WO2018010428A1 - 阵列基板、透明显示基板、透明显示装置和车辆 - Google Patents

阵列基板、透明显示基板、透明显示装置和车辆 Download PDF

Info

Publication number
WO2018010428A1
WO2018010428A1 PCT/CN2017/073779 CN2017073779W WO2018010428A1 WO 2018010428 A1 WO2018010428 A1 WO 2018010428A1 CN 2017073779 W CN2017073779 W CN 2017073779W WO 2018010428 A1 WO2018010428 A1 WO 2018010428A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
wire grid
grid polarizer
array substrate
Prior art date
Application number
PCT/CN2017/073779
Other languages
English (en)
French (fr)
Inventor
徐晓玲
杜渊鑫
王延峰
邱云
王丹
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/552,008 priority Critical patent/US20180196308A1/en
Publication of WO2018010428A1 publication Critical patent/WO2018010428A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • Embodiments of the present invention generally relate to the field of display and, more particularly, to array substrates, transparent display substrates, transparent display devices, and vehicles including the same.
  • FIG. 1 shows a conventional transparent display panel including a transparent substrate 100 and a device attached to the transparent substrate 100.
  • a polarizing plate 101 is disposed on the transparent substrate 100 and attached to the transparent substrate 100.
  • the transparent display panel may further include other devices such as the TFT 102, the liquid crystal 103, the other polarizer 104, and the other transparent plate 100' for display. These devices are similar to conventional liquid crystal display panels.
  • the transparent display panel allows ambient light to pass through the transparent display panel. However, the transmittance of the existing transparent display panel is relatively low, about ⁇ 30%, which is partly due to the low transmittance of the polarizer.
  • the present invention has been made in order to overcome at least one of the above and other problems and disadvantages of the prior art.
  • An object of the present invention is to provide an array substrate, a transparent display substrate, a transparent display device, and a vehicle including the transparent display device, which improve light transmittance of the array substrate, the transparent display substrate, and the transparent display device.
  • an array substrate comprising: a transparent substrate; a plurality of pixel units formed on one side of the transparent substrate; and a wire grid polarizer formed on one side of the transparent substrate; and a wire grid polarizer on the transparent substrate
  • the position on the top corresponds to the position of the plurality of pixel units on the transparent substrate such that the orthographic projection of the wire grid polarizer on the transparent substrate completely coincides or partially coincides with the orthographic projection of the plurality of pixel units on the transparent substrate.
  • the wire grid polarizer comprises an array of strip elements comprised of a plurality of strip elements, the array of strip elements being configured such that each strip element transmits incident light in a predetermined polarization direction The light component simultaneously reflects the light component of the incident light in a polarization direction orthogonal to the predetermined polarization direction.
  • each pixel unit includes one or more sub-pixel portions, and the position of each strip element on the transparent substrate corresponds to the position of one sub-pixel portion on the transparent substrate such that the strip-shaped member is on the transparent substrate.
  • the upper orthographic projection at least partially coincides with the corresponding orthographic projection of the sub-pixel portion on the transparent substrate.
  • each pixel unit includes a plurality of sub-pixel portions, and a first light transmissive region is disposed between adjacent sub-pixel portions of each pixel unit, or
  • a second light transmissive area is disposed between adjacent pixel units and no light transmissive area is disposed between the plurality of sub-pixel portions of each pixel unit.
  • a third light transmissive region corresponding in position to the first light transmissive region and/or the second light transmissive region is disposed between adjacent strip members.
  • the width of each strip element of the wire grid polarizer is equal to the width of the corresponding sub-pixel portion.
  • the width of each strip element of the wire grid polarizer is less than the width of the corresponding sub-pixel portion.
  • the width of each strip element of the wire grid polarizer is equal to half the width of the corresponding sub-pixel portion.
  • each strip element of the wire grid polarizer comprises a material having electrically conductive properties and light reflective properties.
  • each strip element comprises a plurality of lines of material, the pitch between the lines of material being between 40 nm and 150 nm, and the thickness of each strip of material being between 40 nm and 150 nm.
  • the material of the material line is a metal or a conductive polymer.
  • the array substrate further includes a protective layer disposed on a side of the wire grid polarizer remote from the transparent substrate to cover the wire grid polarizer.
  • the wire grid polarizer and the plurality of sub-pixel portions are on the same side of the transparent substrate.
  • the wire grid polarizer is located on a side of the transparent substrate opposite the plurality of sub-pixel portions.
  • each pixel unit includes a plurality of sub-pixel portions, and the plurality of sub-pixel portion packages The blue sub-pixel portion, the red sub-pixel portion, and the green sub-pixel portion are included.
  • a transparent display substrate comprising the aforementioned array substrate is provided.
  • a color film layer is further disposed on the array substrate of the transparent display substrate.
  • a transparent display device comprising the aforementioned array substrate or a transparent display substrate as described above is provided.
  • a vehicle that includes a head up display system including the aforementioned transparent display device.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional transparent display array substrate
  • FIG. 2 is a cross-sectional view showing the structure of an array substrate for transparent display according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing the structure of an array substrate for transparent display according to another embodiment of the present invention.
  • FIGS. 4a and 4b illustrate a schematic arrangement of a pixel unit according to an embodiment of the present invention
  • FIG. 4c illustrates A schematic arrangement of a wire grid polarizer of an embodiment of the invention
  • FIG. 5 is a cross-sectional view showing the structure of an array substrate for transparent display according to still another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the structure of an array substrate for transparent display according to still another embodiment of the present invention.
  • FIG. 7a-b are enlarged views showing a wire grid polarizer in accordance with an embodiment of the present invention, wherein Fig. 7a is an enlarged plan view and Fig. 7b is an enlarged schematic cross-sectional view.
  • an array substrate including: a transparent substrate 200; and a plurality of pixel units 208 formed on one side of the transparent substrate, each pixel unit including one or more sub-pixels Part 205.
  • each sub-pixel portion is schematically indicated by an electrode 205.
  • the sub-pixel portion may include, for example, a plate electrode 2022, an insulating layer 2021, a strip electrode 205, and the like, where the strip electrode 205 is merely a schematic representation.
  • one pixel unit comprises a plurality of strip electrodes, the structure of which is known to those skilled in the art.
  • the plate electrode may be a common electrode and the strip electrode may be a pixel electrode.
  • the plate electrode may be a pixel electrode and the strip electrode may be a common electrode.
  • the array substrate further includes a wire grid polarizer 201 formed on one side of the transparent substrate.
  • the position of the wire grid polarizer on the transparent substrate corresponds to the position of the plurality of pixel units on the transparent substrate.
  • the orthographic projection of the wire grid polarizer on the transparent substrate is with a plurality of pixel units.
  • the orthographic projections on the transparent substrate at least partially coincide.
  • the wire grid polarizer 201 includes an array of strip elements comprised of a plurality of strip elements 2011.
  • Figure 4c shows an enlarged schematic view of a wire grid polarizer.
  • the wire grid polarizer 201 is configured such that each strip element 2011 transmits a light component of the incident light (eg, ambient light) in a predetermined polarization direction while reflecting the incident light in a direction opposite to the preset polarization direction.
  • the position of each strip element 2011 on the transparent substrate corresponds to the position of each sub-pixel portion on the transparent substrate, respectively.
  • each strip element 2011 of the wire grid polarizer comprises a material having electrically conductive properties and light reflective properties.
  • each strip element of a wire grid polarizer includes a plurality of lines of material, the material of which is metal.
  • each strip element of the wire grid polarizer comprises a plurality of metal lines.
  • the metal wire may be an aluminum wire, a chrome wire, a silver wire, or an alloy wire formed of an alloy of aluminum, silver, or chromium.
  • each strip element of the wire grid polarizer comprises a plurality of lines of conductive polymer.
  • a plurality of strip-shaped members 2011 including a plurality of material lines may be formed on a transparent substrate by depositing a thin film of a material, such as a thin film of a metal material, on the transparent substrate, followed by etching the deposited thin film of the metal material,
  • a schematic view of the vertical lines in Figures 4a-c and the plurality of strip lines in Figures 7a-b shows that each strip element 2011 comprises a plurality of material lines 2013.
  • a patterning process may be performed using a mask to obtain a pattern of a preliminary material film, for example, a strip of strip material is first deposited on the substrate using a mask, and then re-passed. Each strip of strip material is etched through a mask + etch process to obtain a material line (eg, metal line) microstructure of each strip element 2011 to form a final strip element array 201 or wire grid polarizer 201.
  • a material line eg, metal line
  • a strip element array or wire grid polarizer 201 can be formed directly by using a reticle+deposition, each strip element 2011 having a material line (e.g., metal line) microstructure Thus, no etching process is required.
  • Figures 7a-b show an enlarged schematic view of a single strip element 2011.
  • the strip element 2011 comprises a plurality of material lines which may be formed, for example, by depositing a film + etching as described above. It is also possible to deposit a plurality of material lines directly using a reticle+deposition to form the strip elements 2011.
  • Figure 7a shows an enlarged plan view of the strip element and
  • Figure 7b shows an enlarged cross-sectional view of the strip element.
  • the pitch p of the material lines is 40 nm to 150 nm
  • the height or thickness h of each material line is 40 nm to 150 nm.
  • Those skilled in the art can set the pitch p and height h of the material lines according to the wavelength of light that needs to be transmitted.
  • wire grid polarizers The principle of operation of wire grid polarizers is known in the art.
  • a certain wavelength of electromagnetic radiation or light is irradiated onto the strip-shaped member 2011, if the pitch p between the material lines in the strip-shaped member 2011 is in the range of half to about 2 times the wavelength value, the strip-shaped member 2011 reflects light.
  • the polarization component parallel to the wire grid element simultaneously transmits a partially polarized component of the orthogonal polarization direction of the light of the wavelength.
  • the positions of the plurality of strip elements 2011 of the wire grid polarizer 201 on the transparent substrate respectively correspond to the positions of the plurality of pixel units on the transparent substrate.
  • the orthographic projection of the plurality of strip elements 2011 of the wire grid polarizer 201 on the transparent substrate respectively corresponds to or at least partially coincides with the orthographic projection of the plurality of sub-pixel portions on the transparent substrate.
  • the transparent substrate 200 includes a plurality of sub-pixel portions 205, and the sub-pixel portion may be, for example, a red sub-pixel portion, or may be a blue sub-pixel portion or a green sub-pixel portion.
  • the plurality of sub-pixel portions include a red photo sub-pixel portion R, a blue sub-pixel portion B, and a green photo sub-pixel portion G, which are arranged in a periodic arrangement, for example, a periodic arrangement of RGB-RGB-RGB, in other words, A plurality of pixel units are arranged on the substrate, and each of the pixel units includes an RGB arrangement.
  • the position of the strip-shaped element 2011 of the wire grid polarizer 201 on the transparent substrate and the positions of the red photo sub-pixel portion R, the blue sub-pixel portion B, and the green photo sub-pixel portion G arranged on the transparent substrate are respectively arranged in a certain period.
  • the orthographic projection of the plurality of strip elements 2011 of the wire grid polarizer 201 on the transparent substrate and the orthographic projection of the plurality of sub-pixel portions on the transparent substrate respectively partially or completely coincide.
  • FIGS. 4a and 4b show an enlarged schematic view of two typical pixel units.
  • the pixel unit in FIGS. 4a and 4b includes a red photo sub-pixel portion 2051 (indicated by R) and a green photo sub-pixel portion 2052 (with G Indicated), a blue sub-pixel portion 2053 (indicated by B), and a space or a light-transmitting region (indicated by W) 2054 between the sub-pixel portions.
  • each strip element 2011 of the wire grid polarizer 201 on the transparent substrate corresponds respectively, for example, completely coincident or partially coincident.
  • a light transmitting region 2054 is disposed between one RGB pixel unit and another adjacent RGB pixel unit; the RGB sub-pixel portions are arranged side by side or in close proximity, and no light transmitting regions are disposed between each other.
  • a light transmissive area 2054 is disposed between each sub-pixel portion and another adjacent sub-pixel portion.
  • the strip member 2011 is not disposed at a position corresponding to the light transmitting region 2054.
  • the arrangement spaced apart from the plurality of pixel units in Figure 4a corresponds to the provision of a light transmissive region between every three strip elements.
  • the light-transmitting regions 2012 are disposed between adjacent strip-shaped members (see FIG. 2), which It is advantageous that the interval between the sub-pixel portion and the strip-shaped member, that is, the light-transmitting region, can transmit ambient light, thereby increasing the light transmittance of the transparent substrate, and the display resolution of the transparent substrate is also ensured.
  • strip-shaped elements of the wire grid polarizer may also be disposed at locations corresponding to the spacing or light transmissive regions 2054, at which point the light transmissive regions are still capable of transmitting a portion of the light.
  • a light-transmitting region is disposed between every two sub-pixel portions in each pixel unit, that is, the sub-pixel portions are spaced apart from each other, and a light-transmitting region may be disposed between the plurality of pixel units, that is, the pixel units are mutually Separate intervals.
  • a light transmitting region is provided between every two sub-pixel portions on the substrate.
  • the light transmissive area may not be provided between the pixel units.
  • each pixel unit may include one sub-pixel portion, two sub-pixel portions, or three sub-pixel portions, which may be specifically determined according to actual needs.
  • the case where the pixel unit includes one sub-pixel portion is a sub-pixel portion arrangement.
  • the plurality of sub-pixel portions of the pixel unit may be only a combination of a red photo sub-pixel portion and a blue sub-pixel portion.
  • the plurality of sub-pixel portions of the pixel unit may be a combination of a blue sub-pixel portion and a green photo sub-pixel portion.
  • the plurality of sub-pixel portions of the pixel unit may be only a combination of the green photo sub-pixel portion and the red photo sub-pixel portion.
  • the sub-pixel portions are closely arranged to each other to form an array, or the sub-pixel portions are arranged substantially one after another to form an array.
  • a light transmissive region is disposed between the pixel units.
  • the sub-pixel portions are arranged spaced apart from each other.
  • a light-transmitting region is disposed between the sub-pixel portions in the pixel unit, and each of the pixel units may include three sub-pixel portions. It may also be two kinds of sub-pixel parts, or may be a kind of sub-pixel part, and the specific case may be Need to set up.
  • each strip element 2011 of the wire grid polarizer is equal to the width of the correspondingly disposed sub-pixel portions 2051, 2052, 2053.
  • the orthographic projection of each strip element 2011 of the wire grid polarizer on the transparent substrate and the orthographic projection of the correspondingly disposed sub-pixel portions 2051, 2052, 2053 on the transparent substrate may be completely coincident.
  • each strip element 2011 of the wire grid polarizer is equal to the width of the correspondingly disposed sub-pixel portions 2051, 2052, 2053, but each strip element of the wire grid polarizer
  • the orthographic projection of the 2011 orthographic projection on the transparent substrate and the correspondingly disposed sub-pixel portions 2051, 2052, 2053 on the transparent substrate may be partially coincident, that is, their orthographic projections are shifted by a certain amount.
  • the width of each strip element of the wire grid polarizer is less than the width of the sub-pixel portions 2051, 2052, 2053 at corresponding locations, as shown in Figures 5 and 6
  • the width of the shaped element 4011 or 5011 is smaller than the width of the sub-pixel portion, and the orthographic projection of each strip element 2011 on the transparent substrate may be located within the orthographic projection of the corresponding sub-pixel portion on the transparent substrate.
  • the width of each strip element 4011 or 5011 of the wire grid polarizer is equal to half the width of the sub-pixel portions 2051, 2052, 2053 at corresponding positions. Since the width of each strip-shaped element of the wire grid polarizer is reduced, the light transmittance of the transparent substrate can be greatly increased, and the necessary display resolution can be ensured.
  • the array substrate further includes a protective layer 206 disposed on the layer on which the wire grid polarizer is located to protect the wire grid polarizer.
  • the array substrate may also include a TFT structure (which may include structures indicated by reference numerals 202, 302, 402, 502, etc.), wherein the TFT structure is formed on the protective layer 206.
  • the wire grid polarizer 201 is located on the same side of the transparent substrate 200 as the sub-pixel portion indicated by reference numeral 205, for example, on the upper side of the transparent substrate 200 as shown or Light out side.
  • FIG. 3 Another embodiment of the present invention is shown in FIG. 3.
  • the array substrate of FIG. 3 is similar to the array substrate shown in FIG. 2, and includes a transparent substrate 300 and a sub-pixel portion 305 formed on the upper side of the transparent substrate 300.
  • the sub-pixel portion 305 is disposed on the upper side or the light-emitting side of the transparent substrate.
  • the array substrate further includes a wire grid polarizer 301 formed on the lower side or the light incident side of the transparent substrate 300, the wire grid polarizer 301 having the wire grid polarizer 201 of FIG. Similar structure and function.
  • the wire grid polarizer 301 of FIG. 3 is covered with a protective layer 306.
  • the wire grid polarizer is located on the transparent substrate 300.
  • the embodiment of Figure 3 can make the process of fabricating an array substrate simpler.
  • the array substrate in FIG. 5 includes a transparent substrate 400 and a plurality of sub-pixel portions 405 formed on the upper side of the transparent substrate 400.
  • the array substrate further includes a wire grid polarizer 401 formed on the upper side of the transparent substrate 400, the wire grid polarizer 401 having a similar structure and function as the wire grid polarizer 201 of FIG.
  • the wire grid polarizer 401 is covered with a protective layer 406, and the protective layer 406 is a TFT layer 402.
  • the embodiment shown in Fig. 5 differs from the embodiment of Fig. 2 in that the width of the strip-shaped element of the wire grid polarizer 401 is greatly reduced, for example, the width of the strip-shaped element may be only half the width of the sub-pixel portion.
  • the embodiment in Fig. 5 can greatly increase the transmittance of the transparent substrate while ensuring the necessary display effect.
  • the array substrate in FIG. 6 includes a transparent substrate 500 and a plurality of sub-pixel portions 505 formed on the upper side of the transparent substrate 500.
  • the array substrate further includes a wire grid polarizer 501 formed on the lower side of the transparent substrate 500, the wire grid polarizer 501 having a similar structure and function as the wire grid polarizer 201 of FIG.
  • the wire grid polarizer 501 is covered with a protective layer 506 in FIG.
  • the width of the strip-shaped member of the wire grid polarizer is greatly reduced, for example, the width of the strip-shaped member may be only half the width of the sub-pixel portion.
  • the embodiment in Fig. 6 can greatly improve the transmittance of the transparent substrate while ensuring the necessary display effect.
  • the strip-shaped elements of the embodiment of FIG. 6 are formed on the lower side or the light-incident side of the transparent substrate, which simplifies the manufacturing process of the array substrate.
  • An embodiment of the present invention also provides a transparent display substrate, including any of the above array substrates.
  • the transparent display substrate further includes a color film layer.
  • the transparent display substrate further includes a color film layer, a black matrix, and a column spacer. That is to say, in the present embodiment, the layers on the color filter substrate are formed on the array substrate in the prior art, so that the Cell-to-box process of the array substrate and the color filter substrate is omitted, and the box is fundamentally solved. Poor precision leads to problems with defects, and it also has positive effects such as increasing aperture ratio and improving panel quality.
  • a transparent display device includes the array substrate as described above.
  • the transparent display device may further include another substrate such as a glass substrate 200', and a color filter layer 204 formed on one side of the glass substrate 200'.
  • the color filter layer 204 includes a light-transmitting region 2041 disposed corresponding to the light-transmitting region of the wire grid polarizer (portions indicated by corresponding reference numerals in other drawings, such as 3041, 4041, etc.) .
  • the array substrate may further include a transparent substrate 200 A liquid crystal layer 203 is interposed between the substrate 200'.
  • the color filter layer 204 can be disposed on one side of the substrate 200.
  • the structure and function of the color filter layer 204 and the liquid crystal layer 203 are well known to those skilled in the art and will not be described herein.
  • a transparent display device in another embodiment, includes any of the transparent display substrates described above.
  • An embodiment of the present invention also provides a vehicle comprising a heads up display system comprising a transparent display device as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板、透明显示基板、透明显示装置和包括该透明显示装置的车辆。阵列基板包括:透明基板(200);形成在透明基板(200)上的多个像素单元(208);和形成在透明基板(200)上的线栅偏振器(201)。线栅偏振器(201)在透明基板(200)上的位置与多个像素单元(208)在透明基板(200)上的位置对应,使得线栅偏振器(201)在透明基板(200)上的正投影与多个像素单元(208)在透明基板(200)上的正投影完全重合或部分重合。

Description

阵列基板、透明显示基板、透明显示装置和车辆
本申请主张在2016年7月11日在中国专利局提交的中国专利申请No.201610539965.7的优先权,其全部内容通过引用包含于此。
技术领域
本发明的实施例一般地涉及显示领域,并且更具体地,涉及阵列基板、透明显示基板、透明显示装置和包括该透明显示装置的车辆。
背景技术
透明显示应用越来越多,比如,汽车中的抬头显示、橱窗显示等。图1示出一种常规的透明显示面板,其包括透明基板100以及附于透明基板100上的器件。在透明基板100上设置偏光片101,附接于透明基板100上,透明显示面板还可以包括其他例如TFT 102、液晶103、另一偏光片104以及另一透明板100’等用于显示的器件,这些器件与常规的液晶显示面板类似。透明显示面板可以允许环境光透过透明显示面板。然而现有的透明显示面板的透过率较低,大约<30%的范围,这其中部分原因归于偏光片的透光率较低。
发明内容
为了克服现有技术存在的上述和其它问题和缺陷中的至少一种,提出了本发明。
本发明的目的在于提供一种阵列基板、透明显示基板、透明显示装置和包括该透明显示装置的车辆,提高阵列基板、透明显示基板和透明显示装置的透光率。
根据本发明的一方面,提供一种阵列基板,包括:透明基板;形成在透明基板一侧的多个像素单元;和形成在透明基板一侧的线栅偏振器;线栅偏振器在透明基板上的位置与所述多个像素单元在透明基板上的位置对应,使得线栅偏振器在透明基板上的正投影与所述多个像素单元在透明基板上的正投影完全重合或部分重合。
在一个实施例中,所述线栅偏振器包括由多个条形元件构成的条形元件阵列,所述条形元件阵列配置成使得每个条形元件透射入射光的在预设偏振方向上的光分量同时反射入射光的在与预设偏振方向正交的偏振方向上的光分量。
在一个实施例中,每个像素单元包括一个或多个子像素部,每个条形元件在透明基板上的位置与一个子像素部在透明基板上的位置对应,使得该条形元件在透明基板上的正投影与对应的该子像素部在透明基板上的正投影至少部分地重合。
在一个实施例中,每个像素单元包括多个子像素部,每个像素单元的相邻子像素部之间设置有第一透光区,或者
相邻像素单元之间设置有第二透光区且每个像素单元的多个子像素部之间不设置透光区。
在一个实施例中,相邻的条形元件之间设置有与第一透光区和/或第二透光区在位置上对应的第三透光区。
在一个实施例中,线栅偏振器的每个条形元件的宽度与对应的子像素部的宽度相等。
在一个实施例中,线栅偏振器的每个条形元件的宽度小于对应的子像素部的宽度。
在一个实施例中,线栅偏振器的每个条形元件的宽度等于对应的子像素部的宽度的一半。
在一个实施例中,线栅偏振器的每个条形元件包括具有导电性质和光反射性质的材料。
在一个实施例中,每个条形元件包括多条材料线,材料线之间的节距为40nm~150nm,每条材料线的厚度为40nm~150nm。
在一个实施例中,所述材料线的材料为金属或导电聚合物。
在一个实施例中,阵列基板还包括保护层,该保护层配置在所述线栅偏振器的远离所述透明基板一侧以覆盖所述线栅偏振器。
在一个实施例中,线栅偏振器与所述多个子像素部位于透明基板的同一侧。
在一个实施例中,线栅偏振器位于透明基板的与所述多个子像素部相反的一侧。
在一个实施例中,每个像素单元包括多个子像素部,所述多个子像素部包 括蓝色子像素部、红色子像素部以及绿色子像素部。
根据本发明的另一方面,提供一种透明显示基板,包括前述的阵列基板。
在一个实施例中,该透明显示基板的阵列基板上还设置有彩膜层。
根据本发明的又一方面,提供一种透明显示装置,包括前述的阵列基板或如前述的透明显示基板。
根据本发明的再一方面,提供一种车辆,其包括抬头显示系统,该抬头显示系统包括前述透明显示装置。
附图说明
图1为示出常规的透明显示阵列基板的结构的剖视图;
图2为示出根据本发明的一个实施例的用于透明显示的阵列基板的结构的剖视图;
图3为示出根据本发明的另一实施例的用于透明显示的阵列基板的结构的剖视图;
图4a-c是根据本发明的实施例的像素单元和线栅偏振器的示意布置图,其中图4a和4b示出根据本发明的实施例的像素单元的示意性布置,图4c示出根据本发明的实施例的线栅偏振器的示意性布置;
图5为示出根据本发明的又一实施例的用于透明显示的阵列基板的结构的剖视图;
图6为示出根据本发明的再一个实施例的用于透明显示的阵列基板的结构的剖视图;以及
图7a-b为示出根据本发明的一个实施例的线栅偏振器的放大视图,其中图7a是放大的平面示意图,图7b是放大的截面示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。在本说明书中,相同或相似的部件由相同或类似的附图标号指示。下述参照附图对本发明的各实施方式的说明旨在阐述本发明的总体构思,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于说明,阐述了许多具体的细节以提供对本发明的实施例的全面理解。然而明显地,一个或多个实施例在没有这些具 体细节的情况下也可以被实施。在其它情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的实施例,提供一种阵列基板,如图2所示,包括:透明基板200;和,形成在透明基板一侧的多个像素单元208,每个像素单元包括一个或多个子像素部205。在图2中,每个子像素部用电极205示意地指示。子像素部可以包括例如板状电极2022、绝缘层2021和条形电极205等,此处条状电极205仅是示意的表示方式。实际上,一个像素单元包括多个条状电极,关于像素的结构是本领域技术人员已知的。在一个实施例中,板状电极可以是公共电极,条状电极可以是像素电极。在另一个实施例中,板状电极可以是像素电极,条状电极可以是公共电极。阵列基板还包括形成在透明基板一侧的线栅偏振器201。在一个实施例中,线栅偏振器在透明基板上的位置与多个像素单元在透明基板上的位置对应,示例性地,线栅偏振器在透明基板上的正投影与多个像素单元在透明基板上的正投影至少部分地重合。在一个示例中,所述线栅偏振器201包括由多个条形元件2011构成的条形元件阵列。图4c示出了一种线栅偏振器的放大示意图。
根据本发明的实施例,线栅偏振器201配置成使得每个条形元件2011透射入射光(例如环境光)在预设偏振方向上的光分量同时反射入射光的在与预设偏振方向正交的偏振方向上的光分量。每个条形元件2011在透明基板上的位置与每个子像素部在透明基板上的位置分别对应。
在本发明的一个实施例中,线栅偏振器的每个条形元件2011包括具有导电性质和光反射性质的材料。例如,线栅偏振器的每个条形元件包括多条材料线,所述材料线的材料为金属。换句话说,线栅偏振器的每个条形元件包括多条金属线。金属线可以是铝线、铬线、银线,或者是铝、银、铬的合金形成的合金线。在一些情况下,线栅偏振器的每个条形元件包括多条导电聚合物形成的线。
根据本发明的实施例,可以通过在透明基板上沉积材料薄膜,例如金属材料薄膜,随后,蚀刻沉积的金属材料薄膜,从而在透明基板上形成多个包括多条材料线的条形元件2011,如图4a-c中竖线和图7a-b中的多个条状线的示意图示出每个条形元件2011包括多个材料线2013。
具体地,在沉积材料薄膜的过程中可以使用掩模进行构图工艺以获得初步的材料薄膜的图形,例如使用掩模首先在基板上沉积条形材料带,随后,再通 过掩模+蚀刻工艺蚀刻每个条形材料带以获得每个条形元件2011的材料线(例如金属线)微结构,从而形成最终的条形元件阵列201或线栅偏振器201。
在本发明的另一实施例中,可以通过使用掩模版+沉积的方式直接形成条形元件阵列或线栅偏振器201,它的每个条形元件2011具有材料线(例如金属线)微结构,从而无需蚀刻工艺。
图7a-b示出了单个条形元件2011的放大示意图。条形元件2011包括多条材料线,这些材料线可以是例如上述通过沉积薄膜+蚀刻的方式形成的。也可以使用掩模版+沉积的方式直接沉积多条材料线来形成条形元件2011。图7a示出条形元件的放大的平面图,图7b示出条形元件的放大的截面视图。示例性地,材料线的节距p为40nm~150nm,每个材料线的高度或厚度h为40nm~150nm。本领域技术人员可以根据需要透射的光的波长设定材料线的节距p和高度h。
线栅偏振器的工作原理在本领域是已知的。当一定波长的电磁辐射或光照射到条形元件2011上,如果此条形元件2011中的材料线之间的节距p在波长值的一半至大约2倍范围,则条形元件2011反射光的平行于线栅元件的偏振分量同时透射该波长的光的正交偏振方向的部分偏振分量。
根据本发明的实施例,线栅偏振器201的多个条形元件2011在透明基板上的位置与多个像素单元在透明基板上的位置分别对应。换句话说,线栅偏振器201的多个条形元件2011在透明基板上的正投影与多个子像素部在透明基板上的正投影分别对应或至少部分重合。例如,在图2中,透明基板200包括多个子像素部205,子像素部可以例如是红光子像素部,也可以是蓝光子像素部或绿光子像素部。在一个实施例中,多个子像素部包括红光子像素部R、蓝光子像素部B以及绿光子像素部G,它们按照一定周期排列布置,例如RGB-RGB-RGB的周期排列,换句话说,多个像素单元排列在基板上,每个像素单元包括一个RGB的排列。此时,线栅偏振器201的条形元件2011在透明基板上的位置与按照一定周期排列的红光子像素部R、蓝光子像素部B以及绿光子像素部G在透明基板上的位置分别一一对应。换句话说,线栅偏振器201的多个条形元件2011在透明基板上的正投影与多个子像素部在透明基板上的正投影分别部分地或全部地重合。
图4a、4b示出了两种典型的像素单元的放大的结构示意图。图4a和4b中的像素单元包括红光子像素部2051(用R表示)、绿光子像素部2052(用G 表示)、蓝光子像素部2053(用B表示),以及这些子像素部之间的间隔或透光区(用W表示)2054。在这种情况下,线栅偏振器201的每个条形元件2011在透明基板上的正投影与红光子像素部2051、绿光子像素部2052、蓝光子像素部2053在透明基板上的正投影分别对应,例如完全重合或部分重合。在图4a中,一个RGB像素单元与另一个相邻的RGB像素单元之间设置有透光区2054;RGB子像素部并排或紧邻,相互之间并不设置透光区。在图4b中,每个子像素部与另一个相邻的子像素部之间设置透光区2054。相应地,在与透光区2054处对应的位置处不设置条形元件2011。与图4a中多个像素单元相互间隔分开的布置对应的是每三个条形元件之间设置透光区。进一步,与图4b中每个子像素部与另一个相邻子像素部之间设置透光区的布置对应的是相应地相邻条形元件之间设置透光区2012(参见图2),这是有利的,子像素部和条形元件的间隔处,即透光区,可以透射环境光,因而增大了透明基板的光透过率,同时透明基板的显示分辨率也得以保证。
然而,应该知道,在间隔或透光区2054对应的位置也可以设置线栅偏振器的条形元件,此时,透光区仍然能够透射部分光。
根据本发明的实施例,每个像素单元内的每两个子像素部之间设置透光区,即子像素部相互间隔分开,并且多个像素单元之间可以设置透光区,即像素单元相互间隔分开。在这种情况下,在基板上的每两个子像素部之间都设置一个透光区。
应该知道,像素单元之间也可以不设置透光区。
根据本发明的其他实施例,每个像素单元可以包括一个子像素部、两个子像素部或三个子像素部,具体可以根据实际需要确定。例如,像素单元包括一个子像素部的情形为一种子像素部布置。在其他实施例中,像素单元的多个子像素部可以仅为红光子像素部和蓝光子像素部的组合。在一个实施例中,像素单元的多个子像素部可以是蓝光子像素部和绿光子像素部的组合。在一个实施例中,像素单元的多个子像素部可以仅为绿光子像素部和红光子像素部的组合。这些子像素部相互紧密排列在一起形成阵列,或这些子像素部大体上是一个接一个排列在一起形成阵列。在本发明其他实施例中,在像素单元之间设置透光区。在本发明的另一实施例中,这些子像素部相互间隔开地排列,换句话说,在像素单元中的子像素部之间设置透光区,每个像素单元可以包括三种子像素部,也可以是两种子像素部,也可以是一种子像素部,具体情况可以根据 需要设置。
在本发明的一个实施例中,线栅偏振器的每个条形元件2011的宽度与对应布置的子像素部2051、2052、2053的宽度相等。换句话说,线栅偏振器的每个条形元件2011在透明基板上的正投影与对应布置的子像素部2051、2052、2053在透明基板上的正投影可以是完全重合的。
在本发明的另一实施例中,线栅偏振器的每个条形元件2011的宽度与对应布置的子像素部2051、2052、2053的宽度相等,但是线栅偏振器的每个条形元件2011在透明基板上的正投影与对应布置的子像素部2051、2052、2053在透明基板上的正投影可以是部分重合的,即它们的正投影错开一定量。
在本发明的另一实施例中,线栅偏振器的每个条形元件的宽度小于对应位置上的子像素部2051、2052、2053的宽度,图5和图6示出这种情形,条形元件4011或5011的宽度小于子像素部的宽度,此时每个条形元件2011在透明基板上的正投影可以位于对应的子像素部在透明基板上的正投影内。
在本发明的又一实施例中,线栅偏振器的每个条形元件4011或5011的宽度与对应位置上的子像素部2051、2052、2053的宽度的一半相等。由于线栅偏振器的每个条形元件的宽度被减小,因而可以大大增加透明基板的光透过率,同时也可以保证必要的显示分辨率。
在本发明的一个实施例中,如图2所示,阵列基板还包括保护层206,其配置在线栅偏振器所在的层上用以保护线栅偏振器。阵列基板还可以包括TFT结构(其可以包括由附图标记202、302、402、502指示的结构等),其中TFT结构形成在保护层206上。
在如图2所示的实施例中,线栅偏振器201与由附图标记205所指示的子像素部位于透明基板200的同一侧,例如在透明基板200的如图所示的上侧或出光侧。
在图3中示出了本发明的另一实施例,图3中的阵列基板与图2所示的阵列基板类似,包括透明基板300、形成在透明基板300上侧的子像素部305。子像素部305布置在透明基板的上侧或出光侧。与图2的结构不同的是,阵列基板还包括形成在透明基板300的下侧或入光侧的线栅偏振器301,所述线栅偏振器301与图2中的线栅偏振器201具有类似的结构和功能。图3中线栅偏振器301上覆盖保护层306。
如图3所示,与图2的实施例不同的是,线栅偏振器位于透明基板300的 与子像素部305相反或相对的一侧。图3中的实施例可以使得制造阵列基板的工艺更加简单。
在图5中示出了本发明的另一实施例,图5中的阵列基板包括透明基板400和形成在透明基板400上侧的多个子像素部405。阵列基板还包括形成在透明基板400的上侧的线栅偏振器401,所述线栅偏振器401与图2中的线栅偏振器201具有类似的结构和功能。图5中线栅偏振器401上覆盖保护层406,保护层406上是TFT层402。
图5所示的实施例与图2的实施例不同的是,线栅偏振器401的条形元件的宽度被大大减小,例如条形元件的宽度可以仅为子像素部的宽度的一半。图5中的实施例可以使得透明基板的透射率大大提高,同时可以保证必要的显示效果。
在图6中示出了本发明的另一实施例,图6中的阵列基板包括透明基板500和形成在透明基板500上侧的多个子像素部505。阵列基板还包括形成在透明基板500的下侧的线栅偏振器501,所述线栅偏振器501与图5中的线栅偏振器201具有类似的结构和功能。图6中线栅偏振器501上覆盖保护层506。
如图6所示,线栅偏振器的条形元件的宽度被大大减小,例如条形元件的宽度可以仅为子像素部的宽度的一半。图6中的实施例可以使得透明基板的透射率大大提高,同时可以保证必要的显示效果。而且,图6中的实施例的条形元件形成在透明基板的下侧或入光侧,这简化了阵列基板的制造工艺。
本发明的一个实施例还提供一种透明显示基板,包括上述的阵列基板中的任一种。在本实施例中,所述透明显示基板还包括彩膜层。
在本发明的又一实施例中,透明显示基板还包括彩膜层、黑色矩阵以及柱状隔垫物。也就是说,在本实施例中,现有技术中彩膜基板上的各层被形成在阵列基板上,这样阵列基板和彩膜基板进行Cell对盒过程被省略,从根本上解决了对盒精度差导致不良发生的问题,而且还具有提高开口率和改善面板品质等积极效果。
在本发明的另一实施例中,一种透明显示装置,包括如上所述的阵列基板。如图2所示,透明显示装置还可以包括另一基板,例如玻璃基板200’,以及形成在玻璃基板200’一侧的彩色滤光层204。例如,如图2所示,彩色滤光层204包括与线栅偏振器的透光区对应布置的透光区2041(其他附图中对应的附图标记指示的部位,例如3041、4041等)。阵列基板还可以包括位于透明基板200 和基板200’之间的液晶层203。在其他实施例中,彩色滤光层204可以设置在基板200的一侧。彩色滤光层204以及液晶层203的结构和功能是本领域技术人员熟知的,这里不再赘述。
在本发明的另一实施例中,一种透明显示装置,包括如上所述的透明显示基板中的任一种。
本发明的一个实施例还提供一种车辆,包括抬头显示系统,该抬头显示系统包括如上所述的透明显示装置。
尽管已经参考本发明的典型实施例,具体示出和描述了本发明,但本领域普通技术人员应当理解,在不脱离所附权利要求所限定的本发明的精神和范围的情况下,可以对这些实施例进行形式和细节上的多种改变。

Claims (19)

  1. 一种阵列基板,包括:
    透明基板;
    形成在透明基板上的多个像素单元;和
    形成在透明基板上的线栅偏振器;
    其中线栅偏振器在透明基板上的位置与所述多个像素单元在透明基板上的位置对应,使得线栅偏振器在透明基板上的正投影与所述多个像素单元在透明基板上的正投影完全重合或部分重合。
  2. 如权利要求1所述的阵列基板,其中所述线栅偏振器包括由多个条形元件构成的条形元件阵列,所述条形元件阵列配置成使得每个条形元件透射入射光的在预设偏振方向上的光分量同时反射入射光的在与预设偏振方向正交的偏振方向上的光分量。
  3. 如权利要求2所述的阵列基板,其中每个像素单元包括一个或多个子像素部,每个条形元件在透明基板上的位置与一个子像素部在透明基板上的位置对应,使得该条形元件在透明基板上的正投影与对应的该子像素部在透明基板上的正投影至少部分地重合。
  4. 如权利要求1-3中任一项所述的阵列基板,其中每个像素单元包括多个子像素部,每个像素单元的相邻子像素部之间设置有第一透光区,或者
    相邻像素单元之间设置有第二透光区且每个像素单元的多个子像素部之间不设置透光区。
  5. 如权利要求4所述的阵列基板,其中相邻的条形元件之间设置有与第一透光区和/或第二透光区在位置上对应的第三透光区。
  6. 如权利要求2-5中任一项所述的阵列基板,其中线栅偏振器的每个条形元件的宽度与对应的子像素部的宽度相等。
  7. 如权利要求2-5中任一项所述的阵列基板,其中线栅偏振器的每个条形元件的宽度小于对应的子像素部的宽度。
  8. 如权利要求2-5和7中任一项所述的阵列基板,其中线栅偏振器的每个条形元件的宽度等于对应的子像素部的宽度的一半。
  9. 如权利要求2-8中任一项所述的阵列基板,其中线栅偏振器的每个条形元件包括具有导电性质和光反射性质的材料。
  10. 如权利要求2-9中任一项所述的阵列基板,其中每个条形元件包括多条材料线,材料线之间的节距为40nm~150nm,每条材料线的厚度为40nm~150nm。
  11. 如权利要求10所述的阵列基板,其中所述材料线的材料为金属或导电聚合物。
  12. 如权利要求1-11中任一项所述的阵列基板,还包括保护层,该保护层配置在所述线栅偏振器的远离所述透明基板一侧以覆盖所述线栅偏振器。
  13. 如权利要求1-12中任一项所述的阵列基板,其中线栅偏振器与所述多个子像素部位于透明基板的同一侧。
  14. 如权利要求1-12中任一项所述的阵列基板,其中线栅偏振器位于透明基板的与所述多个子像素部相反的一侧。
  15. 如权利要求1-14中任一项所述的阵列基板,其中每个像素单元包括多个子像素部,所述多个子像素部包括蓝色子像素部、红色子像素部以及绿色子像素部。
  16. 一种透明显示基板,包括如前述权利要求任一项所述的阵列基板。
  17. 根据权利要求16所述的透明显示基板,其中阵列基板上还设置有彩膜层。
  18. 一种透明显示装置,包括如权利要求1-15中任一项所述的阵列基板或如权利要求16或17所述的透明显示基板。
  19. 一种车辆,包括抬头显示系统,该抬头显示系统包括权利要求18所述的透明显示装置。
PCT/CN2017/073779 2016-07-11 2017-02-16 阵列基板、透明显示基板、透明显示装置和车辆 WO2018010428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/552,008 US20180196308A1 (en) 2016-07-11 2017-02-16 Array substrate, transparent display substrate, transparent display device and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610539965.7 2016-07-11
CN201610539965.7A CN105929593A (zh) 2016-07-11 2016-07-11 阵列基板、透明显示基板和透明显示装置

Publications (1)

Publication Number Publication Date
WO2018010428A1 true WO2018010428A1 (zh) 2018-01-18

Family

ID=56827149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073779 WO2018010428A1 (zh) 2016-07-11 2017-02-16 阵列基板、透明显示基板、透明显示装置和车辆

Country Status (3)

Country Link
US (1) US20180196308A1 (zh)
CN (1) CN105929593A (zh)
WO (1) WO2018010428A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929593A (zh) * 2016-07-11 2016-09-07 京东方科技集团股份有限公司 阵列基板、透明显示基板和透明显示装置
CN109212812A (zh) * 2017-07-04 2019-01-15 京东方科技集团股份有限公司 显示面板及其制备方法、显示系统
CN107482037B (zh) * 2017-07-19 2019-10-11 武汉华星光电技术有限公司 一种圆偏光片及显示器
TWI636566B (zh) * 2017-09-11 2018-09-21 友達光電股份有限公司 顯示面板
TWI648583B (zh) * 2017-12-25 2019-01-21 友達光電股份有限公司 鏡面顯示模組
CN109164657A (zh) * 2018-09-27 2019-01-08 华南理工大学 一种电致变色窗及其制备方法
CN109410769B (zh) * 2018-12-28 2021-03-30 厦门天马微电子有限公司 透明显示面板及其控制方法、显示装置
CN112394563A (zh) * 2019-08-19 2021-02-23 苏州大学 偏振选择反射结构及具有其的液晶显示系统
CN110618556A (zh) * 2019-09-27 2019-12-27 维沃移动通信有限公司 显示模组及电子设备
CN113196153B (zh) * 2019-11-29 2022-08-19 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN111025729A (zh) * 2019-12-03 2020-04-17 深圳市华星光电半导体显示技术有限公司 偏光片及其制备方法、显示面板
CN114371572A (zh) * 2020-10-14 2022-04-19 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130300986A1 (en) * 2012-05-11 2013-11-14 Industry-Academic Cooperation Foundation Yonsei University Wire grid polarizer and method for fabricating thereof, liquid crystal display panel and liquid crystal display device having the same
CN104459863A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 线栅偏光片及其制备方法、显示面板和显示装置
US20150124306A1 (en) * 2013-11-06 2015-05-07 Lehigh University Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters
CN105242342A (zh) * 2015-11-09 2016-01-13 武汉华星光电技术有限公司 偏光板和透明显示器
CN105929593A (zh) * 2016-07-11 2016-09-07 京东方科技集团股份有限公司 阵列基板、透明显示基板和透明显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI223103B (en) * 2003-10-23 2004-11-01 Ind Tech Res Inst Wire grid polarizer with double metal layers
US8027086B2 (en) * 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
KR100975876B1 (ko) * 2008-11-11 2010-08-13 삼성에스디아이 주식회사 백라이트 유닛
US20150055057A1 (en) * 2013-08-23 2015-02-26 Austin L. Huang Touch sensitive display
KR102473084B1 (ko) * 2016-04-04 2022-12-01 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 표시 장치
CN105807483B (zh) * 2016-05-27 2019-01-22 京东方科技集团股份有限公司 显示面板及其制作方法、以及显示装置
CN106019673B (zh) * 2016-07-27 2020-03-31 武汉华星光电技术有限公司 一种液晶显示面板用基板及液晶显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130300986A1 (en) * 2012-05-11 2013-11-14 Industry-Academic Cooperation Foundation Yonsei University Wire grid polarizer and method for fabricating thereof, liquid crystal display panel and liquid crystal display device having the same
US20150124306A1 (en) * 2013-11-06 2015-05-07 Lehigh University Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters
CN104459863A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 线栅偏光片及其制备方法、显示面板和显示装置
CN105242342A (zh) * 2015-11-09 2016-01-13 武汉华星光电技术有限公司 偏光板和透明显示器
CN105929593A (zh) * 2016-07-11 2016-09-07 京东方科技集团股份有限公司 阵列基板、透明显示基板和透明显示装置

Also Published As

Publication number Publication date
CN105929593A (zh) 2016-09-07
US20180196308A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2018010428A1 (zh) 阵列基板、透明显示基板、透明显示装置和车辆
KR101282323B1 (ko) 액정 표시 장치
EP2894510B1 (en) Liquid crystal display device with a multi-layer wire-grid polariser
US10871672B2 (en) Display panel, production method, and display apparatus
US10627664B2 (en) Display panel, display device and display method
JP3974141B2 (ja) 半透過型液晶表示装置
US9519182B2 (en) Display panel and method of manufacturing the same
CN107272249B (zh) 显示装置
WO2017173687A1 (zh) 液晶透镜及3d显示装置
TWI464507B (zh) Active matrix substrate and display device
US20170276999A1 (en) Liquid crystal display device
JP2017067999A (ja) 電気光学装置用基板、電気光学装置、電子機器
JP2007003778A (ja) 半透過型液晶表示装置及びその製造方法
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
KR20120025407A (ko) 액정 표시 장치
JP2002174821A (ja) 液晶表示装置
WO2019007073A1 (zh) 阵列基板及其制作方法、反射式液晶显示装置
US20150055066A1 (en) Thin film transistor substrate, method of manufacturing the same, and display device including the same
US20190317361A1 (en) Electro-optical device and electronic apparatus
JPWO2012124699A1 (ja) 液晶表示装置
US9664944B2 (en) Liquid crystal display device and method of fabricating the same
JP6603577B2 (ja) 液晶表示装置
US20190081076A1 (en) Thin film transistor substrate and display panel
WO2008053774A1 (fr) Procédé de fabrication d&#39;un dispositif d&#39;affichage
JP6508817B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17826767

Country of ref document: EP

Kind code of ref document: A1