WO2019015244A1 - 一种圆偏光片及显示器 - Google Patents

一种圆偏光片及显示器 Download PDF

Info

Publication number
WO2019015244A1
WO2019015244A1 PCT/CN2017/116840 CN2017116840W WO2019015244A1 WO 2019015244 A1 WO2019015244 A1 WO 2019015244A1 CN 2017116840 W CN2017116840 W CN 2017116840W WO 2019015244 A1 WO2019015244 A1 WO 2019015244A1
Authority
WO
WIPO (PCT)
Prior art keywords
grids
dielectric
sub
display
pixel unit
Prior art date
Application number
PCT/CN2017/116840
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/741,138 priority Critical patent/US10840304B2/en
Publication of WO2019015244A1 publication Critical patent/WO2019015244A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to the field of touch screen technologies, and in particular, to a circular polarizer and a display.
  • mainstream display technologies mainly include liquid crystal display and OLED (Organic Light Emitting Diode) display.
  • OLED Organic Light Emitting Diode
  • the liquid crystal display combines the polarization adjustment characteristics of the liquid crystal to realize the light valve function, and in the OLED structure, a linear polarizer and a quarter are usually used.
  • the slides are combined to achieve suppression of ambient light reflection, thereby enhancing display contrast in outdoor environments (as shown in Figure 1).
  • the polarizer is an indispensable component in the current OLED display technology, and includes a linear polarizer and a circular polarizer.
  • the traditional linear polarizer is mainly prepared based on organic materials, and has the advantages of mature process, large-area preparation and good uniformity, but the disadvantage is that the organic material faces the problem of unstable mechanical and optical properties, thus making linear polarization.
  • the film gradually deviates from the ideal state with the change of the external environment (such as temperature, humidity, air composition) and the use time, and there are problems such as uniformity deterioration, mechanical deformation, optical transmittance change or chromaticity difference; Since the polarization and phase retardation of the linear polarizer are mainly controlled by the arrangement direction of the organic molecules, the linear polarizers have the same polarization direction and phase retardation in the front structure, which is difficult to realize in a graphical manner. Changes in various regions.
  • linearly polarized displays formed from linear polarizers have an impact on visual fatigue and visual impairment in the human eye. Therefore, a circular polarizer closest to natural light in terms of the properties of the polarization state is used instead of the linear polarizer.
  • the basic principle of realizing a circular polarizer is to superimpose a quarter-slide on the basis of a linear polarizer, thereby converting linearly polarized light into circularly polarized light.
  • the principle of the so-called quarter-slide is to achieve a quarter-wavelength delay of light, but the display actually covers light of different wavelengths of 380-780 nm, such as red R, green G, blue B, etc., so only It is difficult to cover the entire visible light band by satisfying the phase delay at a specific wavelength.
  • the more common method is to convert the linearly polarized light near 550 nm into circularly polarized light, and the other wavelengths are converted into elliptically polarized light.
  • the output light of the final display still has a large difference from the completely unpolarized light of the natural world. Health has a greater impact.
  • the technical problem to be solved by the embodiments of the present invention is to provide a circular polarizer and a display, which solves the problem that the conventional organic phase retarder cannot achieve the wide-spectrum circular deviation effect and improves the visual effect.
  • an embodiment of the present invention provides a circular polarizer for use on a display, including a transparent substrate disposed on the display and a plurality of strip dielectric grids disposed on the transparent substrate; among them,
  • Each of the dielectric grids is provided with a wire grid array formed by a plurality of wire grids, and each of the dielectric wire grids respectively corresponds to an R sub-pixel unit, a G sub-pixel unit, and a B sub-pixel unit of the display.
  • the area of one of the regions has a corresponding thickness such that each of the dielectric grids is formed with a quarter phase delay on the sub-pixel unit of its corresponding display.
  • the thickness of each of the dielectric grids is determined by a reference incident wavelength of the sub-pixel unit of the corresponding display and a refractive index difference formed by the horizontal polarization and the vertical polarization of the corresponding incident light; wherein the horizontal polarization is refraction
  • the incident light is biased to the refractive index in the Bloch Bloch wave TM mode, which is the refractive index of the incident light ray biased to the Bloch-Bloch wave TE mode.
  • the wire grids of the wire grid arrays on each of the dielectric grids are wire grids of the same material, the same period and the same duty ratio.
  • the period of the wire grid is between 100 nm and 700 nm; the duty ratio of the wire grid is between 0.1 and 0.9.
  • Each of the dielectric grids further includes a dielectric layer between the corresponding wire grid array and the transparent substrate.
  • Each of the dielectric layers is made of any of polymethyl methacrylate PMMA, SiO 2 , SiO, MgO, Si 3 N 4 , TiO 2 , and Ta 2 O 5 .
  • each of the dielectric grids is between 0.1 ⁇ m and 10 ⁇ m.
  • the reference incident wavelength of the R sub-pixel unit of the display is 630 nm
  • the reference incident wavelength of the G sub-pixel unit is 550 nm
  • the reference incident wavelength of the B sub-pixel unit is 450 nm.
  • an embodiment of the present invention further provides another circular polarizer for use on a display, comprising: a transparent substrate disposed on the display; and a plurality of strip dielectric grids disposed on the transparent substrate ;among them,
  • Each of the dielectric grids is provided with a wire grid array formed by a plurality of wire grids, and each of the dielectric wire grids respectively corresponds to an R sub-pixel unit, a G sub-pixel unit, and a B sub-pixel unit of the display. a region above the region and having a corresponding thickness such that each of the dielectric grids is formed with a quarter phase delay on the sub-pixel unit of its corresponding display;
  • the wire grids of the wire grid arrays on each of the dielectric grids are wire grids of the same material, the same period and the same duty ratio.
  • the thickness of each of the dielectric grids is determined by a reference incident wavelength of the sub-pixel unit of the corresponding display and a refractive index difference formed by the horizontal polarization and the vertical polarization of the corresponding incident light; wherein the horizontal polarization is refraction
  • the incident light is biased to the refractive index in the Bloch Bloch wave TM mode, and the refractive index of the vertical polarized light is the refractive index of the Bloch-Bloch wave TE mode.
  • the period of the wire grid is between 100 nm and 700 nm; the duty ratio of the wire grid is between 0.1 and 0.9.
  • an embodiment of the present invention further provides a display, comprising: a body; and a circular polarizer disposed on the body; wherein
  • An R sub-pixel unit, a G sub-pixel unit, and a B sub-pixel unit are formed on the body, and each of the R sub-pixel units, each of the G sub-pixel units, and each of the B sub-pixel units respectively correspond to the circular polarizer a dielectric grid having a corresponding thickness;
  • the circular polarizer includes a transparent substrate disposed on the body and a plurality of strip dielectric grids disposed on the transparent substrate;
  • Each of the dielectric grids is provided with a wire grid array formed by a plurality of wire grids, and each of the dielectric wire grids respectively corresponds to an R sub-pixel unit, a G sub-pixel unit, and a B sub-pixel unit of the display.
  • the area of one of the regions has a corresponding thickness such that each of the dielectric grids is formed with a quarter phase delay on the sub-pixel unit of its corresponding display.
  • the thickness of each of the dielectric grids is determined by a reference incident wavelength of the sub-pixel unit of the corresponding display and a refractive index difference formed by the horizontal polarization and the vertical polarization of the corresponding incident light; wherein the horizontal polarization is refraction
  • the incident light is biased to the refractive index in the Bloch Bloch wave TM mode, which is the refractive index of the incident light ray biased to the Bloch-Bloch wave TE mode.
  • the wire grids of the wire grid arrays on each of the dielectric grids are wire grids of the same material, the same period and the same duty ratio.
  • the period of the wire grid is between 100 nm and 700 nm; the duty ratio of the wire grid is between 0.1 and 0.9.
  • Each of the dielectric grids further includes a dielectric layer between the corresponding wire grid array and the transparent substrate.
  • Each of the dielectric layers is made of any of polymethyl methacrylate PMMA, SiO 2 , SiO, MgO, Si 3 N 4 , TiO 2 , and Ta 2 O 5 .
  • each of the dielectric grids is between 0.1 ⁇ m and 10 ⁇ m.
  • the thickness of different dielectric grids is set according to different sub-pixel units of the display R/G/B, so that the phase delay of the dielectric grid can be applied to the corresponding display R/G/B sub-
  • the pixel unit area provides a quarter phase delay, which achieves the purpose of circularly polarizing the R/G/B three colors, not only omitting the traditional quarter-slide, but also solving the traditional organic phase retarder.
  • the problem of wide-spectrum rounding effect is improved, and the visual effect is improved.
  • FIG. 1 is a schematic structural view of an OLED used to solve a phenomenon of optical phase delay in the prior art
  • FIG. 2 is a schematic structural view of a circular polarizer in the prior art
  • FIG. 3 is a cross-sectional structural view of a circular polarizer according to Embodiment 1 of the present invention.
  • FIG. 4 is a top plan view showing a circular polarizer applied to a display according to Embodiment 1 of the present invention
  • Figure 5 is a front cross-sectional view of Figure 4.
  • a circular polarizer is provided for use on a display (not shown), including a transparent substrate 1 disposed on the display and a plurality of disposed on the transparent substrate 1.
  • Each of the dielectric grids 2 is provided with a wire grid array formed by a plurality of wire grids, and each of the dielectric wire grids 2 respectively corresponds to one of the R sub-pixel unit, the G sub-pixel unit and the B sub-pixel unit of the display. Above the region and having a corresponding thickness, each dielectric grid 2 is formed with a quarter phase delay on the sub-pixel unit of its corresponding display.
  • each dielectric grid 2 is determined by the reference incident wavelength of the sub-pixel unit of the corresponding display and the refractive index difference formed by the horizontal polarization and the vertical polarization of the corresponding incident light; wherein the refractive index of the horizontal polarization is incident The light is biased to the refractive index of Bloch's Bloch waveTM mode, and the refractive index of the vertical polarization is the refractive index of the incident light ray to the Bloch-Bloch wave TE mode.
  • each of the dielectric grids 2 is formed into a different thickness by different micro-electron processes for different sub-pixel unit regions for the display R/G/B.
  • the phase delay effect of the dielectric wire grid 2 is A quarter phase delay is provided to achieve a circular polarization effect for both R/G/B colors, but the phase delay of the dielectric grid 2 can be achieved by adjusting the thickness and refractive index difference of the dielectric grid 2 .
  • the refractive index difference is that when the period of the wire grid in the wire grid array included in the dielectric grid 2 is less than one-half of the wavelength of the incident light, the incident light is biased into a Bloch wave, so that the Bloch wave TM mode (polarization direction) is supported. Parallel to the wire grid direction) and in the case of the TE mode (the polarization direction is perpendicular to the wire grid direction) exhibiting a different refractive index (ie, birefringence phenomenon).
  • the wire grids of the wire grid arrays included in the dielectric grid 2 are generally in the entire surface structure using the same material, the same period and the same duty ratio of the wire grid, so the refractive index for each The dielectric grid 2 is the same, so that the phase delay effect of the dielectric grid 2 can be achieved by controlling the thickness of each dielectric grid 2.
  • the reference incident wavelength of each of the dielectric grids 2 corresponds to the sub-pixel unit of the display;
  • ⁇ n is the refractive index difference formed by the refractive index in the Bloch wave TM mode and the refractive index in the TE mode, and takes an absolute value.
  • the period of the wire grid is between 100 nm and 700 nm; the duty ratio of the wire grid is between 0.1 and 0.9; the wire grid is made of metal such as aluminum, silver or copper; and the R sub-pixel unit of the display
  • the reference incident wavelength is 630 nm, the reference incident wavelength of the G sub-pixel unit is 550 nm, the reference incident wavelength of the B sub-pixel unit is 450 nm, and the thickness of each dielectric grid 2 is between 0.1 ⁇ m and 10 ⁇ m.
  • each of the dielectric grids 2 further includes a dielectric layer between the corresponding wire grid array and the transparent substrate 1 for improving the refractive index of the dielectric grid 2, which may be PMMA, SiO 2 , It is made of any one of SiO, MgO, Si 3 N 4 , TiO 2 and Ta 2 O 5 .
  • FIG. 4 the application of the circular polarizer provided in the embodiment of the present invention to the display is shown in FIG. 4. It can be seen from FIG. 4 that the dielectric grid 2 is different for the R/G/B of the display. The thickness set on the sub-pixel unit area is also different.
  • the second embodiment of the present invention further provides a display comprising a body and a circle disposed on the body and having the same structure and connection relationship as in the first embodiment of the present invention.
  • Polarizer among them,
  • An R sub-pixel unit, a G sub-pixel unit, and a B sub-pixel unit are formed on the body, and each of the R sub-pixel units, each of the G sub-pixel units, and each of the B sub-pixel units respectively have a corresponding one on the circular polarizer Thickness of the dielectric grid.
  • the thickness of different dielectric grids is set according to different sub-pixel units of the display R/G/B, so that the phase delay of the dielectric grid can be applied to the corresponding display R/G/B sub-
  • the pixel unit area provides a quarter phase delay, which achieves the purpose of circularly polarizing the R/G/B three colors, not only omitting the traditional quarter-slide, but also solving the traditional organic phase retarder.
  • the problem of wide-spectrum rounding effect is improved, and the visual effect is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种圆偏光片,用于显示器上,包括设置在显示器上的透明基板(1)以及设置在透明基板(1)上的多个条状介质线栅(2);每一介质线栅(2)上均设有由多个线栅形成的线栅阵列,且每一介质线栅(2)分别对应位于显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得每一介质线栅(2)均与其对应显示器的子像素单元上形成有四分之一相位延迟。提供的圆偏光片能够解决传统有机相位延迟片无法做到宽谱圆偏效果的问题,改善视觉效果。

Description

一种圆偏光片及显示器
本申请要求于2017年7月19日提交中国专利局、申请号为201710592649.0、发明名称为“一种圆偏光片及显示器”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及触摸屏技术领域,尤其涉及一种圆偏光片及显示器。
背景技术
目前主流的显示技术主要包括液晶显示与OLED(有机发光二极管)显示。然而,在上述两种主流显示技术中都会存在对光的相位延迟现象,因此液晶显示通过液晶的偏振调节特性结合来实现光阀作用,而在OLED结构中通常采用线性偏光片与四分之一玻片结合来实现环境光反射的抑制,从而增强户外环境下的显示对比度(如图1所示)。由此可见,偏光片是当前OLED显示技术中必不可少的必要部件,其包括线性偏光片和圆偏光片。
传统的线性偏光片主要基于有机材料制备而成,具有工艺成熟、大面积制备和均匀性较好等优点,但是缺点在于:由于有机材料面临着机械与光学性能不稳定的问题,从而使得线性偏光片随着外界环境(如温度、湿度、空气成分)的变化以及使用时间的延长而逐渐偏离理想态,出现均匀性变差、机械形变、光学透过率改变或者色度差异等问题;同时,由于线性偏光片的偏光作用和相位延迟作用主要是通过有机分子的排布方向来控制,因而使得线性偏光片在正面结构中均具有相同的偏振方向和相位延迟现象,难以以图形化的方式实现各区域的变化。此外,研究人员发现人们主要是通过完全非 偏振态自然光来感知信息,但由线性偏光片形成的线偏振光显示器对于人眼存在视觉疲劳和视觉障碍方面的影响。因此,会采用在偏振态的属性方面最接近自然光的圆偏光片来替代线性偏光片。
如图2所示,实现圆偏光片的基本原理是在线性偏光片的基础上叠加四分之一玻片,从而将线偏光转化为圆偏光。显然所谓四分之一玻片的原理是实现光的四分之一波长延迟,但是显示器中实际覆盖了波长380-780nm不同波长的光,如红R、绿G、蓝B等光线,因此仅在特定波长满足相位延迟,难以覆盖整个可见光波段。目前较为通用的做法是使得550nm附近的线偏光转化为圆偏光,其余波长则转化为椭偏光,显然最终显示器的输出光线与自然界的完全非偏振光依然存在较大的差异,对于人眼的视觉健康产生较大的影响。
发明内容
本发明实施例所要解决的技术问题在于,提供一种圆偏光片及显示器,解决传统有机相位延迟片无法做到宽谱圆偏效果的问题,改善视觉效果。
为了解决上述技术问题,本发明实施例提供了一种圆偏光片,用于显示器上,包括设置在所述显示器上的透明基板以及设置在所述透明基板上的多个条状介质线栅;其中,
每一介质线栅上均设有由多个线栅形成的线栅阵列,且所述每一介质线栅分别对应位于所述显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得所述每一介质线栅均与其对应显示器的子像素单元上形成有四分之一相位延迟。
其中,所述每一介质线栅的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,所述水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折 射率,所述垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率。
其中,所述每一介质线栅上所含线栅阵列的线栅均为同材质、同周期及同占空比的线栅。
其中,所述线栅的周期位于100nm~700nm之间;所述线栅的占空比位于0.1~0.9之间。
其中,所述每一介质线栅上均还包括位于其对应线栅阵列与所述透明基板之间的介质层。
其中,每一介质层均采用聚甲基丙烯酸甲酯PMMA、SiO 2、SiO、MgO、Si 3N 4、TiO 2、Ta 2O 5之中任一种材质制作而成。
其中,通过公式d=λ/(4*Δn),计算获得所述每一介质线栅的厚度;其中,d为所述每一介质线栅的厚度;λ为所述每一介质线栅各自对应显示器的子像素单元的参考入射波长;Δn为所述每一介质线栅对应入射光水平偏振和垂直偏振形成的折射率差,并取绝对值。
其中,所述每一介质线栅的厚度均位于0.1μm~10μm之间。
其中,所述显示器的R子像素单元的参考入射波长为630nm,G子像素单元的参考入射波长为550nm,B子像素单元的参考入射波长为450nm。
相应的,本发明实施例还提供了另一种圆偏光片,用于显示器上,其中,包括设置在所述显示器上的透明基板以及设置在所述透明基板上的多个条状介质线栅;其中,
每一介质线栅上均设有由多个线栅形成的线栅阵列,且所述每一介质线栅分别对应位于所述显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得所述每一介质线栅均与其对应显示器的子像素单元上形成有四分之一相位延迟;
其中,所述每一介质线栅上所含线栅阵列的线栅均为同材质、同周期及 同占空比的线栅。
其中,所述每一介质线栅的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,所述水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折射率,所述垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率.
其中,所述线栅的周期位于100nm~700nm之间;所述线栅的占空比位于0.1~0.9之间。
相应的,本发明实施例还提供了一种显示器,其中,包括本体以及设置在所述本体上的圆偏光片;其中,
所述本体上形成有R子像素单元、G子像素单元、B子像素单元,且每一R子像素单元、每一G子像素单元和每一B子像素单元均分别对应所述圆偏光片上的一个具有相应厚度的介质线栅;
所述圆偏光片包括设置在所述本体上的透明基板以及设置在所述透明基板上的多个条状介质线栅;其中,
每一介质线栅上均设有由多个线栅形成的线栅阵列,且所述每一介质线栅分别对应位于所述显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得所述每一介质线栅均与其对应显示器的子像素单元上形成有四分之一相位延迟。
其中,所述每一介质线栅的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,所述水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折射率,所述垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率。
其中,所述每一介质线栅上所含线栅阵列的线栅均为同材质、同周期及 同占空比的线栅。
其中,所述线栅的周期位于100nm~700nm之间;所述线栅的占空比位于0.1~0.9之间。
其中,所述每一介质线栅上均还包括位于其对应线栅阵列与所述透明基板之间的介质层。
其中,每一介质层均采用聚甲基丙烯酸甲酯PMMA、SiO 2、SiO、MgO、Si 3N 4、TiO 2、Ta 2O 5之中任一种材质制作而成。
其中,通过公式d=λ/(4*Δn),计算获得所述每一介质线栅的厚度;其中,d为所述每一介质线栅的厚度;λ为所述每一介质线栅各自对应显示器的子像素单元的参考入射波长;Δn为所述每一介质线栅对应入射光水平偏振和垂直偏振形成的折射率差,并取绝对值。
其中,所述每一介质线栅的厚度均位于0.1μm~10μm之间。
综上,在本发明实施例中,根据显示器R/G/B不同子像素单元来设置不同介质线栅的厚度,使得介质线栅的相位延迟作用能够对其相应的显示器R/G/B子像素单元区域提供四分之一相位延迟,实现对R/G/B三色均具有圆偏光效果的目的,不仅省略了传统的四分之一玻片,还同时解决了传统有机相位延迟片无法做到宽谱圆偏效果的问题,改善了视觉效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1为现有技术中OLED用来解决光相位延迟现象的结构示意图;
图2为现有技术中圆偏光片的结构示意图;
图3为本发明实施例一提供的圆偏光片截面剖视结构示意图;
图4为本发明实施例一提供的圆偏光片应用于显示器上的俯视图;
图5为图4的正视剖切图。
具体实施方式
下面参考附图对本发明的优选实施例进行描述。
如图3所示,为本发明实施例一中,提供的一种圆偏光片,用于显示器(未图示)上,包括设置在显示器上的透明基板1以及设置在透明基板1上的多个条状介质线栅2;其中,
每一介质线栅2上均设有由多个线栅形成的线栅阵列,且每一介质线栅2分别对应位于显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得每一介质线栅2均与其对应显示器的子像素单元上形成有四分之一相位延迟。
其中,每一介质线栅2的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折射率,垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率。
应当说明的是,每一介质线栅2都是通过微电子工艺在针对显示器R/G/B不同子像素单元区域分别形成不同的厚度。
在本发明实施例一中,为了不仅能够省略传统的四分之一玻片,还能解决传统有机相位延迟片无法做到宽谱圆偏效果的问题,通过介质线栅2的相位延迟作用来提供四分之一相位延迟来实现对R/G/B三色均具有圆偏光效果,但介质线栅2的相位延迟可通过调节介质线栅2的厚度和折射率差来实现。
该折射率差是在介质线栅2所含线栅阵列中线栅的周期小于入射光波长的二分之一时,入射光线偏为Bloch波,使得其所支持的Bloch波TM模式 下(偏振方向平行于线栅方向)与TE模式下(偏振方向垂直于线栅方向)呈现不同的折射率(即双折射现象)的情况下形成的。由于为实现工艺的兼容性,通常在整面结构中对介质线栅2上所含线栅阵列的线栅采用同材质、同周期及同占空比的线栅,因此该折射率对于每一介质线栅2来说都是相同的,从而只要通过对每一介质线栅2的厚度控制即可实现介质线栅2的相位延迟效果。
因此,为了实现四分之一相位延迟效果,每一介质线栅2的厚度都可通过公式d=λ/(4*Δn)计算获得;其中,d为每一介质线栅2的厚度;λ为每一介质线栅2各自对应显示器的子像素单元的参考入射波长;Δn为Bloch波TM模式下的折射率与TE模式下的折射率形成的折射率差,并取绝对值。
在一个实施例中,线栅的周期位于100nm~700nm之间;线栅的占空比位于0.1~0.9之间;线栅的材质为铝、银或铜等金属;显示器的R子像素单元的参考入射波长为630nm,G子像素单元的参考入射波长为550nm,B子像素单元的参考入射波长为450nm且每一介质线栅2的厚度均位于0.1μm~10μm之间。
当然,每一介质线栅2上均还包括位于其对应线栅阵列与透明基板1之间的介质层,该介质层用于改善介质线栅2的折射率,其可采用PMMA、SiO 2、SiO、MgO、Si 3N 4、TiO 2、Ta 2O 5之中任一种材质制作而成。
如图3和如图4所示,为本发明实施例一提供的圆偏光片应用于显示器上的应用场景图,可以从图4中看出介质线栅2对于显示器的R/G/B不同子像素单元区域上所设置的厚度也不同。
相应于本发明实施例一中的圆偏光片,本发明实施例二还提供了一种显示器,该显示器包括本体以及设置在本体上的具有与本发明实施例一中相同结构及连接关系的圆偏光片;其中,
本体上形成有R子像素单元、G子像素单元、B子像素单元,且每一R 子像素单元、每一G子像素单元和每一B子像素单元均分别对应圆偏光片上的一个具有相应厚度的介质线栅。
可以理解的是,由于发明实施例二中显示器所包含的圆偏光片与本本发明实施例一中的圆偏光片具有相同的结构及连接关系,因此具体请参见本发明实施例一中的相关内容,在此不再一一赘述。
综上,在本发明实施例中,根据显示器R/G/B不同子像素单元来设置不同介质线栅的厚度,使得介质线栅的相位延迟作用能够对其相应的显示器R/G/B子像素单元区域提供四分之一相位延迟,实现对R/G/B三色均具有圆偏光效果的目的,不仅省略了传统的四分之一玻片,还同时解决了传统有机相位延迟片无法做到宽谱圆偏效果的问题,改善了视觉效果。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (20)

  1. 一种圆偏光片,用于显示器上,其中,包括设置在所述显示器上的透明基板以及设置在所述透明基板上的多个条状介质线栅;其中,
    每一介质线栅上均设有由多个线栅形成的线栅阵列,且所述每一介质线栅分别对应位于所述显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得所述每一介质线栅均与其对应显示器的子像素单元上形成有四分之一相位延迟。
  2. 如权利要求1所述的圆偏光片,其中,所述每一介质线栅的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,所述水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折射率,所述垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率。
  3. 如权利要求2所述的圆偏光片,其中,所述每一介质线栅上所含线栅阵列的线栅均为同材质、同周期及同占空比的线栅。
  4. 如权利要求3所述的圆偏光片,其中,所述线栅的周期位于100nm~700nm之间;所述线栅的占空比位于0.1~0.9之间。
  5. 如权利要求4所述的圆偏光片,其中,所述每一介质线栅上均还包括位于其对应线栅阵列与所述透明基板之间的介质层。
  6. 如权利要求5所述的圆偏光片,其中,每一介质层均采用聚甲基丙烯酸甲酯PMMA、SiO 2、SiO、MgO、Si 3N 4、TiO 2、Ta 2O 5之中任一种材质制作而成。
  7. 如权利要求6所述的圆偏光片,其中,通过公式d=λ/(4*Δn),计算获得所述每一介质线栅的厚度;其中,d为所述每一介质线栅的厚度;λ为所述每一介质线栅各自对应显示器的子像素单元的参考入射波长;Δn为所述每一介质线栅对应入射光水平偏振和垂直偏振形成的折射率差,并取绝对值。
  8. 如权利要求7所述的圆偏光片,其中,所述每一介质线栅的厚度均位于0.1μm~10μm之间。
  9. 如权利要求8所述的圆偏光片,其中,所述显示器的R子像素单元的参考入射波长为630nm,G子像素单元的参考入射波长为550nm,B子像素单元的参考入射波长为450nm。
  10. 一种圆偏光片,用于显示器上,其中,包括设置在所述显示器上的透明基板以及设置在所述透明基板上的多个条状介质线栅;其中,
    每一介质线栅上均设有由多个线栅形成的线栅阵列,且所述每一介质线栅分别对应位于所述显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得所述每一介质线栅均与其对应显示器的子像素单元上形成有四分之一相位延迟;
    其中,所述每一介质线栅上所含线栅阵列的线栅均为同材质、同周期及同占空比的线栅。
  11. 如权利要求10所述的圆偏光片,其中,所述每一介质线栅的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,所述水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折射率,所述垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率。
  12. 如权利要求11所述的圆偏光片,其中,所述线栅的周期位于100nm~700nm之间;所述线栅的占空比位于0.1~0.9之间。
  13. 一种显示器,其中,包括本体以及设置在所述本体上的圆偏光片;其中,
    所述本体上形成有R子像素单元、G子像素单元、B子像素单元,且每一R子像素单元、每一G子像素单元和每一B子像素单元均分别对应所述圆偏光片上的一个具有相应厚度的介质线栅;
    所述圆偏光片包括设置在所述本体上的透明基板以及设置在所述透明基板上的多个条状介质线栅;其中,
    每一介质线栅上均设有由多个线栅形成的线栅阵列,且所述每一介质线栅分别对应位于所述显示器的R子像素单元、G子像素单元、B子像素单元之其一的区域上方并具有相应的厚度,使得所述每一介质线栅均与其对应显示器的子像素单元上形成有四分之一相位延迟。
  14. 如权利要求13所述的显示器,其中,所述每一介质线栅的厚度均由其对应显示器的子像素单元的参考入射波长及其对应入射光水平偏振和垂直偏振形成的折射率差来决定;其中,所述水平偏振的折射率为入射光线偏为布洛赫Bloch波TM模式下的折射率,所述垂直偏振的折射率为入射光线偏为布洛赫Bloch波TE模式下的折射率。
  15. 如权利要求14所述的显示器,其中,所述每一介质线栅上所含线栅阵列的线栅均为同材质、同周期及同占空比的线栅。
  16. 如权利要求15所述的显示器,其中,所述线栅的周期位于100nm~700nm之间;所述线栅的占空比位于0.1~0.9之间。
  17. 如权利要求16所述的显示器,其中,所述每一介质线栅上均还包括位于其对应线栅阵列与所述透明基板之间的介质层。
  18. 如权利要求17所述的显示器,其中,每一介质层均采用聚甲基丙烯酸甲酯PMMA、SiO 2、SiO、MgO、Si 3N 4、TiO 2、Ta 2O 5之中任一种材质制作而成。
  19. 如权利要求18所述的显示器,其中,通过公式d=λ/(4*Δn),计算获得所述每一介质线栅的厚度;其中,d为所述每一介质线栅的厚度;λ为所述每一介质线栅各自对应显示器的子像素单元的参考入射波长;Δn为所述每一介质线栅对应入射光水平偏振和垂直偏振形成的折射率差,并取绝对值。
  20. 如权利要求19所述的显示器,其中,所述每一介质线栅的厚度均 位于0.1μm~10μm之间。
PCT/CN2017/116840 2017-07-19 2017-12-18 一种圆偏光片及显示器 WO2019015244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/741,138 US10840304B2 (en) 2017-07-19 2017-12-18 Circular polarizer and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710592649.0 2017-07-19
CN201710592649.0A CN107482037B (zh) 2017-07-19 2017-07-19 一种圆偏光片及显示器

Publications (1)

Publication Number Publication Date
WO2019015244A1 true WO2019015244A1 (zh) 2019-01-24

Family

ID=60596708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116840 WO2019015244A1 (zh) 2017-07-19 2017-12-18 一种圆偏光片及显示器

Country Status (3)

Country Link
US (1) US10840304B2 (zh)
CN (1) CN107482037B (zh)
WO (1) WO2019015244A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482037B (zh) * 2017-07-19 2019-10-11 武汉华星光电技术有限公司 一种圆偏光片及显示器
CN110600514A (zh) 2019-08-29 2019-12-20 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及显示装置
CN110618483B (zh) * 2019-10-30 2022-04-26 京东方科技集团股份有限公司 偏光片及其制造方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063757A (zh) * 2006-04-28 2007-10-31 联诚光电股份有限公司 反射式单晶硅液晶面板
CN101231364A (zh) * 2007-01-24 2008-07-30 株式会社日立制作所 偏光元件及采用该偏光元件的液晶显示装置
CN105572778A (zh) * 2014-10-29 2016-05-11 三星显示有限公司 偏振器、包括偏振器的显示面板和制造偏振器的方法
CN106068469A (zh) * 2014-03-11 2016-11-02 优志旺电机株式会社 栅偏振元件及光取向装置
CN106125185A (zh) * 2016-08-29 2016-11-16 武汉华星光电技术有限公司 显示屏及其偏光片
CN106125426A (zh) * 2016-06-27 2016-11-16 京东方科技集团股份有限公司 一种基板、显示装置及基板的制造方法
US20170097543A1 (en) * 2015-10-05 2017-04-06 Samsung Display Co., Ltd. Thin film transistor substrate, display device including the same, and method of manufacturing thin film transistor substrate
CN107482037A (zh) * 2017-07-19 2017-12-15 武汉华星光电技术有限公司 一种圆偏光片及显示器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950497B (zh) * 2015-07-30 2018-05-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、驱动方法、显示装置
CN105929593A (zh) * 2016-07-11 2016-09-07 京东方科技集团股份有限公司 阵列基板、透明显示基板和透明显示装置
US11411206B2 (en) * 2017-07-10 2022-08-09 Lg Chem, Ltd. Circularly polarizing plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063757A (zh) * 2006-04-28 2007-10-31 联诚光电股份有限公司 反射式单晶硅液晶面板
CN101231364A (zh) * 2007-01-24 2008-07-30 株式会社日立制作所 偏光元件及采用该偏光元件的液晶显示装置
CN106068469A (zh) * 2014-03-11 2016-11-02 优志旺电机株式会社 栅偏振元件及光取向装置
CN105572778A (zh) * 2014-10-29 2016-05-11 三星显示有限公司 偏振器、包括偏振器的显示面板和制造偏振器的方法
US20170097543A1 (en) * 2015-10-05 2017-04-06 Samsung Display Co., Ltd. Thin film transistor substrate, display device including the same, and method of manufacturing thin film transistor substrate
CN106125426A (zh) * 2016-06-27 2016-11-16 京东方科技集团股份有限公司 一种基板、显示装置及基板的制造方法
CN106125185A (zh) * 2016-08-29 2016-11-16 武汉华星光电技术有限公司 显示屏及其偏光片
CN107482037A (zh) * 2017-07-19 2017-12-15 武汉华星光电技术有限公司 一种圆偏光片及显示器

Also Published As

Publication number Publication date
CN107482037B (zh) 2019-10-11
US10840304B2 (en) 2020-11-17
CN107482037A (zh) 2017-12-15
US20190027541A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
CN107407833B (zh) 镜面显示器
JP6735310B2 (ja) 偏光板及びこれを備える液晶表示装置
US11126042B2 (en) Horizontal electric field type display panel, method of manufacturing the same, and display device
TWI599082B (zh) 增亮型自發光型顯示器
KR101299575B1 (ko) 트랜스플렉티브 액정 디스플레이와 그 제조방법, 컴퓨터
KR101022926B1 (ko) 내부 후방 편광자를 갖는 칼라 액정 디스플레이
TW201546502A (zh) 觸控顯示裝置
CN208689323U (zh) 一种液晶显示模组及显示装置
WO2017179493A1 (ja) 液晶表示パネル、及び、液晶表示装置
US10606117B2 (en) Transparent display panels and display devices
WO2019015244A1 (zh) 一种圆偏光片及显示器
CN105353430A (zh) 一种显示屏及其抗反射涂层
KR20150033822A (ko) 표시기판 및 이를 포함하는 표시패널
WO2019137109A1 (zh) 色域拓宽装置
JP2004317714A (ja) 液晶表示装置および積層位相差板
CN105607347B (zh) 彩膜基板、液晶显示面板及液晶显示器
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺
TWI610096B (zh) 液晶顯示裝置及抬頭顯示器裝置
CN110262133A (zh) 具有cop延迟器和cop匹配rm的低反射率lcd
TWM458676U (zh) 有機發光顯示器
KR20130062180A (ko) 광학 보상 필름
KR101916948B1 (ko) 표시장치
WO2018216611A1 (ja) 表示装置
WO2011148701A1 (ja) カラーフィルタおよびこれを備えた反射型表示装置
JP2022166851A (ja) 垂直配向型液晶表示モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918632

Country of ref document: EP

Kind code of ref document: A1