the second centrifugal fan 32 and the rotor core 12 as shown in FIG. Can be arranged.
- the second support member 26 is fixed in the casing 20 and supports the second bearing 24.
- FIGS. 4 is a view showing an example of the first bearing 23 and the first support member 25, and
- FIG. 5 is a top view showing the first support member 25 shown in FIG. 4, taken along line AA in FIG.
- FIG. 6 is a cross-sectional view showing another configuration example of the first support member 25.
- the first support member 25 can be attached by being fixed to the inner wall of the casing 20.
- the first support member 25 has a protrusion, and can be fixed to the casing 20 with the protrusion passing through a hole formed in the casing 20.
- the method for attaching the second support member 26 to the casing 20 is the same as the method for attaching the first support member 25.
- the first bearing 23 can have an inner ring 23a, an outer ring 23b, and a plurality of rolling elements 23c provided therebetween.
- the inner peripheral side of the inner ring 23 a of the first bearing 23 is the rotor core 12 fixed to the central portion of the rotating shaft 13 and the first end side (the right side in FIG. 1).
- the first centrifugal fan 31 fixed to the rotary shaft 13 is fixed to the rotary shaft 13.
- the outer peripheral side of the outer ring 23 b of the first bearing 23 is fixed to the first support member 25.
- the first bearing 23 includes a bearing having an inner ring 23a, an outer ring 23b, and a rolling element 23c, and a bearing having an inner ring 23d, an outer ring 23e, and a rolling element 23f in total.
- the second bearing 24 can include an inner ring, an outer ring, and a plurality of rolling elements provided between them, similarly to the first bearing 23.
- the method of fixing the second bearing 24 to the rotary shaft 13 and the second support member 26 is the same as the method of fixing the first bearing 23 to the rotary shaft 13 and the first support member 25. That is, the inner peripheral side of the inner ring of the second bearing 24 is fixed to the rotary shaft 13 between the rotor core 12 and the second centrifugal fan 32, and the outer peripheral side of the outer ring of the second bearing 24. Is fixed to the second support member 26.
- first bearing 23 is attached to the rotary shaft 13 and the first support member 25, and the second bearing 24 is attached to the rotary shaft 13 and the second support member 26.
- the formed rotor core 12 is rotatable with respect to the first support member 25 and the second support member 26 and the casing 20 to which they are fixed, that is, with respect to the stator 11 fixed to the casing 20. It becomes possible.
- the first support member 25 can have a fourth opening 25d as shown in FIG.
- the fourth opening 25d is an opening inside the casing 20, and can also be referred to as an internal opening.
- the fourth opening 25d can be a communication port that allows communication between the space on the rotor core 12 side of the first support member 25 and the space on the first centrifugal fan 31 side of the first support member 25.
- the first support member 25 shown in FIG. 5 includes an annular portion 25a for fixing to the inner wall of the casing 20, a center portion 25b for fixing to the outer rings 23b and 23e of the first bearing 23, and an annular portion 25a.
- a plurality of branch portions 25c connecting the central portion 25b, and a space between adjacent branch portions 25c is a fourth opening portion 25d.
- four branch portions 25c are provided, and the number of fourth openings 25d is four.
- the number of communication ports provided as the fourth opening in the first support member 25 is not limited to a plurality, and may be one.
- the first support member 25 is not limited to the shape as described above.
- the annular portion 25a is removed and the branch portion 25c is removed.
- the tip may be fixed directly to the inner wall of the casing 20. More specifically, as shown in FIG. 6, the first support member 25 removes the annular portion 25 a from the first support member 25 shown in FIGS. 4 and 5 while leaving the branch portion 25 c as it is.
- the central portion 25b can have a shape provided with a mounting portion 25ba configured to have a branch portion similar to the branch portion 25c. In the example shown in FIG.
- the tip end of the branch portion of the attachment portion 25ba and the tip end of the branch portion 25c whose axial position is shifted therefrom can be fixed to the inner wall of the casing 20, so that the first support The member 25 can be firmly fixed to the casing 20.
- heat dissipation of the motor 10 can be promoted (supplied).
- the heat radiation of the first bearing 23 can be promoted (assisted) not only from the first centrifugal fan 31 side but also from the motor 10 side, and the heat radiation of the second bearing 24 can be promoted only from the second centrifugal fan 32 side. In addition, it can be promoted (assisted) from the motor 10 side.
- the windings of the motor 10 generate heat when energized, and the bearings 23 and 24 that support the rotary shaft 13 rotatably also generate heat due to friction when the rotary shaft 13 rotates.
- the reliability of the motor 10 and the bearings 23 and 24 can be improved and the life can be extended.
- the heat radiation from the first centrifugal fan 31 side of the first bearing 23 is due to the airflow from the first centrifugal fan 31 side coming into contact with the first bearing 23, and the second bearing 24
- the heat radiation from the second centrifugal fan 32 side is due to the airflow from the second centrifugal fan 32 side coming into contact with the second bearing 24.
- the heat radiation of the first bearing 23 can be promoted by passing an air flow between the first bearing 23 and the rotary shaft 13 from either one of both ends in the axial direction to the other.
- the heat radiation of the second bearing 24 can be promoted by passing an air current from either one of the axial ends to the other between the second bearing 24 and the rotary shaft 13.
- FIG. 7 is a diagram showing the direction of the axial force applied to the rotating shaft 13 in the electric blower 1 shown in FIG.
- the first force F1 applied to the rotating shaft 13 in the first direction by the first centrifugal fan 31 and the second The second force applied to the rotating shaft 13 by the centrifugal fan 32 in the second direction is opposite to each other.
- the first direction and the second direction are both axial directions of the rotary shaft 13, but are opposite to each other.
- the first centrifugal fan 31 applies the first force F1 in the axial direction to the rotating shaft 13
- the second centrifugal fan 32 applies the axial direction to the rotating shaft 13.
- the second force F2 is in a direction opposite to each other. Note that the first force F1 and the second force F2 both indicate forces acting in the axial direction of the rotary shaft 13, and are also referred to as thrust forces or thrust loads.
- the first force F1 and the second force F2 are sucked into the gas when the first centrifugal fan 31 and the second centrifugal fan 32 fixed to both ends of the shaft of the rotary shaft 13 rotate (see FIG. 3). In the first embodiment shown, this occurs as a reaction when the casing 20 is sucked from the outside to the inside). Therefore, the relationship between the first force F1 and the second force F2 as described above is such that the directions of the airflows sucked by the first centrifugal fan 31 and the second centrifugal fan 32 are opposite to each other in the axial direction (symmetric to each other). Direction).
- the electric blower 1 is configured so that the first force F1 and the second force F2 are in the above-described relationship, thereby serving as the rotation shafts of the first centrifugal fan 31 and the second centrifugal fan 32. Since the thrust force in the direction of canceling (cancelling each other) can be applied to the rotating shaft 13 from both sides, the axial force balance in the electric blower 1 is improved (reducing the axial force). Can do.
- the friction between the second bearing 24 and the second bearing 24 may be worn.
- the amount of such wear can be reduced, and the life of the first bearing 23 and the second bearing 24 is extended. Can be achieved.
- first force F1 and the second force F2 are forces in opposite directions to each other, as shown in FIG. 3 by the centrifugal fans 31 and 32, as indicated by the broken line arrows and the solid line arrows.
- This can be realized by configuring the electric blower 1 so as to suck the gas from the outside to the inside of the casing 20, but the first centrifugal fan and the second centrifugal fan both suck and discharge the gas from the inside of the casing to the outside. Even an electric blower can be realized.
- the former case is described, and the latter case will be described later as an eighth embodiment.
- the first force F1 is the second from the second end side of the rotating shaft 13 (the end portion on the side where the second centrifugal fan 32 is attached).
- the force is directed toward one end side (the end portion on the side where the first centrifugal fan 31 is attached), and the second force F2 is a force directed from the first end side of the rotating shaft 13 toward the second end side.
- the first direction is a direction from the second end side toward the first end side
- the second direction is a direction from the first end side toward the second end side.
- the electric blower 1 sucks gas from the openings 21a and 22a of the fan covers 21 and 22 by the centrifugal fans 31 and 32, and the gas is opened, as shown by broken arrows and solid arrows in FIG. It discharges (discharges) from the parts 27 and 28. Therefore, the electric blower 1 can be mounted on an electrical device for blowing purposes by connecting, for example, a tube having a blower opening to the openings 27 and 28. However, the electric blower 1 can be mounted on an electrical device for suction by connecting, for example, a tube having a suction port to the openings 21a and 22a.
- the first force F1 and the second force F2 are balanced (equal in magnitude).
- the axial force of the electric blower 1 accompanying the rotation of the centrifugal fans 31 and 32 can be eliminated, and the axial balance can be accurately taken.
- the air flow generated by the first centrifugal fan 31 and the air flow generated by the second centrifugal fan 32 are in a plane perpendicular to the axial direction at an intermediate position between the first centrifugal fan 31 and the second centrifugal fan 32.
- the first force F1 and the second force F2 may be balanced by performing the shape and arrangement of the centrifugal fans 31 and 32 and the fan covers 21 and 22 so as to be plane symmetric. Even if the first force F1 and the second force F2 are not accurately balanced, the same effect can be obtained as long as they are substantially balanced.
- FIGS. 8 to 10 are diagrams illustrating a cross-sectional structure of another configuration example of the electric blower according to Embodiment 1, and are diagrams illustrating different configuration examples. 8 to 10, parts having the same or corresponding functions as those in FIG. 1 are denoted by the same reference numerals as those used in FIG.
- the first support member 25 and the second support member 26 are both provided with communication ports, and are sucked from the first centrifugal fan 31 as indicated by broken line arrows in FIG.
- the discharged gas passes through the inside of the motor 10 and is discharged from the opening 28. Further, as indicated by solid line arrows in FIG. 8, the gas sucked from the second centrifugal fan 32 is discharged from the opening 28 as it is.
- the electric blower 1b shown in FIG. 9 has a casing 20b in which a new third opening 28a is provided in the casing 20a instead of the casing 20a in the electric blower 1a shown in FIG.
- the first support member 25 and the second support member 26 are both provided with communication ports, and are sucked from the first centrifugal fan 31 as indicated by broken line arrows in FIG.
- the discharged gas passes through the inside of the motor 10 and is discharged from the openings 28 and 28a. Further, as indicated by solid line arrows in FIG. 9, the gas sucked from the second centrifugal fan 32 is directly discharged from the openings 28 and 28a.
- FIG. 9 As shown in FIG.
- the axial position of the opening 28 and the opening 28a is the same, but the axial position of the opening 28 and the opening 28a is the same as that of the second centrifugal fan 32. It may be between the second support member 26.
- the number of the third openings provided in the axial position between them is not limited to two, but may be three or more. It is preferable to arrange them evenly on top.
- the 10 has a casing 20c provided with new third openings 27a and 28a in the casing 20, instead of the casing 20, in the electric blower 1 shown in FIG.
- the first support member 25 and the second support member 26 may or may not have communication ports.
- the gas sucked from the first centrifugal fan 31 is directly discharged from the openings 27 and 27a as shown by broken line arrows in FIG. Part of the gas passes through the inside of the motor 10 and is also discharged from the openings 28 and 28a.
- a communication port is provided in the electric blower 1c. The gas passes through the inside of the motor 10 and is also discharged from the openings 27 and 27a.
- the positions of the openings 28 and 28a in the axial direction and the number and arrangement of the openings provided at these positions are as described with reference to FIG.
- the same description as the openings 28 and 28a can be used for the openings 27 and 27a. That is, as shown in FIG. 10, the opening 27 and the opening 27 a have the same axial position, but the opening 27 and the opening 27 a have the same axial position as that of the first centrifugal fan 31. It may be between the first support member 25. Further, in the casing 20c, the number of openings provided in the axial position between them is not limited to two, but may be three or more, but it is even on the circumference centered on the rotating shaft 13. It is preferable to arrange in the above.
- the first centrifugal fan is generated by the air flow generated by the first centrifugal fan 31 and the second centrifugal fan 32 during rotation.
- 31 and the rotating shaft 13 that serves as the rotating shaft of the second centrifugal fan 32 can be applied with a force in the direction of canceling each other from both sides, and the axial direction of the electric blowers 1, 1 a, 1 b, 1 c The force can be reduced.
- a centrifugal fan is actively employed, or the static pressure It becomes possible to adopt a high centrifugal fan.
- the first force F ⁇ b> 1 is a force from the second end of the rotating shaft 13 toward the first end
- the second force F ⁇ b> 2 is the first end of the rotating shaft 13.
- a suction port can be provided in the openings 21a and 22a. It can also be mounted on an electrical device for suction by connecting a pipe or the like.
- the casings 20, 20 a, 20 b, and 20 c include a first opening 21 a provided on the first end side of the casing 20, a second opening 22 a provided on the second end side of the casing 20, Can have.
- the electric blowers 1, 1a, 1b, and 1c by having the openings 22a and 22b, the air flow generated by the first centrifugal fan 31 can be passed through the first opening 21a, and the second The airflow generated by the centrifugal fan 32 can be passed through the second opening 22a.
- the casings 20, 20a, 20b, and 20c are provided with a first opening 21a, and the first fan cover 21 that directs the centrifugal air flow generated by the first centrifugal fan 31 in the axial direction, and the second fan cover 21. And a second fan cover 22 for directing the centrifugal airflow generated by the second centrifugal fan 32 in the axial direction.
- the electric blowers 1, 1a, 1b, and 1c by having such fan covers 21 and 22, the gas sucked from the first opening 21a by the rotation of the first centrifugal fan 31 is centrifugally moved.
- the direction of the air flow can be changed, the gas sucked from the second opening 22a by the rotation of the second centrifugal fan 32 is caused to flow in the centrifugal direction, and the direction of the air flow (wind direction) is changed. Can be changed.
- the second inner casing 44 is fixed in the casing 20d as shown by a solid arrow in FIG. 18, and the direction of the air flow generated by the second centrifugal fan 32 is changed between the second centrifugal fan 32 and the second centrifugal fan 32. It changes between the support members 26.
- the second inner casing 44 has a function of changing the direction of the airflow similarly to the second partition portion 42, and can be said to be an example of the second partition portion 42.
- the air flow generated by the first centrifugal fan 31 is transferred to the third opening 27d as shown by the broken line arrow in FIG.
- the air flow generated by the second centrifugal fan 32 can be guided to the third opening 28d as indicated by the solid arrow.
- the electric blower 3 the airflow generated by the first centrifugal fan 31 and the airflow generated by the second centrifugal fan 32 are efficiently divided (to further suppress the collision of the airflows). And aerodynamic efficiency can be further improved.
- the 21 has a first partition 41c instead of the first inner casing 43 in the electric blower 3 shown in FIG.
- the first partition portion 41c is a plate-like partition, is different from the first partition portion 41 shown in FIG. 11 in the axial direction thereof, and has a space on the first centrifugal fan 31 side and a first support member. It is fixed to the inner wall of the casing 20d at a position where the space on the 25th side can be blocked.
- this structure is substantially the same as the structure provided with the 2nd partition part instead of the 2nd inner casing 44 in the electric blower 3 shown by FIG.
- the electric blower 4 has a first inner casing 45 instead of the first partition portion 41 a in the electric blower 2 a shown in FIG. 13.
- the first inner casing 45 is an inner casing having the same function as the first inner casing 43 shown in FIG.
- FIGS. 24, 27, and 28 are diagrams illustrating a cross-sectional structure of another configuration example of the electric blower according to Embodiment 4, and are diagrams illustrating different configuration examples.
- FIG. 25 is a diagram schematically showing the air flow in the electric blower 4a shown in FIG. 24, and FIG. 26 shows the distances from the rotor cores of the first centrifugal fan 31 and the second centrifugal fan 32 in the electric blower 4a.
- FIG. 24 to 28 parts having the same or corresponding functions as those in FIG. 22 are denoted by the same reference numerals as those used in FIG.
- the air flow generated by the first centrifugal fan 31 is changed to an air flow as indicated by a broken line arrow in FIG. 25, and the air flow generated by the second centrifugal fan 32 in FIG. It can be an air current as shown by the solid line arrow. That is, the electric blower 4a guides one air flow (the air flow generated by the first centrifugal fan 31) as it is from the third opening 27e to the outside of the casing 20f, as indicated by a broken line arrow in FIG. 25, the other airflow (the airflow generated by the second centrifugal fan 32) is allowed to pass through the communication port of the second support member 26 and the communication port of the first support member 25, as indicated by solid arrows in FIG. The third opening 27e is led to the outside of the casing 20f from a part on the second centrifugal fan 32 side.
- the distance between the first centrifugal fan 31 and the first bearing 23 and the distance between the second centrifugal fan 32 and the second bearing 24 are not shown. Can also be adopted. Even when any distance is adopted to configure the electric blower 4a, the same effect is obtained.
- the electric blower 4b shown in FIG. 27 has the second inner casing 46 instead of the second partition portion 42a in the electric blower 4 shown in FIG. 22, and the second inner casing 46 instead of the casing 20e.
- the second inner casing 46 is provided with a second communication port 46a in the second inner casing 44 shown in FIG.
- the second communication port 46 a is a communication port through which the air flow generated by the second centrifugal fan 32 passes.
- the second communication port 46a extends from the flow path formed by the inner wall of the second inner casing 46 to the second support member 26 side (the rotor core 12 side or the second bearing 24 side). It is a communication port formed in the wall of the second inner casing 46 so as to communicate with, for example, a circular communication port.
- the second communication port 46a can be formed at a plurality of locations.
- the electric blowers 4, 4a, 4b by having the inner casing, it is possible to prevent the collision between the air flow generated by the first centrifugal fan 31 and the air flow generated by the second centrifugal fan 32, The effect of promoting the heat dissipation of the motor 10 and the bearings 23 and 24 and the effect of preventing the collision of airflow can be obtained at the same time.
- the electric blower 5 according to the fifth embodiment is the same as the distance between the first centrifugal fan 31 and the first fan cover 21 in the electric blower according to the first to fourth embodiments (
- the clearance (C1) and the interval (clearance) C2 between the second centrifugal fan 32 and the second fan cover 22 are made different from each other.
- the interval C1 and the interval C2 can be made different by, for example, adjusting at least one of the axial position and the angle at which the fan covers 21 and 22 are attached to the casing. It can also be realized by changing the shape.
- the electric blowers 1a and 1b shown in FIGS. 8 and 9 are both the first centrifugal fan than the second centrifugal fan 32 in order to balance the first force F1 and the second force F2. 31 is a structure that requires a strong airflow. Therefore, when the structure of either of the electric blowers 1a and 1b is applied, the electric blower according to Embodiment 5 may adopt a structure in which the interval C1 is smaller than the interval C2.
- the internal shape of the casing refers to the shape of the motor 10, the bearings 23 and 24, and the support members 25 and 26, which are obstacles to the inner wall and airflow of the casing. Including shape. That is, according to the electric blower 5, by adjusting the work of the centrifugal fans 31 and 32, the air flow unbalance due to obstacles on the air passage (thrust load applied to the rotating shaft 13 from both the centrifugal fans 31 and 32) It is possible to adjust so as to reduce the unbalance), and the degree of freedom in designing the electric blower can be increased.
- Embodiment 6 ⁇ 6-1 Configuration An electric blower according to Embodiment 6 will be described with reference to FIGS. 30 to 32.
- 30 to 32 are diagrams showing a cross-sectional structure of one configuration example of the electric blower according to the sixth embodiment, and are all diagrams showing different configuration examples. Here, for the sake of convenience, the central portion in the axial direction is omitted. is doing. 30 to 32, parts having the same or corresponding functions as those in FIG. 1 are denoted by the same reference numerals as those used in FIG.
- the difference between the first and fifth embodiments will be described with respect to the sixth embodiment. However, in the sixth embodiment, various examples other than the differences in the first to fifth embodiments can be applied.
- the outer diameter D1 of the first centrifugal fan 31 is allowed to be different from the outer diameter D2 of the second centrifugal fan 32 as in the electric blower 6 shown in FIG.
- the work of the first centrifugal fan 31 and the work of the second centrifugal fan 32 are allowed to be adjusted. Therefore, in the electric blower according to the sixth embodiment, the thrust load generated when the rotary shaft 13 rotates according to the internal shape of the casing such as the casing 20 is, for example, the first force F1 and the second force F2. It becomes easy to adjust to balance.
- the electric blower according to the sixth embodiment by adjusting the work of the centrifugal fans 31 and 32, the air flow unbalance due to obstacles or the like on the air path (both the centrifugal fan 31 and 32 on the rotating shaft 13) It is possible to adjust so as to reduce the unbalance of the thrust load given by the motor, and the degree of freedom in designing the electric blower can be increased. Further, according to the electric blower according to the sixth embodiment, it is not necessary to change the design of other members such as the fan covers 21 and 22 in order to reduce such an imbalance.
- the first centrifugal fan is selected from among centrifugal fans having different outer diameters even if the design is such that the air path is asymmetric. And what is attached as a 2nd centrifugal fan can be selected, and it can adjust so that the thrust force by the airflow generated by the 1st centrifugal fan and the thrust force by the airflow generated by the 2nd centrifugal fan may be balanced.
- the centrifugal fan can generate a stronger airflow as its thickness increases, and the thickness T1 of the first centrifugal fan 31 and the thickness T2 of the second centrifugal fan 32 are the same.
- the relationship is the same as the relationship between the outer diameter D1 and the outer diameter D2. Therefore, as shown in FIG. 31, when the structure of any one of the electric blowers 4, 4a, 4b, and 4c shown in FIGS. A structure in which the thickness T1 is smaller than the thickness T2 of the second centrifugal fan 32 may be employed.
- the electric blower that makes the thickness T1 and the thickness T2 different is not shown when the structure of any of the electric blowers 1a and 1b shown in FIGS. 8 and 9 is applied, but the thickness of the first centrifugal fan 31 is not shown.
- a structure in which T1 is larger than the thickness T2 of the second centrifugal fan 32 may be employed.
- the shape other than the number of blades such as the axial height of the blades or the surface area of each blade (or the surface area of all the blades of the centrifugal fan) is made different.
- the shape of the base (base) on which the blades are provided by attachment or the like can be made different.
- the first centrifugal fan and the second centrifugal fan may have a plurality of different shape parameters described above. That is, in the sixth embodiment, the first centrifugal fan and the second centrifugal fan are provided with the outer diameter, the axial thickness, the number of blades, the surface area of the blades, the axial height of the blades, and the blades. At least one of the shapes of the bases to be formed is made different.
- FIG. 33 is a diagram illustrating a cross-sectional structure of a configuration example of the electric blower according to the seventh embodiment.
- an axial end portion (a portion to which the first centrifugal fan and the second centrifugal fan are attached) Is omitted.
- parts having the same or corresponding functions as those in FIG. 1 are denoted by the same reference numerals as those used in FIG.
- the difference between the first and sixth embodiments will be described with respect to the seventh embodiment.
- various examples excluding the differences in the first to sixth embodiments can be applied.
- the electric blower 7 according to the seventh embodiment has a structure in which the axial center position of the rotor core 12 is deviated from the axial center position of the stator 11. That is, in the seventh embodiment, the axial positional relationship between the stator 11 and the rotor 14 is different, and the axial center of the rotor 14 is shifted from the axial center of the stator 11. Yes.
- the axial center position of the rotor core 12 is located on the first centrifugal fan 31 side by a distance ⁇ m from the axial center position of the stator 11.
- an axial (thrust direction) magnetic attractive force is generated between the stator 11 and the rotor core 12 of the rotor 14. Since this magnetic attraction force does not depend on the number of rotations of the rotor 14, the thrust force Fm in the direction indicated by the arrow in FIG. 33 acts on the rotor 14, resulting in the fifth and sixth embodiments. Has the same effect as.
- ⁇ 7-2 Effect
- the electric blower 7 according to the seventh embodiment since the positional relationship in the axial direction of the rotor 14 with respect to the stator 11 is allowed to be arbitrarily shifted, an obstacle on the air passage, etc. It becomes easy to adjust so as to reduce the air flow imbalance due to the air flow, and the degree of freedom in designing the electric blower can be increased.
- the design when designing the electric blower, the design is such that the air path of the air flow generated by the first centrifugal fan 31 and the second centrifugal fan 32 is asymmetric.
- the distance ⁇ m is adjusted so that the thrust force Fm, the thrust force generated by the air flow generated by the first centrifugal fan 31, and the thrust force generated by the air flow generated by the second centrifugal fan 32 are obtained. It can be adjusted to balance.
- FIG. 34 is a diagram illustrating a cross-sectional structure of a configuration example of the electric blower according to the eighth embodiment. 34, parts having the same or corresponding functions as those in FIG. 1 are denoted by the same reference numerals as those used in FIG.
- the eighth embodiment will be described with a focus on differences from the first to seventh embodiments (particularly, differences from the first embodiment). However, the eighth embodiment is different from the first to seventh embodiments. Various examples except for points can be applied.
- the electric blower 8 can be configured such that gas is sucked and discharged from the inside of the casing 20h by both the centrifugal fans 31 and 32 to the outside.
- the casing 20h is obtained by inverting the fan covers 21 and 22 with respect to a plane perpendicular to the axial direction in the casing 20 shown in FIG.
- the centrifugal fans 31 and 32 shown in FIG. 34 are fixed to the rotary shaft 13 in the opposite direction to the centrifugal fans 31 and 32 shown in FIG.
- the first centrifugal fan 31 is fixed outside the casing 20h (outside in the axial direction from the first opening 21a), and the second centrifugal fan 32 is also outside the casing 20h (first 2 is fixed to the outer side in the axial direction from the opening 22a.
- the first fan cover 21 has a first opening 21a as a gas suction port, and an air flow (discharged gas) generated in the centrifugal direction from the first centrifugal fan 31. It has the inclined surface (1st inclined surface) which collides, and the opening part 21b as an opening which discharges gas.
- the first fan cover 21 has a cylindrical shape whose diameter (inner diameter and outer diameter) increases as the distance from the rotor core 12 increases with the rotation axis of the rotation shaft 13 as the center. Can have.
- the shape of the first fan cover 21 is not limited to this.
- the first fan cover 21 causes the gas sucked from the first opening 21 a by the rotation of the first centrifugal fan 31 to flow in the centrifugal direction.
- the direction of the air flow (wind direction) is changed on the first inclined surface, and the air is discharged from the opening 21b.
- the first fan cover 21 does not cover the first centrifugal fan 31 at least in the first opening 21a and the opening 21b.
- the first fan cover 21 is fixed to the inner peripheral wall of the casing 20h at the opening 21b.
- the second fan cover 22 has a second opening 22a as an inlet for sucking gas and an air flow generated in the centrifugal direction from the second centrifugal fan 32 (discharged gas). ) Collide with each other (second inclined surface) and an opening 22b as a gas discharge port.
- the second fan cover 22 has a cylindrical shape whose diameter (inner diameter and outer diameter) increases as the distance from the rotor core 12 increases with the rotation axis of the rotation shaft 13 as the center. Can have.
- the shape of the second fan cover 22 is not limited to this.
- the second fan cover 22 causes the gas sucked from the second opening 22a by the rotation of the second centrifugal fan 32 to flow in the centrifugal direction.
- the direction of the air flow (wind direction) is changed on the second inclined surface, and the air is discharged from the opening 22b.
- the second fan cover 22 does not cover the second centrifugal fan 32 at least in the second opening 22a and the opening 22b.
- the second fan cover 22 is fixed to the inner peripheral wall of the casing 20h at the opening 22b.
- the electric blower 8 according to Embodiment 8 has the above-described configuration, for example, so that the first force F1 is applied to the first end side of the rotating shaft 13 (the side on which the first centrifugal fan 31 is attached).
- the second force F2 from the second end side of the rotary shaft 13 to the first end side is defined as a force directed from the end portion to the second end side (end portion on the side where the second centrifugal fan 32 is attached).
- the power to go That is, in the electric blower 8, the first direction is the direction from the first end side toward the second end side, and the second direction is the direction from the second end side toward the first end side. Also in the eighth embodiment, it is preferable that the first force F1 and the second force F2 are balanced with each other.
- FIG. 35 is a perspective view showing an example of a vacuum cleaner as an electric device according to the ninth embodiment
- FIG. 36 is a perspective view showing an example of a jet towel as the electric device according to the ninth embodiment.
- the electric blower according to Embodiments 1 to 8 can be provided in various electric devices.
- the cleaner 9 a shown in FIG. 35 includes a main body 91, a dust collecting unit 92 attached to the main body 91, a duct 93, and a suction nozzle 94 attached to the tip of the duct 93.
- the main body 91 is also provided with an exhaust port.
- the cleaner 9a can have the electric blower 8 shown by FIG.
- the vacuum cleaner 9a connects the third openings 27 and 28 of the electric blower 8 to the duct 93 side, connects the openings 21b and 22b of the fan covers 21 and 22 to the exhaust port side, and connects the duct 93 and the The dust collecting part 92 can be provided between the three openings 27 and 28 or between the openings 21b and 22b and the exhaust port.
- the vacuum cleaner 9a may be mounted with any of the electric blowers according to the first to eighth embodiments, such as the electric blower 1 shown in FIG.
- the jet towel 9b connects the openings 21a and 22a of the fan covers 21 and 22 of the electric blower 1 to the suction port 97 side, connects the third openings 27 and 28 to the blow port 98 side, A heat source (not shown) can be provided between the openings 27 and 28 and the blower port 98.
- the jet towel 9b may be equipped with any of the electric blowers according to the first to eighth embodiments, such as the electric blower 8 shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
電動送風機(1)は、回転シャフト(13)を有するモータ(10)と、回転シャフト(13)の第1端側に固定された第1の遠心ファン(31)と、回転シャフト(13)の第1端側の反対側の第2端側に固定された第2の遠心ファン(32)と、モータ(10)、第1の遠心ファン(31)、及び第2の遠心ファン(32)を囲うケーシング(20)と、を有する。電動送風機(1)は、回転シャフト(13)の回転中、第1の遠心ファン(31)により回転シャフト(13)に対して回転シャフト(13)の軸方向である第1の方向に与えられる第1の力(F1)と、第2の遠心ファン(32)により回転シャフト(13)に対して回転シャフト(13)の軸方向である第2の方向に与えられる第2の力(F2)とは、互いに反対である。
Description
本発明は、電動送風機及びそれを備えた電気機器に関する。
電動送風機は、主に、モータとモータの回転シャフトに取り付けられたファンとで構成することができる。このような電動送風機は、ファンの回転時に、ファン、モータ、及び回転シャフトを回転可能に支持するベアリングから、振動による騒音が発生する。この騒音を低減する1つの方法として、回転時のベアリングの内輪と外輪との隙間(クリアランス)を小さくする方法がある。
例えば、特許文献1は、シャフト、ベアリング組立体、及びインペラを有するロータ組立体を開示している。このベアリング組立体は、第1のベアリング、第2のベアリング、第1のベアリング及び第2のベアリングの各々に予荷重を付与するスプリング、及び、これらを取り囲むスリーブを備え、上記の予荷重により、ベアリングの内輪と外輪とで発生するクリアランスを小さくしている。これにより、このロータ組立体では、シャフトの回転時のベアリングの騒音を抑えている。
しかしながら、特許文献1に記載のロータ組立体では、ベアリングには、スプリングの予荷重に加え、インペラが回転することによる空力の静圧がスラスト荷重として加わるため、ロータ組立体における回転軸方向のバランスがとれなくなる。そして、このロータ組立体では、そのスラスト荷重がベアリングにかかるため、ベアリングの摩耗による寿命低下が懸念される。
一方で、電動送風機を小型化するためには、高出力化が必要となる。電動送風機に備えるファンの仕事量は静圧と風量で決まるが、電動送風機の小型化のためにファンを小型化すると風量が小さくなる。よって、電動送風機を小型化するためには、静圧を高くする必要があり、そのために、ファンを軸流ファンではなく空力効率の高い遠心ファンにすることが望まれている。しかしながら、電動送風機に遠心ファンを備えることで静圧の高出力化を図ると、ファンに圧力差によって負圧荷重がかかる。そして、その力は回転シャフトを介し、回転シャフトを回転可能に支持するベアリングが受けることになるので、ベアリングの寿命に影響を及ぼす。
このように、電動送風機を小型化するために遠心ファンを採用すると、回転シャフトにかかる軸方向の力(スラスト力)が強くなり、電動送風機におけるモータの軸方向の力のバランスがとれなくなり、例えば、その回転シャフトを回転可能に支持するベアリングの摩耗が進み、寿命が短くなる。
本発明は、上述のような課題を解消するためになされたもので、その目的は、遠心ファンの回転時にモータの回転シャフトに加わる軸方向の力を低減することが可能な電動送風機、及びその電動送風機を備えた電気機器を提供することにある。
本発明の一態様に係る電動送風機は、回転シャフトを有するモータと、前記回転シャフトの第1端側に固定された第1の遠心ファンと、前記回転シャフトの前記第1端側の反対側の第2端側に固定された第2の遠心ファンと、前記モータ、前記第1の遠心ファン、及び前記第2の遠心ファンを囲うケーシングと、を有し、前記回転シャフトの回転中、前記第1の遠心ファンにより前記回転シャフトに対して前記回転シャフトの軸方向である第1の方向に与えられる第1の力と、前記第2の遠心ファンにより前記回転シャフトに対して前記回転シャフトの軸方向である第2の方向に与えられる第2の力とは、互いに反対である。
本発明の他の態様に係る電気機器は、前記電動送風機を備える。
本発明によれば、電動送風機において、遠心ファンの回転時にモータの回転シャフトに加わる軸方向の力を低減することができる。
以下に、本発明の実施の形態に係る電動送風機及び電気機器について、図を参照しながら説明する。
《1》実施の形態1
《1-1》構成
本発明の実施の形態1に係る電動送風機について、図1から図10を参照しながら説明する。図1は、実施の形態1に係る電動送風機の一構成例の断面構造を示す図、図2は、図1に示される電動送風機1における第1の遠心ファンの一構成例を示す斜視図、図3は、図1に示される電動送風機1における気流を概略的に示す図である。なお、図3において、破線矢印及び実線矢印で気流の様子を示しているが、図示した矢印は気流の一例を概略的に示したものに過ぎず、後述する、同様の破線矢印及び実線矢印が描かれた図面についても同様のことが言える。
《1-1》構成
本発明の実施の形態1に係る電動送風機について、図1から図10を参照しながら説明する。図1は、実施の形態1に係る電動送風機の一構成例の断面構造を示す図、図2は、図1に示される電動送風機1における第1の遠心ファンの一構成例を示す斜視図、図3は、図1に示される電動送風機1における気流を概略的に示す図である。なお、図3において、破線矢印及び実線矢印で気流の様子を示しているが、図示した矢印は気流の一例を概略的に示したものに過ぎず、後述する、同様の破線矢印及び実線矢印が描かれた図面についても同様のことが言える。
図1に示されるように、実施の形態1に係る電動送風機1は、回転シャフト13を有するモータ10と、回転シャフト13の第1端側に固定された第1の遠心ファン31と、回転シャフト13の上記第1端側の反対側の第2端側に固定された第2の遠心ファン32と、ケーシング(筐体)20と、を有する。
モータ10は、例えば、固定子11と、固定子11の内側に備えられ、回転シャフト13及び回転シャフト13に固定された回転子コア12を有する回転子14と、を有することができる。なお、この回転子14は、例えば、回転子コア12の中心部分に設けられたシャフト孔に、回転シャフト13が固定されて構成される。モータ10は、固定子11に対して回転シャフト13を回転軸として回転子14が回転するようになっている。その他、図示しないが、電動送風機1は、モータ10を駆動させるために、駆動回路、電源、及び電気配線などを備えている。
図1に示されるように、第1の遠心ファン31は、回転シャフト13の第1端(図1における右端)に固定され、第2の遠心ファン32は、回転シャフト13の第2端(図1における左端)に固定されることができる。但し、回転シャフト13の右端を第1の遠心ファン31から突出させた状態で第1の遠心ファン31が固定されてもよいし、回転シャフト13の左端を第2の遠心ファン32から突出させた状態で第2の遠心ファン32が固定されてもよい。以下、第1の遠心ファン31及び第2の遠心ファン32について区別せずに説明を行う際には、第1の遠心ファン31及び第2の遠心ファン32を単に遠心ファン31,32と称する。
遠心ファン31,32は、いずれも、回転時に回転軸に平行な軸方向(つまり、回転の軸方向)に直角な方向の成分(遠心方向成分)を有する気流が発生できる形状を有するファンであり、輻流ファン、多翼ファン、ターボファンなどと称することもできる。具体的には、第1の遠心ファン31は、例えば、図2に示されるように、回転シャフト13を取り付ける基部(土台)33aに複数の羽根33bが設けられた形状を有することができ、それらの羽根33bの回転時に少なくとも遠心方向成分を有する気流を発生する。なお、羽根33bは、遠心翼と称されることもある。また、以下では、回転の軸方向を、単に「軸方向」とも称す。
第2の遠心ファン32も、第1の遠心ファン31と同様の形状を有することができるが、いずれも回転シャフト13を共通の回転軸として回転するため、例えば、第1の遠心ファン31が図2に示される形状を有するのであれば、第2の遠心ファン32は図2の紙面上において軸対称に左右反転させたような形状を有することが、同程度の気流を発生できる点から、好ましいと言える。但し、遠心ファン31,32は、前向き羽根を有するファンであっても後向き羽根を有するファンであってもよく、特に、回転シャフト13への取付前の状態で見た時に同じ向きの羽根を有すること、例えば全く同じ形状とすることもできる。
また、遠心ファン31,32の形状は、主に遠心ファン31,32が有する羽根の形状及び数などで規定されることとなるが、上述した通り、回転時に遠心方向成分を有する気流が発生できる形状であればよい。よって、遠心ファン31,32は、遠心方向成分と軸方向に平行な成分(軸方向成分)とを有する気流を発生する斜流ファンとすることもできる。つまり、ここで説明している遠心ファンの概念には、斜流ファンも含まれる。なお、遠心ファン31,32は、翼となる複数の羽根が回転運動するため、動翼の一種であると言える。
ケーシング20は、モータ10、第1の遠心ファン31、及び第2の遠心ファン32を囲うものであり、図1に示されるように、例えば、少なくとも回転シャフト13の回転軸の周りにおいて、モータ10、第1の遠心ファン31、及び第2の遠心ファン32を囲う部材である。固定子11は、例えば、ケーシング20の内壁に固定しておくことができる。
また、ケーシング20は、第1の遠心ファン31と第2の遠心ファン32との間に設けられ、気流の通過口となる少なくとも1つの開口部(便宜上、第3の開口部と称する)を有する。この第3の開口部は、ケーシング20に設けられた開口部であり、ケーシング開口部と称することができる。第3の開口部は、例えば、図1に示されるように2つの開口部27,28とすることができる。
ここで、気流の通過口とは、気体の出口及び入口のいずれか一方を指し、実施の形態1では気体の出口を指す。つまり、電動送風機1における第3の開口部27,28は、図1及び図3に示されるように気体の出口(気流の下流側に位置する開口部)となる。また、気体は、空気であることが一般的であるが、これに限らず特定の気体であってもよい。なお、上述のように、第3の開口部27,28は、図1及び図3に示される後述の第1の開口部21a及び第2の開口部22aとは別の開口部を指す。
第3の開口部27は、回転子コア12と第1の遠心ファン31との間の軸方向の位置に形成することができ、特に、後述する第1の遠心ファン31と第1の支持部材25(又は第1のベアリング23)との間の軸方向の位置に形成することができる。第3の開口部28は、回転子コア12と第2の遠心ファン32との間の軸方向の位置に形成することができ、特に、後述する第2の遠心ファン32と第2の支持部材26(又は第2のベアリング24)との間の軸方向の位置に形成することができる。
また、ケーシング20は、図1に示されるように、第1の開口部21a及び第2の開口部22aを有することができる。第1の開口部21aは、ケーシング20の第1端側に設けられた開口部であり、第2の開口部22aは、ケーシング20の第2端側に設けられた開口部である。第1の開口部21aは、第1の遠心ファン31により発生した気流を通過させることができ、第2の開口部22aは、第2の遠心ファン32により発生した気流を通過させることができる。以下、第1の開口部21a及び第2の開口部22aについて区別せずに説明を行う際には、これらを単に開口部21a,22aと称する。開口部21a,22aは、第3の開口部27,28と同様にケーシング開口部と称することができるが、カバー開口部と称することもできる。
また、ケーシング20は、図1に示されるように、第1の開口部21aが設けられ、第1の遠心ファン31により発生した遠心方向の気流を軸方向に向ける第1のファンカバー21を有することができる。第1のファンカバー21は、第1の遠心ファン31の一部(少なくとも第1の開口部21aを除く部分)を覆うカバーとなる。さらに、ケーシング20は、図1に示されるように、第2の開口部22aが設けられ、前記第2の遠心ファンにより発生した遠心方向の気流を軸方向に向ける第2のファンカバー22を有することができる。第2のファンカバー22は、第2の遠心ファン32の一部(少なくとも第2の開口部22aを除く部分)を覆うカバーとなる。但し、ケーシング20は、第1のファンカバー21及び第2のファンカバー22のような斜めに配置されたカバーを有さない構造であっても、第1の開口部21a及び第2の開口部22aを有していればよい。以下、第1のファンカバー21及び第2のファンカバー22について区別せずに説明を行う際には、これらを単にファンカバー21,22と称する。
図3に示されるように、第1のファンカバー21は、気体を吸引する口として第1の開口部21aを有するとともに、第1の遠心ファン31から遠心方向に発生した気流(吐出された気体)が衝突する傾斜面(第1傾斜面)を有する。このような構成及び第1の遠心ファン31との位置関係により、第1のファンカバー21は、第1の遠心ファン31の回転によって第1の開口部21aから吸引された気体を遠心方向に流し、上記第1傾斜面にてその気流の向き(風向)を変更する風向変更部材(風向調整変更板)として機能する。図3において破線矢印で示される気流のように、この例では、上記第1傾斜面により気流を回転子コア12側へ向かう方向に変更させること、つまり軸方向成分を有するように変更させることができる。
また、図1に示されるように、第1のファンカバー21は、回転シャフト13の回転軸を中心とし回転子コア12からの距離が離れるに連れて直径(内径及び外径)を小さくした円筒の形状を有することができる。但し、第1のファンカバー21の形状はこれに限ったものではない。なお、第1のファンカバー21は、少なくとも第1の開口部21aにおいては、第1の遠心ファン31を覆っていない。また、第1のファンカバー21は、例えば、図1に示されるように、ケーシング20の本体の内周壁に固定しておくことができる。
図3に示されるように、第2のファンカバー22は、第1のファンカバー21と同様に、気体を吸引する口として第2の開口部22aを有するとともに、第2の遠心ファン32から遠心方向に発生した気流が衝突する傾斜面(第2傾斜面)を有し、風向変更部材として機能する。図3において実線矢印で示される気流のように、この例では、上記第2傾斜面により気流を回転子コア12側へ向かうように変更させることができる。図1に示されるように、第2のファンカバー22も、第1のファンカバー21と同様に、回転シャフト13の回転軸を中心とし回転子コア12からの距離が離れるに連れて直径を小さくした円筒の形状を有することができるが、これに限ったものではない。なお、第2のファンカバー22は、少なくとも第2の開口部22aにおいては第2の遠心ファン32を覆っていない。また、第2のファンカバー22も、第1のファンカバー21と同様に、例えばケーシング20の本体の内周壁に固定しておくことができる。
なお、第1の遠心ファン31が斜流ファンである場合、回転時に斜流ファン単独で軸方向成分を含む気流を発生することができるが、この場合にも、ケーシング20は、第1のファンカバー21を備えることができる。第2の遠心ファン32が斜流ファンである場合についても第1の遠心ファン31と同様に説明できる。
また、電動送風機1は、図1に示されるように、第1のベアリング23、第2のベアリング24、第1の支持部材(第1のベアリング支持部材)25、及び第2の支持部材(第2のベアリング支持部材)26を有することができる。以下、第1のベアリング23及び第2のベアリング24について区別せずに説明を行う際には、これらを単にベアリング23,24と称する。同様に、第1の支持部材25及び第2の支持部材26について区別せずに説明を行う際には、これらを単に支持部材25,26と称する。
第1のベアリング23は、第1端側において回転シャフト13を回転可能に支持するベアリングであり、図1に示されるように、第1の遠心ファン31と回転子コア12との間の位置に配置されることができる。また、第1の支持部材25は、ケーシング20内に固定され、第1のベアリング23を支持する。第2のベアリング24は、第2端側において回転シャフト13を回転可能に支持するベアリングであり、図1に示されるように、第2の遠心ファン32と回転子コア12との間の位置に配置されることができる。また、第2の支持部材26は、ケーシング20内に固定され、第2のベアリング24を支持する。
ベアリング23,24及び支持部材25,26について、図4から図6を併せて参照しながら説明する。図4は、第1のベアリング23及び第1の支持部材25の一例を示す図、図5は、図4に示される第1の支持部材25を示す上面図で図4のA-A線から見た上面図、図6は、第1の支持部材25の他の構成例を示す断面図である。
図1及び図4に示されるように、第1の支持部材25は、ケーシング20の内壁に固定することで、取り付けることができる。例えば、第1の支持部材25は、突起部を有し、ケーシング20に形成した孔にその突起部を貫通させた状態で、ケーシング20に固定することができる。第2の支持部材26のケーシング20への取り付け方法も第1の支持部材25の取り付け方法と同様である。
図4に示されるように、第1のベアリング23は、内輪23a、外輪23b、及びそれらの間に備えられた複数の転動体23cを有することができる。ここで、図4に示されるように、第1のベアリング23の内輪23aの内周側は、回転シャフト13の中央部分に固定された回転子コア12と第1端側(図1における右側)に固定された第1の遠心ファン31との間において、回転シャフト13に固定されている。一方、図4に示されるように、第1のベアリング23の外輪23bの外周側は、第1の支持部材25に固定されている。
なお、図4に示される例では、第1のベアリング23として、内輪23a、外輪23b、及び転動体23cを有するベアリングと、内輪23d、外輪23e、及び転動体23fを有するベアリングの、合計2つのベアリングを備えることで、回転シャフト13の傾きを防止しながら保持しているが、ベアリングの個数はこれに限ったものではない。
図示しないが、第2のベアリング24は、第1のベアリング23と同様に、内輪、外輪、及びそれらの間に備えられた複数の転動体を有することができる。また、第2のベアリング24の回転シャフト13及び第2の支持部材26への固定方法についても、第1のベアリング23の回転シャフト13及び第1の支持部材25への固定方法と同様である。つまり、第2のベアリング24の内輪の内周側は、回転子コア12と第2の遠心ファン32との間において、回転シャフト13に固定されており、第2のベアリング24の外輪の外周側は、第2の支持部材26に固定されている。
このように、第1のベアリング23を回転シャフト13及び第1の支持部材25に取り付け、第2のベアリング24を回転シャフト13及び第2の支持部材26に取り付けることで、回転シャフト13及びそれに固定された回転子コア12は、第1の支持部材25及び第2の支持部材26及びそれらが固定されたケーシング20に対して回転可能に、つまりケーシング20に固定された固定子11に対して回転可能になる。
また、第1の支持部材25は、図5に示されるように、第4の開口部25dを有することができる。第4の開口部25dは、ケーシング20の内部の開口部であり、内部開口部と称することもできる。第4の開口部25dは、第1の支持部材25の回転子コア12側の空間と第1の支持部材25の第1の遠心ファン31側の空間とを連通させる連通口とすることができる。図5に示される第1の支持部材25は、ケーシング20の内壁に固定するための環状部25aと、第1のベアリング23の外輪23b,23eに固定するための中心部25bと、環状部25aと中心部25bとを接続する複数本の枝部25cと、を有し、隣り合う枝部25c同士の間が第4の開口部25dとなっている。この例では、枝部25cが4本設けられており、第4の開口部25dの数が4つとなっている。また、第1の支持部材25に第4の開口部として設けられる連通口の数は、複数に限らず、1つであってもよい。
また、第1の支持部材25は、第4の開口部を有する構成を採用した場合であっても、上述したような形状に限ったものではなく、例えば環状部25aを取り除き、枝部25cの先端が直接ケーシング20の内壁に固定されるような形状であってもよい。より具体的には、第1の支持部材25は、図6に示されるように、図4及び図5に示される第1の支持部材25において、枝部25cをそのままに環状部25aを取り除き、且つ中心部25bを枝部25cと同様の枝部を有するように構成した取付部25baを設けたような形状を有することができる。図6に示される例では、取付部25baの枝部の先端とそれより軸方向の位置がずれた枝部25cの先端とを、ケーシング20の内壁に固定することができるため、第1の支持部材25をケーシング20に対して強固に固定することができる。
また、図示しないが、第2の支持部材26は、第1の支持部材25と同様に、内部開口部(第5の開口部と称す)を有することができ、第5の開口部は、例えば、第2の支持部材26の回転子コア12側の空間と第2の支持部材26の第2の遠心ファン32側の空間とを連通させる連通口とすることができる。また、第2の支持部材26に第5の開口部として設けられる連通口の数も、複数に限らず、1つであってもよい。以下、第4の開口部と第5の開口部とについて、区別せずに説明を行う際には、これらを単に連通口(支持部材25,26に設けられた連通口)と称する。
第1の支持部材25に第4の開口部を設け且つ第2の支持部材26に第5の開口部を設けておくことで、モータ10の放熱を促進(補助)することができ、また、第1のベアリング23の放熱を第1の遠心ファン31側からだけでなくモータ10側からも促進(補助)することができ、第2のベアリング24の放熱を第2の遠心ファン32側からだけでなくモータ10側からも促進(補助)することができる。実際、モータ10の巻線は通電時に発熱し、回転シャフト13を回転可能に支持するベアリング23,24も回転シャフト13の回転時に摩擦により発熱し、いずれも発熱によって、寿命が短くなること及び信頼性が低下することが懸念されるが、上述のような放熱の促進により、モータ10及びベアリング23,24の信頼性が向上し、長寿命化が図れる。
なお、第1のベアリング23の第1の遠心ファン31側からの放熱は、第1の遠心ファン31側からの気流が第1のベアリング23に接することによるものであり、第2のベアリング24の第2の遠心ファン32側からの放熱は、第2の遠心ファン32側からの気流が第2のベアリング24に接することによるものである。また、第1のベアリング23の放熱は、第1のベアリング23と回転シャフト13との間を、軸方向の両端のいずれか一方から他方へ気流を通すことで促進させることができる。同様に、第2のベアリング24の放熱は、第2のベアリング24と回転シャフト13との間を、軸方向の両端のいずれか一方から他方へ気流を通すことで促進させることができる。
次に、図1に示される電動送風機1における主たる特徴について、図7を併せて参照しながら説明する。図7は、図1に示される電動送風機1における回転シャフト13に与えられる軸方向の力の向きを示す図である。
実施の形態1では、回転シャフト13の回転中、図7に示されるように、第1の遠心ファン31により回転シャフト13に対して第1の方向に与えられる第1の力F1と、第2の遠心ファン32により回転シャフト13に対して第2の方向に与えられる第2の力とは、互いに反対である。ここで、第1の方向及び第2の方向は、いずれも回転シャフト13の軸方向であるが、互いに反対の方向である。換言すると、実施の形態1では、第1の遠心ファン31が回転シャフト13に対して軸方向に与える第1の力F1と、第2の遠心ファン32が回転シャフト13に対して軸方向に与える第2の力F2とは、互いに反対の向きである。なお、第1の力F1及び第2の力F2は、いずれも回転シャフト13の軸方向に作用する力を指し、スラスト力又はスラスト荷重とも称される。
このような第1の力F1及び第2の力F2は、回転シャフト13の軸の両端に固定された第1の遠心ファン31及び第2の遠心ファン32が回転時に気体を吸い込む(図3に示される実施の形態1では、ケーシング20の外部から内部へと吸い込む)際の反作用として生じる。よって、上述のような第1の力F1と第2の力F2との関係は、第1の遠心ファン31及び第2の遠心ファン32が吸い込む気流の向きが、互いに軸方向に反対(互いに対称の向き)となることを意味する。電動送風機1は、第1の力F1と第2の力F2とが上述のような関係になるように構成することで、第1の遠心ファン31及び第2の遠心ファン32の回転軸となる回転シャフト13に双方から互いに打消し合う(相殺し合う)方向のスラスト力を与えることができるため、電動送風機1における軸方向の力のバランスを良くすること(軸方向の力を低減すること)ができる。
また、回転シャフト13にスラスト荷重が加わった場合、図4に示される、第1のベアリング23の内輪23a及び外輪23bと転動体23cとの間の摩擦、及び内輪23d及び外輪23eと転動体23fとの間の摩擦が増え、摩耗することがあり、第2のベアリング24についても同様である。しかし、実施の形態1では、回転シャフト13にかかるスラスト荷重を低減しているため、このような摩耗の量を低減することができ、第1のベアリング23及び第2のベアリング24の長寿命化を図ることができる。
また、第1の力F1と第2の力F2とを互いに反対の方向の力とすることは、図3において気流が破線矢印及び実線矢印で示されるように、遠心ファン31,32の双方でケーシング20の外部から内部へ気体を吸い込むように電動送風機1を構成することで実現できるが、第1の遠心ファン及び第2の遠心ファンの双方でケーシングの内部から外部へ気体を吸い込んで吐出する電動送風機であっても実現できる。実施の形態1では、前者の場合について説明しており、後者の場合については、実施の形態8として後述する。
前者の場合に相当する実施の形態1に係る電動送風機1では、第1の力F1は、回転シャフト13の第2端側(第2の遠心ファン32が取り付けられた側の端部)から第1端側(第1の遠心ファン31が取り付けられた側の端部)に向かう力であり、第2の力F2は、回転シャフト13の第1端側から第2端側に向かう力である。つまり、電動送風機1では、第1の方向が第2端側から第1端側に向かう方向であり、第2の方向が第1端側から第2端側に向かう方向である。
また、電動送風機1は、図3において気流が破線矢印及び実線矢印で示されるように、遠心ファン31,32によりファンカバー21,22の開口部21a,22aから気体を吸引し、その気体を開口部27,28から吐出(排出)する。よって、電動送風機1は、例えば、開口部27,28に送風口を有する管などを接続することにより、送風用途の電気機器に搭載することができる。但し、電動送風機1は、例えば、開口部21a,22aに吸引口を有する管などを接続することにより、吸引用途の電気機器に搭載することもできる。
ここで、気流の一部がモータ10を通過する構造を採用した場合、モータ10において塵が堆積しないように、ケーシング20の外部(開口部27,28又はそれに接続された管など、又は、開口部21a,22a又はそれに接続された管など)にフィルタ等を備えることが望ましい。
また、第1の力F1と第2の力F2とは、互いに釣り合うこと(大きさが等しいこと)が好ましい。これにより、遠心ファン31,32の回転に伴う電動送風機1の軸方向の力をなくし、軸方向のバランスを正確にとることができる。ここで、第1の遠心ファン31が起こす気流と第2の遠心ファン32が起こす気流とが、第1の遠心ファン31と第2の遠心ファン32との中間位置における軸方向に垂直な面に対して面対称となるように、遠心ファン31,32及びファンカバー21,22の形状及び配置を行うことで、第1の力F1と第2の力F2とを釣り合わせてもよい。また、第1の力F1と第2の力F2が正確に釣り合わなくても、ほぼ釣り合っていれば同様の効果を奏する。
《1-2》変形例
実施の形態1に係る電動送風機の変形例について、図8から図10を参照しながら説明する。図8から図10は、実施の形態1に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図8から図10において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。
実施の形態1に係る電動送風機の変形例について、図8から図10を参照しながら説明する。図8から図10は、実施の形態1に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図8から図10において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。
図8に示される電動送風機1aは、図1に示される電動送風機1において、ケーシング20の代わりに開口部27を有さない(開口部27が設けられていない)ケーシング20aを有する。電動送風機1aでは、第1の支持部材25及び第2の支持部材26にいずれも連通口が設けられているものとし、図8において破線矢印で示されるように、第1の遠心ファン31から吸い込まれた気体は、モータ10の内部を通過し、開口部28から吐出される。また、図8において実線矢印で示されるように、第2の遠心ファン32から吸い込まれた気体は、そのまま開口部28から吐出される。
図9に示される電動送風機1bは、図8に示される電動送風機1aにおいて、ケーシング20aの代わりに、ケーシング20aにおいて新たな第3の開口部28aが設けられたケーシング20bを有する。電動送風機1bでは、第1の支持部材25及び第2の支持部材26にいずれも連通口が設けられているものとし、図9において破線矢印で示されるように、第1の遠心ファン31から吸い込まれた気体は、モータ10の内部を通過し、開口部28,28aから吐出される。また、図9において実線矢印で示されるように、第2の遠心ファン32から吸い込まれた気体は、そのまま開口部28,28aから吐出される。なお、図9に示されるように、開口部28と開口部28aとの軸方向の位置は同じであるが、開口部28と開口部28aの軸方向の位置は、第2の遠心ファン32と第2の支持部材26との間であればよい。また、ケーシング20bにおいて、このような間の軸方向の位置に設けられる第3の開口部は、2つに限らず、3つ以上であってもよいが、回転シャフト13を中心とする円周上に均等に配置しておくことが好ましい。
図10に示される電動送風機1cは、図1に示される電動送風機1において、ケーシング20の代わりに、ケーシング20において新たな第3の開口部27a,28aが設けられたケーシング20cを有する。電動送風機1cでは、第1の支持部材25及び第2の支持部材26に連通口が設けられていても、設けられていなくてもよい。電動送風機1cでは、第1の遠心ファン31から吸い込まれた気体は、図10において破線矢印で示されるようにそのまま開口部27,27aから吐出され、連通口が設けられている場合には、一部の気体がモータ10の内部を通過し、開口部28,28aからも吐出される。同様に、電動送風機1cでは、第2の遠心ファン32から吸い込まれた気体は、図10において実線矢印で示されるようにそのまま開口部28,28aから吐出され、連通口が設けられている場合には、一部の気体がモータ10の内部を通過し、開口部27,27aからも吐出される。
なお、開口部28,28aの軸方向の位置及びこの位置に設けられる開口部の個数及び配置については、図9を参照して説明した通りである。開口部27,27aについても開口部28,28aと同様の説明が援用できる。つまり、図10に示されるように、開口部27と開口部27aとの軸方向の位置は同じであるが、開口部27と開口部27aの軸方向の位置は、第1の遠心ファン31と第1の支持部材25との間であればよい。また、ケーシング20cにおいて、このような間の軸方向の位置に設けられる開口部は、2つに限らず、3つ以上であってもよいが、回転シャフト13を中心とする円周上に均等に配置しておくことが好ましい。
《1-3》効果
実施の形態1に係る電動送風機1,1a,1b,1cによれば、回転時に第1の遠心ファン31及び第2の遠心ファン32が起こす気流により、第1の遠心ファン31及び第2の遠心ファン32の回転軸となる回転シャフト13に双方から互いに打消し合う(相殺し合う)方向の力を与えることができ、電動送風機1,1a,1b,1cにおける軸方向の力を低減することができる。そして、実施の形態1によれば、このような軸方向の力を低減させることができるため、電動送風機において、静圧を高くするために遠心ファンを積極的に採用すること、又は静圧の高い遠心ファンを採用することが可能になる。
実施の形態1に係る電動送風機1,1a,1b,1cによれば、回転時に第1の遠心ファン31及び第2の遠心ファン32が起こす気流により、第1の遠心ファン31及び第2の遠心ファン32の回転軸となる回転シャフト13に双方から互いに打消し合う(相殺し合う)方向の力を与えることができ、電動送風機1,1a,1b,1cにおける軸方向の力を低減することができる。そして、実施の形態1によれば、このような軸方向の力を低減させることができるため、電動送風機において、静圧を高くするために遠心ファンを積極的に採用すること、又は静圧の高い遠心ファンを採用することが可能になる。
また、電動送風機1,1a,1b,1cでは、第1の力F1を、回転シャフト13の第2端から第1端に向かう力とし、第2の力F2を、回転シャフト13の第1端から第2端に向かう力とすることで、例えば開口部27,28に送風口を有する管などを接続することにより、送風用途の電気機器に搭載でき、例えば開口部21a,22aに吸引口を有する管などを接続することにより、吸引用途の電気機器に搭載することもできる。
また、ケーシング20,20a,20b,20cは、ケーシング20の第1端側に設けられた第1の開口部21aと、ケーシング20の第2端側に設けられた第2の開口部22aと、を有することができる。電動送風機1,1a,1b,1cによれば、開口部22a,22bを有することで、第1の遠心ファン31により発生した気流を第1の開口部21aから通過させることができ、第2の遠心ファン32により発生した気流を第2の開口部22aから通過させることができる。
また、ケーシング20,20a,20b,20cは、第1の開口部21aが設けられ、第1の遠心ファン31により発生した遠心方向の気流を軸方向に向ける第1のファンカバー21と、第2の開口部22aが設けられ、第2の遠心ファン32により発生した遠心方向の気流を軸方向に向ける第2のファンカバー22と、を有することができる。電動送風機1,1a,1b,1cによれば、このようなファンカバー21,22を有することで、第1の遠心ファン31の回転によって第1の開口部21aから吸引された気体を遠心方向に流し、その気流の向き(風向)を変更することができ、第2の遠心ファン32の回転によって第2の開口部22aから吸引された気体を遠心方向に流し、その気流の向き(風向)を変更することができる。
また、電動送風機1,1a,1b,1cによれば、第1のベアリング23、第2のベアリング24、第1の支持部材25、及び第2の支持部材26を有することで、遠心ファン31,32の回転により回転シャフト13に働くスラスト荷重に連動したベアリング23,24に働くスラスト荷重を低減することができ、ベアリング23,24の摩耗を防ぎ、長寿命化を図ることができる。
また、第1の支持部材25及び第2の支持部材26に連通口を形成し、モータ10の内部に気体を流すことで、モータ10の放熱を促進することができ、また、第1のベアリング23も、遠心ファン31側からだけでなく、モータ10側から放熱を促進することができ、第2のベアリング24も、遠心ファン32側からだけでなく、モータ10側から放熱を促進することができる。これにより、モータ10及びベアリング23,24は、いずれも、その信頼性を向上させること、及びその寿命を長くすることが期待できる。
また、第1の力F1と第2の力F2とを釣り合わせることで、回転時に第1の遠心ファン31及び第2の遠心ファン32が起こす気流により、第1の遠心ファン31及び第2の遠心ファン32の回転軸となる回転シャフト13に働くスラスト力を互いに打消し合う(相殺し合う)ことができ、遠心ファン31,32の回転に伴う電動送風機1,1a,1b,1cにおける軸方向の力をなくすことができる。また、これにより、例えば、遠心ファン31,32の回転に伴うベアリング23,24に加わるスラスト荷重をなくすことができ、ベアリング23,24の長寿命化を図ることができる。
《2》実施の形態2
《2-1》構成
実施の形態2に係る電動送風機について、図11から図16を参照しながら説明する。図11は、実施の形態2に係る電動送風機の一構成例の断面構造を示す図、図12は、図11に示される電動送風機2における気流を概略的に示す図である。図11から図16において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態2について、実施の形態1との相違点について説明するが、実施の形態2では、実施の形態1における相違点を除く様々な例が適用できる。
《2-1》構成
実施の形態2に係る電動送風機について、図11から図16を参照しながら説明する。図11は、実施の形態2に係る電動送風機の一構成例の断面構造を示す図、図12は、図11に示される電動送風機2における気流を概略的に示す図である。図11から図16において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態2について、実施の形態1との相違点について説明するが、実施の形態2では、実施の形態1における相違点を除く様々な例が適用できる。
実施の形態1では、図1に示される支持部材25,26に連通口を形成し、遠心ファン31,32で発生した気流によりモータ10及びベアリング23,24の放熱を促進できる例を挙げたが、実施の形態2においても、基本的に、これらの支持部材25,26にモータ10の放熱の促進を目的として連通口が設けられていることを前提として説明するが、設けられなくてもよい。
図11に示されるように、実施の形態2に係る電動送風機2は、図1に示される電動送風機1において、第1の仕切り部41をさらに有する。第1の仕切り部41は、ケーシング20内に固定され、第1の遠心ファン31により発生した気流の方向を、第1の遠心ファン31と第1の支持部材25との間において変更する。そのため、図11に示されるように、第1の仕切り部41は、軸方向における第1の遠心ファン31と第1のベアリング23との間に(換言すれば、第1の遠心ファン31と第1の支持部材25との間に)に配置される。第1の仕切り部41の形状は問わないが、図11に示されるように板状であることが簡易な構造である点で好ましいと言える。
第1の仕切り部41により、ケーシング20の内側において、第1の遠心ファン31が固定された側の空間と第2の遠心ファン32が固定された側の空間とを仕切ることができる。つまり、第1の仕切り部41は、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流とが、衝突しない(合流しない)ように分ける役割を果たす。なお、第1の仕切り部41は、回転シャフト13を通すための連通口を有する。
また、第1の仕切り部41は、第3の開口部27と軸方向の位置を少なくとも一部重複させることができる。つまり、第3の開口部27は、軸方向について、第1の仕切り部41が配置された第1の配置範囲と少なくとも一部が重なる第1の範囲に設けることができる。図11においては、第3の開口部27の軸方向の中間位置と第1の仕切り部41の軸方向の中間位置とが合致するように、第3の開口部27及び第1の仕切り部41が配置された例を挙げている。また、電動送風機2では、図12において破線矢印で示される気流から分かるように、第1のファンカバー21の開口部21aと第3の開口部27とを結ぶ気体の通路が形成されている。
また、図11に示されるように、第1の仕切り部41は、径方向(軸方向に垂直な方向)において第3の開口部27の位置まで、又はその位置付近まで、延伸されていることが好ましい。これにより、気体の吐出口となる第3の開口部27まで、気流の衝突を避けることができる。なお、第3の開口部27から吐出される気流は、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流とが合流するが、第3の開口部27まで延伸された第1の仕切り部41によりほぼ同じ方向に向いた状態で合流するため、合流による圧力損失は小さい。
第1の仕切り部41が径方向において第3の開口部27の位置まで延伸されていない形態においては、第2の遠心ファン32により発生し支持部材25,26の連通口を通過する気流が存在した場合、その気流と第1の遠心ファン31により発生した気流とが第3の開口部27から吐出される前に合流する。しかし、軸方向の配置範囲が第1の仕切り部41と第3の開口部27とで重なるため、第1の仕切り部41に沿って同じ方向に向いた状態で合流されることになり、合流による圧力損失は小さい。
また、図11に示されるように、電動送風機2は、第1の仕切り部41と同様の形状の第2の仕切り部42を、第2の遠心ファン32側に有することもできる。但し、第1の仕切り部41と第2の仕切り部42とは、形状が異なってもよい。第2の仕切り部42は、ケーシング20内に固定され、第2の遠心ファン32により発生した気流の方向を、第2の遠心ファン32と第2の支持部材26との間において変更する。そのため、図11に示されるように、第2の仕切り部42は、軸方向における第2の遠心ファン32と第2のベアリング24との間に(つまり、第2の遠心ファン32と第2の支持部材26との間に)配置される。第2の仕切り部42によっても、ケーシング20の内側において、第1の遠心ファン31が固定された側の空間と第2の遠心ファン32が固定された側の空間とを仕切ることができる。
また、第2の仕切り部42は、第3の開口部28と軸方向の位置を少なくとも一部重複させることができる。つまり、第3の開口部28は、軸方向について、第2の仕切り部42が配置された第2の配置範囲と少なくとも一部が重なる第2の範囲に設けることができる。図11においては、第3の開口部28の軸方向の中間位置と第2の仕切り部42の軸方向の中間位置とが合致するように、第3の開口部28及び第2の仕切り部42が配置された例を挙げている。また、電動送風機2では、図12において実線矢印で示される気流から分かるように、第2のファンカバー22の開口部22aと第3の開口部28とを結ぶ気体の通路が形成されている。
また、図11に示されるように、第2の仕切り部42は、径方向において第3の開口部28での位置まで、又はその位置付近まで延伸されていることが好ましい。これにより、気体の吐出口となる第3の開口部28まで、気流の衝突を避けることができる。なお、第3の開口部28から吐出される気流は、第3の開口部27から吐出される気流と同様の理由から、合流による圧力損失は小さい。
第2の仕切り部42が径方向において第3の開口部28の位置まで延伸されていない形態においては、仮に、第1の遠心ファン31により発生し支持部材25,26を通過する気流が存在した場合、その気流と第2の遠心ファン32により発生した気流とが第3の開口部28から吐出される前に合流する。しかし、軸方向の配置範囲が第2の仕切り部42と第3の開口部28とで重なるため、第2の仕切り部42に沿って同じ方向に向いた状態で合流されることになり、合流による圧力損失は小さい。
実施の形態2に係る電動送風機2では、以上のような構成を有することにより、ケーシング20の内部において、第1の遠心ファン31により発生した気流を図12において破線矢印で示すような気流とし、第2の遠心ファン32により発生した気流を図12において実線矢印で示すような気流とすることができ、双方の気流の衝突を抑制することができる。つまり、第1の仕切り部41及び第2の仕切り部42を備えた電動送風機2によれば、第1の仕切り部41及び第2の仕切り部42がない場合に比べて、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させることができる。
《2-2》変形例
実施の形態2に係る電動送風機の変形例について、図13から図16を参照しながら説明する。図13、図15、及び図16は、実施の形態2に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図14は、図13に示される電動送風機における気流を概略的に示す図である。図13から図16において、図11と同じ又は対応する機能を持つ部位には、図11で用いられた符号と同じ符号が付されている。
実施の形態2に係る電動送風機の変形例について、図13から図16を参照しながら説明する。図13、図15、及び図16は、実施の形態2に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図14は、図13に示される電動送風機における気流を概略的に示す図である。図13から図16において、図11と同じ又は対応する機能を持つ部位には、図11で用いられた符号と同じ符号が付されている。
図13に示される電動送風機2aは、図11に示される電動送風機2において、第1の仕切り部41の代わりに、第1の遠心ファン31により発生した気流を通過させる第1の連通口41bを有する第1の仕切り部41aを有する。第1の連通口41bは、第1の仕切り部41aの第1の遠心ファン31側の空間と第1の仕切り部41aの第1の支持部材25側の空間とを連通させる連通口であり、例えば円形の連通口などで例示できる。第1の連通口41bは、複数個所に形成することもできる。
また、電動送風機2aは、図11に示される電動送風機2において、第2の仕切り部42の代わりに、第2の遠心ファン32により発生した気流を通過させる第2の連通口42bを有する第2の仕切り部42aを有する。第2の連通口42bは、第2の仕切り部42aの第2の遠心ファン32側の空間と第2の仕切り部42aの第2の支持部材26側の空間とを連通させる連通口であり、例えば円形の連通口などで例示できる。第2の連通口42bは、複数個所に形成することもできる。
第1の仕切り部41aにより、図14において破線矢印で示されるように、第1の遠心ファン31により発生した気流を、第1の支持部材25の連通口を通り、モータ10に接してモータ10の放熱を促進し、その後、第2の支持部材26の連通口を通り、第3の開口部28から吐出されるといった気流を含むようにすることができる。このとき、第1の連通口41bを通る気流により、第1のベアリング23の放熱の促進は可能であり、第1の支持部材25の連通口を通る気流により、モータ10及びベアリング23,24の放熱の促進は可能である。
また、第2の仕切り部42aにより、図14において実線矢印で示されるように、第2の遠心ファン32により発生した気流を、第2の支持部材26の連通口を通り、モータ10に接してモータ10の放熱を促進し、その後、第1の支持部材25の連通口を通り、第3の開口部27から吐出されるといった気流を含むようにすることができる。このとき、第2の連通口42bを通る気流により、第2のベアリング24の放熱の促進は可能であり、第2の支持部材26の連通口を通る気流により、モータ10及びベアリング23,24の放熱の促進は可能である。
また、第1の仕切り部41a及び第2の仕切り部42aは、いずれも、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流とが、部分的に衝突しない(合流しない)ように分ける役割を果たす。よって、第1の仕切り部41a及び第2の仕切り部42aを備えた電動送風機2aによれば、第1の仕切り部41a及び第2の仕切り部42aがない実施の形態1に係る電動送風機1に比べて、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させることができる。また、以上に説明されるように、電動送風機2aによれば、図11に示される電動送風機2に比べて、モータ10及びベアリング23,24の放熱の促進が可能になる。
図15に示される電動送風機2bは、図11に示される電動送風機2において、第1の仕切り部41を備えない構成となっている。なお、この構成は、図11に示される電動送風機2において、第2の仕切り部42を備えない構成と実質的に同じである。このような構成の電動送風機2bでは、第1の遠心ファン31により発生した気流を、図15において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図15において実線矢印で示されるような気流とすることができ、双方の気流の衝突を防ぐことができ、且つモータ10及びベアリング23,24の放熱の促進も可能となる。なお、第3の開口部28で双方の気流が合流するが、上述されるように第2の仕切り部42によりほぼ同じ方向に向いた状態で合流するため、合流による圧力損失は小さい。
図16に示される電動送風機2cは、図13に示される電動送風機2aにおいて、第1の仕切り部41aを備えない構成となっている。なお、この構成は、図13に示される電動送風機2aにおいて、第2の仕切り部42aを備えない構成と実質的に同じである。このような構成の電動送風機2cでは、第1の遠心ファン31により発生した気流を、図16において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図16において実線矢印で示されるような気流とすることができ、双方の気流の衝突を一部で防ぐことができ、且つモータ10及びベアリング23,24の放熱の促進も可能となる。なお、第3の開口部28における双方の気流の合流については、説明した通りである。
図15及び図16に示される構成例のように、実施の形態2に係る電動送風機は、第1の仕切り部を備えずに第2の仕切り部を備える構成(又はその逆の構成)であってもよく、回転シャフト13の両端の遠心ファン31,32の少なくとも一方の側に仕切りを備える構成であれば、気流の衝突を抑制するような同様の効果は得られる。但し、図11又は図13に示される電動送風機2又は2aのように、第1の仕切り部41又は41a及び第2の仕切り部42又は42aを備えることで、気流の衝突をより抑制することができ、また、電動送風機のケーシング20の内部の構造も第1の遠心ファン31側と第2の遠心ファン32側とで対称に設計し易く、気流が制御し易くなる。
また、実施の形態2に係る電動送風機2,2a,2b,2cについて、支持部材25,26の双方に連通口を形成することを前提に説明したが、支持部材25,26の双方に連通口を形成しない形態も採用できる。その形態においては、モータ10の放熱の促進ができなくなるが、第1の仕切り部41aの第1の連通口41b及び第2の仕切り部42aの第2の連通口42bを形成しておくことで、ベアリング23,24の放熱の促進は可能である。
《2-3》効果
実施の形態2に係る電動送風機2,2a,2b,2cによれば、実施の形態1による軸方向の力を低減できる効果及びそれに伴うベアリング23,24の摩耗を少なくし長寿命化が図れる効果を奏する。さらに、電動送風機2,2a,2b,2cによれば、第1の仕切り部41等の仕切りを備えない場合に比べて、ケーシング20の内部において、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を抑制することができ、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させることができる。また、図15及び図16に示されるように、実施の形態2に係る電動送風機2b,2cでは、このような効果のほかに、モータ10及びベアリング23,24の放熱を促進させる効果も期待できる。
実施の形態2に係る電動送風機2,2a,2b,2cによれば、実施の形態1による軸方向の力を低減できる効果及びそれに伴うベアリング23,24の摩耗を少なくし長寿命化が図れる効果を奏する。さらに、電動送風機2,2a,2b,2cによれば、第1の仕切り部41等の仕切りを備えない場合に比べて、ケーシング20の内部において、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を抑制することができ、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させることができる。また、図15及び図16に示されるように、実施の形態2に係る電動送風機2b,2cでは、このような効果のほかに、モータ10及びベアリング23,24の放熱を促進させる効果も期待できる。
また、図13及び図16に示されるように、実施の形態2に係る電動送風機2a,2cによれば、第1の遠心ファン31により発生した気流を通過させる第1の連通口41bを有する第1の仕切り部41aを有することで、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させると共に、モータ10及びベアリング23,24の放熱を促進させることができる。
また、図11及び図13に示されるように、実施の形態2に係る電動送風機2,2aは、第1の仕切り部41に加え、ケーシング20内に固定され、第2の遠心ファン32により発生した気流の方向を、第2の遠心ファン32と第2の支持部材26との間において変更する第2の仕切り部42を、第2の遠心ファン32側に有することもできる。実施の形態2に係る電動送風機2,2aによれば、第1の仕切り部41及び第2の仕切り部42を有することで、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突をより抑制することができ、気流の衝突及び混合による圧力損失をより低減し、空力効率をより向上させることができる。また、実施の形態2に係る電動送風機2,2aによれば、ケーシング20の内部の構造も第1の遠心ファン31側と第2の遠心ファン32側とで対称に設計し易く、気流が制御し易くなる。
また、図13に示されるように、実施の形態2に係る電動送風機2aによれば、第2の遠心ファン32により発生した気流を通過させる第2の連通口42bを有する第2の仕切り部42aを有することで、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させると共に、モータ10及びベアリング23,24の放熱を促進させることができる。
なお、実施の形態2における第1の仕切り部による気流衝突抑制の効果と同様の効果は、第1の仕切り部を備えない電動送風機において、単に第1の支持部材25に連通口を形成せず、第1の支持部材25を第1の仕切り部の代わりとすることでも得られる。同様に、第2の仕切り部による気流衝突抑制の効果と同様の効果は、第2の仕切り部を備えない電動送風機において、単に第2の支持部材26に連通口を形成せず、第2の支持部材26を第2の仕切り部の代わりとすることでも得られる。
《3》実施の形態3
《3-1》構成
実施の形態3に係る電動送風機について、図17から図21を参照して説明する。図17は、実施の形態3に係る電動送風機の一構成例の断面構造を示す図、図18は、図17に示される電動送風機3における気流を概略的に示す図、図19は、電動送風機3における内部ケーシング内の気流の一例を概略的に示す図である。図17、図18、図20、及び図21において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態3について、実施の形態1,2との相違点について説明するが、実施の形態3では、実施の形態1,2における相違点を除く様々な例が適用できる。
《3-1》構成
実施の形態3に係る電動送風機について、図17から図21を参照して説明する。図17は、実施の形態3に係る電動送風機の一構成例の断面構造を示す図、図18は、図17に示される電動送風機3における気流を概略的に示す図、図19は、電動送風機3における内部ケーシング内の気流の一例を概略的に示す図である。図17、図18、図20、及び図21において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態3について、実施の形態1,2との相違点について説明するが、実施の形態3では、実施の形態1,2における相違点を除く様々な例が適用できる。
実施の形態2では、第1の仕切り部等の仕切りを備えた電動送風機について、仕切りとして板状の仕切りを例に挙げて説明したが、実施の形態3に係る電動送風機は、板状の仕切りの代わりに、同様の仕切りの効果が得られるケーシング(ケーシング20と区別して説明するために、内部ケーシングと称す)を有する。
図17に示されるように、実施の形態3に係る電動送風機3は、図11に示される電動送風機2において、第1の仕切り部41及び第2の仕切り部42の代わりに、第1の内部ケーシング43及び第2の内部ケーシング44を有する。
第1の内部ケーシング43は、図18において破線矢印で示されるように、ケーシング20d内に固定され、第1の遠心ファン31により発生した気流の方向を、第1の遠心ファン31と第1の支持部材25との間において変更する。第1の内部ケーシング43は、第1の仕切り部41と同様に気流の方向を変更する機能を有し、第1の仕切り部41の一例であると言える。なお、ケーシング20dは、図1等に示される第3の開口部27,28の代わりに、第1の内部ケーシング43及び第2の内部ケーシング44に合った大きさの第3の開口部27d,28dを有するケーシングである。
図17及び図18においては簡略化して図示しているが、第1の内部ケーシング43は、第1のファンカバー21と第3の開口部27dとを結ぶ第1の流路を有する内部ケーシングである。図17においては、第1の内部ケーシング43が、その気体の吐出口が第3の開口部27dと一致するように設けられた例を挙げている。
第1の内部ケーシング43の形状は問わないが、例えば、図19に示されるようなスパイラル状の気流を内部で生じさせるように制御可能な流路を有する形状とすることで、圧力損失をより低減させることができる。つまり、上述の第1の流路は、例えば、図19で示されるような気流を導くようなスパイラル状の流路とすることができ、このような流路は、例えば、渦巻きケーシングと称されるケーシングの内部に形成されている。よって、第1の内部ケーシング43は、例えば渦巻きケーシングとすることもでき、この渦巻きケーシングにより第1の遠心ファン31により遠心方向に発生し、第1のファンカバー21によりその方向が変更された気流を1つの方向を向く気流にまとめ、第3の開口部27dから吐出させることができる。なお、第1の内部ケーシング43は、回転シャフト13を通すための連通口を有することができるが、例えば渦巻きケーシングを採用することで、回転シャフト13の表面が第1の内部ケーシング43の流路を形成する壁とならないように構成することもできる。
第2の内部ケーシング44は、図18において実線矢印で示されるように、ケーシング20d内に固定され、第2の遠心ファン32により発生した気流の方向を、第2の遠心ファン32と第2の支持部材26との間において変更する。第2の内部ケーシング44は、第2の仕切り部42と同様に気流の方向を変更する機能を有し、第2の仕切り部42の一例であると言える。
図17及び図18においては簡略化して図示しているが、第2の内部ケーシング44は、第2のファンカバー22と第3の開口部28dとを結ぶ第2の流路を有する内部ケーシングである。図17においては、第2の内部ケーシング44が、その気体の吐出口が第3の開口部28dと一致するように設けられた例を挙げている。第2の内部ケーシング44の形状についても、第1の内部ケーシング43の形状と同様である。よって、第2の内部ケーシング44は、例えば、渦巻きケーシングとすることができる。
なお、第1の内部ケーシング43又は第2の内部ケーシング44のような内部ケーシングは、ファンのためのケーシングであるため、ファンケーシングと称されることがある。また、内部ケーシングと第1のファンカバー21又は第2のファンカバー22のようなファンカバーとを合わせたものを、ファンケーシングと称することもある。
以上に説明したように、上述のように仕切り部として内部ケーシングを採用することで、図18において破線矢印で示されるように第1の遠心ファン31により発生した気流を第3の開口部27dに導き、図18において実線矢印で示されるように第2の遠心ファン32により発生した気流を第3の開口部28dに導くことができる。その結果、電動送風機3によれば、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流とを効率良く分流すること(それらの気流の衝突をより抑制すること)ができ、空力効率をより向上させることができる。なお、図17及び図18に示される電動送風機3では、支持部材25,26に連通口が設けられているか否かは問わない。
特に、第1の内部ケーシング43の形状を、スパイラル状の気流を内部で生じさせるような流路を形成する形状とすることで、第1の遠心ファン31により発生し、第1のファンカバー21により変更された気流が、スラスト方向からラジアル方向に効率良く(気流が急な角度で方向転換することなく)制御され、これにより圧力損失が低減し、空力効率をさらに高めることができる。第2の内部ケーシング44の形状についても、第1の内部ケーシング43の形状と同様に、スパイラル状の気流を内部で生じさせるような流路を形成する形状とすることで、第2の遠心ファン32及び第2のファンカバー22により発生した気流がスラスト方向からラジアル方向に効率良く制御され、これにより圧力損失が低減し、空力効率をさらに高めることができる。
《3-2》変形例
実施の形態3に係る電動送風機の変形例について、図20及び図21を参照しながら説明する。図20及び図21は、実施の形態3に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図20及び図21において、図17と同じ又は対応する機能を持つ部位には、図17で用いられた符号と同じ符号が付されている。
実施の形態3に係る電動送風機の変形例について、図20及び図21を参照しながら説明する。図20及び図21は、実施の形態3に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図20及び図21において、図17と同じ又は対応する機能を持つ部位には、図17で用いられた符号と同じ符号が付されている。
図20に示される電動送風機3aは、図17に示される電動送風機3において、第1の内部ケーシング43を備えない構成となっている。なお、この構成は、図17に示される電動送風機3において、第2の内部ケーシング44を備えない構成と実質的に同じである。このような構成の電動送風機3aでは、第1の遠心ファン31により発生した気流を、図20において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図20において実線矢印で示されるような気流とすることができる。つまり、電動送風機3aでは、これらの気流の衝突を防ぐことができ、且つ第1のベアリング23の放熱の促進も可能となる。なお、図20に示される電動送風機3aは、少なくとも第1の支持部材25に連通口を形成しておくことで、破線矢印で示されるようなモータ10側への気流を生じさせることができるため、モータ10及び第2のベアリング24の放熱の促進も可能となる。
図21に示される電動送風機3bは、図17に示される電動送風機3において、第1の内部ケーシング43の代わりに第1の仕切り部41cを有する。第1の仕切り部41cは、板状の仕切りであり、図11に示される第1の仕切り部41とその軸方向の位置が異なり、第1の遠心ファン31側の空間と第1の支持部材25側の空間とを遮断できる位置において、ケーシング20dの内壁に固定されている。なお、この構成は、図17に示される電動送風機3において、第2の内部ケーシング44の代わりに第2の仕切り部を備えた構成と実質的に同じである。
このような構成の電動送風機3bでは、第1の遠心ファン31により発生した気流を、図21において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図21において実線矢印で示されるような気流とすることができ、双方の気流の衝突をより防ぐことができる。なお、図21に示される電動送風機3bでは、支持部材25,26に連通口が設けられているか否かは問わない。
図20及び図21に示される構成例のように、実施の形態3に係る電動送風機は、第1の内部ケーシングを備えずに第2の内部ケーシングを備える構成(又はその逆の構成)であってもよく、回転シャフト13の両端の遠心ファン31,32の少なくとも一方の側に内部ケーシングを備える構成であれば、気流の衝突を抑制するような同様の効果は得られる。但し、図17又は図21に示される電動送風機3又は3bのように、第1の遠心ファン31側と第2の遠心ファン32側の双方に内部ケーシング又は板状等の仕切りを備えることで、気流の衝突をより抑制することができる。
《3-3》効果
実施の形態3に係る電動送風機3,3a,3bによれば、実施の形態1による軸方向の力を低減できる効果及びそれに伴うベアリング23,24の摩耗を少なくし長寿命化が図れる効果を奏する。さらに、電動送風機3,3a,3bによれば、第1の内部ケーシング等の内部ケーシングを備えない場合に比べて、ケーシング20dの内部において、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を抑制することができ、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させることができる。さらに、電動送風機3,3a,3bによれば、図11に示されるような板状の仕切りを備えた場合に比べて、これらの気流の衝突をより抑制することができ、空力効率をより向上させることができる。特に、内部ケーシングの形状を、スパイラル状の気流を内部で生じさせるような流路を形成する形状とすることで、より圧力損失が低減し、空力効率をさらに高めることができる。
実施の形態3に係る電動送風機3,3a,3bによれば、実施の形態1による軸方向の力を低減できる効果及びそれに伴うベアリング23,24の摩耗を少なくし長寿命化が図れる効果を奏する。さらに、電動送風機3,3a,3bによれば、第1の内部ケーシング等の内部ケーシングを備えない場合に比べて、ケーシング20dの内部において、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を抑制することができ、気流の衝突及び混合による圧力損失を低減し、空力効率を向上させることができる。さらに、電動送風機3,3a,3bによれば、図11に示されるような板状の仕切りを備えた場合に比べて、これらの気流の衝突をより抑制することができ、空力効率をより向上させることができる。特に、内部ケーシングの形状を、スパイラル状の気流を内部で生じさせるような流路を形成する形状とすることで、より圧力損失が低減し、空力効率をさらに高めることができる。
また、図17に示されるように、実施の形態3に係る電動送風機3によれば、第1の内部ケーシング43及び第2の内部ケーシング44を有することで、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突をより抑制することができ、気流の衝突及び混合による圧力損失をより低減し、空力効率をより向上させることができる。また、実施の形態3に係る電動送風機3によれば、ケーシング20dの内部の構造も第1の遠心ファン31側と第2の遠心ファン32側とで対称に設計し易く、気流が制御し易くなる。
《4》実施の形態4
《4-1》構成
実施の形態4に係る電動送風機について、図22から図28を参照して説明する。図22は、実施の形態4に係る電動送風機の一構成例の断面構造を示す図、図23は、図22に示される電動送風機4における気流を概略的に示す図である。図22から図28において、図1、図11、図13、及び図17と同じ又は対応する機能を持つ部位には、図1、図11、図13、及び図17で用いられた符号と同じ符号が付されている。以下、実施の形態4について、実施の形態1から3との相違点について説明するが、実施の形態4では、実施の形態1から3における相違点を除く様々な例が適用できる。
《4-1》構成
実施の形態4に係る電動送風機について、図22から図28を参照して説明する。図22は、実施の形態4に係る電動送風機の一構成例の断面構造を示す図、図23は、図22に示される電動送風機4における気流を概略的に示す図である。図22から図28において、図1、図11、図13、及び図17と同じ又は対応する機能を持つ部位には、図1、図11、図13、及び図17で用いられた符号と同じ符号が付されている。以下、実施の形態4について、実施の形態1から3との相違点について説明するが、実施の形態4では、実施の形態1から3における相違点を除く様々な例が適用できる。
実施の形態3では、第1の支持部材及び第2の支持部材が連通口を有する場合と有さない場合の双方について説明した。実施の形態4として、連通口を有する第1の支持部材及び連通口を有する第2の支持部材と、内部ケーシングと、を備えた電動送風機について説明する。
図22に示されるように、実施の形態4に係る電動送風機4は、図13に示される電動送風機2aにおいて、第1の仕切り部41aの代わりに第1の内部ケーシング45を有する。第1の内部ケーシング45は、図17に示される第1の内部ケーシング43と同様の機能を有する内部ケーシングである。
但し、図22に示されるように、電動送風機4が有するケーシング20eは、図13に示される電動送風機2aが有するケーシング20において、第3の開口部27を第3の開口部27eとしたものである。さらに、第1の内部ケーシング45は、その気体の吐出口が第3の開口部27eと一致するのではなく、第3の開口部27eにおける第1の遠心ファン31側の一部に対応するように配置されている。また、図22に示される電動送風機4では、支持部材25,26に連通口(第4,第5の開口部)が設けられている。
このような構成の電動送風機4では、第1の遠心ファン31により発生した気流を、図23において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図23において実線矢印で示されるような気流とすることができる。つまり、電動送風機4は、図23において破線矢印で示されるように、一方の気流(第1の遠心ファン31により発生した気流)をそのまま第3の開口部27eからケーシング20eの外部へ導くとともに、図23において実線矢印で示されるように、他方の気流(第2の遠心ファン32により発生した気流)を第3の開口部28からケーシング20eの外部へ導き、且つ第2の支持部材26の連通口及び第1の支持部材25の連通口を通過させ、第3の開口部27eからケーシング20eの外部へ導く。
よって、電動送風機4では、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を防ぐことができる。また、図23において実線矢印で示されるように、モータ10が存在する支持部材25,26の間に気流が生じるため、モータ10及びベアリング23,24の放熱を促進することもできる。また、第3の開口部27eにおいては、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流とが第1の内部ケーシング45の内壁と外壁に沿って同じ方向に向いた状態で合流されるため、電動送風機4によれば、この合流による圧力損失を小さくすることができる。
《4-2》変形例
実施の形態4に係る電動送風機の変形例について、図24から図28を参照しながら説明する。図24、図27、及び図28は、実施の形態4に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図25は、図24に示される電動送風機4aにおける気流を概略的に示す図、図26は、電動送風機4aにおける第1の遠心ファン31及び第2の遠心ファン32の回転子コアからの距離を示す図である。図24から図28において、図22と同じ又は対応する機能を持つ部位には、図22で用いられた符号と同じ符号が付されている。
実施の形態4に係る電動送風機の変形例について、図24から図28を参照しながら説明する。図24、図27、及び図28は、実施の形態4に係る電動送風機の他の構成例の断面構造を示す図であり、いずれも異なる構成例を示す図である。図25は、図24に示される電動送風機4aにおける気流を概略的に示す図、図26は、電動送風機4aにおける第1の遠心ファン31及び第2の遠心ファン32の回転子コアからの距離を示す図である。図24から図28において、図22と同じ又は対応する機能を持つ部位には、図22で用いられた符号と同じ符号が付されている。
図24に示される電動送風機4aは、図22に示される電動送風機4において、第2の仕切り部42aを取り除き、且つケーシング20eの代わりに第3の開口部28を埋めた(第3の開口部28が設けられていない)ケーシング20fを有する。
このような構成の電動送風機4aでは、第1の遠心ファン31により発生した気流を、図25において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図25において実線矢印で示されるような気流とすることができる。つまり、電動送風機4aは、図25において破線矢印で示されるように、一方の気流(第1の遠心ファン31により発生した気流)をそのまま第3の開口部27eからケーシング20fの外部へ導くとともに、図25において実線矢印で示されるように、他方の気流(第2の遠心ファン32により発生した気流)を第2の支持部材26の連通口及び第1の支持部材25の連通口を通過させ、第3の開口部27eにおける第2の遠心ファン32側の一部からケーシング20fの外部へ導く。
これにより、図24に示される電動送風機4aは、図22に示される電動送風機4に比べて、第2の遠心ファン32により発生した気流が第2の支持部材26の連通口及び第2のベアリング24と回転シャフト13との間、並びに第1の支持部材25の連通口及び第1のベアリング23と回転シャフト13との間を通過し易くなるため、より確実に支持部材25,26の間の空間に気流を導くことが可能になる。よって、電動送風機4aによれば、電動送風機4に比べて、モータ10及びベアリング23,24の放熱を確実に促進させることができ、より放熱効率を高めることができる。
また、図23に示される電動送風機4aは、図26に示されるように、距離L1と距離L2とが互いに異なるようになっている。特に、この例では、距離L1が距離L2より長くなるように、第1の遠心ファン31及び第2の遠心ファン32が回転シャフト13に固定されている。ここで、距離L1は、第1の遠心ファン31と第1の支持部材25との間の距離(つまり、気体の吐出口となる第3の開口部27eが設けられた側における遠心ファンと支持部材との距離)である。また、距離L2は、第2の遠心ファン32と第2の支持部材26との間の距離である。このような構成を採用することで、電動送風機4aは、気体の吐出口となる第3の開口部27eを確保した上で、ケーシング20fのサイズ、つまり電動送風機4aのサイズを小さくすることができ、また、電動送風機の設計の自由度を増すことができる。
また、距離L1及び距離L2の代わりに、図26に示される距離L1a及び距離L2aを採用することもできる。ここで、距離L1aは、第1の遠心ファン31と回転子コア12の第1の遠心ファン31側の端部との間の距離(つまり、気体の吐出口となる第3の開口部27eが設けられた側における遠心ファンと回転子コアのその遠心ファン側の端部との距離)である。また、距離L2aは、第2の遠心ファン32と回転子コア12の第2の遠心ファン32側の端部との間の距離である。また、図示しないが、距離L1及び距離L2の代わりに、第1の遠心ファン31と第1のベアリング23との間の距離及び第2の遠心ファン32と第2のベアリング24との間の距離を採用することもできる。いずれの距離を採用して電動送風機4aを構成した場合でも、同様の効果を奏する。
図27に示される電動送風機4bは、図22に示される電動送風機4において、第2の仕切り部42aの代わりに第2の内部ケーシング46を有するとともに、ケーシング20eの代わりに第2の内部ケーシング46の吐出口に合わせた第3の開口部28dを有するケーシング20gを有する。第2の内部ケーシング46は、図27に示されるように、図17に示される第2の内部ケーシング44において、第2の連通口46aが設けられている。第2の連通口46aは、第2の遠心ファン32により発生した気流を通過させる連通口である。具体的には、第2の連通口46aは、第2の内部ケーシング46の内壁により形成された流路から第2の支持部材26側(回転子コア12側又は第2のベアリング24側)へと通じるように、第2の内部ケーシング46の壁に形成された連通口であり、例えば円形の連通口などで例示できる。第2の連通口46aは、複数個所に形成することもできる。
このような構成の電動送風機4bでは、第1の遠心ファン31により発生した気流を、図27において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図27において実線矢印で示されるような気流とすることができる。つまり、電動送風機4bは、図27において破線矢印で示されるように、一方の気流(第1の遠心ファン31により発生した気流)をそのまま第3の開口部27eからケーシング20gの外部へ導く。さらに、電動送風機4bは、図27において実線矢印で示されるように、他方の気流(第2の遠心ファン32により発生した気流)を、そのまま第3の開口部28dからケーシング20gの外部へ導くとともに、第2の内部ケーシング46の第2の連通口46aを通じて第2の支持部材26の連通口及び第1の支持部材25の連通口を通過させ、第3の開口部27eからケーシング20gの外部へ導く。
これにより、図27に示される電動送風機4bは、図22に示される電動送風機4に比べて、第2の支持部材26の第2の遠心ファン32側の空間の密閉度が高いため、第2の遠心ファン32により発生した気流が第2の支持部材26の連通口及び第2のベアリング24と回転シャフト13との間、並びに第1の支持部材25の連通口及び第1のベアリング23と回転シャフト13との間を通過し易くなり、より確実に支持部材25,26の間の空間に気流を導くことが可能になる。よって、電動送風機4bによれば、電動送風機4に比べて、モータ10及びベアリング23,24の放熱を確実に促進させることができ、より放熱効率を高めることができる。
図28に示される電動送風機4cは、図27に示される電動送風機4bにおいて、第1の内部ケーシング45の代わりに第1の内部ケーシング47を有する。第1の内部ケーシング47は、図28に示されるように、図27に示される第1の内部ケーシング45において、第1の連通口47aが設けられている。第1の連通口47aは、第1の遠心ファン31により発生した気流を通過させる連通口である。具体的には、第1の連通口47aは、第1の内部ケーシング47の内壁により形成された流路から第1の支持部材25側(回転子コア12側又は第1のベアリング23側)へと通じるように、第1の内部ケーシング47の壁に形成された連通口であり、例えば円形の連通口などで例示できる。第1の連通口47aは、複数個所に形成することもできる。
このような構成の電動送風機4cでは、第1の遠心ファン31により発生した気流を、図28において破線矢印で示されるような気流とし、第2の遠心ファン32により発生した気流を、図28において実線矢印で示されるような気流とすることができる。つまり、電動送風機4cは、図28において破線矢印で示されるように、一方の気流(第1の遠心ファン31により発生した気流)を、そのまま第3の開口部27eからケーシング20gの外部へ導くとともに、第1の内部ケーシング47の第1の連通口47aを通じて第1の支持部材25側に通過させ、第3の開口部27eからケーシング20gの外部へ導く。なお、電動送風機4cは、第1の連通口47aの形状及び位置によっては、第1の連通口47aから吐出された気流を、第1の支持部材25の連通口を介して第2の支持部材26側へ一旦導き、再度、第1の支持部材25の連通口を介して第1の内部ケーシング47側へ導き、第3の開口部27eからケーシング20gの外部へ導くこともできる。さらに、電動送風機4cは、図28において実線矢印で示されるように、他方の気流(第2の遠心ファン32により発生した気流)を、そのまま第3の開口部28dからケーシング20gの外部へ導くとともに、第2の内部ケーシング46の第2の連通口46aを通じて第2の支持部材26の連通口及び第1の支持部材25の連通口を通過させ、第3の開口部27eからケーシング20gの外部へ導く。
これにより、図28に示される電動送風機4cは、図22に示される電動送風機4に比べて、第2の支持部材26の第2の遠心ファン32側の空間の密閉度が高いため、第2の遠心ファン32により発生した気流が第2の支持部材26の連通口及び第2のベアリング24と回転シャフト13との間、並びに第1の支持部材25の連通口及び第1のベアリング23と回転シャフト13との間を通過し易くなり、より確実に支持部材25,26の間の空間に気流を導くことが可能になる。よって、電動送風機4cによれば、電動送風機4に比べて、モータ10及びベアリング23,24の放熱を確実に促進させることができ、より放熱効率を高めることができる。
また、図示しないが、図27に示される電動送風機4b又は図28に示される電動送風機4cにおいて、第3の開口部28dを第3の開口部27eと同様に構成して、第2の内部ケーシング46と第2の支持部材26との間の空間を直接外部と連通させることもできる。いずれの構成においても、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流とを、いずれも第3の開口部28dと第3の開口部27eの双方へ導くことが可能であるため、モータ10及びベアリング23,24の放熱を促進させることができる。
《4-3》効果
実施の形態4に係る電動送風機4,4a,4b,4cによれば、実施の形態1による軸方向の力を低減できる効果及びそれに伴うベアリング23,24の摩耗を少なくし長寿命化が図れる効果を奏するとともに、支持部材25,26が連通口を有するため、モータ10及びベアリング23,24の放熱を促進し、モータ10及びベアリング23,24の信頼性の向上及び長寿命化が期待できる。また、電動送風機4,4a,4bによれば、内部ケーシングを有することで、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を防ぐことができ、モータ10及びベアリング23,24の放熱促進効果と気流の衝突を防止する効果とを同時に得ることができる。
実施の形態4に係る電動送風機4,4a,4b,4cによれば、実施の形態1による軸方向の力を低減できる効果及びそれに伴うベアリング23,24の摩耗を少なくし長寿命化が図れる効果を奏するとともに、支持部材25,26が連通口を有するため、モータ10及びベアリング23,24の放熱を促進し、モータ10及びベアリング23,24の信頼性の向上及び長寿命化が期待できる。また、電動送風機4,4a,4bによれば、内部ケーシングを有することで、第1の遠心ファン31により発生した気流と第2の遠心ファン32により発生した気流との衝突を防ぐことができ、モータ10及びベアリング23,24の放熱促進効果と気流の衝突を防止する効果とを同時に得ることができる。
また、図26に示される電動送風機4aによれば、距離L1と距離L2とが互いに異なるように、第1の遠心ファン31及び第2の遠心ファン32が回転シャフト13に固定されているため、例えば、気体の吐出口となる第3の開口部27eを確保した上で、ケーシング20fのサイズ、つまり電動送風機4aのサイズを小さくすることができ、また、電動送風機の設計の自由度を増すことができる。
《5》実施の形態5
《5-1》構成
実施の形態5に係る電動送風機について、図29を参照して説明する。図29は、実施の形態5に係る電動送風機の一構成例の断面構造を示す図で、ここでは、便宜上、軸方向の中央部分を省略している。図29において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態5について、実施の形態1から4との相違点について説明するが、実施の形態5では、実施の形態1から4における相違点を除く様々な例が適用できる。
《5-1》構成
実施の形態5に係る電動送風機について、図29を参照して説明する。図29は、実施の形態5に係る電動送風機の一構成例の断面構造を示す図で、ここでは、便宜上、軸方向の中央部分を省略している。図29において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態5について、実施の形態1から4との相違点について説明するが、実施の形態5では、実施の形態1から4における相違点を除く様々な例が適用できる。
図29に示されるように、実施の形態5に係る電動送風機5は、実施の形態1から4に係る電動送風機において、第1の遠心ファン31と第1のファンカバー21との間の間隔(クリアランス)C1と、第2の遠心ファン32と第2のファンカバー22との間の間隔(クリアランス)C2と、を互いに異なるようにしている。なお、間隔C1と間隔C2とを異ならせることは、例えば、ファンカバー21,22をケーシングに取り付ける軸方向の位置及び角度の少なくとも一方を調整することで実現でき、また、ファンカバー21,22の形状を異ならせることでも実現できる。
例えば、図22(図23),図24(図25及び図26),図27,図28に示される実施の形態4に係る電動送風機4,4a,4b,4cは、いずれも、第1の力F1と第2の力F2とを釣り合わせるために、第1の遠心ファン31より第2の遠心ファン32の方で強い気流が必要な構造である。特に、図26に示されるように、電動送風機4aでは、第1の遠心ファン31及び第2の遠心ファン32が、距離L1が距離L2より大きい条件を満たすように回転シャフト13に固定されている。
一方で、同じ遠心ファン及び同じファンカバーであれば、遠心ファンとファンカバーとの間のクリアランスは、小さくするほど強い気流を生み出すことが可能である。従って、図29に示されるように、実施の形態5に係る電動送風機5は、電動送風機4,4a,4b,4cのいずれかの構造を適用した場合、間隔C1を間隔C2より大きくした構造を採用するとよい。
また、図8,図9に示される電動送風機1a,1bは、いずれも、第1の力F1と第2の力F2とを釣り合わせるために、第2の遠心ファン32より第1の遠心ファン31の方で強い気流が必要な構造である。従って、実施の形態5に係る電動送風機は、電動送風機1a,1bのいずれかの構造を適用した場合、図示しないが、間隔C1を間隔C2より小さくした構造を採用するとよい。
《5-2》効果
実施の形態5に係る電動送風機5では、第1の遠心ファン31と第1のファンカバー21との間の間隔C1と、第2の遠心ファン32と第2のファンカバー22との間の間隔C2と、が異なることを許容することで、第1の遠心ファン31の仕事量と第2の遠心ファン32の仕事量とを調整することを許容している。従って、電動送風機5では、ケーシング20等のケーシングの内部の形状に応じて、回転シャフト13の回転時に発生するスラスト荷重を、例えば第1の力F1と第2の力F2とが釣り合うように調整することが容易になる。ここで、ケーシングの内部形状とは、ケーシングの内壁及び気流の障害物となるモータ10、ベアリング23,24、及び支持部材25,26の形状を指し、仕切り又は内部ケーシングを有する場合にはそれらの形状も含む。すなわち、電動送風機5によれば、遠心ファン31,32の仕事量を調整することにより、風路上の障害物等による気流アンバランス(回転シャフト13に遠心ファン31,32の双方から与えられるスラスト荷重のアンバランス)を低減化するように調整することが可能となり、また、電動送風機の設計の自由度を増すことができる。
実施の形態5に係る電動送風機5では、第1の遠心ファン31と第1のファンカバー21との間の間隔C1と、第2の遠心ファン32と第2のファンカバー22との間の間隔C2と、が異なることを許容することで、第1の遠心ファン31の仕事量と第2の遠心ファン32の仕事量とを調整することを許容している。従って、電動送風機5では、ケーシング20等のケーシングの内部の形状に応じて、回転シャフト13の回転時に発生するスラスト荷重を、例えば第1の力F1と第2の力F2とが釣り合うように調整することが容易になる。ここで、ケーシングの内部形状とは、ケーシングの内壁及び気流の障害物となるモータ10、ベアリング23,24、及び支持部材25,26の形状を指し、仕切り又は内部ケーシングを有する場合にはそれらの形状も含む。すなわち、電動送風機5によれば、遠心ファン31,32の仕事量を調整することにより、風路上の障害物等による気流アンバランス(回転シャフト13に遠心ファン31,32の双方から与えられるスラスト荷重のアンバランス)を低減化するように調整することが可能となり、また、電動送風機の設計の自由度を増すことができる。
例えば、実施の形態5によれば、電動送風機を設計するに際し、遠心ファン31,32で発生する気流の風路が遠心ファン31,32の中間位置における軸方向に垂直な面に対して非対称となるような設計(特に、第1の力と第2の力とがアンバランスになるような設計)を余儀なくされた場合であっても、間隔C1と間隔C2とを調整することで、例えば、第1の遠心ファン31により発生した気流によるスラスト力と第2の遠心ファン32により発生した気流によるスラスト力とを釣り合わせるように調整することができる。
《6》実施の形態6
《6-1》構成
実施の形態6に係る電動送風機について、図30から図32を参照して説明する。図30から図32は、実施の形態6に係る電動送風機の一構成例の断面構造を示す図で、いずれも異なる構成例を示す図であり、ここでは、便宜上、軸方向の中央部分を省略している。図30から図32において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態6について、実施の形態1から5との相違点について説明するが、実施の形態6では、実施の形態1から5における相違点を除く様々な例が適用できる。
《6-1》構成
実施の形態6に係る電動送風機について、図30から図32を参照して説明する。図30から図32は、実施の形態6に係る電動送風機の一構成例の断面構造を示す図で、いずれも異なる構成例を示す図であり、ここでは、便宜上、軸方向の中央部分を省略している。図30から図32において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態6について、実施の形態1から5との相違点について説明するが、実施の形態6では、実施の形態1から5における相違点を除く様々な例が適用できる。
図30から図32に示されるように、実施の形態6に係る電動送風機は、実施の形態1から5に係る電動送風機において、第1の遠心ファンの形状と第2の遠心ファンの形状とを異なるようにしている。第1の遠心ファンと第2の遠心ファンとで形状を異ならせることで、第1の遠心ファンにより発生する気流によるスラスト力と第2の遠心ファンにより発生する気流によるスラスト力とを異ならせることができる。
図30に示される電動送風機6は、遠心ファンの形状を示すパラメータ(形状パラメータ)の一つ(形状パラメータのうちのサイズを示すパラメータの一つ)として外径を異なるようにしている。つまり、図30に示されるように、電動送風機6は、第1の遠心ファン31の外径D1と第2の遠心ファン32の外径D2とを異なるようにしている。外径D1は、第1の遠心ファン31の外径のうち最も大きい値、厚み方向に平均した値など、任意に定義しておけばよい。なお、外径D2は、第2の遠心ファン32についての値であるほかは、外径D1と同じ定義の値とする。
例えば、図22(図23),図24(図25及び図26),図27,図28に示される実施の形態4に係る電動送風機4,4a,4b,4cは、いずれも、第1の力F1と第2の力F2とを釣り合わせるために、第1の遠心ファン31より第2の遠心ファン32の方で強い気流が必要な構造である。一方で、遠心ファンは、他の形状パラメータが同じであれば、その外径が大きいほど強い気流を生み出すことが可能である。従って、図30に示されるように、実施の形態6に係る電動送風機は、電動送風機4,4a,4b,4cのいずれかの構造を適用した場合、第1の遠心ファン31の外径D1を第2の遠心ファン32の外径D2より小さくした構造を採用するとよい。
また、図8,図9に示される電動送風機1a,1bは、いずれも、第1の力F1と第2の力F2とを釣り合わせるために、第2の遠心ファン32より第1の遠心ファン31の方で強い気流が必要な構造である。従って、実施の形態6に係る電動送風機は、電動送風機1a,1bのいずれかの構造を適用した場合、図示しないが、外径D1を外径D2より大きくした構造を採用するとよい。
実施の形態6に係る電動送風機では、図30に示される電動送風機6のように、第1の遠心ファン31の外径D1が第2の遠心ファン32の外径D2と異なることを許容することで、第1の遠心ファン31の仕事量と第2の遠心ファン32の仕事量とを調整することを許容している。従って、実施の形態6に係る電動送風機では、ケーシング20等のケーシングの内部の形状に応じて、回転シャフト13の回転時に発生するスラスト荷重を、例えば第1の力F1と第2の力F2とが釣り合うように調整することが容易になる。すなわち、実施の形態6に係る電動送風機によれば、遠心ファン31,32の仕事量を調整することにより、風路上の障害物等による気流アンバランス(回転シャフト13に遠心ファン31,32の双方から与えられるスラスト荷重のアンバランス)を低減化するように調整することが可能になり、また、電動送風機の設計の自由度を増すことができる。また、実施の形態6に係る電動送風機によれば、このようなアンバランスの低減化のために、ファンカバー21,22等の他の部材の設計を変更する必要がなくなる。
例えば、実施の形態6によれば、電動送風機を設計するに際し、風路が非対称となるような設計を余儀なくされた場合であっても、異なる外径の遠心ファンの中から第1の遠心ファン及び第2の遠心ファンとして取り付けるものを選択し、第1の遠心ファンにより発生した気流によるスラスト力と第2の遠心ファンにより発生した気流によるスラスト力とを釣り合わせるように調整することができる。
《6-2》変形例
図31に示される電動送風機6aは、遠心ファンの形状パラメータの一つ(形状パラメータのうちのサイズを示すパラメータの一つ)として遠心ファンの厚さを異なるように、つまり、第1の遠心ファン31の厚みT1と第2の遠心ファン32の厚みT2とを異なるようにしている。ここで、遠心ファンの厚みとは、軸方向の高さを指す。
図31に示される電動送風機6aは、遠心ファンの形状パラメータの一つ(形状パラメータのうちのサイズを示すパラメータの一つ)として遠心ファンの厚さを異なるように、つまり、第1の遠心ファン31の厚みT1と第2の遠心ファン32の厚みT2とを異なるようにしている。ここで、遠心ファンの厚みとは、軸方向の高さを指す。
遠心ファンは、他の形状パラメータが同じであれば、その厚みが大きいほど強い気流を生み出すことが可能であり、第1の遠心ファン31の厚みT1と第2の遠心ファン32の厚みT2との関係は、外径D1と外径D2との関係と同様である。よって、図31に示されるように、電動送風機6aは、例えば図22から図28に示される電動送風機4,4a,4b,4cのいずれかの構造を適用した場合、第1の遠心ファン31の厚みT1を第2の遠心ファン32の厚みT2より小さくした構造を採用するとよい。また、厚みT1と厚みT2とを異ならせる電動送風機は、図8,図9に示される電動送風機1a,1bのいずれかの構造を適用した場合、図示しないが、第1の遠心ファン31の厚みT1を第2の遠心ファン32の厚みT2より大きくした構造を採用するとよい。
このように、電動送風機において、第1の遠心ファンの厚みT1が第2の遠心ファンの厚みT2と異なることを許容することで、外径を異ならせた際と同様の効果を奏する。例えば、電動送風機を設計するに際し、風路が非対称となるような設計を余儀なくされた場合であっても、異なる厚みの遠心ファンの中から第1の遠心ファン及び第2の遠心ファンとして取り付けるものを選択し、第1の遠心ファンにより発生した気流によるスラスト力と第2の遠心ファンにより発生した気流によるスラスト力とを釣り合わせるように調整することができる。
図32に示される電動送風機6bは、遠心ファンの形状パラメータの一つとして羽根の枚数を異なるように、つまり、第1の遠心ファン31の羽根の枚数と第2の遠心ファン32bの羽根の枚数とを異なるようにしている。なお、第2の遠心ファン32bは、上述した第2の遠心ファン32の代わりに設けられる遠心ファンである。
遠心ファンは、他の形状パラメータが同じであれば、一般的にその羽根の枚数が多いほど強い気流を生み出すことが可能であり、第1の遠心ファン31の羽根の枚数N1と第2の遠心ファン32bの羽根の枚数N2との関係は、外径D1と外径D2との関係と同様である。よって、図32に示されるように、電動送風機6bは、例えば図22から図28に示される電動送風機4,4a,4b,4cのいずれかの構造を適用した場合、第1の遠心ファン31の羽根の枚数N1を第2の遠心ファン32bの羽根の枚数N2より少なくした構造を採用するとよい。また、枚数N1と枚数N2とを異ならせる電動送風機は、図8,図9に示される電動送風機1a,1bのいずれかの構造を適用した場合、図示しないが、第1の遠心ファン31の羽根の枚数N1を第2の遠心ファン32bの羽根の枚数N2より多くした構造を採用するとよい。
このように、電動送風機において、第1の遠心ファンの羽根の枚数N1が第2の遠心ファンの羽根の枚数N2と異なることを許容することで、外径を異ならせた際と同様の効果を奏する。例えば、電動送風機を設計するに際し、風路が非対称となるような設計を余儀なくされた場合であっても、羽根の枚数が異なる遠心ファンの中から第1の遠心ファン及び第2の遠心ファンとして取り付けるものを選択し、第1の遠心ファンにより発生した気流によるスラスト力と第2の遠心ファンにより発生した気流によるスラスト力とを釣り合わせるように調整することができる。
その他、遠心ファンの形状パラメータの一つとして、羽根の軸方向の高さ又は羽根の一枚毎の表面積(又は遠心ファンの全ての羽根の表面積)など、羽根の枚数以外の形状を異ならせてもよいし、羽根が取り付け等により設けられる基部(土台)の形状を異ならせることもできる。また、第1の遠心ファンと第2の遠心ファンとでは、以上に説明した形状パラメータのうち複数を異ならせてもよい。つまり、実施の形態6においては、第1の遠心ファンと第2の遠心ファンとは、外径、軸方向の厚み、羽根の数、羽根の表面積、羽根の軸方向の高さ、羽根が設けられる基部の形状のうち、少なくとも1つが異なるようにする。
《6-3》効果
実施の形態6に係る電動送風機6,6a,6bによれば、第1の遠心ファンの形状パラメータが第2の遠心ファンの形状パラメータと異なることを許容しているため、風路上の障害物等による気流アンバランスを低減化するように調整することが容易になり、また、電動送風機の設計の自由度を増すことができる。また、実施の形態6に係る電動送風機によれば、このようなアンバランスの低減化のために、ファンカバー21,22等の他の部材の設計を変更する必要がなくなる。例えば、実施の形態6に係る電動送風機によれば、電動送風機を設計するに際し、第1の遠心ファン及び第2の遠心ファンで発生する気流の風路が非対称になるような設計を余儀なくされた場合であっても、異なる形状パラメータの遠心ファンの中から第1の遠心ファン及び第2の遠心ファンとして取り付けるものを選択し、第1の遠心ファンにより発生した気流によるスラスト力と第2の遠心ファンにより発生した気流によるスラスト力とを釣り合わせるように調整することができる。
また、説明を省略するが、第1のファンカバー及び第2のファンカバーの形状を異ならせることでも、同様の効果が得られる。
実施の形態6に係る電動送風機6,6a,6bによれば、第1の遠心ファンの形状パラメータが第2の遠心ファンの形状パラメータと異なることを許容しているため、風路上の障害物等による気流アンバランスを低減化するように調整することが容易になり、また、電動送風機の設計の自由度を増すことができる。また、実施の形態6に係る電動送風機によれば、このようなアンバランスの低減化のために、ファンカバー21,22等の他の部材の設計を変更する必要がなくなる。例えば、実施の形態6に係る電動送風機によれば、電動送風機を設計するに際し、第1の遠心ファン及び第2の遠心ファンで発生する気流の風路が非対称になるような設計を余儀なくされた場合であっても、異なる形状パラメータの遠心ファンの中から第1の遠心ファン及び第2の遠心ファンとして取り付けるものを選択し、第1の遠心ファンにより発生した気流によるスラスト力と第2の遠心ファンにより発生した気流によるスラスト力とを釣り合わせるように調整することができる。
また、説明を省略するが、第1のファンカバー及び第2のファンカバーの形状を異ならせることでも、同様の効果が得られる。
《7》実施の形態7
《7-1》構成
実施の形態7に係る電動送風機について、図33を参照して説明する。図33は、実施の形態7に係る電動送風機の一構成例の断面構造を示す図であり、便宜上、軸方向の端の部分(第1の遠心ファン及び第2の遠心ファンが取り付けられる部分)を省略している。図33において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態7について、実施の形態1から6との相違点について説明するが、実施の形態7では、実施の形態1から6における相違点を除く様々な例が適用できる。
《7-1》構成
実施の形態7に係る電動送風機について、図33を参照して説明する。図33は、実施の形態7に係る電動送風機の一構成例の断面構造を示す図であり、便宜上、軸方向の端の部分(第1の遠心ファン及び第2の遠心ファンが取り付けられる部分)を省略している。図33において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態7について、実施の形態1から6との相違点について説明するが、実施の形態7では、実施の形態1から6における相違点を除く様々な例が適用できる。
図33に示されるように、実施の形態7に係る電動送風機7は、回転子コア12の軸方向の中心位置が、固定子11の軸方向の中心位置からずれた構造を有する。つまり、実施の形態7では、固定子11と回転子14の軸方向の位置関係が異なっており、固定子11の軸方向中心に対し、回転子14の軸方向中心がずれた状態となっている。この例では、回転子コア12の軸方向の中心位置が固定子11の軸方向の中心位置より、距離Δmだけ第1の遠心ファン31側にある構造を有する。このような構造を採用することで、固定子11と回転子14の回転子コア12との間には軸方向(スラスト方向)の磁気吸引力が発生する。この磁気吸引力は、回転子14の回転数に依存せず働くため、結果として回転子14には図33において矢印で示される方向のスラスト力Fmが働くことになり、実施の形態5及び6と同様の効果を奏する。
《7-2》効果
実施の形態7に係る電動送風機7によれば、固定子11に対する回転子14の軸方向の位置関係を任意にずらすことを許容しているため、風路上の障害物等による気流アンバランスを低減化するように調整することが容易になり、また、電動送風機の設計の自由度を増すことができる。例えば、実施の形態7に係る電動送風機7によれば、電動送風機を設計するに際し、第1の遠心ファン31及び第2の遠心ファン32で発生する気流の風路が非対称になるような設計を余儀なくされた場合であっても、距離Δmを調整することで、スラスト力Fmと第1の遠心ファン31により発生した気流によるスラスト力と第2の遠心ファン32により発生した気流によるスラスト力とを釣り合わせるように調整することができる。
実施の形態7に係る電動送風機7によれば、固定子11に対する回転子14の軸方向の位置関係を任意にずらすことを許容しているため、風路上の障害物等による気流アンバランスを低減化するように調整することが容易になり、また、電動送風機の設計の自由度を増すことができる。例えば、実施の形態7に係る電動送風機7によれば、電動送風機を設計するに際し、第1の遠心ファン31及び第2の遠心ファン32で発生する気流の風路が非対称になるような設計を余儀なくされた場合であっても、距離Δmを調整することで、スラスト力Fmと第1の遠心ファン31により発生した気流によるスラスト力と第2の遠心ファン32により発生した気流によるスラスト力とを釣り合わせるように調整することができる。
《8》実施の形態8
《8-1》構成
実施の形態8に係る電動送風機について、図34を参照しながら説明する。図34は、実施の形態8に係る電動送風機の一構成例の断面構造を示す図である。図34において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態8について、実施の形態1から7との相違点(特に実施の形態1との相違点)を中心に説明するが、実施の形態8では、実施の形態1から7における相違点を除く様々な例が適用できる。
《8-1》構成
実施の形態8に係る電動送風機について、図34を参照しながら説明する。図34は、実施の形態8に係る電動送風機の一構成例の断面構造を示す図である。図34において、図1と同じ又は対応する機能を持つ部位には、図1で用いられた符号と同じ符号が付されている。以下、実施の形態8について、実施の形態1から7との相違点(特に実施の形態1との相違点)を中心に説明するが、実施の形態8では、実施の形態1から7における相違点を除く様々な例が適用できる。
実施の形態1から7では、第1の力F1と第2の力F2とが互いに反対の向きである一例として、遠心ファン31,32の双方でケーシング20の外部から内部へ気体を吸い込む場合について説明した。
図34に示されるように、実施の形態8に係る電動送風機8は、遠心ファン31,32の双方でケーシング20hの内部から外部へ気体を吸い込んで吐出するように構成することもできる。ここで、ケーシング20hは、図1に示されるケーシング20において、ファンカバー21,22を軸方向に垂直な面に対して反転させたものである。また、図34に示される遠心ファン31,32は、図1に示される遠心ファン31,32とは逆向きに回転シャフト13に固定されている。そして、電動送風機8では、第1の遠心ファン31がケーシング20hの外部(第1の開口部21aより軸方向に外側)に固定されており、第2の遠心ファン32もケーシング20hの外部(第2の開口部22aより軸方向に外側)に固定されている。
ファンカバー21,22について、実施の形態8に合わせて説明する。
図34に示されるように、第1のファンカバー21は、気体を吸引する口として第1の開口部21aと、第1の遠心ファン31から遠心方向に発生した気流(吐出された気体)が衝突する傾斜面(第1傾斜面)と、気体を吐出する口としての開口部21bと、を有する。図34に示されるように、第1のファンカバー21は、回転シャフト13の回転軸を中心とし回転子コア12からの距離が離れるに連れて直径(内径及び外径)を大きくした円筒の形状を有することができる。但し、第1のファンカバー21の形状はこれに限ったものではない。このような構成及び第1の遠心ファン31との位置関係により、第1のファンカバー21は、第1の遠心ファン31の回転によって第1の開口部21aから吸引された気体を遠心方向に流し、上記第1傾斜面にてその気流の向き(風向)を変更し、開口部21bから吐出させる。なお、第1のファンカバー21は、少なくとも第1の開口部21a及び開口部21bにおいては、第1の遠心ファン31を覆っていない。また、第1のファンカバー21は、開口部21bにおいてケーシング20hの内周壁に固定されている。
図34に示されるように、第1のファンカバー21は、気体を吸引する口として第1の開口部21aと、第1の遠心ファン31から遠心方向に発生した気流(吐出された気体)が衝突する傾斜面(第1傾斜面)と、気体を吐出する口としての開口部21bと、を有する。図34に示されるように、第1のファンカバー21は、回転シャフト13の回転軸を中心とし回転子コア12からの距離が離れるに連れて直径(内径及び外径)を大きくした円筒の形状を有することができる。但し、第1のファンカバー21の形状はこれに限ったものではない。このような構成及び第1の遠心ファン31との位置関係により、第1のファンカバー21は、第1の遠心ファン31の回転によって第1の開口部21aから吸引された気体を遠心方向に流し、上記第1傾斜面にてその気流の向き(風向)を変更し、開口部21bから吐出させる。なお、第1のファンカバー21は、少なくとも第1の開口部21a及び開口部21bにおいては、第1の遠心ファン31を覆っていない。また、第1のファンカバー21は、開口部21bにおいてケーシング20hの内周壁に固定されている。
また、図34に示されるように、第2のファンカバー22は、気体を吸引する口として第2の開口部22aと、第2の遠心ファン32から遠心方向に発生した気流(吐出された気体)が衝突する傾斜面(第2傾斜面)と、気体を吐出する口としての開口部22bと、を有する。図34に示されるように、第2のファンカバー22は、回転シャフト13の回転軸を中心とし回転子コア12からの距離が離れるに連れて直径(内径及び外径)を大きくした円筒の形状を有することができる。但し、第2のファンカバー22の形状はこれに限ったものではない。このような構成及び第2の遠心ファン32との位置関係により、第2のファンカバー22は、第2の遠心ファン32の回転によって第2の開口部22aから吸引された気体を遠心方向に流し、上記第2傾斜面にてその気流の向き(風向)を変更し、開口部22bから吐出させる。なお、第2のファンカバー22は、少なくとも第2の開口部22a及び開口部22bにおいては、第2の遠心ファン32を覆っていない。また、第2のファンカバー22は、開口部22bにおいてケーシング20hの内周壁に固定されている。
実施の形態8に係る電動送風機8は、例えば上述のような構成を有することで、第1の力F1を、回転シャフト13の第1端側(第1の遠心ファン31が取り付けられた側の端部)から第2端側(第2の遠心ファン32が取り付けられた側の端部)に向かう力とし、第2の力F2を、回転シャフト13の第2端側から第1端側に向かう力とする。つまり、電動送風機8では、第1の方向が第1端側から第2端側に向かう方向であり、第2の方向が第2端側から第1端側に向かう方向である。また、実施の形態8においても、第1の力F1と第2の力F2とは、互いに釣り合うことが好ましい。
電動送風機8は、図34において破線矢印で示されるように、第1の遠心ファン31の回転に伴い、第1のファンカバー21の第1の開口部21aを介して第3の開口部27から気体を吸引し、その気体をケーシング20hの外部に吐出(排出)するように導く。また、電動送風機8は、図34において実線矢印で示されるように、第2の遠心ファン32の回転に伴い、第2のファンカバー22の第2の開口部22aを介して第3の開口部28から気体を吸引し、その気体をケーシング20hの外部に吐出するように導く。
《8-2》効果
実施の形態8に係る電動送風機8によれば、実施の形態1から7のいずれかによる効果と同様の効果を、別の構成で得ることができる。つまり、実施の形態8に係る電動送風機8では、第1の力F1を、回転シャフト13の第1端から第2端に向かう向きとし、第2の力F2を、回転シャフト13の第2端から第1端に向かう向きとすることで、例えば第3の開口部27,28に吸引口を有する管などを接続することにより、吸引用途の電気機器に搭載することができる。但し、電動送風機8は、例えば開口部21b,22bに送風口を有する管などを接続することにより、送風用途の電気機器に搭載することもできる。
実施の形態8に係る電動送風機8によれば、実施の形態1から7のいずれかによる効果と同様の効果を、別の構成で得ることができる。つまり、実施の形態8に係る電動送風機8では、第1の力F1を、回転シャフト13の第1端から第2端に向かう向きとし、第2の力F2を、回転シャフト13の第2端から第1端に向かう向きとすることで、例えば第3の開口部27,28に吸引口を有する管などを接続することにより、吸引用途の電気機器に搭載することができる。但し、電動送風機8は、例えば開口部21b,22bに送風口を有する管などを接続することにより、送風用途の電気機器に搭載することもできる。
《9》実施の形態9
《9-1》構成
実施の形態9に係る電気機器について、図35及び図36を参照しながら説明する。図35は、実施の形態9に係る電気機器としての掃除機の一例を示す斜視図、図36は、実施の形態9に係る電気機器としてのジェットタオルの一例を示す斜視図である。
《9-1》構成
実施の形態9に係る電気機器について、図35及び図36を参照しながら説明する。図35は、実施の形態9に係る電気機器としての掃除機の一例を示す斜視図、図36は、実施の形態9に係る電気機器としてのジェットタオルの一例を示す斜視図である。
実施の形態1から8に係る電動送風機は、様々な電気機器に備えることができる。例えば、図35に示される掃除機9aは、本体91と、本体91に取り付けられる集塵部92と、ダクト93と、ダクト93の先端に取り付けられた吸引ノズル94と、を有する。また、本体91には排気口も設けられている。そして、掃除機9aは、本体91に、図34に示される電動送風機8を有することができる。例えば、掃除機9aは、電動送風機8の第3の開口部27,28をダクト93側に接続し、ファンカバー21,22の開口部21b,22bを排気口側に接続し、ダクト93と第3の開口部27,28との間又は開口部21b,22bと排気口との間に集塵部92を設けることができる。また、掃除機9aは、電動送風機8の代わりに、例えば図1に示される電動送風機1を有することもできるなど、実施の形態1から8に係る電動送風機のいずれを搭載してもよい。
図36に示されるジェットタオル9bは、その本体96に吸引口97及び送風口98が設けられており、本体96の内部に、図1に示される電動送風機1を有することができる。例えば、ジェットタオル9bは、電動送風機1のファンカバー21,22の開口部21a,22aを吸引口97側に接続し、第3の開口部27,28を送風口98側に接続し、第3の開口部27,28と送風口98との間に図示しない熱源を設けることができる。また、ジェットタオル9bは、電動送風機1の代わりに、例えば図34に示される電動送風機8を有することもできるなど、実施の形態1から8に係る電動送風機のいずれを搭載してもよい。
《9-2》効果
実施の形態9によれば、実施の形態1から8のいずれかによる効果を奏する電動送風機を備えた電気機器を提供することができる。
実施の形態9によれば、実施の形態1から8のいずれかによる効果を奏する電動送風機を備えた電気機器を提供することができる。
1,1a,1b,1c,2,2a,2b,2c,3,3a,3b,4,4a,4b,4c,5,6,6a,6b,7,8 電動送風機、 9a 掃除機、 9b ジェットタオル、 10 モータ、 11 固定子、 12 回転子コア、 13 回転シャフト、 14 回転子、 20,20a,20b,20c,20d,20e,20f,20g,20h ケーシング、 21 第1のファンカバー、 21a 第1の開口部、 21b,22b 開口部、 22 第2のファンカバー、 22a 第2の開口部、 23 第1のベアリング、 23a,23d 内輪、 23b,23e 外輪、 23c,23f 転動体、 24 第2のベアリング、 25 第1の支持部材、 25a 環状部、 25b 中心部、 25ba 取付部、 25c 枝部、 25d 第4の開口部、 26 第2の支持部材、 27,27a,27d,27e,28,28a,28d 第3の開口部、 31 第1の遠心ファン、 32 第2の遠心ファン、 33a 基部、 33b 羽根、 41,41a,41c 第1の仕切り部、 41b,47a 第1の連通口、 42,42a 第2の仕切り部、 42b,46a 第2の連通口、 43,45,47 第1の内部ケーシング、 44,46 第2の内部ケーシング、 91 掃除機の本体、 92 集塵部、 93 ダクト、 94 吸引ノズル、 96 ジェットタオルの本体、 97 吸引口、 98 送風口。
Claims (19)
- 回転シャフトを有するモータと、
前記回転シャフトの第1端側に固定された第1の遠心ファンと、
前記回転シャフトの前記第1端側の反対側の第2端側に固定された第2の遠心ファンと、
前記モータ、前記第1の遠心ファン、及び前記第2の遠心ファンを囲うケーシングと、
を有し、
前記回転シャフトの回転中、前記第1の遠心ファンにより前記回転シャフトに対して前記回転シャフトの軸方向である第1の方向に与えられる第1の力と、前記第2の遠心ファンにより前記回転シャフトに対して前記回転シャフトの軸方向である第2の方向に与えられる第2の力とは、互いに反対である
電動送風機。 - 前記第1の方向は、前記第2端側から前記第1端側に向かう方向であり、
前記第2の方向は、前記第1端側から前記第2端側に向かう方向である
請求項1に記載の電動送風機。 - 前記第1の方向は、前記第1端側から前記第2端側に向かう方向であり、
前記第2の方向は、前記第2端側から前記第1端側に向かう方向である
請求項1に記載の電動送風機。 - 前記ケーシングは、
前記第1端側に設けられた第1の開口部と、
前記第2端側に設けられた第2の開口部と、
前記第1の遠心ファンと前記第2の遠心ファンとの間に設けられた第3の開口部と、
を有する
請求項1から3のいずれか1項に記載の電動送風機。 - 前記ケーシングは、
前記第1の開口部が設けられ、前記第1の遠心ファンにより発生した遠心方向の気流を前記軸方向に向ける第1のファンカバーと、
前記第2の開口部が設けられ、前記第2の遠心ファンにより発生した遠心方向の気流を前記軸方向に向ける第2のファンカバーと、
を有する
請求項4に記載の電動送風機。 - 前記第1端側において前記回転シャフトを回転可能に支持する第1のベアリングと、
前記ケーシング内に固定され、前記第1のベアリングを支持する第1の支持部材と、
前記第2端側において前記回転シャフトを回転可能に支持する第2のベアリングと、
前記ケーシング内に固定され、前記第2のベアリングを支持する第2の支持部材と、
をさらに有する
請求項1から5のいずれか1項に記載の電動送風機。 - 前記第1の支持部材は、第4の開口部を有し、
前記第2の支持部材は、第5の開口部を有する
請求項6に記載の電動送風機。 - 前記ケーシング内に固定され、前記第1の遠心ファンにより発生した気流の方向を、前記第1の遠心ファンと前記第1の支持部材との間において変更する第1の仕切り部をさらに有する
請求項6又は7に記載の電動送風機。 - 前記第1の仕切り部は、前記第1の遠心ファンにより発生した気流を通過させる第1の連通口を有する
請求項8に記載の電動送風機。 - 前記ケーシング内に固定され、前記第2の遠心ファンにより発生した気流の方向を、前記第2の遠心ファンと前記第2の支持部材との間において変更する第2の仕切り部をさらに有する
請求項8又は9に記載の電動送風機。 - 前記第2の仕切り部は、前記第2の遠心ファンにより発生した気流を通過させる第2の連通口を有する
請求項10に記載の電動送風機。 - 前記第1端側において前記回転シャフトを回転可能に支持する第1のベアリングと、
前記ケーシング内に固定され、前記第1のベアリングを支持する第1の支持部材と、
前記第2端側において前記回転シャフトを回転可能に支持する第2のベアリングと、
前記ケーシング内に固定され、前記第2のベアリングを支持する第2の支持部材と、
前記ケーシング内に固定され、前記第1の遠心ファンにより発生した気流の方向を、前記第1の遠心ファンと前記第1の支持部材との間において変更する第1の仕切り部と、
をさらに有し、
前記第1の仕切り部は、前記第1のファンカバーと前記第3の開口部とを結ぶ第1の流路を有する第1のケーシングである
請求項5に記載の電動送風機。 - 前記ケーシング内に固定され、前記第2の遠心ファンにより発生した気流の方向を、前記第2の遠心ファンと前記第2の支持部材との間において変更する第2の仕切り部をさらに有し、
前記第2の仕切り部は、前記第2のファンカバーと前記第3の開口部とを結ぶ第2の流路を有する第2のケーシングである
請求項12に記載の電動送風機。 - 前記第1の遠心ファンと前記第1の支持部材との間の距離と、前記第2の遠心ファンと前記第2の支持部材との間の距離とは、互いに異なる
請求項6から13のいずれか1項に記載の電動送風機。 - 前記モータは、固定子と、前記回転シャフトに固定された回転子コアと、をさらに有し、
前記回転子コアの前記軸方向の中心位置は、前記固定子の前記軸方向の中心位置からずれている
請求項1から14のいずれか1項に記載の電動送風機。 - 前記第1の遠心ファンと前記第1のファンカバーとの間の間隔と、前記第2の遠心ファンと前記第2のファンカバーとの間の間隔とは、互いに異なる
請求項5に記載の電動送風機。 - 前記第1の遠心ファンの形状と前記第2の遠心ファンの形状とは、互いに異なる
請求項1から16のいずれか1項に記載の電動送風機。 - 前記第1の力と前記第2の力とは、互いに釣り合う
請求項1から17のいずれか1項に記載の電動送風機。 - 請求項1から18のいずれか1項に記載の電動送風機を備えた電気機器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/096,884 US10947994B2 (en) | 2016-07-13 | 2016-07-13 | Electric blower and electric equipment |
PCT/JP2016/070713 WO2018011917A1 (ja) | 2016-07-13 | 2016-07-13 | 電動送風機及び電気機器 |
CN202110755450.1A CN113482943B (zh) | 2016-07-13 | 2016-07-13 | 电动送风机及电气设备 |
CN201680087451.0A CN109477496B (zh) | 2016-07-13 | 2016-07-13 | 电动送风机及电气设备 |
JP2018527312A JP6652643B2 (ja) | 2016-07-13 | 2016-07-13 | 電動送風機及び電気機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/070713 WO2018011917A1 (ja) | 2016-07-13 | 2016-07-13 | 電動送風機及び電気機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018011917A1 true WO2018011917A1 (ja) | 2018-01-18 |
Family
ID=60952854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070713 WO2018011917A1 (ja) | 2016-07-13 | 2016-07-13 | 電動送風機及び電気機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10947994B2 (ja) |
JP (1) | JP6652643B2 (ja) |
CN (2) | CN113482943B (ja) |
WO (1) | WO2018011917A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200208641A1 (en) * | 2017-08-04 | 2020-07-02 | Mitsubishi Electric Corporation | Electric blower, vacuum cleaner, and hand drying device |
US11700980B2 (en) * | 2017-04-19 | 2023-07-18 | Mitsubishi Electric Corporation | Electric blower, vacuum cleaner, and hand drying device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113482943B (zh) * | 2016-07-13 | 2023-11-10 | 三菱电机株式会社 | 电动送风机及电气设备 |
JP2019154176A (ja) * | 2018-03-05 | 2019-09-12 | 本田技研工業株式会社 | 燃料電池車両 |
CN113374740B (zh) * | 2021-06-30 | 2022-09-27 | 浙江曹娥通风设备有限公司 | 一种具有消音作用的管道风机 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02169899A (ja) * | 1988-12-21 | 1990-06-29 | Fanuc Ltd | レーザ用ターボブロア及びそれを用いたレーザ発振装置 |
JP2000045990A (ja) * | 1998-07-30 | 2000-02-15 | Sharp Corp | モータ一体型スラスト軸受装置 |
JP2002048099A (ja) * | 2000-07-31 | 2002-02-15 | Nippon Densan Corp | 電動送風機 |
JP2002364556A (ja) * | 2001-06-08 | 2002-12-18 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JP2004108336A (ja) * | 2002-09-20 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | 圧縮機 |
JP2010071170A (ja) * | 2008-09-18 | 2010-04-02 | Denso Corp | 遠心式送風機 |
JP2012229657A (ja) * | 2011-04-26 | 2012-11-22 | Nippon Densan Corp | 遠心ファン |
JP2015031202A (ja) * | 2013-08-02 | 2015-02-16 | 株式会社日立製作所 | 多段遠心圧縮機 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1476776A (en) * | 1920-03-16 | 1923-12-11 | Stamm Max | Air-cooled electric motor |
DE2159025C2 (de) * | 1971-11-29 | 1982-12-30 | Robert Bosch Gmbh, 7000 Stuttgart | Kraftstofförderaggregat, bestehend aus einer Seitenkanalpumpe und einem Elektromotor |
JPS49136047U (ja) | 1972-12-27 | 1974-11-22 | ||
JPS5838301A (ja) * | 1981-08-29 | 1983-03-05 | Shimadzu Corp | 遠心式羽根車装置 |
DE3823158A1 (de) * | 1988-07-08 | 1990-01-18 | Reich Maschf Gmbh Karl | Elektromotor mit scheibenbremse |
JPH0419700U (ja) | 1990-06-06 | 1992-02-19 | ||
JPH05223090A (ja) * | 1992-02-12 | 1993-08-31 | Toshiba Corp | ターボ圧縮機 |
SE9303599L (sv) * | 1993-11-02 | 1995-05-03 | Electrolux Ab | Anordning för att kyla ett elmotordrivet turbofläktaggregat |
JP3843472B2 (ja) | 1995-10-04 | 2006-11-08 | 株式会社日立製作所 | 車両用換気装置 |
JPH1026100A (ja) | 1996-07-10 | 1998-01-27 | Hitachi Ltd | 列車用換気装置 |
JPH11173298A (ja) | 1997-12-10 | 1999-06-29 | Toshiba Tec Corp | 電動送風機 |
JP3777765B2 (ja) | 1997-12-16 | 2006-05-24 | 松下電器産業株式会社 | 電動送風機及びそれを用いた電気掃除機 |
JPH11225917A (ja) | 1998-02-12 | 1999-08-24 | Toshiba Tec Corp | 電気掃除機 |
KR100530757B1 (ko) * | 1999-07-15 | 2005-11-23 | 삼성테크윈 주식회사 | 터보식 압축기 |
CA2373905A1 (en) * | 2002-02-28 | 2003-08-28 | Ronald David Conry | Twin centrifugal compressor |
JP2006177289A (ja) | 2004-12-24 | 2006-07-06 | Denso Corp | ブロワユニット |
EP1952506A1 (en) * | 2005-11-23 | 2008-08-06 | Daewoo Electronics Corporation | Induction motor utilizes magnetic fluxes of end-turns of stator |
JP4951588B2 (ja) * | 2008-06-17 | 2012-06-13 | 日立アプライアンス株式会社 | 電動送風機及びこれを備えた電気掃除機 |
US8931304B2 (en) * | 2010-07-20 | 2015-01-13 | Hamilton Sundstrand Corporation | Centrifugal compressor cooling path arrangement |
GB2493974B (en) | 2011-08-26 | 2014-01-15 | Dyson Technology Ltd | Bearing assembly |
JP2013074646A (ja) * | 2011-09-26 | 2013-04-22 | Toshiba Corp | 制御装置一体電動機 |
WO2013056458A1 (zh) * | 2011-10-21 | 2013-04-25 | Dien Ghing-Hsin | 电动机 |
GB2500192B (en) * | 2012-03-12 | 2015-11-18 | Jaguar Land Rover Ltd | Compact Multi-Stage Turbo Pump |
DE102012203809A1 (de) * | 2012-03-12 | 2013-09-12 | Robert Bosch Gmbh | Elektrische Maschine und Verfahren hierfür |
DE102012207019B4 (de) * | 2012-04-27 | 2015-12-24 | Siemens Aktiengesellschaft | Strömungsmaschine sowie Verfahren zur Kühlen einer solchen |
CN113482943B (zh) * | 2016-07-13 | 2023-11-10 | 三菱电机株式会社 | 电动送风机及电气设备 |
-
2016
- 2016-07-13 CN CN202110755450.1A patent/CN113482943B/zh active Active
- 2016-07-13 WO PCT/JP2016/070713 patent/WO2018011917A1/ja active Application Filing
- 2016-07-13 CN CN201680087451.0A patent/CN109477496B/zh active Active
- 2016-07-13 US US16/096,884 patent/US10947994B2/en active Active
- 2016-07-13 JP JP2018527312A patent/JP6652643B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02169899A (ja) * | 1988-12-21 | 1990-06-29 | Fanuc Ltd | レーザ用ターボブロア及びそれを用いたレーザ発振装置 |
JP2000045990A (ja) * | 1998-07-30 | 2000-02-15 | Sharp Corp | モータ一体型スラスト軸受装置 |
JP2002048099A (ja) * | 2000-07-31 | 2002-02-15 | Nippon Densan Corp | 電動送風機 |
JP2002364556A (ja) * | 2001-06-08 | 2002-12-18 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JP2004108336A (ja) * | 2002-09-20 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | 圧縮機 |
JP2010071170A (ja) * | 2008-09-18 | 2010-04-02 | Denso Corp | 遠心式送風機 |
JP2012229657A (ja) * | 2011-04-26 | 2012-11-22 | Nippon Densan Corp | 遠心ファン |
JP2015031202A (ja) * | 2013-08-02 | 2015-02-16 | 株式会社日立製作所 | 多段遠心圧縮機 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11700980B2 (en) * | 2017-04-19 | 2023-07-18 | Mitsubishi Electric Corporation | Electric blower, vacuum cleaner, and hand drying device |
US20200208641A1 (en) * | 2017-08-04 | 2020-07-02 | Mitsubishi Electric Corporation | Electric blower, vacuum cleaner, and hand drying device |
EP3663589A4 (en) * | 2017-08-04 | 2020-08-12 | Mitsubishi Electric Corporation | ELECTRIC BLOWER, VACUUM AND HAND DRYER |
US11905959B2 (en) | 2017-08-04 | 2024-02-20 | Mitsubishi Electric Corporation | Electric blower, vacuum cleaner, and hand drying device |
Also Published As
Publication number | Publication date |
---|---|
CN113482943A (zh) | 2021-10-08 |
CN113482943B (zh) | 2023-11-10 |
US20190136872A1 (en) | 2019-05-09 |
CN109477496B (zh) | 2021-07-02 |
JP6652643B2 (ja) | 2020-02-26 |
US10947994B2 (en) | 2021-03-16 |
CN109477496A (zh) | 2019-03-15 |
JPWO2018011917A1 (ja) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018011917A1 (ja) | 電動送風機及び電気機器 | |
EP3376043B1 (en) | Motor fan | |
JP2019208361A (ja) | 電気モータ | |
TWI454619B (zh) | Air supply fan | |
US10184492B2 (en) | Axial flow fan | |
US10174768B2 (en) | Centrifugal blower and method of assembling the same | |
US10851792B2 (en) | Diagonal fan | |
JPWO2017082224A1 (ja) | 送風装置、および掃除機 | |
US20190277309A1 (en) | Centrifugal fan | |
JP7076485B2 (ja) | 電動送風機及び電気機器 | |
JP6925502B2 (ja) | 電動送風機、電気掃除機および手乾燥装置 | |
JP4389998B2 (ja) | 遠心式多翼ファン | |
JP2014530976A (ja) | 風力発電装置 | |
US11957294B2 (en) | Blower apparatus and vacuum cleaner | |
WO2020017161A1 (ja) | 電動コンプレッサ | |
KR102482413B1 (ko) | 팬 모터 | |
TWI784242B (zh) | 風扇馬達 | |
US11261871B2 (en) | Dual stage blower assembly | |
JP5095770B2 (ja) | 送風ファン | |
JPWO2020251041A5 (ja) | ||
WO2022158000A1 (ja) | インペラ、モータ、および掃除機 | |
US11841030B2 (en) | Impeller | |
JP2009203890A (ja) | 遠心送風機 | |
JP7161879B2 (ja) | 遠心送風機 | |
KR102387931B1 (ko) | 진공 흡입 유닛 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018527312 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908820 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16908820 Country of ref document: EP Kind code of ref document: A1 |