WO2017173687A1 - 液晶透镜及3d显示装置 - Google Patents

液晶透镜及3d显示装置 Download PDF

Info

Publication number
WO2017173687A1
WO2017173687A1 PCT/CN2016/080449 CN2016080449W WO2017173687A1 WO 2017173687 A1 WO2017173687 A1 WO 2017173687A1 CN 2016080449 W CN2016080449 W CN 2016080449W WO 2017173687 A1 WO2017173687 A1 WO 2017173687A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
liquid crystal
crystal lens
metal wire
wire grid
Prior art date
Application number
PCT/CN2016/080449
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/107,924 priority Critical patent/US10353238B2/en
Publication of WO2017173687A1 publication Critical patent/WO2017173687A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal lens and a 3D display device.
  • 3D stereoscopic display technology has been increasingly favored and favored by people.
  • the naked-eye 3D technology is popular because it has got rid of complicated auxiliary equipment, achieving naked-eye 3D display.
  • the liquid crystal lens has become the current naked-eye 3D technology because it can switch between 2D/3D modes freely and does not affect the 2D display resolution. An important direction of development.
  • the principle of the liquid crystal lens is to utilize the birefringence characteristics of the liquid crystal molecules, and to align or diverge the light beams according to the arrangement characteristics of the electric field distribution, and to control the alignment direction of the liquid crystal molecules by changing the voltage, thereby achieving an effective optical zoom effect in a small space.
  • FIG. 1 it is a structural diagram of a conventional 3D display device, including a display panel 8 and a liquid crystal lens disposed on the display panel 8.
  • the liquid crystal lens includes: an upper glass substrate 2 disposed opposite to each other And a lower glass substrate 6, a liquid crystal layer 4 disposed between the upper glass substrate 2 and the lower glass substrate 6, and a liquid crystal lens polarizer 1 disposed on a side of the upper glass substrate 2 away from the lower glass substrate 6
  • the upper glass substrate 2 is adjacent to the common electrode 3 on the lower glass substrate 6 side, and a plurality of spaced-apart strip lens electrodes 5 disposed on the lower glass substrate 6 on the side of the lower glass substrate 2; the 3D display device passes Applying different bias voltages to the plurality of strip lens electrodes 5 causes the liquid crystal molecules in the liquid crystal layer 4 to be deflected to a different extent, wherein the voltage in the edge region is higher and the voltage in the central region is lower, so that the refractive index of the liquid crystal layer 4 is from the center
  • the area-to-edge area is gradually reduced, and the change in the refractive index causes the light to be focused to a predetermined direction as it passes through the liquid crystal layer 4,
  • the arrangement direction of the liquid crystal molecules is exactly the same as the light-emitting polarization direction of the bottom liquid crystal display, thereby realizing a completely extraordinary light (e-light) 3D image, but in order to reduce the influence of the moiré on the display effect.
  • the orientation of the liquid crystal lens is generally obliquely arranged with respect to the display pixels; since the magnitudes of the bias voltages between the different strip lens electrodes 5 are different, a transverse electric field component is easily formed between the strip lens electrodes 5.
  • the polarizer filter o-light ie, the liquid crystal lens polarizer 1
  • the thickness of the liquid crystal lens case which itself is already thick continues to increase, and does not conform to the thin shape of the current display technology.
  • the metal wire grid is a periodic metal wire and dielectric layer arrangement structure, which has a high extinction ratio for a transverse magnetic field (TM) and a transverse electric field (TE) light, and can be significantly transparent.
  • the TM light perpendicular to the direction in which the metal wires are arranged reflects the TE light parallel to the direction in which the metal wires are arranged, and thus can be used as an ideal polarizer, and has been widely concerned because the thickness is only on the order of nanometers and the current preparation process is maturing.
  • An object of the present invention is to provide a liquid crystal lens which can reduce the thickness of a liquid crystal lens, prevent o-light leakage, and realize high-quality 3D picture display.
  • An object of the present invention is to provide a 3D display device capable of reducing the thickness of a 3D display device, preventing o-light leakage, and realizing high-quality 3D screen display.
  • the present invention firstly provides a liquid crystal lens comprising: an upper glass substrate, a lower glass substrate disposed opposite to the upper glass substrate, and a metal wire grid disposed on a side of the upper glass substrate adjacent to the lower glass substrate a plurality of parallel strip-shaped electrodes disposed on a side of the lower glass substrate adjacent to the upper glass substrate, and a liquid crystal layer disposed between the upper glass substrate and the lower glass substrate;
  • the metal wire grid includes a plurality of metal wires arranged in parallel spaced apart, and a dielectric layer disposed between the plurality of parallel spaced metal wires and the upper glass substrate;
  • the extending direction of the plurality of metal lines is perpendicular to the polarization direction of the incident light of the liquid crystal lens, and the extending direction of the plurality of strip electrodes and the polarization direction of the incident light of the liquid crystal lens and the extending direction of the plurality of metal lines Not the same;
  • the metal wire grid has both an electrode and a polarizer.
  • the metal wire grid has a period of 20 nm to 500 nm and a duty ratio of 0.1 to 0.9.
  • the strip electrodes have a width of 10 to 1000 ⁇ m.
  • the material of the metal wire grid is aluminum, silver, or gold.
  • the material of the dielectric layer is silicon dioxide, silicon monoxide, magnesium oxide, silicon nitride, titanium dioxide, or tantalum pentoxide.
  • the present invention provides a 3D display device, including: a display panel, a display panel polarizer disposed on the display panel, and a liquid crystal lens disposed on the polarizer of the display panel;
  • the liquid crystal lens includes: an upper glass substrate, and a lower glass disposed opposite to the upper glass substrate a glass substrate, a metal wire grid disposed on a side of the upper glass substrate adjacent to the lower glass substrate, a plurality of strip electrodes arranged in parallel on the side of the lower glass substrate adjacent to the upper glass substrate, and a liquid crystal layer between the upper glass substrate and the lower glass substrate;
  • the metal wire grid includes a plurality of metal wires arranged in parallel spaced apart, and a dielectric layer disposed between the plurality of parallel spaced metal wires and the upper glass substrate;
  • the extending direction of the plurality of metal lines is perpendicular to the polarization direction of the polarizing plate of the display panel, the extending direction of the plurality of strip electrodes and the polarization direction of the polarizing plate of the display panel and the extension of the plurality of metal lines The directions are different;
  • the metal wire grid has both an electrode and a polarizer.
  • the display panel is an OLED display panel or an LCD display panel.
  • the display panel polarizer is an absorption type polarizer.
  • the metal wire grid has a period of 20 nm to 500 nm and a duty ratio of 0.1 to 0.9;
  • the material of the metal wire grid is aluminum, silver, or gold;
  • the material of the dielectric layer is silicon dioxide, silicon monoxide, magnesium oxide, silicon nitride, titanium dioxide, or tantalum pentoxide.
  • the strip electrodes have a width of 10 to 1000 ⁇ m.
  • the present invention also provides a liquid crystal lens comprising: an upper glass substrate; a lower glass substrate disposed opposite to the upper glass substrate; and a metal wire grid disposed on a side of the upper glass substrate adjacent to the lower glass substrate, a plurality of parallel strip-shaped electrodes arranged on a side of the lower glass substrate adjacent to the upper glass substrate; and a liquid crystal layer disposed between the upper glass substrate and the lower glass substrate;
  • the metal wire grid includes a plurality of metal wires arranged in parallel spaced apart, and a dielectric layer disposed between the plurality of parallel spaced metal wires and the upper glass substrate;
  • the extending direction of the plurality of metal lines is perpendicular to the polarization direction of the incident light of the liquid crystal lens, and the extending direction of the plurality of strip electrodes and the polarization direction of the incident light of the liquid crystal lens and the extending direction of the plurality of metal lines Not the same;
  • the metal wire grid has the functions of an electrode and a polarizer at the same time;
  • the metal wire grid has a period of 20 nm to 500 nm and a duty ratio of 0.1 to 0.9;
  • the strip electrode has a width of 10-1000 ⁇ m.
  • the invention provides a liquid crystal lens, which uses the metal wire grid to simultaneously realize the action of the polarizer and the electrode, and uses the polarizing action of the metal wire grid to filter the o-light, thereby solving the o-light leakage when the liquid crystal lens displays the 3D image.
  • the resulting display effect is reduced, and a high-quality 3D picture display is realized.
  • the polarizer and the electrode are combined into one by a metal wire grid, and the external polarizer is no longer needed, and the liquid crystal lens can be effectively reduced.
  • the thickness is adapted to the thinning trend of display technology.
  • the invention also provides a 3D display device capable of reducing 3D display device The thickness is set to prevent o-light leakage and achieve high-quality 3D picture display.
  • 1 is a structural view of a conventional 3D display device
  • FIG. 2 is a plan view of a strip lens electrode in the 3D display device shown in FIG. 1;
  • Figure 3 is a structural view of a liquid crystal lens of the present invention.
  • Figure 4 is a plan view of a metal wire grid and a strip electrode in the liquid crystal lens of the present invention.
  • Figure 5 is a structural view of a 3D display device of the present invention.
  • the present invention firstly provides a liquid crystal lens comprising: an upper glass substrate 10 , a lower glass substrate 50 disposed opposite to the upper glass substrate 10 , and a lower glass substrate 10 disposed adjacent to the lower glass substrate 50 .
  • the metal wire grid 20 includes a plurality of metal wires 21 arranged in parallel, and a dielectric layer 22 interposed between the plurality of parallel spaced metal wires 21 and the upper glass substrate 10, the metal The wire grid 20 simultaneously functions as an electrode and a polarizer.
  • the plurality of metal wires 21 extend in a direction perpendicular to the polarization direction of the incident light of the liquid crystal lens, and the metal wire grid 20 can transmit a TM whose polarization direction is perpendicular to the extending direction of the metal wire 21.
  • the light is reflected, and the TE light whose polarization direction is parallel to the extending direction of the metal wire 21 is reflected, thereby effecting the filtering of the light.
  • the extending direction of the plurality of strip electrodes 40 is different from the polarization direction of the incident light of the liquid crystal lens and the extending direction of the plurality of metal wires 21, that is, the polarization of the plurality of strip electrodes 40 and incident light.
  • the direction is formed with an angle of less than 90 degrees to avoid the appearance of moiré.
  • the polarization property of the metal wire grid 20 is caused by the asymmetry of the TM light and the TE light when passing through the metal wire grid 20, wherein the TM light having a polarization direction perpendicular to the extending direction of the metal wire 21 can Transmitted, and the polarization direction is parallel to the TE of the extending direction of the metal wire 21
  • the light will be reflected, and the polarization characteristics and effective band of the metal wire grid 20 can be customized by changing the structural parameters of the metal wire grid 20, that is, adjusting the period and duty cycle of the metal wire grid 20, wherein the metal wire grid
  • the period of 20 refers to the distance between the left and left boundaries of the adjacent metal line 21, and the duty ratio is the ratio of the width of the metal line 21 to the period.
  • the period of the metal grid 20 is 20 nm. To 500 nm, the duty cycle is 0.1 to 0.9.
  • the width and spacing of the strip electrodes 40 may be equal or unequal, and the specific width may be selected from the range of 10 to 1000 ⁇ m.
  • the material of the metal wire grid 20 needs to have a large refractive index imaginary part.
  • the material of the metal wire grid 20 is aluminum (Al), silver (Ag), or gold (Au).
  • the material of the dielectric layer 22 is silicon dioxide (SiO 2 ), silicon monoxide (SiO), magnesium oxide (MgO), silicon nitride (Si 3 N 4 ), titanium dioxide (TiO 2 ), or tantalum pentoxide. (Ta 2 O 5 ).
  • liquid crystal molecules in the liquid crystal layer 30 are selected, liquid crystal molecules having a higher refractive index difference between the e light and the o light are preferable in order to lower the thickness of the liquid crystal lens.
  • an alignment layer is further provided on a side of the lower glass substrate 50 of the liquid crystal lens which is adjacent to the liquid crystal layer 30.
  • the liquid crystal lens operates by providing an incident light, and entering a liquid crystal lens from below the lower glass substrate 50 of the liquid crystal lens, the incident light is polarized light, and the polarization direction is different from the The extending direction of the metal wires 21 is perpendicular, and a voltage is applied to the strip electrodes 40 and the metal wire grid 20 to rotate the liquid crystal molecules in the liquid crystal layer 30, wherein the voltage of the strip electrode 40 in the edge region is high, and the center The voltage of the regional strip electrode 40 is lower, so that the refractive index of the liquid crystal layer 30 gradually decreases from the central region to the edge region, forming a lens effect, and the change in the refractive index causes the incident light to be focused while passing through the liquid crystal layer 30.
  • the o-light generated by the incident light due to the birefringence will be filtered by the metal grid line 20, thereby avoiding o-light interference and achieving high-quality 3D picture display.
  • the voltages applied to the plurality of metal wires 21 of the metal wire grid 20 may be the same or different, since the metal wires 21 are opposite to the strips placed on the lower glass substrate.
  • the size of the electrode 40 is much smaller, so that when the same voltage is applied to form the common electrode, there is no significant difference in the deflection effect of the liquid crystal molecules compared to the conventional full-plate-shaped common electrode, and the liquid crystal molecules can be optimized when different voltages are applied thereto. The deflection effect enhances the display quality of 3D images.
  • the present invention further provides a 3D display device, including a display panel 70 , a display panel polarizer 60 disposed on the display panel, and a liquid crystal lens disposed on the display panel polarizer 60 .
  • the display panel 70 is a liquid crystal display panel (Liquid Crystal Display, LCD), or an Organic Light Emitting Display (OLED).
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Display
  • the display panel polarizer 60 may be an absorbing polarizer.
  • the display panel polarizer 60 may also be other types of polarizers, such as a metal wire grid, a brightness enhancement film, or the like.
  • the liquid crystal lens is in contact with the display panel polarizer 60 through an adhesive layer.
  • the display panel polarizer 60 is used in the display panel to form a light valve function together with the lower polarizer, and the 3D display device is used to form polarized light to realize e-light 3D display.
  • the liquid crystal lens includes: an upper glass substrate 10, a lower glass substrate 50 disposed opposite to the upper glass substrate 10, and a metal wire grid 20 disposed on a side of the upper glass substrate 10 adjacent to the lower glass substrate 50, A plurality of strip electrodes 40 arranged in parallel on the lower glass substrate 50 on the side of the upper glass substrate 10 and a liquid crystal layer 30 disposed between the upper glass substrate 10 and the lower glass substrate 50.
  • the metal wire grid 20 includes a plurality of metal wires 21 arranged in parallel, and a dielectric layer 22 interposed between the plurality of parallel spaced metal wires 21 and the upper glass substrate 10, the metal The wire grid 20 simultaneously functions as an electrode and a polarizer.
  • the plurality of metal wires 21 extend in a direction perpendicular to the polarization direction of the incident light of the liquid crystal lens, and the metal wire grid 20 can transmit a TM whose polarization direction is perpendicular to the extending direction of the metal wire 21.
  • the polarized light is polarized, and the TE polarized light whose polarization direction is parallel to the extending direction of the metal wire 21 is reflected, thereby effecting the filtering of the light.
  • the extending direction of the plurality of strip electrodes 40 is different from the polarization direction of the incident light of the liquid crystal lens and the extending direction of the plurality of metal wires 21, that is, the plurality of strip electrodes 40 and the display panel
  • the polarization direction of the polarizer 60 is formed with an angle of less than 90 degrees to avoid the occurrence of moiré.
  • the polarization property of the metal wire grid 20 is caused by the asymmetry of the TM light and the TE light when passing through the metal wire grid 20, wherein the TM light having a polarization direction perpendicular to the extending direction of the metal wire 21 can Through, the TE light whose polarization direction is parallel to the extending direction of the metal line 21 will be reflected, and the polarization characteristics and effective band of the metal wire grid 20 can be customized by changing the structural parameters of the metal wire grid 20, that is, adjusting The period and duty ratio of the metal wire grid 20, wherein the period of the metal wire grid 20 refers to the distance between the left and left boundaries of the adjacent metal lines 21, and the duty ratio is the width of the metal line 21 and The ratio of the periods, preferably, the metal wire grid 20 has a period of 20 nm to 500 nm and a duty ratio of 0.1 to 0.9.
  • the width and spacing of the strip electrodes 40 may be equal or unequal, and the specific width may be selected from the range of 10 to 1000 ⁇ m.
  • the material of the metal wire grid 20 needs to have a large refractive index imaginary part.
  • the material of the metal wire grid 20 is aluminum, silver, or gold.
  • the material of the dielectric layer 22 is dioxide Silicon, silicon monoxide, magnesium oxide, silicon nitride, titanium dioxide, or tantalum pentoxide.
  • an alignment layer is disposed on a side of the lower glass substrate 50 of the liquid crystal lens adjacent to the liquid crystal layer 30 for aligning liquid crystal molecules in the liquid crystal layer 30.
  • the working process of the 3D display device is: the display panel 70 emits light, and the emitted light forms a polarized light through the display panel polarizer 60, and the polarization direction and the extending direction of the plurality of metal wires 21 Vertically, the polarized light is incident from the lower surface of the lower glass substrate 50 of the liquid crystal lens into the liquid crystal lens, and a voltage is applied to the strip electrode 40 and the metal wire grid 20 to rotate the liquid crystal molecules in the liquid crystal layer 30, wherein the edge The voltage of the strip electrode 40 in the region is higher, and the voltage of the strip electrode 40 in the central region is lower, so that the refractive index of the liquid crystal layer 30 gradually decreases from the central region to the edge region, forming a lens effect, and the change in the refractive index
  • the incident light is focused to a predetermined direction when passing through the liquid crystal layer 30, and the o-light generated by the incident light due to the birefringence is filtered by the metal grid line 20, thereby preventing o-light interference
  • the voltages applied to the plurality of metal wires 21 of the metal wire grid 20 may be the same or different, since the metal wires 21 are placed relative to the lower glass substrate.
  • the strip electrode 40 is much smaller in size, so that when the same voltage is applied to form the common electrode, there is no significant difference in the liquid crystal molecular deflection effect compared to the conventional full-panel common electrode, and when different voltages are applied thereto, Optimize the deflection effect of liquid crystal molecules and enhance the display quality of 3D images.
  • the liquid crystal lens provided by the present invention uses a metal wire grid to simultaneously realize the action of the polarizer and the electrode, and uses the polarizing action of the metal wire grid to filter the o-light, thereby solving the problem of the o-light leakage when the liquid crystal lens displays the 3D image.
  • the resulting display effect is reduced, and a high-quality 3D picture display is realized.
  • the polarizer and the electrode are combined into one by a metal wire grid, and the external polarizer is no longer needed, which can effectively reduce the liquid crystal lens. Thickness, adapt to the trend of thinning development of display technology.
  • the present invention also provides a 3D display device capable of reducing the thickness of a 3D display device, preventing o-light leakage, and realizing high-quality 3D picture display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种液晶透镜及3D显示装置。液晶透镜包括:上玻璃基板(10)、与上玻璃基板(10)相对设置的下玻璃基板(50)、设于上玻璃基板(10)靠近下玻璃基板(50)一侧的金属线栅(20)、设于下玻璃基板(50)靠近上玻璃基板(10)一侧的多个平行间隔排列的条状电极(40)、以及设于上玻璃基板(10)与下玻璃基板(50)之间的液晶层(30);金属线栅(20)包括多个平行间隔排列的金属线(21)、以及设于多个平行间隔排列的金属线(21)与上玻璃基板(10)之间的介质层(22);多个金属线(21)的延伸方向与液晶透镜的入射光的偏振方向垂直,多个条状电极(40)的延伸方向与液晶透镜的入射光的偏振方向及多个金属线(21)的延伸方向均不相同;金属线栅(20)同时具备电极与偏光片的作用,无需外贴偏光片,有效降低液晶透镜厚度并解决液晶透镜显示3D图像时由于O光漏光导致的显示效果下降问题。

Description

液晶透镜及3D显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶透镜及3D显示装置。
背景技术
随着数字视听技术进入高清化的时代,三维(Three Dimension,3D)立体显示技术日益受到人们的关注和青睐,其中裸眼3D技术由于摆脱了复杂的辅助设备而大受欢迎,实现裸眼3D显示的方式多种多样,在3D显示技术尚未完全取代二维(Two Dimension,2D)显示的当前环境下,液晶透镜由于可自由切换2D/3D模式并且不对2D显示分辨率产生影响,成为当前裸眼3D技术发展的一个重要方向。
液晶透镜的原理是利用液晶分子双折射特性,以及随电场分布变化排列特性使光束聚焦或发散,通过改变电压来控制液晶分子的排列方向,进而可以实现在小空间内达到有效的光学变焦效果,实现3D显示。如图1所示,为现有的一种3D显示装置的结构图,包括显示面板8、及设于所述显示面板8上的液晶透镜,所述液晶透镜包括:相对设置的上玻璃基板2和下玻璃基板6、设于所述上玻璃基板2和下玻璃基板6之间的液晶层4、设于所述上玻璃基板2远离下玻璃基板6一侧的液晶透镜偏光片1、设于所述上玻璃基板2靠近下玻璃基板6一侧的公共电极3、设于所述下玻璃基板6靠近下玻璃基板2一侧的多个间隔分布的条状透镜电极5;该3D显示装置通过向多个条状透镜电极5施加不同的偏压使得液晶层4中的液晶分子偏转程度不同,其中边缘区域的电压较高,而中心区域的电压较低,使得液晶层4的折射率从中央区域到边缘区域逐渐减小,该折射率的变化使得光线在透过该液晶层4时被聚焦至预定的方向,进而实现3D显示。
为了获得理想的显示效果,理论上要求液晶分子的排布方向与底部液晶显示器的出光偏振方向完全一致,从而实现完全非寻常光(e光)3D图像,但是为了减轻摩尔纹对显示效果的影响,如图2所示,液晶透镜的取向相对于显示像素通常是倾斜布置的;由于不同条状透镜电极5之间偏压大小不一样,从而在条状透镜电极5之间容易形成横向电场分量,而横向分量的方向与所述理论偏转方向并不一致,导致液晶分子会偏离原来的配向方向,从而会形成一定量的寻常光(o光)2D图像,液晶透镜边缘处由于电压变化较大使得该问题更为严重。而o光在液晶透镜中并没有透镜效 果,从而形成了2D干扰信号,降低3D显示效果。通常为了解决该问题,需要在液晶透镜的表面再次贴附偏光片过滤o光(即液晶透镜偏光片1),使得本身已经很厚的液晶透镜盒厚继续增加,不符合当前显示技术的薄形化的发展趋势。
金属线栅是一种周期性的金属线与介质层排布结构,其对于横向磁场(Transverse Magnetic,TM)和横向电场(Transverse Electric,TE)态光具有很高的消光比,能够显著地透过垂直于金属线排列方向的TM光而反射平行于金属线排列方向的TE光,因而可以作为理想的偏光片使用,由于厚度仅有纳米量级并且目前的制备工艺逐渐成熟而受到广泛关注。
发明内容
本发明的目的在于提供一种液晶透镜,能够降低液晶透镜的厚度,防止o光漏光,实现高品质的3D画面显示。
本发明的目的在于提供一种3D显示装置,能够降低3D显示装置的厚度,防止o光漏光,实现高品质的3D画面显示。
为实现上述目的,本发明首先提供一种液晶透镜,包括:上玻璃基板、与所述上玻璃基板相对设置的下玻璃基板、设于所述上玻璃基板靠近下玻璃基板一侧的金属线栅、设于所述下玻璃基板靠近上玻璃基板一侧的多个平行间隔排列的条状电极、以及设于所述上玻璃基板与下玻璃基板之间的液晶层;
所述金属线栅包括多个平行间隔排列的金属线、以及设于所述多个平行间隔排列的金属线与上玻璃基板之间的介质层;
所述多个金属线的延伸方向与液晶透镜的入射光的偏振方向垂直,所述多个条状电极的延伸方向与液晶透镜的入射光的偏振方向及所述多个金属线的延伸方向均不相同;
所述金属线栅同时具备电极与偏光片的作用。
所述金属线栅的周期为20纳米到500纳米,占空比为0.1至0.9。
所述条状电极的宽度为10-1000μm。
所述金属线栅的材料为铝、银、或金。
所述介质层的材料为二氧化硅、一氧化硅、氧化镁、氮化硅、二氧化钛、或五氧化二钽。
本发明提供一种3D显示装置,包括:显示面板、设于所述显示面板上的显示面板偏光片、设于所述显示面板偏光片上的液晶透镜;
所述液晶透镜包括:上玻璃基板、与所述上玻璃基板相对设置的下玻 璃基板、设于所述上玻璃基板靠近下玻璃基板一侧的金属线栅、设于所述下玻璃基板靠近上玻璃基板一侧的多个平行间隔排列的条状电极、以及设于所述上玻璃基板与下玻璃基板之间的液晶层;
所述金属线栅包括多个平行间隔排列的金属线、以及设于所述多个平行间隔排列的金属线与上玻璃基板之间的介质层;
所述多个金属线的延伸方向与所述显示面板偏光片的偏振方向垂直,所述多个条状电极的延伸方向与所述显示面板偏光片的偏振方向及所述多个金属线的延伸方向均不相同;
所述金属线栅同时具备电极与偏光片的作用。
所述显示面板为OLED显示面板、或者LCD显示面板。
所述显示面板偏光片为吸收型偏光片。
所述金属线栅的周期为20纳米到500纳米,占空比为0.1至0.9;
所述金属线栅的材料为铝、银、或金;
所述介质层的材料为二氧化硅、一氧化硅、氧化镁、氮化硅、二氧化钛、或五氧化二钽。
所述条状电极的宽度为10-1000μm。
本发明还提供一种液晶透镜,包括:上玻璃基板、与所述上玻璃基板相对设置的下玻璃基板、设于所述上玻璃基板靠近下玻璃基板一侧的金属线栅、设于所述下玻璃基板靠近上玻璃基板一侧的多个平行间隔排列的条状电极、以及设于所述上玻璃基板与下玻璃基板之间的液晶层;
所述金属线栅包括多个平行间隔排列的金属线、以及设于所述多个平行间隔排列的金属线与上玻璃基板之间的介质层;
所述多个金属线的延伸方向与液晶透镜的入射光的偏振方向垂直,所述多个条状电极的延伸方向与液晶透镜的入射光的偏振方向及所述多个金属线的延伸方向均不相同;
所述金属线栅同时具备电极与偏光片的作用;
其中,所述金属线栅的周期为20纳米到500纳米,占空比为0.1至0.9;
其中,所述条状电极的宽度为10-1000μm。
本发明的有益效果:本发明提供的一种液晶透镜,采用金属线栅同时实现偏光片与电极的作用,利用金属线栅的偏光作用过滤o光,解决液晶透镜显示3D图像时由于o光漏光所导致的显示效果下降问题,实现高品质的3D画面显示,相比于现有技术,通过金属线栅将偏光片与电极合二为一,不再需要外贴偏光片,能够有效降低液晶透镜的厚度,适应显示技术的薄形化发展趋势。本发明还提供一种3D显示装置,能够降低3D显示装 置的厚度,防止o光漏光,实现高品质的3D画面显示。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种3D显示装置的结构图;
图2为图1所示的3D显示装置中条状透镜电极的俯视图;
图3本发明的液晶透镜的结构图;
图4本发明的液晶透镜中金属线栅及条状电极的俯视图;
图5本发明的3D显示装置的结构图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,本发明首先提供一种液晶透镜,包括:上玻璃基板10、与所述上玻璃基板10相对设置的下玻璃基板50、设于所述上玻璃基板10靠近下玻璃基板50一侧的金属线栅20、设于所述下玻璃基板50靠近上玻璃基板10一侧的多个平行间隔排列的条状电极40、以及设于所述上玻璃基板10与下玻璃基板50之间的液晶层30。
具体地,所述金属线栅20包括多个平行间隔排列的金属线21、以及夹设于所述多个平行间隔排列的金属线21与上玻璃基板10之间的介质层22,所述金属线栅20同时具备电极与偏光片的作用。
进一步地,请参阅图4,所述多个金属线21的延伸方向与液晶透镜的入射光的偏振方向垂直,所述金属线栅20能够透过偏振方向垂直于金属线21的延伸方向的TM光,并反射偏振方向平行于金属线21的延伸方向的TE光,从而实现过滤o光的作用。所述多个条状电极40的延伸方向与液晶透镜的入射光的偏振方向及所述多个金属线21的延伸方向均不相同,也即所述多个条状电极40与入射光的偏振方向形成有一小于90度的夹角,以避免莫尔纹的出现。
具体地,所述金属线栅20的偏振性能是由TM光和TE光在通过金属线栅20时的不对称性引起的,其中偏振方向垂直于所述金属线21的延伸方向的TM光能够透过,而偏振方向平行于所述金属线21的延伸方向的TE 光将被反射,并且金属线栅20的偏振特性及有效波段可以通过改变金属线栅20的结构参数来进行定制,即调整金属线栅20的周期及占空比,其中,所述金属线栅20的周期是指相邻的金属线21的左边界与左边界之间的距离,占空比是金属线21的宽度与周期的比值,优选地,所述金属线栅20的周期为20纳米到500纳米,占空比为0.1至0.9。
具体地,所述条状电极40宽度及间距可以相等、也可以不相等,具体的宽度选择范围为10-1000μm。
具体地,所述金属线栅20的材料需要具有较大的折射率虚部,优选地,所述金属线栅20的材料为铝(Al)、银(Ag)、或金(Au)。所述介质层22的材料为二氧化硅(SiO2)、一氧化硅(SiO)、氧化镁(MgO)、氮化硅(Si3N4)、二氧化钛(TiO2)、或五氧化二钽(Ta2O5)。在选择所述液晶层30中的液晶分子时,优选e光与o光折射率差更高的液晶分子,以便于降低液晶透镜的厚度。
此外,在所述液晶透镜的下玻璃基板50靠近液晶层30的一侧还设有配向层。
需要说明的是,所述液晶透镜的工作过程为:提供一入射光,从所述液晶透镜的下玻璃基板50的下方射入液晶透镜,所述入射光为偏振光,偏振方向与所述多个金属线21的延伸方向垂直,向所述条状电极40和金属线栅20施加电压,使得液晶层30中的液晶分子旋转,其中,边缘区域的条状电极40的电压较高,而中心区域条状电极40的电压较低,使得液晶层30的折射率从中央区域到边缘区域逐渐减小,形成透镜效果,该折射率的的变化使得入射光在透过该液晶层30时被聚焦至预定的方向,而入射光由于双折射产生的o光将被金属栅线20过滤,进而避免o光干扰,实现高品质的3D画面显示。
值得一提的是,在液晶透镜工作过程中,施加在金属线栅20的多条金属线21上的电压可以相同也可以不同,由于所述金属线21相对于放置于下玻璃基板的条状电极40的尺寸小很多,使得其在施加相同电压构成公共电极时,相比于传统的整面板状公共电极对液晶分子偏转效果无明显差异,而在其上施加不同电压时更可以优化液晶分子的偏转效果,增强3D画面显示品质。
请参阅图5,本发明还提供一种3D显示装置,包括:显示面板70、设于所述显示面板上的显示面板偏光片60、设于所述显示面板偏光片60上的液晶透镜。
具体地,所述显示面板70为液晶显示面板(Liquid Crystal Display, LCD)、或有机发光二极管显示面板(Organic Light Emitting Display,OLED)。
具体地,所述显示面板偏光片60可以为吸收型偏光片,当然所述显示面板偏光片60也可以为其他类型的偏光片,例如金属线栅、增亮膜等。所述液晶透镜通过粘接层与显示面板偏光片60接触。所述显示面板偏光片60在显示面板中用于与下偏光片共同构成光阀作用,而在3D显示装置用于形成偏振光以实现e光3D显示。
具体地,所述液晶透镜包括:上玻璃基板10、与所述上玻璃基板10相对设置的下玻璃基板50、设于所述上玻璃基板10靠近下玻璃基板50一侧的金属线栅20、设于所述下玻璃基板50靠近上玻璃基板10一侧的多个平行间隔排列的条状电极40、以及设于所述上玻璃基板10与下玻璃基板50之间的液晶层30。
具体地,所述金属线栅20包括多个平行间隔排列的金属线21、以及夹设于所述多个平行间隔排列的金属线21与上玻璃基板10之间的介质层22,所述金属线栅20同时具备电极与偏光片的作用。
进一步地,请参阅图4,所述多个金属线21的延伸方向与液晶透镜的入射光的偏振方向垂直,所述金属线栅20能够透过偏振方向垂直于金属线21的延伸方向的TM偏振光,并反射偏振方向平行于金属线21的延伸方向的TE偏振光,从而实现过滤o光的作用。所述多个条状电极40的延伸方向与液晶透镜的入射光的偏振方向及所述多个金属线21的延伸方向均不相同,也即所述多个条状电极40与所述显示面板偏光片60的偏振方向形成有一小于90度的夹角,以避免摩尔纹的出现。
具体地,所述金属线栅20的偏振性能是由TM光和TE光在通过金属线栅20时的不对称性引起的,其中偏振方向垂直于所述金属线21的延伸方向的TM光能够透过,而偏振方向平行于所述金属线21的延伸方向的TE光将被反射,并且金属线栅20的偏振特性及有效波段可以通过改变金属线栅20的结构参数来进行定制,即调整金属线栅20的周期及占空比,其中,所述金属线栅20的周期是指相邻的金属线21的左边界与左边界之间的距离,占空比是金属线21的宽度与周期的比值,优选地,所述金属线栅20的周期为20纳米到500纳米,占空比为0.1至0.9。
具体地,所述条状电极40宽度及间距可以相等、也可以不相等,具体的宽度选择范围为10-1000μm。
具体地,所述金属线栅20的材料需要具有较大的折射率虚部,优选地,所述金属线栅20的材料为铝、银、或金。所述介质层22的材料为二氧化 硅、一氧化硅、氧化镁、氮化硅、二氧化钛、或五氧化二钽。在选择所述液晶层30中的液晶分子时,优选e光与o光折射率差更高的液晶分子,以便于降低液晶透镜的厚度。
此外,所述在所述液晶透镜的下玻璃基板50靠近液晶层30的一侧还设有配向层,用于对液晶层30中的液晶分子进行配向。
需要说明的是,所述3D显示装置的工作过程为:所述显示面板70出射光线,该出射光线经过显示面板偏光片60形成一偏振光,偏振方向与所述多个金属线21的延伸方向垂直,该偏振光从所述液晶透镜的下玻璃基板50的下方射入液晶透镜,向所述条状电极40和金属线栅20施加电压,使得液晶层30中的液晶分子旋转,其中,边缘区域的条状电极40的电压较高,而中心区域条状电极40的电压较低,使得液晶层30的折射率从中央区域到边缘区域逐渐减小,形成透镜效果,该折射率的的变化使得入射光在透过该液晶层30时被聚焦至预定的方向,而入射光由于双折射产生的o光将被金属栅线20过滤,进而避免o光干扰,实现高品质的3D画面显示。
值得一提的是,在所述3D显示装置工作过程中,施加在金属线栅20的多条金属线21上的电压可以相同也可以不同,由于所述金属线21相对于放置于下玻璃基板的条状电极40的尺寸小很多,使得其在施加相同电压构成公共电极时,相比于传统的整面板状公共电极对液晶分子偏转效果无明显差异,而在其上施加不同电压时更可以优化液晶分子的偏转效果,增强3D画面显示品质。
综上所述,本发明提供的一种液晶透镜,采用金属线栅同时实现偏光片与电极的作用,利用金属线栅的偏光作用过滤o光,解决液晶透镜显示3D图像时由于o光漏光所导致的显示效果下降问题,实现高品质的3D画面显示,相比于现有技术,通过金属线栅将偏光片与电极合二为一,不再需要外贴偏光片,能够有效降低液晶透镜的厚度,适应显示技术的薄形化发展趋势。本发明还提供一种3D显示装置,能够降低3D显示装置的厚度,防止o光漏光,实现高品质的3D画面显示。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (13)

  1. 一种液晶透镜,包括:上玻璃基板、与所述上玻璃基板相对设置的下玻璃基板、设于所述上玻璃基板靠近下玻璃基板一侧的金属线栅、设于所述下玻璃基板靠近上玻璃基板一侧的多个平行间隔排列的条状电极、以及设于所述上玻璃基板与下玻璃基板之间的液晶层;
    所述金属线栅包括多个平行间隔排列的金属线、以及设于所述多个平行间隔排列的金属线与上玻璃基板之间的介质层;
    所述多个金属线的延伸方向与液晶透镜的入射光的偏振方向垂直,所述多个条状电极的延伸方向与液晶透镜的入射光的偏振方向及所述多个金属线的延伸方向均不相同;
    所述金属线栅同时具备电极与偏光片的作用。
  2. 如权利要求1所述的液晶透镜,其中,所述金属线栅的周期为20纳米到500纳米,占空比为0.1至0.9。
  3. 如权利要求1所述的液晶透镜,其中,所述条状电极的宽度为10-1000μm。
  4. 如权利要求1所述的液晶透镜,其中所述金属线栅的材料为铝、银、或金。
  5. 如权利要求1所述的液晶透镜,其中,所述介质层的材料为二氧化硅、一氧化硅、氧化镁、氮化硅、二氧化钛、或五氧化二钽。
  6. 一种3D显示装置,包括:显示面板、设于所述显示面板上的显示面板偏光片、设于所述显示面板偏光片上的液晶透镜;
    所述液晶透镜包括:上玻璃基板、与所述上玻璃基板相对设置的下玻璃基板、设于所述上玻璃基板靠近下玻璃基板一侧的金属线栅、设于所述下玻璃基板靠近上玻璃基板一侧的多个平行间隔排列的条状电极、以及设于所述上玻璃基板与下玻璃基板之间的液晶层;
    所述金属线栅包括多个平行间隔排列的金属线、以及设于所述多个平行间隔排列的金属线与上玻璃基板之间的介质层;
    所述多个金属线的延伸方向与所述显示面板偏光片的偏振方向垂直,所述多个条状电极的延伸方向与所述显示面板偏光片的偏振方向、及所述多个金属线的延伸方向均不相同;
    所述金属线栅同时具备电极与偏光片的作用。
  7. 如权利要求6所述的3D显示装置,其中,所述显示面板为OLED 显示面板、或者LCD显示面板。
  8. 如权利要求6所述的3D显示装置,其中,所述显示面板偏光片为吸收型偏光片。
  9. 如权利要求6所述的3D显示装置,其中,所述金属线栅的周期为20纳米到500纳米,占空比为0.1至0.9;
    所述金属线栅的材料为铝、银、或金;
    所述介质层的材料为二氧化硅、一氧化硅、氧化镁、氮化硅、二氧化钛、或五氧化二钽。
  10. 如权利要求6所述的3D显示装置,其中,所述条状电极的宽度为10-1000μm。
  11. 一种液晶透镜,包括:上玻璃基板、与所述上玻璃基板相对设置的下玻璃基板、设于所述上玻璃基板靠近下玻璃基板一侧的金属线栅、设于所述下玻璃基板靠近上玻璃基板一侧的多个平行间隔排列的条状电极、以及设于所述上玻璃基板与下玻璃基板之间的液晶层;
    所述金属线栅包括多个平行间隔排列的金属线、以及设于所述多个平行间隔排列的金属线与上玻璃基板之间的介质层;
    所述多个金属线的延伸方向与液晶透镜的入射光的偏振方向垂直,所述多个条状电极的延伸方向与液晶透镜的入射光的偏振方向及所述多个金属线的延伸方向均不相同;
    所述金属线栅同时具备电极与偏光片的作用;
    其中,所述金属线栅的周期为20纳米到500纳米,占空比为0.1至0.9;
    其中,所述条状电极的宽度为10-1000μm。
  12. 如权利要求11所述的液晶透镜,其中所述金属线栅的材料为铝、银、或金。
  13. 如权利要求11所述的液晶透镜,其中,所述介质层的材料为二氧化硅、一氧化硅、氧化镁、氮化硅、二氧化钛、或五氧化二钽。
PCT/CN2016/080449 2016-04-08 2016-04-28 液晶透镜及3d显示装置 WO2017173687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/107,924 US10353238B2 (en) 2016-04-08 2016-04-28 Liquid crystal lens and 3D display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610216952.6 2016-04-08
CN201610216952.6A CN105700268A (zh) 2016-04-08 2016-04-08 液晶透镜及3d显示装置

Publications (1)

Publication Number Publication Date
WO2017173687A1 true WO2017173687A1 (zh) 2017-10-12

Family

ID=56219574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080449 WO2017173687A1 (zh) 2016-04-08 2016-04-28 液晶透镜及3d显示装置

Country Status (3)

Country Link
US (1) US10353238B2 (zh)
CN (1) CN105700268A (zh)
WO (1) WO2017173687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456554A (zh) * 2019-04-17 2019-11-15 友达光电股份有限公司 显示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338871A (zh) * 2016-11-10 2017-01-18 武汉华星光电技术有限公司 一种液晶透镜及三维显示装置
CN106654028A (zh) * 2016-11-29 2017-05-10 天津市中环量子科技有限公司 一种主动增亮膜及其制备方法
CN106773447B (zh) * 2017-01-24 2019-05-24 京东方科技集团股份有限公司 液晶透镜及显示装置
CN108508636B (zh) * 2017-02-28 2021-01-22 京东方科技集团股份有限公司 液晶透镜及其制作方法、显示装置
US20180284539A1 (en) * 2017-03-31 2018-10-04 Wuhan China Star Optoelectronics Technology Co., Ltd. Transflective lcd
CN107991783A (zh) * 2018-01-30 2018-05-04 京东方科技集团股份有限公司 3d显示器件
CN108363234A (zh) * 2018-02-28 2018-08-03 深圳市华星光电技术有限公司 液晶显示装置
KR20200046513A (ko) 2018-10-24 2020-05-07 삼성전자주식회사 디스플레이 장치
CN110146994B (zh) * 2019-05-21 2021-08-06 京东方科技集团股份有限公司 一种滤光结构、眼镜和显示面板
US11829026B2 (en) * 2019-09-26 2023-11-28 Boe Technology Group Co., Ltd. Display panel, driving method thereof and display device
WO2021119882A1 (zh) * 2019-12-16 2021-06-24 重庆康佳光电技术研究院有限公司 一种可改变光线方向的显示设备
CN113597578B (zh) * 2020-03-02 2023-11-17 京东方科技集团股份有限公司 偏光片、电子装置及制备偏光片的方法
JPWO2021241127A1 (zh) * 2020-05-25 2021-12-02

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061498A (ko) * 2002-12-31 2004-07-07 엘지.필립스 엘시디 주식회사 표시 장치용 복합 광학 소자
CN101271170A (zh) * 2008-04-30 2008-09-24 京东方科技集团股份有限公司 偏振片及其制造方法、液晶显示装置
CN201654386U (zh) * 2010-01-26 2010-11-24 李冠军 液晶屏与液晶显示装置
CN102955321A (zh) * 2011-08-12 2013-03-06 株式会社日本显示器东 显示装置
CN103048841A (zh) * 2012-12-04 2013-04-17 京东方科技集团股份有限公司 一种液晶透镜模组及3d显示装置
CN105137649A (zh) * 2015-10-23 2015-12-09 深圳市华星光电技术有限公司 一种液晶显示面板
CN105389552A (zh) * 2015-10-30 2016-03-09 京东方科技集团股份有限公司 一种指纹识别模组及其制备方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532111B2 (en) * 2001-03-05 2003-03-11 Eastman Kodak Company Wire grid polarizer
JP2014228840A (ja) * 2013-05-27 2014-12-08 株式会社ジャパンディスプレイ 表示装置
US20170293151A1 (en) * 2016-04-08 2017-10-12 Wuhan China Star Optoelectronics Technology Co.Ltd 3d display device
CN106019673B (zh) * 2016-07-27 2020-03-31 武汉华星光电技术有限公司 一种液晶显示面板用基板及液晶显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061498A (ko) * 2002-12-31 2004-07-07 엘지.필립스 엘시디 주식회사 표시 장치용 복합 광학 소자
CN101271170A (zh) * 2008-04-30 2008-09-24 京东方科技集团股份有限公司 偏振片及其制造方法、液晶显示装置
CN201654386U (zh) * 2010-01-26 2010-11-24 李冠军 液晶屏与液晶显示装置
CN102955321A (zh) * 2011-08-12 2013-03-06 株式会社日本显示器东 显示装置
CN103048841A (zh) * 2012-12-04 2013-04-17 京东方科技集团股份有限公司 一种液晶透镜模组及3d显示装置
CN105137649A (zh) * 2015-10-23 2015-12-09 深圳市华星光电技术有限公司 一种液晶显示面板
CN105389552A (zh) * 2015-10-30 2016-03-09 京东方科技集团股份有限公司 一种指纹识别模组及其制备方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456554A (zh) * 2019-04-17 2019-11-15 友达光电股份有限公司 显示装置
CN110456554B (zh) * 2019-04-17 2022-02-08 友达光电股份有限公司 显示装置

Also Published As

Publication number Publication date
US20180101054A1 (en) 2018-04-12
US10353238B2 (en) 2019-07-16
CN105700268A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2017173687A1 (zh) 液晶透镜及3d显示装置
CN103631056B (zh) 可变光学延迟器
US9268168B2 (en) Liquid crystal display device and method of fabricating the same
WO2018010428A1 (zh) 阵列基板、透明显示基板、透明显示装置和车辆
TWI641878B (zh) 線柵偏光器以及使用此線柵偏光器的顯示面板
WO2013157341A1 (ja) 液晶表示装置
US20190129239A1 (en) Display panel, display device and display method
WO2015196643A1 (zh) 显示面板、其制作方法和显示装置
JP2008102416A (ja) ワイヤーグリッド偏光子及びそれを用いた液晶表示装置
TWI474076B (zh) 邊際場切換式液晶顯示面板
WO2013086896A1 (zh) 液晶透镜型调光装置及液晶显示器
TWI495943B (zh) 液晶顯示面板、其驅動方法及包含其之液晶顯示器
WO2019047461A1 (zh) 液晶面板及其制作方法
JP5737037B2 (ja) 電気光学装置および投射型表示装置
US20170293151A1 (en) 3d display device
WO2017173688A1 (zh) 3d显示装置
KR20120025407A (ko) 액정 표시 장치
JP2009276485A (ja) 液晶表示装置
KR101286004B1 (ko) 액정 패널, 이를 구비하는 액정 표시 장치 및 그 제조방법
JP4714522B2 (ja) 液晶表示装置
WO2013127203A1 (zh) 被动偏光式三维显示装置
WO2015043055A1 (zh) 阵列基板及其制作方法、液晶面板及显示装置
WO2019015244A1 (zh) 一种圆偏光片及显示器
JP5858869B2 (ja) 液晶表示装置
TWI490548B (zh) 顯示裝置與顯示影像的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15107924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897621

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897621

Country of ref document: EP

Kind code of ref document: A1