WO2018008609A1 - 半導体記憶素子その他の素子およびその製造方法 - Google Patents

半導体記憶素子その他の素子およびその製造方法 Download PDF

Info

Publication number
WO2018008609A1
WO2018008609A1 PCT/JP2017/024402 JP2017024402W WO2018008609A1 WO 2018008609 A1 WO2018008609 A1 WO 2018008609A1 JP 2017024402 W JP2017024402 W JP 2017024402W WO 2018008609 A1 WO2018008609 A1 WO 2018008609A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
semiconductor
memory cell
ferroelectric
substrate
Prior art date
Application number
PCT/JP2017/024402
Other languages
English (en)
French (fr)
Other versions
WO2018008609A9 (ja
Inventor
光恵 高橋
酒井 滋樹
楠原 昌樹
都田 昌之
梅田 優
善和 佐々木
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社ワコム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017092894A external-priority patent/JP7248966B2/ja
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社ワコム研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to KR1020197003553A priority Critical patent/KR102312062B1/ko
Priority to CN201780041826.4A priority patent/CN109643720B/zh
Priority to EP17824212.9A priority patent/EP3483936A4/en
Priority to US16/315,784 priority patent/US11069713B2/en
Publication of WO2018008609A1 publication Critical patent/WO2018008609A1/ja
Publication of WO2018008609A9 publication Critical patent/WO2018008609A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/10Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region

Definitions

  • the present invention relates to a semiconductor memory element and other elements and a manufacturing method thereof. More specifically, the present invention relates to a fine and highly integrated semiconductor memory element and other devices using a structure such as a memory having a high aspect shape whose width is 100 nm or less and whose height is twice or more the width, and a manufacturing method thereof. is there.
  • a semiconductor memory element using a functional material exhibits its inherent function only when the thickness of the functional material is several tens of nanometers or more.
  • the memory window decreases as the thickness of the ferroelectric film decreases, and the memory function of the device deteriorates (Patent Document 1).
  • ferroelectrics are often difficult-to-etch materials, and it is difficult to find a mask material with a high etching selection ratio that does not disappear until completion of etching. Therefore, increasing the thickness of the ferroelectric before etching increases the strength. There is a limit to expanding the memory window of a dielectric gate transistor.
  • the inclination angle of the side wall due to the etching of the ferroelectric is preferably a high angle, but in practice it is difficult to approach 90 degrees.
  • the bottom of the ferroelectric is approximately double 200 nm or more, as seen from the etching trace of the cross-sectional photograph of the element of Non-Patent Document 1. Take it.
  • Non-Patent Document 1 on the semiconductor substrate of the ferroelectric gate transistor having a gate metal length of 100 nm, it is necessary to further cover the sidewall of the ferroelectric with the ferroelectric in order to recover the etching damage of the ferroelectric sidewall.
  • the occupancy length at the end cannot be less than 200nm.
  • Non-patent Document 2 Another forming method that does not rely on etching of the material is a method of embedding the material in the groove mold.
  • a trench structure to a semiconductor device
  • MEMS silicon deep digging
  • damascene copper wiring and replacement gates.
  • a manufacturing process such as MEMS
  • a technique of vertical anisotropic etching such as the Bosch method has been highly developed (Non-patent Document 2). *
  • the copper wiring by the damascene method used in the semiconductor circuit first digs a groove in silicon oxide, embeds the copper material of the conductor there, and then scrapes off the excess part using a planarization technique such as CMP, thereby forming the groove damascene. It is made by law (Patent Document 2). Since both non-patent document 2 and patent document 2 directly dig a bulk silicon-based material, it is difficult to reduce the width of the groove when the groove is deepened.
  • the protective film is a negative pattern of the groove in order to cut the groove after covering the area other than the groove area with the protective film. Can be mentioned.
  • a damascene gate or a replacement gate in which a gate conductor of a transistor is formed by application of a damascene method.
  • the dummy gate serving as a gate conductor type is made of polysilicon with an emphasis on consistency with the manufacturing process of a conventional polysilicon gate transistor, and the dummy gate is formed by etching (Patent Document 3). Dry etching or wet etching using a fluorine-based gas or a halogen-based gas such as hydrogen bromide is used. If the groove is deepened, it is difficult to reduce the width of the groove.
  • a groove with a small aspect ratio is sufficient because there is no advantage of deepening the groove while reducing the width of the groove in accordance with the miniaturization of the element.
  • the width of the groove before embedding the ferroelectric is 200 nm, and the depth of the groove is not specified. It can be read from the drawings in Non-Patent Document 3 that it is about 50 nm.
  • the effective thickness of the memory and other structures of the semiconductor memory element and other elements is not limited by in-plane scaling, and the width is 100 nm or less and the height is a high aspect that is more than twice the width. It is an object of the present invention to provide a semiconductor memory element and other elements using a memory and a manufacturing method thereof.
  • the invention according to claim 1 has a stacked structure in which a semiconductor, a memory, and a conductor are stacked, and the memory has two or more stable states that can be distinguished from each other and selects one of the states at the same time.
  • the cross section of the memory body in the direction parallel to the semiconductor has the smallest area on the surface in contact with the semiconductor, the area becomes the same or wider as the distance from the semiconductor increases, and the minimum width of the cross section is 100 nm or less.
  • the shortest distance between the conductor and the semiconductor is at least twice the minimum width of the cross section.
  • the invention according to claim 2 is the semiconductor memory element according to claim 1, wherein the partition wall is formed of a laminate of two or more materials having different etching rates.
  • the memory body is composed of a laminate of a buffer insulator and a ferroelectric, and the ferroelectric does not directly contact the semiconductor, and the buffer insulator has a relative dielectric constant than the partition. 3.
  • the invention according to claim 4 is a transistor having four terminals of a gate, a source, a drain, and a substrate, the gate terminal is connected to the conductor, and a voltage applied between the gate terminal and the substrate terminal is The source terminal is connected to the source region, the drain terminal is connected to the drain region, and the source region and the drain region are not overlapped with each other.
  • the invention according to claim 5 forms a protruding structure on a substrate, the protruding structure has a width of 100 nm or less and a height of at least twice the width,
  • the protruding structure is covered with a partition wall, and the protruding structure covered with the partition wall is shaved in a direction from the top to the substrate, and then the protruding structure is selectively removed, whereby the width is 100 nm.
  • This is a method for manufacturing an element in which the following groove is formed in the partition wall.
  • the invention according to claim 6 is characterized in that the protruding structure is made of an organic material, the partition wall is made of an inorganic material, and the protruding structure is selectively removed by oxygen plasma etching.
  • the invention according to claim 7 is characterized in that the protruding structure is composed of two or more layers, and at least the other layers except the lowermost layer are selectively removed. Is the method.
  • the invention according to claim 8 is the element manufacturing method according to any one of claims 5, 6, and 7, wherein the substrate is formed of two or more layers.
  • the invention according to claim 9 is the device manufacturing method according to any one of claims 5, 6, 7, and 8, wherein the partition wall is formed of a laminate of two or more materials having different etching rates. Is the method.
  • the invention according to claim 10 is characterized in that the opening of the groove is inclined so as to become wider upward from the substrate. This is a method for manufacturing the element.
  • an electric conductor is placed in the groove obtained by the method according to any one of the fifth, sixth, seventh, eighth, ninth, and tenth aspects. It is a manufacturing method of wiring.
  • the partition wall is made of a material that blocks light, and is formed in the groove obtained by the method according to any one of the fifth, sixth, seventh, eighth, ninth, and tenth aspects.
  • a method of manufacturing an optical wiring characterized in that a light transmitting material is placed in
  • a memory element is characterized in that a memory body is placed in the groove obtained by the method according to any one of the fifth, sixth, seventh, eighth, ninth, and tenth aspects.
  • At least the surface of the substrate is a semiconductor, and the source region and the drain region are preliminarily self-aligned with the protruding structure before the partition is formed.
  • a ferroelectric material is formed in a semiconductor, and a ferroelectric material is placed in the groove obtained by the method according to any one of claims 5, 6, 7, 8, 9, and 10.
  • This is a method of manufacturing a dielectric gate transistor.
  • the invention according to claim 15 is the method of manufacturing a ferroelectric gate transistor according to claim 14, wherein the memory includes a ferroelectric formed by metal organic chemical vapor deposition.
  • the invention according to claim 16 provides two or more widths of the protruding structure, and two or more obtained by the method according to any one of claims 5, 6, 7, 8, 9, and 10.
  • the memory body is composed of two or more elements obtained by simultaneously forming a memory body in grooves having different widths, and is filled in the groove by changing the width of the groove.
  • An electronic circuit manufacturing method characterized in that the height from a plate is controlled and the strength of the memory function of each element is made variable.
  • a protruding structure is formed on a semiconductor, a source region and a drain region are formed in a self-aligned manner with respect to the protruding structure, and the semiconductor and the protruding structure are formed.
  • a partition is formed so as to cover the top, and the protruding structure and the surrounding partition are shaved in a direction from the top toward the substrate, and then the protruding structure is selectively removed into the partition.
  • the height of the partition wall that forms the groove and is the wall surface of the groove is the same as the height of the partition wall at a position away from the center of the groove by a distance corresponding to the width of the groove, or
  • a method for manufacturing a ferroelectric gate transistor is characterized in that a ferroelectric material is placed in the groove at a lower level.
  • the invention according to claim 18 is a memory cell array in which one semiconductor memory element according to claim 4 is one memory cell, and the memory cells are regularly arranged in two rows and two columns on the substrate surface.
  • the substrate terminals of the memory cells belonging to the common memory cell array have the same potential
  • the gate line electrically short-circuits the gate terminals of two or more memory cells arranged in a row in the horizontal direction, and the vertical direction.
  • a drain line that electrically short-circuits the drain terminals of two or more memory cells arranged in a row and a source line that electrically short-circuits the source terminals of two or more memory cells arranged in a vertical row The drain line is parallel to the source line, the gate line is orthogonal to the drain line and the source line, the short-circuit between the drain terminals for constituting the drain line and the source terminal for constituting the source line Judges of short circuit, without Both via a contact hole, a memory cell array, characterized by being made by connecting the semiconductor active region each other corresponds to the drain region and the source region of each memory cell.
  • the memory cells are paired every two adjacent columns in the vertical direction, one source line is shared in each pair, and drain lines are provided on both sides of the source line. 19.
  • the invention according to claim 20 provides 5.
  • the memory cell is a memory cell
  • the memory cell is regularly arranged in two rows and two columns in a substrate surface
  • a memory cell array stacked in two or more floors in the direction perpendicular to the substrate, that is, in the height direction, and in the height direction, the two layers closest to each other in the vertical direction form a pair, and in each pair, the top and bottom
  • a memory cell array is characterized in that the memory cells face each other symmetrically with a conductor interposed therebetween, and the upper and lower memory cells share the conductor.
  • the invention according to claim 21 is a memory cell array in which the memory cell array of claim 18 is set as one hierarchical unit, and the hierarchical units are stacked two or more floors, and two hierarchical units that are closest to each other in the height direction are
  • a memory cell array is characterized in that a pair is formed, and in each pair, upper and lower memory cells face each other symmetrically with a gate line interposed therebetween, and upper and lower memory cells share a gate line.
  • a twenty-second aspect of the present invention there is provided a memory cell array in which the memory cell array according to the nineteenth aspect is set as one hierarchical unit, and the hierarchical units are stacked in two or more floors.
  • a memory cell array is characterized in that a pair is formed, and in each pair, upper and lower memory cells face each other symmetrically with a gate line interposed therebetween, and upper and lower memory cells share a gate line.
  • a protruding structure made of a material having a high etching rate is covered with a partition wall made of a material having a relatively low etching rate, and is anisotropically cut from above to expose the head of the protruding structure.
  • the mold structure is selectively removed by etching to leave a high aspect groove in the partition.
  • the bottom surface of the groove exposed by selectively etching the protruding structure can be reduced to an extent that the interface state can be accepted with little damage to the surface by appropriately adjusting the etching conditions.
  • a functional material is formed and embedded in a film by a film forming method having good step coverage, and used for a semiconductor memory element.
  • an electrical wiring can be produced by using an insulator as a partition and burying an electrical conductor in a deep groove formed according to the present invention.
  • an optical wiring can be manufactured by using a material that does not transmit light as a partition wall and embedding a light transmitting material in a deep groove formed according to the present invention.
  • a functional material having a nonvolatile memory function such as a ferroelectric material or a magnetic material and an electrode conductor are embedded in a deep groove formed according to the present invention, so that data nonvolatile A transistor can be manufactured.
  • the present invention provides a ferroelectric gate transistor having a very high aspect shape and less etching damage compared to a conventional method of forming a ferroelectric by etching.
  • Etching is roughly divided into three types: chemical etching by chemical reaction, physical etching by struck impact of accelerated etching species, or etching by mixing both components.
  • physical etching the material scattered by etching reattaches to the side wall directly above and shields the etching species, so the cross-sectional shape after etching tends to be trapezoidal with the bottom bottom longer than the top bottom. This tendency becomes more conspicuous as the thickness of the film increases.
  • the harder the etching material the less the chemical reactivity, so that the physical etching component is indispensable during the etching process, so the cross section after etching tends to be trapezoidal.
  • the present invention unlike the conventional planar type FeFET manufacturing method, it is necessary to perform three steps of gate stack etching, ion implantation, and high-temperature annealing in a self-aligned manner by integrating the conductor and the ferroelectric material. There is no. For this reason, the conductor can be formed and molded after high-temperature annealing for ferroelectric polycrystallization is performed before forming the conductor.
  • the high temperature annealing temperature is about 800 ° C.
  • the present invention eliminates the need for high heat resistance of the conductor.
  • an inexpensive conductor material can be selected as an electrode instead of an expensive noble metal material.
  • Inexpensive conductor materials include, for example, aluminum, titanium, hafnium, tantalum, silicon, or nitrides or compounds thereof having conductivity. Since they have higher chemical reactivity than Pt and Ir, they have better processing accuracy when formed by etching, and are therefore advantageous for fine processing.
  • the effective thickness (H) of the ferroelectric can be increased independently of reducing the distance between the source and the drain of the ferroelectric gate transistor, that is, the channel length (L). is there. H is the height occupied by the ferroelectric located between the conductor and the buffer insulator.
  • H can secure a value at least twice as large as L (H ⁇ 2L). Therefore, according to the present invention, it is possible to manufacture a ferroelectric gate transistor in which L is smaller than 100 nm, the memory window is large, and multivalue storage is possible.
  • L the memory window
  • multivalue storage is possible.
  • in order to secure a large memory window of the FeFET it is necessary to make the ratio of the voltage applied to the ferroelectric as large as possible among the voltages applied between the gate and the substrate of the FeFET.
  • the voltage V ALL applied between the gate and the substrate of the FeFET is distributed to the ferroelectric (subscript F), the buffer insulator (subscript I), and the semiconductor (subscript S).
  • MFIS is simply considered as a series connection of capacitances.
  • C F is the capacitance per unit area of the ferroelectric
  • V F is the voltage distributed to the ferroelectric
  • C I is the capacitance per unit area of the buffer insulator
  • V I is distributed to the buffer insulator
  • the applied voltage, Q S is the surface charge density of the semiconductor.
  • V ALL V F + V I + ⁇ S So
  • ⁇ S is specified by the impurity concentration of semiconductor and Q S.
  • C F / C I should be made as small as possible in order to increase V F in order to secure a wide FeFET memory window.
  • C I In order to reduce C F / C I , C I must be increased or C F must be decreased.
  • C I To increase the C I is a buffer insulator with high dielectric material, and it is effective to thin. In order to reduce C F , it is effective to make the ferroelectric material low in relative permittivity ⁇ F and to increase the thickness.
  • the ⁇ F of the ferroelectric is often high, and in that case, the effective thickness H of the ferroelectric must be increased.
  • SrBi 2 Ta 2 O 9 a bismuth layered perovskite ferroelectric
  • has a relative dielectric constant of 180 reference: S. Sakai, et al., Japanese Journal of Applied Physics, Vol. 43 (2004) pp.7876-7878.
  • the ferroelectric is formed by etching, resulting in a trapezoidal cross section.
  • the metal gate length corresponding to the upper base of the trapezoid is the source-drain distance corresponding to the lower base. That is, it was shorter than the channel length (L). Therefore, there is an unfavorable correlation that L increases as the effective thickness (H) of the ferroelectric increases for a certain metal gate length.
  • H is greatly increased in that an FeFET can be manufactured without etching a ferroelectric material that is often a difficult-to-etch material. Benefits that can be obtained. Many ferroelectrics are difficult-to-etch materials, that is, poor in chemical reactivity and slow in etching rate. Therefore, physical etching elements are essential when etching. Naturally, the cross-section after the etching tends to be trapezoidal, and the etching selectivity between the mask material and the ferroelectric material cannot be made very large. The etching selectivity cannot be increased regardless of whether the mask material is an organic resist or an inorganic material such as metal, silicon, and their oxides or nitrides.
  • the film thickness of the ferroelectric material cannot be increased so much.
  • the cross-sectional shape when processing Ca x Sr 1-x Bi 2 Ta 2 O 9 which is a bismuth layered perovskite ferroelectric with a film thickness of 150 nm by etching is desirably a trapezoid, but is actually a trapezoid, Etching started from the upper side of 140 nm to 190 nm has a lower bottom more than double each upper base at the end.
  • transistors having different effective thicknesses of ferroelectrics are arranged on the same substrate by coexisting grooves having different widths on the same substrate starting from protruding structures having different widths. I can do it.
  • ferroelectric gate transistors having different H can be manufactured.
  • the groove having a small width is filled with a ferroelectric material up to the upper part of the groove, so that a nonvolatile memory element having a large H can be obtained.
  • an element without a memory function with a small H in which the ferroelectric thin film existing only on the bottom surface and the wall surface acts as a high dielectric can be formed.
  • the present invention it is possible to form a deep groove not only on the gate of the transistor but also on the source and drain, and to embed a functional material therein.
  • the functional material is not damaged by etching, and even if the width of the functional material in the substrate surface is reduced to 100 nm or less, the effective thickness can be secured twice or more the width. Since it is possible to achieve fine and highly integrated integration within the substrate without sacrificing the effective thickness at the expense of the performance of the functional material, the performance of the device manufactured according to the present invention is not easily restricted by scaling.
  • the present invention it is possible to provide a FeFET that secures a wide memory window without being restricted by channel length scaling, and can share a conventional silicon CMOS process and a manufacturing apparatus until just before the ferroelectric film forming process, Further, there is no need to etch the ferroelectric material, and there is little concern about device contamination due to scattering of the ferroelectric material. Therefore, compared with the conventional planar type FeFET, the capital investment at the time of mass production can be reduced in the FeFET manufacturing according to the present invention. By eliminating the need for ferroelectric etching molding, the risk of damaging important performances derived from ferroelectrics such as data retention characteristics and data rewrite resistance of FeFET due to etching damage can be reduced. By avoiding etching damage, which is a problem common to many other functional materials as well as ferroelectrics, it is possible to make a device without impairing the original performance of the functional material.
  • FIG. 1 is a cross-sectional view of a semiconductor memory element according to an embodiment of the present invention.
  • (a) flat in the case of wavefront, (c) shows the case of including holes.
  • It is sectional drawing of the semiconductor memory element which concerns on other embodiment of this invention. It is sectional drawing of the semiconductor memory element which concerns on other embodiment of this invention.
  • the part not surrounded by the bulkhead is removed, leaving just under the conductor.
  • the case where a partition has two layers is shown. It is sectional drawing of the semiconductor memory element which concerns on other embodiment of this invention.
  • FeFET ferroelectric gate transistor
  • FIG. 5 is a schematic view of a method of manufacturing a single deep groove when the uppermost layer of the substrate is etched in a self-aligned manner with the protruding structure. It is the schematic of the manufacturing method of the deep groove
  • the cross-sectional SEM photograph in the middle of the manufacturing process which extended the opening of the upper part of a deep groove using the laminated partition is shown.
  • the left side is an original image of the photograph, and the right side is a schematic diagram for explaining the structure of the subject. It is a figure which shows the step before removing the protruding structure of organic substance. It is the schematic of the manufacturing method of the deep groove which laminated
  • Integration plane according to the present invention is a diagram showing a manufacturing process schematic of a randomly accessible multilevel memory cell array in 6F 2. It is a diagram integration in a plane according to the present invention showing a manufacturing process schematic of a multi-layer memory cell array of 4F 2.
  • the memory in the present invention means a solid having a memory function in whole or in part. That is, the memory body may be a solid made of a single material having a memory function, or may be a solid made of a layer of a material having a memory function and a layer of a material having no memory function. As an example of the memory body, there is a solid body composed of two layers of a ferroelectric material and a paraelectric material.
  • the embodiment of the present invention is a semiconductor memory element having a cross-sectional structure as shown in FIGS. 1a, 1b and 1c.
  • the memory 2 and the conductor 3 are stacked on the semiconductor substrate 1, the bottom surface 12 of the memory 2 is in contact with the semiconductor substrate 1, and the upper surface 10 of the memory 2 is in contact with the conductor 3,
  • the side surface 11 of the memory body 2 is a semiconductor memory element surrounded by the partition wall 4.
  • the conductor 3 and the semiconductor are used as a gate electrode and a substrate electrode.
  • the memory 2 is made of a laminate, at least a portion of the memory 2 that contacts the conductor 3 is not a conductor, and at least a portion of the memory 2 that contacts the semiconductor is not a semiconductor.
  • the semiconductor memory element according to the present invention has three features in its shape.
  • the three features are: (1) the width of the bottom surface 12 of the memory body is 100 nm or less, and (2) the shortest distance between the top surface 10 and the bottom surface 12 of the memory body 2 is the width of the bottom surface 12. (3)
  • the width of the side surface 11 of the storage body 2 is the same as the width of the bottom surface 12 at any position above the bottom surface 12, or from the bottom surface 12 other than the bottom surface 12. Is also the widest in the upper position.
  • the side surface 11 of the memory 2 may be flat as shown in FIG. 1a, but may be a wave surface as shown in FIG. 1b, or may be a loose curved surface as shown in FIG. 1c. Further, the memory 2 may be densely packed as shown in FIGS. 1a and 1b, but may contain a hole as shown in FIG. 1c.
  • the portions of the memory 2 that are not surrounded by the partition walls 4 may be present outside the partition walls 4 as shown in FIGS. 1a, 1b, 1c, and 2 but are removed as shown in FIG. Alternatively, it may be removed leaving only the conductor 3 as shown in FIG.
  • the shape as shown in FIG. 3 is realized, for example, by forming the conductor 3 after cutting or polishing the upper surface 10 of the memory body 2 until it becomes the same as the height of the upper surface of the partition wall 4.
  • the shape as shown in FIG. 4 is realized, for example, by forming the conductor 3 on the storage body 2 and then forming it by lithography and etching, and simultaneously forming the storage body 2 in a self-aligning manner.
  • the width of the side surface 11 of the storage body 2 is the bottom surface at any position above the bottom surface 12 in any case. It is the same as the width of 12 and is constant, or is widest at a position above the bottom surface 12 other than the bottom surface 12.
  • This cross-sectional shape is unique to a manufacturing method in which a high-aspect groove is prepared first and the memory 2 is embedded in the groove.
  • the width of the side surface of the memory body 2 is the widest at the bottom surface 12 in contact with the semiconductor substrate 1 and increases toward the conductor 3 side. It is different from the present invention in that it becomes narrower as it goes to.
  • the semiconductor memory element which is one embodiment of the present invention may have a stack of two or more barrier ribs.
  • FIG. 5 shows a case where the partition wall has two layers.
  • the partition wall a that is in direct contact with the semiconductor substrate and the memory body has an etching rate different from that of the partition wall b positioned on the outer side.
  • silicon oxide is used as the partition wall a
  • silicon nitride, titanium, titanium oxide, titanium nitride, aluminum oxide is used as the partition wall b.
  • Etching is performed using aluminum nitride or the like under conditions for selectively and rapidly etching the silicon oxide in the partition wall a.
  • RIE reactive ion etching
  • One embodiment of the present invention may also be a ferroelectric gate transistor (FeFET) as shown in FIG. 6, for example.
  • the partition wall may be a single layer as shown in FIG. 1, but may be two or more layers as shown in FIG. In FIG. 6, there are three layers.
  • the deep groove opening can be inclined so as to open upward by etching.
  • FIG. 6A shows an FeFET having a laminated structure called a metal-ferroelectric-insulator-semiconductor MFIS structure.
  • the source and drain regions are formed on the semiconductor substrate in a self-aligned manner by ion implantation or the like based on the shape of a buffer insulator.
  • the channel length of the FeFET in FIG. 6, that is, the distance (L) between the source region and the drain region is equal to the length of the lower bottom of the buffer insulator.
  • the effective thickness (H) of the FeFET ferroelectric in FIG. 6 is the distance from the upper surface of the buffer insulator to the lower surface of the conductor.
  • the effective thickness (H) of the FeFET ferroelectric according to the embodiment of the present invention depends on the depth of the deep groove, and does not depend on the management thickness (d) of the ferroelectric.
  • the control film thickness refers to the film thickness in the case where the film is formed on a horizontal surface without unevenness.
  • a film is formed under the same conditions as a film thickness monitor on an uneven surface, for example, a silicon crystal substrate having no pattern.
  • the film formation speed on the horizontal plane of the ferroelectric is performed by performing a test film formation using a predetermined film formation method and film formation conditions.
  • Two pieces of information, V a (nm / sec) and a deposition rate V b (nm / sec) on the inner wall of the deep groove, and the deep groove width L (nm) may be obtained in advance.
  • the film formation time t (sec) required for embedding the ferroelectric thin film in the deep groove without any gaps the relationship 2 ⁇ V b ⁇ t ⁇ L, that is, 2 ⁇ k ⁇ V a ⁇ t ⁇ L holds. .
  • These relational expressions hold true for other materials as well as ferroelectrics.
  • the film formation time t (sec) for embedding the ferroelectric thin film in the deep groove without any gap is t ⁇ L / (2 ⁇ k ⁇ V a) , which can be confirmed using the film thickness monitor sample at that time.
  • a memory body embedded in the deep groove may be formed by metal organic chemical vapor deposition (MOCVD).
  • MOCVD method has a good step coverage.
  • k is larger and closer to 1.
  • a ferroelectric thin film can be embedded to the bottom surface of the deep groove with no gap if d is at least 40 nm.
  • L was about 100 nm.
  • the MFIS of the gate stacked structure was Ir, Ca—Sr—Bi—Ta—O oxide CSBT ferroelectric, HfO 2 insulator, and Si semiconductor in this order. These CSBTs were formed by MOCVD.
  • the source and drain were formed on the Si semiconductor substrate in a self-aligned manner with the protruding structure by P + ion implantation, the acceleration energy was 5 keV, and the dose was 5E12.
  • polycrystallization annealing at about 800 ° C.
  • FIG. 6 (b) was annealed at a slightly higher temperature than the FeFET in FIGS. 6 (c) and 6 (d).
  • Id was measured while sweeping Vg in a range of ⁇ 4 V to examine Id-Vg curves.
  • Vg indicating Id 1.0E-9 (A / ⁇ m) was determined as Vth, and the difference between the two left and right Vth on the Id-Vg curve was defined as the memory window.
  • each memory window is shown in FIG. 6 (b) 0.6 V (c) 0.8 V (d) 1.1. V.
  • the gate width (W) was 80 ⁇ m, 200 ⁇ m, and 200 ⁇ m in the order of the FeFETs in FIGS. 6B, 6C, and 6D.
  • the memory window does not depend on the gate width.
  • C I is increased in order to reduce C F / C I as much as possible in order to ensure a wide FeFET memory window.
  • it is not beneficial to make the physical thickness of the buffer insulator extremely thin. Therefore, in order to increase the C I will minimize the percentage of the voltage applied to the buffer insulator.
  • it is effective to use a high dielectric (high-k) material having a high relative dielectric constant ⁇ I for the buffer insulator.
  • the buffer insulator has a role of preventing interdiffusion of elements between the ferroelectric and the semiconductor, which is caused during high-temperature firing for the purpose of crystallization of the ferroelectric.
  • a high-k material suitable as a buffer insulator used in a FeFET together with a bismuth layered perovskite ferroelectric such as SrBi 2 Ta 2 O 9 or Ca x Sr 1-x Bi 2 Ta 2 O 9 is HfO 2 and (HfO 2 ) y (Al 2 O 3 ) 1-y .
  • a semiconductor memory element includes a buffer insulator formed by etching, a semiconductor substrate having source and drain regions in a self-aligned positional relationship with the buffer insulator, and self-aligned to the buffer insulator.
  • a deep groove in a partition wall having a specific positional relationship is first fabricated, and then a ferroelectric is embedded in the deep groove by metal organic chemical vapor deposition.
  • a conductor is formed on a ferroelectric material and formed into a gate electrode shape by etching. When forming a conductor, as shown in FIG. 7, the ferroelectric may be etched in a self-aligning manner at the same time.
  • the upper portions of the conductor and the ferroelectric material may be formed in a self-aligning manner by a surface flattening method such as a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • FIG. 9 An example of a method for manufacturing a deep groove according to an embodiment of the present invention will be described with reference to a schematic diagram (FIG. 9).
  • a substrate is prepared (procedure 1), and a protruding structure having a width of 100 nm or less is formed thereon (procedure 2), and this is covered with a partition wall (procedure 3).
  • the protruding structure is removed (procedure 5).
  • FIG. 10 is a cross-sectional SEM photograph of the protruding structure formed on a certain substrate, and is an example corresponding to the procedure 2.
  • the protruding structure has a width of 82 nm and a height of 525 nm.
  • the substrate may be a laminate.
  • FIG. 11 is a cross-sectional SEM photograph of a product in which a protruding structure having a width of 69.5 nm and a height of 481 nm is formed on a substrate composed of three layers.
  • FIG. 12 is a cross-sectional SEM photograph of a projecting structure covered with a partition wall, which is an example corresponding to the procedure 3.
  • FIG. 13 is a cross-sectional SEM photograph of an object cut from above until the upper portion of the protruding structure is exposed after the protruding structure is covered with a partition wall, and is an example corresponding to the procedure 4.
  • FIG. 14 is a cross-sectional SEM photograph in which the projecting structure is covered with a partition wall and then cut from above until the upper portion of the projecting structure is exposed, and the projecting structure is partially removed. It is an example corresponding to.
  • FIG. 15 is a cross-sectional SEM photograph which is an example corresponding to the completion of the procedure 5.
  • FIGS. 10 to 14 is an organic substance containing carbon, and the method of removing the protruding structure in FIGS. 14 and 15 is oxygen plasma etching.
  • the partition wall is silicon oxide.
  • the left side is an original photograph, and the right side is a schematic diagram illustrating the structure of a subject.
  • FIG. 16 An example of a manufacturing method in the case where deep grooves that are one embodiment of the present invention are integrated with high density will be described with reference to a schematic diagram (FIG. 16).
  • a substrate is prepared (procedure 1), and a protruding structure having a width of 100 nm or less is formed thereon (procedure 2), and this is covered with a partition wall (procedure 3).
  • Surface flattening polishing is performed from above until the upper portion of the protruding structure is exposed (procedure 4). Thereafter, the protruding structure is removed (procedure 5).
  • the protruding structure may be formed of a laminate.
  • FIG. 17 is a schematic diagram of a manufacturing method of a single deep groove when other layers except the lowermost layer of the protruding structure are selectively removed, and FIG. 17 is a schematic diagram of a manufacturing method of deep grooves integrated at a high density. Are shown in FIG.
  • the substrate may also be a laminate.
  • FIG. 19 shows a schematic diagram of a manufacturing method of a single deep groove when the top layer of the substrate is etched in a self-aligned manner with a protruding structure, and FIG. 19 shows a schematic diagram of a manufacturing method of deep grooves integrated at a high density. 20 respectively.
  • the partition walls may be laminated.
  • a material having an etching rate slower than that of the inner partition wall a is selected as the material of the outer partition wall b
  • the etching is simultaneously performed from above under appropriate conditions, the decrease in the partition wall a is smaller than that of the partition wall b. Since it is fast, the opening at the top of the deep groove is wider than the bottom.
  • some of these may be intentionally left at the bottom of the deep groove as shown in FIG.
  • FIG. 23 shows a cross-sectional SEM photograph in the middle of the manufacturing process in which the upper opening of the deep groove is widened by using the laminated partition walls.
  • the left side is an original image of the photograph
  • the right side is a schematic diagram for explaining the structure of the subject.
  • FIG. 23 it is a stage before removal of the organic protruding structure.
  • the partition wall a is silicon oxide
  • the partition wall b is aluminum oxide.
  • the deep groove opening may be inclined so as to become wider upward from the substrate.
  • the upper opening of the deep groove can be expanded to an inverted triangular shape.
  • FIG. 24 shows a schematic diagram of a manufacturing method of deep grooves in which barrier ribs are stacked and densely integrated.
  • One embodiment of the present invention is an electronic device in which a functional material is embedded in a deep groove formed by the above-described manufacturing method.
  • the material embedded in the deep groove is not particularly limited.
  • a memory element in which a memory material such as a ferroelectric material, a magnetic material, or a charge trapping material is embedded may be used.
  • the electrical wiring which embedded the conductor is mentioned.
  • the optical wiring which embedded the light transmissive material is mentioned.
  • the embedded material is not directly etched, the risk of receiving etch damage is suppressed.
  • even difficult-to-etch materials can be easily formed into a high-aspect shape with an effective height of more than twice the width at a width of 100 nm or less. High integration is possible.
  • CVD or MOCVD method having excellent step coverage is effective.
  • FIG. 25 shows an example of a single element manufacturing process.
  • a silicon semiconductor substrate whose surface is treated with hydrofluoric acid is prepared.
  • a high dielectric material containing hafnium oxide is formed as a buffer insulator.
  • an organic resist pattern which becomes a prototype of the deep groove, is erected on the buffer insulator by lithography such as electron beam drawing.
  • the line width of the pattern is 100 nm or less, and the height is more than twice that.
  • the buffer insulator is etched using the pattern as a prototype of the deep groove as a mask to expose the substrate surface.
  • ions are implanted into the surface of the substrate in a self-aligning manner with respect to the pattern of the deep groove and the buffer insulator.
  • the implanted ions undergo activation annealing described later to form the FeFET source and drain.
  • the substrate is p-type
  • ions that locally make the substrate n-type may be implanted shallowly.
  • monovalent phosphorus (P +) may be ion-implanted under the conditions of an acceleration energy of 5 keV and a dose amount of 5 ⁇ 10 12 / cm 2 .
  • an insulator serving as a partition is formed so as to cover the pattern serving as a prototype of the deep groove.
  • This insulator is formed of a stack using materials such as silicon oxide, silicon nitride, aluminum oxide, and hafnium oxide, and may be two layers, or may be three or more layers. There may be all combinations of the order of film formation, that is, the order of lamination. For example, in the case of two layers, silicon oxide and then silicon nitride may be used first, and vice versa, or hafnium oxide and silicon oxide may be used first and vice versa. is there. (7) The whole is etched from above. An area that is not to be etched is covered with a protective film in advance. The etching time is adjusted so as to be the time until the upper part of the pattern that becomes the prototype of the deep groove is exposed.
  • Suitable etching conditions are such that the anisotropy in the vertical direction is increased by using a process gas suitable for selective etching of the main part of the material used for the partition walls.
  • a process gas suitable for selective etching of the main part of the material used for the partition walls is argon and CF 4
  • the antenna RF and bias RF are 250 W and 300 W, respectively, inductively coupled plasma type reactive ion etching (ICP-RIE). Should be used.
  • etching may be performed to widen the opening at the top of the groove.
  • the inside of the stack forming the partition wall is selectively etched by RIE or the like from the outside, or by argon ion milling or the like obliquely upward from the substrate. It is preferable to use conditions for anisotropic etching.
  • the exposed pattern of the deep groove is selectively removed with respect to the partition wall and the buffer insulator to form the deep groove. In the case where the pattern that becomes the prototype of the deep groove is a resist, it may be removed by oxygen plasma etching.
  • a ferroelectric film is formed from above the deep groove.
  • annealing for activating ions implanted into the substrate surface in the initial stage of the manufacturing process may be performed to form the source and drain of the FeFET.
  • the ferroelectric film is formed by a film forming method with good step coverage, such as a metal organic chemical vapor deposition method or an atomic layer deposition method.
  • Ferroelectric materials such as SrBi 2 Ta 2 O 9 and Ca x Sr 1-x Bi 2 Ta 2 O 9 are used when the buffer insulator is a high dielectric material containing hafnium oxide as in this example.
  • a bismuth layered perovskite ferroelectric is used.
  • a conductor is formed.
  • High-temperature annealing is performed for the purpose of crystallization of the ferroelectric before or after the conductor film formation.
  • the annealing temperature for polycrystallization is about 700 ° C. Often, the temperature is high between 800 ° C and 800 ° C.
  • Ferroelectric polycrystallization annealing may be combined with annealing for activating ions implanted into the substrate surface in the initial stage of this manufacturing process.
  • the ferroelectric polycrystallization annealing may be performed after the conductor is formed into a gate shape and may be performed before the conductor is formed.
  • the conductor is required to have high temperature resistance.
  • a noble metal such as platinum or iridium is used as a conductive material having high temperature resistance.
  • nitrides of titanium and tantalum may have high temperature resistance.
  • the conductor does not require high temperature resistance, so the options are extended to inexpensive conductor materials other than platinum and iridium.
  • Inexpensive conductor materials include, for example, aluminum, titanium, hafnium, tantalum, silicon, or nitrides or compounds thereof having conductivity.
  • a resist pattern is formed by lithography in the shape of the FeFET gate.
  • (13) Etching only the conductor or both the conductor and the ferroelectric using the resist pattern as a mold.
  • the position of the resist pattern for this purpose is the position where the projected image on the substrate covers the projected image of the pattern used as the deep groove prototype at the beginning of the manufacturing process.
  • the gate of the FeFET covers the channel region on the substrate.
  • the resist is removed, and contact holes to the source, drain, substrate, and gate are appropriately formed.
  • a FeFET having a so-called MFIS structure of metal-ferroelectric material-insulator-semiconductor can be manufactured.
  • the channel length of the FeFET is determined by the width of the pattern that becomes the prototype of the deep groove in the step (3), and the effective thickness of the FeFET is determined by the depth of the deep groove in the step (9). It is possible to achieve both the miniaturization of the FeFET in the substrate surface and the securing of a large memory window.
  • the material of the pattern that becomes the prototype of the deep groove standing on the buffer insulator in step (3) is not a resist of organic matter but a heat resistant material such as inorganic polysilicon. By changing to the material, a higher process temperature can be used in step (3) and thereafter. This makes it possible to use a higher film formation temperature when forming an insulator to be a partition in the step (6), and as a result, an improvement in the quality of the insulator to be a partition can be expected.
  • FIG. 26 shows an example of a manufacturing process in the case where FeFET is highly integrated on the same substrate.
  • 25 is essentially the same as the manufacturing process of the FeFET single element shown as an example in FIG. 25, but the process corresponding to (7) in FIG. 25, that is, cutting is performed until the upper part of the pattern that becomes the prototype of the deep groove is exposed.
  • the surface may be planarized by a chemical mechanical polishing (CMP) method as shown in FIG.
  • CMP chemical mechanical polishing
  • An electronic circuit according to one embodiment of the present invention includes two or more elements obtained by simultaneously forming a material having a memory function in grooves having different widths. By changing the width of the grooves, An electronic circuit characterized in that the height of a material having a memory function filled therein from a substrate is controlled, and the strength of the memory function of each element is made variable. According to the present invention, a memory element and a non-memory element can be easily mixed.
  • An electronic circuit manufacturing method according to the present invention will be described with reference to FIG. 25 and FIG. 26 are essentially the same as the FeFET manufacturing process shown in FIG. 25 and FIG. 26, but in the process corresponding to (3) in FIG. 25, that is, in the process of patterning a resist on the buffer insulator by lithography.
  • a plurality of types of patterns as a pattern of the groove are formed, a wide pattern and a narrow pattern.
  • a plurality of grooves having different widths are formed on the same substrate.
  • a material having a memory function is simultaneously formed on the substrate with an appropriate control film thickness.
  • Patent Document 1 As an example in which a ferroelectric film formed on a groove having a wide pattern as a prototype covers only the bottom and side surfaces of the groove, a cross-sectional SEM photograph is shown on the left side of FIG.
  • a method of manufacturing an FeFET which is another embodiment of the present invention will be described with reference to FIG.
  • ⁇ Procedure 1> A buffer insulator is formed on the surface of a semiconductor substrate, and an organic protruding structure is formed thereon. After the buffer insulator is etched using the protruding structure as a mask, ion implantation for the source and drain is performed on the semiconductor substrate in a self-aligning manner using the protruding structure and the buffer insulator as a mask. The distance between the source and drain on the substrate is the channel length (L).
  • ⁇ Procedure 2> Cover the protruding structure with a partition wall.
  • ⁇ Procedure 3> The whole is etched from above. At this time, the height of the partition wall is higher at the height H2 of the partition wall contacting the side surface of the projecting structure than at the height H1 of the partition wall at a distance L from the center of the projecting structure. Etch until lower.
  • ⁇ Procedure 4> The protruding structure is selectively etched with oxygen plasma to form a shallow groove.
  • an FeFET having a channel length of 100 nm or less can be manufactured without depending on the etching of the ferroelectric.
  • the capacitance between the gate and the substrate of the FeFET can be effectively increased in the channel region.
  • the gate-substrate capacitance in the gate-source / drain overlap region is smaller than that in the channel region. This tendency becomes stronger as the partition wall is thicker.
  • the FeFET manufactured according to the present invention has a shallow groove for embedding a ferroelectric, so that the step coverage is not necessarily high, such as metal organic compound decomposition method (MOD) by spin coating or physical film formation method such as sputtering. Also, a ferroelectric film can be formed. It is desirable that the relative dielectric constant of the ferroelectric material embedded in the shallow groove according to the present invention is less than 100. As described above, according to the present invention, the effective thickness (H) of the ferroelectric substance is not less than twice that of the channel length of 100 nm or less without etching the ferroelectric material which is difficult to etch. A high-aspect ferroelectric gate transistor (FeFET) gate stack structure can be manufactured.
  • MOD metal organic compound decomposition method
  • sputtering physical film formation method
  • a ferroelectric film can be formed. It is desirable that the relative dielectric constant of the ferroelectric material embedded in the shallow groove according to the present invention is less than 100.
  • a NAND flash memory array and a NOR flash memory array are preferable examples of integrating FeFETs to form a circuit. These flash memories are referred to as a ferroelectric NAND and a ferroelectric NOR. In both the ferroelectric NAND and ferroelectric NOR memory arrays, one memory cell is one FeFET.
  • the ferroelectric NAND reduces the occupied area of one memory cell to 4F 2 and restricts the access method to the memory cell by rules instead of high integration. It has the characteristics.
  • Ferroelectric NOR has a feature that it accepts to reduce the degree of integration by relaxing the occupied area of one memory cell to less than 4F 2 instead of enabling random access to the memory cell.
  • the frequency of contact hole formation has already been suppressed to the minimum because of its high integration.
  • the ferroelectric NOR has a high frequency of forming contact holes for the source or drain terminals in the conventional memory cell layout, so that the gate stack structure of the embedded FeFET can be manufactured without ferroelectric etching.
  • the present invention provides a ferroelectric NOR memory cell array that allows random access to memory cells and that has a low frequency of contact hole formation.
  • the memory cell array of ferroelectric NOR according to the present invention is characterized by the shape of the active region formed on the semiconductor substrate.
  • FIG. 30 shows the active region on the semiconductor substrate of the ferroelectric NOR when the area occupied by one memory cell is 8F 2 (A in FIG. 30A) and 6F 2 (A in FIG. 30B). The shape is illustrated. These active areas are characterized by a shape resembling a ladder. By adopting this shape, the drain regions to which a common potential is to be applied can be short-circuited without using a contact hole.
  • the memory cell array of the ferroelectric NOR according to the present invention does not limit the shape and manufacturing method of the FeFET of the memory cell. That is, the memory cell constituting the ferroelectric NOR memory cell array according to the present invention may be an embedded FeFET or a planar FeFET. Taking the case where one memory cell is a buried n-channel FeFET as an example, the occupied area of one memory cell is 8F 2 (FIG. 30 (a)) and 6F 2 (FIG. 30 (b)). The outline of the manufacturing process of the ferroelectric NOR memory cell array is illustrated in steps A to F.
  • the FeFET that is a memory cell represents a buried type in the process C of FIGS. 30A and 30B, but may be a planar type as described above.
  • An equivalent circuit of a memory cell array of ferroelectric NOR is shown for the case where the occupied area of one memory cell is 8F 2 (FIG. 31A) and 6F 2 (FIG. 31B).
  • the substrate terminals of the memory cells that share one memory cell array have the same potential, which is called a well potential. For example, before forming the active region on the ladder and the element isolation region that defines the well as shown in step A of FIG. 30A and FIG. It is formed by performing deep ion implantation.
  • the n-type well is formed deeply and widely so as to surround the p-type well common to the memory cells in two dimensions in the plane and in the depth direction.
  • the memory cell is an n-channel type FeFET.
  • the memory cell may be a buried type FeFET or a planar type FeFET.
  • an electron capture type flash memory cell such as a floating gate type or a MONOS type shows an Id-Vg curve whose direction is opposite to that of the FeFET. For example, when an Id-Vg characteristic of an n-channel type electron capture flash memory cell is measured, an Id-Vg hysteresis curve is drawn in a clockwise direction. The operation of the ferroelectric NOR memory cell array will be described with reference to the example of FIG.
  • the memory cell array of the ferroelectric NOR is erased at once.
  • a positive voltage pulse is applied to the substrate terminal, that is, the n-well, with respect to the gate terminal of the n-channel FeFET that is a memory cell.
  • This is relatively the same as applying a negative voltage pulse to the gate terminal with respect to the substrate terminal. Accordingly, the Vth of the memory cells a, b, c, and d is aligned on the higher side by the batch erase.
  • the data is randomly written into the ferroelectric NOR memory cell array.
  • a positive voltage pulse is applied to the gate terminal of the substrate terminal of the memory cell a selected for writing, that is, the n-well, and the Vth of the memory cell a is moved to the lower side.
  • Vth of unselected memory cells b, c, and d is required to change little regardless of the level at that time. That is, the write disturb resistance is required for the memory cell array of the ferroelectric NOR.
  • the Vth of the selected memory cell a hardly changes even when the read operation is repeated, and the Vth of the non-selected memory cells b, c, d changes regardless of the level at that time. Less is required.
  • the read disturb resistance is required for the memory cell array of the ferroelectric NOR.
  • the ferroelectric NOR according to the present invention is characterized in that the resistance to write disturb is higher when the occupation area of one memory cell is 8F 2 (FIG. 30 (a)) than when 6F 2 (FIG. 30 (b)). have. This will be described below. Assuming the case where the occupied area of one memory cell is 8F 2 (FIG. 33 (a)) and 6F 2 (FIG. 33 (b)), the resistance to the write disturb of the ferroelectric NOR is the two most severe conditions. Examined.
  • the width of the write voltage pulse was 10 ⁇ s, and the width of the erase voltage pulse was 1 ms which was sufficiently longer than that.
  • Vw1 7.2 V and Vw2 (variable) were applied, and Vth of the memory cells b and d was read each time.
  • Vw2 (variable) was changed from 0V to 7.2V.
  • Vw2 4.8 V
  • Vw2 4.8 V
  • the occupied area of one memory cell is 6F 2 (FIG.
  • the channel length is 100 nm or less, and the effective thickness (H) of the ferroelectric is a high aspect ratio that is twice or more of that.
  • a gate stack structure of a ferroelectric gate transistor (FeFET) can be manufactured. Taking advantage of this advantage, it is possible to manufacture a memory cell array in which FeFETs are used as memory cells and these are three-dimensionally integrated.
  • FIG. 34 shows an example of a method for manufacturing a ferroelectric NOR memory cell array
  • FIG. 35 shows an example of a method for manufacturing a ferroelectric NAND memory cell array.
  • the manufacturing process of the three-dimensional memory cell array according to the present invention is basically the same as the above-described example of the manufacturing process of a single memory cell except that a semiconductor is formed by film formation, and thus detailed description thereof is omitted.
  • the semiconductor formed by film formation is, for example, an oxide semiconductor based on zinc (Zn), gallium (Ga), indium (In), tin (Sn) single oxides, or complex oxides thereof.
  • it refers to a semiconductor such as polysilicon whose manufacturing method is film deposition rather than single crystal bulk growth.
  • memory cells are regularly arranged in two rows and two columns in the plane, and the second floor or more in the height direction.
  • This is a memory cell array stacked in a hierarchy. They are characterized in that, in the height direction, adjacent layers form a pair with each other, and memory cells are stacked with mirror image reversal in a vertical relationship across the gate terminals shared in each pair.
  • the memory cell array In the plane per layer, the memory cell array has high integration of 6F 2 in FIG. 34 and 4F 2 in FIG. 35, and these are stacked in a large number of layers on the nth floor. Can provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

幅が100nm以下で高さが幅の2倍以上の高アスペクトな形状の記憶体を用いた半導体記憶素子とその製造方法を提供する。 半導体基板1の上に記憶体2と導体3を重ねた積層構造を有し、記憶体2の底面12は半導体基板1に接し、記憶体2の上面10は導体3に接し、記憶体2の側面11は隔壁4に接して囲まれ、記憶体2の底面12の幅は100nm以下であって、導体3と半導体基板1の間の最も短い距離は、記憶体2の底面12の幅の2倍以上であって、記憶体2の側面11の幅は底面12よりも上のいずれの位置でも底面12の幅と同じで一定か、もしくは、底面12以外の底面12よりも上の位置で最も広いことを特徴とする半導体記憶素子。

Description

半導体記憶素子その他の素子およびその製造方法
本発明は、半導体記憶素子その他の素子およびその製造方法に係る。より詳細には、幅が100nm以下で高さが幅の2倍以上の高アスペクトな形状の記憶体等の構造体を用いた微細高集積な半導体記憶素子その他の素子とその製造方法に関するものである。
機能性材料を用いた半導体記憶素子は、機能性材料の膜厚が数十ナノメートル以上あってようやくその固有の機能を発揮する。例えば機能性材料のひとつである強誘電体を用いた強誘電体ゲートトランジスタでは、強誘電体の膜厚が減るにつれてメモリウィンドウが減少し、素子の記憶機能が低下する(特許文献1)。また強誘電体は難エッチング材料であることが多く、エッチング完了まで消失しないエッチング選択比の高いマスク材料を探すのは困難であり、従ってエッチング前の強誘電体の膜厚を厚くすることで強誘電体ゲートトランジスタのメモリウィンドウを広げることには限界がある。
また、強誘電体のエッチングによる側壁の傾斜角は高角度が望ましいが実際には90度に近づけることは難しい。例えばエッチングによる強誘電体ゲートトランジスタの試作では、ゲート金属長が100nmの場合に強誘電体の下底は約倍の200nm以上あることが、非特許文献1の素子の断面写真のエッチング跡から見てとれる。非特許文献1によれば、この上さらに強誘電体の側壁のエッチングダメージを回復するために強誘電体による側壁の被覆が必要で、ゲート金属長が100nmの強誘電体ゲートトランジスタの半導体基板上での占有長は最終的には200nm以下に出来ない。
材料のエッチングによらない別の成形方法として溝の型の中に材料を埋め込む方法が挙げられる。しかし、従来は、溝を深く加工すると溝の幅を縮小することが難しいという問題があった。例えば従来、半導体デバイスに溝構造を応用する例として、MEMSのシリコン深掘り、ダマシン法による銅配線、リプレイスメントゲートが挙げられる。MEMS等の作製工程では、はじめにシリコンまたはシリコン酸化物の中に奥行の深い溝を掘る要請がある。シリコンまたはシリコン系の材料に直接的に深い溝を掘る方法としてBosch法をはじめとする垂直異方性エッチングの手法が高度に発展している(非特許文献2)。 
また、半導体回路で用いられるダマシン法による銅配線は、シリコン酸化物にまず溝を掘りそこに導体の銅材料を埋め込んでからCMP等の平坦化技術を用いて余分な部分を削り取り、溝のダマシン法によって作られている(特許文献2)。非特許文献2、特許文献2共にバルクのシリコン系材料を直接掘り進めるため、溝を深くすると溝の幅を小さくすることが難しい。なお、MEMSのシリコン深掘りとダマシン法による銅配線とに共通する製造方法の特徴として、溝となるエリア以外を保護膜で覆ってから溝を切削するために保護膜は溝のネガパターンであることが挙げられる。
また、トランジスタのゲート導体をダマシン法の応用により形成するダマシンゲートもしくはリプレイスメントゲートと呼ばれる構造もある。この場合、ゲート導体の型となるダミーゲートは従来のポリシリコンゲートトランジスタの製造プロセスとの整合性を重視したポリシリコンでできており、ダミーゲートはエッチングで形成される(特許文献3)。フッ素系のガスや臭化水素などのハロゲン系ガスを用いたドライエッチングやウェットエッチングが用いられ、やはり溝を深くすると溝の幅を小さくすることが難しい。リプレイスメントゲートの用途では素子の微細化に合わせて溝の幅を狭くしたい一方で溝を深くする利点はないため、アスペクト比の小さい溝でも事足りる。リプレイスメントゲートの方法を用いた強誘電体ゲートトランジスタの製造方法では、例えば非特許文献3によれば、強誘電体を埋め込む前の溝の幅は200nmで、溝の深さは明記されていないが50nm程度であることが非特許文献3中の図面から読み取られる。
特許第5414036号公報 特開2008-41783号公報 特開2004-31753号公報
Le Van Hai, et al. , JapaneseJournal of Applied Physics 54, 088004(2015). デンソーテクニカルレビュー Vol.6 No.2 2001 、J. Ohara,et al., pp.72-77. Fengyan Zhang, et al. , Japanese Journal of Applied Physics 40, pp.L635-L637(2001).
本発明は、半導体記憶素子その他の素子の記憶体その他の構造体の実効的な厚さが面内スケーリングによる制約を受けず、幅が100nm以下で高さが幅の2倍以上の高アスペクトな記憶体を用いた半導体記憶素子その他の素子とその製造方法を提供することを目的とする。
請求項1に係る発明は、半導体と記憶体と導体を重ねた積層構造を有し、前記記憶体は互いに区別し得る安定な状態を2つ以上有し同時には前記状態の1つを選択する物体であって、
前記記憶体の向かい合う二面のうち一面は前記半導体に接し、もう一面は前記導体に接し、前記記憶体の側面は前記二面とは平行せず、前記記憶体の側面は隔壁に接して囲まれ、前記記憶体の、前記半導体と平行な方向の断面は、前記半導体と接する面で最も面積が狭く、前記半導体から離れるほど面積は同じかもしくは広くなり、前記断面の最小幅は100nm以下であって、前記導体と前記半導体の間の最も短い距離は、前記断面の最小幅の2倍以上であることを特徴とする半導体記憶素子である。
請求項2に係る発明は、前記隔壁は、エッチング速度の異なる2つ以上の材料の積層から成ることを特徴とする請求項1に記載の半導体記憶素子である。
請求項3に係る発明は、前記記憶体は緩衝絶縁体と強誘電体の積層から成り、前記強誘電体は前記半導体と直接には接触せず、前記緩衝絶縁体は前記隔壁よりも比誘電率が高い誘電体であることを特徴とする請求項1又は2に記載の半導体記憶素子である。
請求項4に係る発明は、ゲート、ソース、ドレイン、基板の4端子を備えたトランジスタであって、ゲート端子は前記導体に接続され、前記ゲート端子と基板端子との間に印加される電圧は前記記憶体と前記半導体から成る積層に印加される電圧と等しく、ソース端子はソース領域に接続され、ドレイン端子はドレイン領域に接続され、前記ソース領域および前記ドレイン領域は、互いに重複しない前記半導体の一部であって、前記記憶体が前記半導体と接する面を間に挟み境界を接して両側に並ぶことを特徴とする請求項3に記載の半導体記憶素子である。
請求項5に係る発明は、基板の上に聳立する突起型構造体を形成し、前記突起型構造体の幅は100nm以下でありかつ高さは幅の2倍以上であって、
前記突起型構造体を隔壁で覆い、前記隔壁で覆われた前記突起型構造体を上から基板に向かう方向に削った後、前記突起型構造体を選択的に除去することによって、幅が100nm以下の溝を前記隔壁の中に形成する素子の製造方法である。
請求項6に係る発明は、前記突起型構造体は有機物から成り、前記隔壁は無機物から成り、前記突起型構造体を酸素プラズマエッチングで選択的に除去することを特徴とする請求項5に記載の素子の製造方法である。
請求項7に係る発明は、前記突起型構造体は2層以上の積層から成り、このうち少なくとも最下層を除く他の層を選択的に除去することを特徴とする請求項5に記載の製造方法である。
請求項8に係る発明は、前記基板は2層以上の積層から成ることを特徴とする請求項5,6,7のいずれか1項に記載の素子の製造方法である。
請求項9に係る発明は、前記隔壁は、エッチング速度の異なる2つ以上の材料の積層から成ることを特徴とする請求項5,6,7,8のいずれか1項に記載の素子の製造方法である。
請求項10に係る発明は、前記溝の開口部に基板から上に向かうほど広くなるような傾斜をつけることを特徴とする請求項5,6,7,8,9のいずれか1項に記載の素子の製造方法である。
請求項11に係る発明は、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に電気的導体を入れることを特徴とする電気配線の製造方法である。
請求項12に係る発明は、前記隔壁は光を遮断する材料であって、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に光透過材料を入れることを特徴とする光配線の製造方法である。
請求項13に係る発明は、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に記憶体を入れることを特徴とする記憶素子の製造方法である。
請求項14に係る発明は、前記基板の少なくとも表面は半導体であって、前記隔壁を形成する前には、あらかじめ前記突起型構造体に対して自己整合的に前記ソース領域と前記ドレイン領域を前記半導体の中に形成し、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に強誘電体材料を入れることを特徴とする強誘電体ゲートトランジスタの製造方法である。
請求項15に係る発明は、前記記憶体は有機金属気相成長法により成膜した強誘電体を含むことを特徴とする請求項14に記載の強誘電体ゲートトランジスタの製造方法である。
請求項16に係る発明は、前記突起型構造体の幅を2種類以上設け、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた2個以上の幅の異なる溝の中に記憶体を同時に成膜して得られた2個以上の素子で構成され、前記溝の幅を変えることで前記溝の内部に充填される前記記憶体の基前記板からの高さを制御し、各素子の記憶機能の強さを可変にすることを特徴とする電子回路の製造方法である。
請求項17に係る発明は、半導体の上に突起型構造体を形成し、前記突起型構造体に対して自己整合的にソース領域とドレイン領域を形成し、前記半導体および前記突起型構造体の上を覆うように隔壁を形成し、前記突起型構造体とその周囲の隔壁とを上から基板に向かう方向に削った後、前記突起型構造体を選択的に除去することによって隔壁の中に溝を形成し、前記隔壁のうち前記溝の壁面であるところの高さは、前記溝の幅に相当する距離だけ前記溝の中心から離れた位置における前記隔壁の高さと比べて、同じかまたはより低く、前記溝の中に強誘電体材料を入れることを特徴とする強誘電体ゲートトランジスタの製造方法である。
請求項18に係る発明は、請求項4に記載の半導体記憶素子1個を1個のメモリセルとし、前記メモリセルを基板面内に2行2列以上で規則的に配列したメモリセルアレイであって、共通のメモリセルアレイに属するメモリセルの基板端子同士は互いに同電位であり、横方向の一列に並んだ2個以上のメモリセルのゲート端子同士を電気的に短絡するゲート線と、縦方向の一列に並んだ2個以上のメモリセルのドレイン端子同士を電気的に短絡するドレイン線と、縦方向の一列に並んだ2個以上のメモリセルのソース端子同士を電気的に短絡するソース線を備え、ドレイン線はソース線と並行し、ゲート線はドレイン線およびソース線と直交し、ドレイン線を構成するためのドレイン端子同士の短絡およびソース線を構成するためのソース端子同士の短絡は、両者共にコンタクトホールを介することなく、各メモリセルのドレイン領域およびソース領域に相当する半導体の活性領域同士の連結によってなされていることを特徴とするメモリセルアレイである。
請求項19に係る発明は、前記メモリセルは縦方向の隣接する二列毎に対を組み、各一対の中で1本のソース線を共有し、ソース線を挟んで両側にドレイン線を有し、二列のメモリセルはソース線に対して左右対称な配置を有することを特徴とする請求項18に記載のメモリセルアレイである。
請求項20に係る発明は、
請求項1,2,3,4のいずれか1項に記載の半導体記憶素子をメモリセルとし、前記メモリセルを、基板面内には2行2列以上で規則的に配列し、かつ、前記基板に垂直な方向すなわち高さ方向には2階以上の階層に積み重ねたメモリセルアレイであって、高さ方向には上下で最近接する2つの階層同士が互いに対を組み、各対の中では上下のメモリセルが導体を挟んで面対称に向かい合い、上下の向かい合うメモリセル同士が導体を共有することを特徴とするメモリセルアレイである。
請求項21に係る発明は、請求項18のメモリセルアレイを1階層単位とし、前記階層単位を2階以上積み重ねたメモリセルアレイであって、高さ方向には上下で最近接する2つの階層単位同士が互いに対を組み、各対の中では上下のメモリセルがゲート線を挟んで面対称に向かい合い、上下の向かい合うメモリセル同士がゲート線を共有することを特徴とするメモリセルアレイである。
請求項22に係る発明は、請求項19のメモリセルアレイを1階層単位とし、前記階層単位を2階以上積み重ねたメモリセルアレイであって、高さ方向には上下で最近接する2つの階層単位同士が互いに対を組み、各対の中では上下のメモリセルがゲート線を挟んで面対称に向かい合い、上下の向かい合うメモリセル同士がゲート線を共有することを特徴とするメモリセルアレイである。
本発明では、エッチング速度の速い材料から成る突起型構造体をエッチング速度の相対的に遅い材料の隔壁で覆い、上部から異方的に切削して突起型構造体の頭部を露出させ、突起型構造体を選択的にエッチングで除去することで、隔壁の中に高アスペクトな溝を残す。突起型構造体を選択的にエッチングして露出した溝の底面は、エッチング条件を適切に調整することで表面の損傷も少なく界面準位も受容できる程度に少なくすることが可能である。この溝の中に、段差被覆性の良い成膜方法で機能性材料を成膜し埋め込んだものを半導体記憶素子に用いる。
本発明によれば、高アスペクトな形状をもつ機能性材料を基板上の隔壁の中に設けることが可能であり電子デバイスの製造工程として有効である。例えば、隔壁として絶縁体を用い、本発明により形成した深溝に電気的導体を埋め込むことで電気配線を作製できる。
あるいは、隔壁として光が不透過な材料を用い本発明によって形成した深溝に光透過材料を埋め込むことで光配線を作製できる。
また例えば、基板として半導体を用い、隔壁として絶縁体を用いて、本発明により形成した深溝に強誘電体や磁性体などの不揮発記憶機能を有する機能性材料と電極導体を埋め込むことでデータ不揮発のトランジスタを作製できる。
本発明は、従来の強誘電体をエッチングにより成型する方法に比べて、非常に高アスペクトな形状でかつエッチングダメージの少ない強誘電体ゲートトランジスタを提供する。
エッチングは、化学反応による化学的エッチング、または加速したエッチング種の衝突衝撃により削る物理的エッチング、またはそれら両方の成分の混合によるエッチングの3通りに大別される。物理的エッチングではエッチングにより飛散した物質が直上の側壁に再付着してエッチング種を遮蔽するため、エッチング完了後の断面形状は上底よりも下底が長い台形型になる傾向があり、エッチング対象が厚いほどこの傾向は顕著である。また難エッチング材料であるほど、化学的反応性の乏しさ故にエッチング加工の際に物理的エッチング成分は欠かせないため、エッチング後の断面は台形になる傾向が強い。
本発明によれば、従来のプレーナー型FeFETの製造方法とは異なり、FeFETの製造に際して必ずしも導体と強誘電体を一体として自己整合的にゲート積層エッチングとイオン注入と高温アニールの3工程を行う必要がない。このため、導体を成膜する前に強誘電体多結晶化のための高温アニールを行った後で導体を成膜し成型することが可能になる。高温アニール温度は例えば、SrBi2Ta2O9やCaxSr1-xBi2Ta2O9などのビスマス層状ペロブスカイト型強誘電体を用いる場合には約800℃であり、この高温に耐えて導体の性質を保持する金属は反応性の乏しいPtやIrなど貴金属に限られていた。貴金属は高価で価格も不安定であるという難点があった。また、PtやIrの特徴である化学的な安定性は言い換えると反応性が乏しいということであり、化学的反応性の乏しさ故に反応性エッチングではなく物理エッチングを主とするエッチングで成形しなければならず、加工精度が良くないという難点もあった。
本発明により導体に高い耐熱性を求めずに済む結果、高価な貴金属材料ではなく廉価な導体材料を電極として選択できるようになる。廉価な導体材料とは例えば、アルミ、チタン、ハフニウム、タンタル、シリコン、あるいはそれらの窒化物や化合物のうち導電性を持つものが挙げられる。それらはPtやIrに比べればより高い化学反応性を持つため、エッチングで成形する際に加工精度がより良く、従って微細加工に有利である。
本発明によれば、強誘電体ゲートトランジスタのソース・ドレイン間距離すなわちチャネル長(L)を縮小することとは独立に強誘電体の実効的な厚さ(H)を大きくすることが可能である。Hは導体と緩衝絶縁体との間に位置する強誘電体が占める高さである。
本発明によれば、Hは少なくともLの2倍以上の値を確保することができる(H≧2L)。従って本発明によれば、Lが100nmよりも小さくかつメモリウィンドウが大きく多値記憶も可能な強誘電体ゲートトランジスタを製造できる。一般に、FeFETのメモリウィンドウを大きく確保するためには、FeFETのゲート-基板間に印加される電圧の中で、強誘電体に印加される電圧の割合をできるだけ大きくすることが必要である。FeFETのゲート-基板間に印加される電圧VALLは、強誘電体(添え字F)と緩衝絶縁体(添え字I)と半導体(添え字S)に分配される。MFISは簡略的には静電容量の直列接続と見なされる。蓄積される電荷密度Qは共通であるから、Q=C×V=C×V=Qである。Cは強誘電体の単位面積当たりの静電容量、Vは強誘電体に分配される電圧、Cは緩衝絶縁体の単位面積当たりの静電容量、Vは緩衝絶縁体に分配される電圧、Qは半導体の表面電荷密度である。半導体の表面ポテンシャルをΨとして、VALL=V+V+Ψだから、VALL-Ψ=V×(1+C/C)が成り立つ。Ψは半導体の不純物濃度とQにより特定される。従って、VALLとΨがほぼ一定の場合を考えると、FeFETのメモリウィンドウを広く確保する目的でVを大きくするためには、C/Cを出来るだけ小さくするのがよい。C/Cを小さくためには、Cを大きくするかもしくはCを小さくしなければならない。Cを大きくするためには緩衝絶縁体を高誘電体材料にし、かつ、薄くすることが有効である。Cを小さくするためには強誘電体を比誘電率εの低い材料にし、かつ、厚くすることが有効である。
しかし現実的には、強誘電体のεは高いことが多く、その場合は強誘電体の実効的な厚さHを大きくする他ない。例えばビスマス層状ペロブスカイト型強誘電体であるSrBi2Ta2O9は180の比誘電率を持つ(参考文献:S.Sakai, et al., Japanese Journal of Applied Physics, Vol.43 (2004)
pp.7876-7878)。従来のプレーナー型FeFETの製造工程の中では、強誘電体はエッチングにより成形された結果、断面が台形型となり、台形の上底に相当する金属ゲート長は下底に相当するソース・ドレイン間距離すなわちチャネル長(L)よりも短かった。従って、ある金属ゲート長に対して強誘電体の実効的な厚さ(H)を大きくするとLも増加するという好ましくない相関があった。
本発明によればこの問題が解消され、Lを縮小することとは独立にHを大きくすることが可能である。
本発明によれば、上記のようなHとLの相関関係が解消される以外にも、難エッチング材料であることが多い強誘電体をエッチングすることなくFeFETを製造できる点で、Hを大きくできる利点が得られる。強誘電体の多くは難エッチング材料であり、すなわち、化学反応性に乏しく、かつエッチング速度が遅い。従って、エッチングする際には物理エッチング要素が欠かせない。当然、エッチング後の断面は台形になる傾向が強くなる他、マスク材料と強誘電体とのエッチング選択比はあまり大きく出来なかった。マスク材料が有機物のレジストか金属やシリコンおよびそれらの酸化物や窒化物などの無機物かにかかわらずエッチング選択比は大きくできない。
このためマスクが消失する前に強誘電体のエッチングを完了させるためには、強誘電体の膜厚はあまり大きくすることができなかった。例えば、膜厚150nmのビスマス層状ペロブスカイト型強誘電体であるCaxSr1-xBi2Ta2O9をエッチングで加工した場合の断面形状は望ましくは長方形であるところが現実的には台形となり、140nmから190nmの上辺から始まったエッチングは終了時には下底が各上底の倍以上となる。初期膜厚150nmのPtは、膜厚150nmのCaxSr1-xBi2Ta2O9のエッチングを完了した後には150nmよりも薄く見えることから、エッチングマスクがエッチング中に消滅していることが分かる(参考文献:L.V.Hai, et al., Semiconductor Science and Technology, Vol.30 (2015)
015024(7pp).)。したがってPt/CaxSr1-xBi2Ta2O9の積層をエッチングで加工する場合には、その後の報告(Le Van Hai, et al. , Japanese Journal of Applied Physics 54, 088004
(2015).)にあるように、CaxSr1-xBi2Ta2O9の上辺の最小値100nm、そのときの膜厚の最大値190nmの組み合わせがエッチングによる加工限界に近いと考えられる。その結果、従来のプレーナー型FeFETの製造方法ではHを厚くできずにメモリウィンドウが抑制されるという難点があったが、本発明によればこれが解消される。
本発明によれば、幅の異なる突起型構造体から出発して同一基板上に異なる幅の溝を共存させることで、強誘電体の実効的な厚さHの異なるトランジスタを同一基板上に配置することが出来る。深溝の幅に応じて適切な平面上管理膜厚を選択することで、Hの異なる強誘電体ゲートトランジスタを作製できる。幅の小さい溝には強誘電体を溝の上部まで充填されてHの大きい不揮発記憶素子ができる。幅の大きい溝には底面と壁面にのみ存在する強誘電体薄膜が高誘電体として働くHの小さい記憶機能のない素子ができる。
また本発明によればトランジスタのゲートのみならず、ソースおよびドレイン上にも深溝を形成してこれらの中に機能性材料を埋め込むことが可能である。本発明によれば、機能性材料がエッチングダメージを受けることなく、機能性材料の基板面内での幅を100nm以下まで縮小しても実効的な厚さが幅の2倍以上は確保できる。機能性材料の性能を犠牲にして実効的な厚さを薄くすることなく基板面内での微細高集積化が可能であるため、本発明により製造した素子の性能はスケーリングによる制約を受けにくい。
本発明によれば、チャネル長のスケーリングの制約を受けずにメモリウィンドウを広く確保するFeFETを提供できる他、強誘電体成膜の工程直前までは従来のシリコンCMOSプロセスと製造装置を共用でき、また、強誘電体のエッチング成型も不要で強誘電体材料の飛散による装置汚染の懸念も少ない。従って従来のプレーナー型FeFETと比べて、本発明によるFeFET製造では量産時の設備投資を削減できる。強誘電体のエッチング成型が不要であることによって、エッチングダメージによりFeFETのデータ保持特性やデータ書き換え耐性など強誘電体に由来する重要な性能を損なうリスクも減らすことができる。強誘電体に限らず他の多くの機能性材料に共通の課題であるエッチングダメージを回避できることで、機能性材料の本来の性能を損なうことなくデバイス化することが可能になる。
本発明の実施の形態に係る半導体記憶素子の断面図である。(a)平らの場合、(b)波面の場合、(c)中に空孔を含む場合を示す。 本発明の他の実施の形態に係る半導体記憶素子の断面図である。 本発明の他の実施の形態に係る半導体記憶素子の断面図である。 本発明の他の実施の形態に係る半導体記憶素子の断面図である。隔壁に囲まれていない部分は、導体の真下だけを残して除去される 本発明の他の実施の形態に係る半導体記憶素子の断面図である。隔壁が2層の場合を示す。 本発明の他の実施の形態に係る半導体記憶素子の断面図である。強誘電体ゲートトランジスタ(FeFET)である。(a)概略図、(b)(c)(d)Lが共通して約100nmでHが異なる素子の各々の断面SEM写真とその概略図およびドレイン電流-ゲート電圧(Id-Vg)特性の実測データ。(b)H=370nm(c)H=420nm(d)H=540nm。 本発明の他の実施の形態に係る半導体記憶素子の断面図である。同時に自己整合的に強誘電体もエッチングすることもある 本発明の他の実施の形態に係る半導体記憶素子の断面図である。複数のFeFETを高密度に集積した場合である。 本発明の他の実施の一形態である深溝の製造方法の例を示す概略図である。 基板上に形成した突起状構造体の断面SEM写真であり手順2に相当する一例を示す。 3層の積層から成る基板上に幅69.5nm、高さ481nmの突起状構造体を形成した物の断面SEM写真である。 突起状構造体を隔壁で覆った物の断面SEM写真であり、手順3に相当する一例である。 突起状構造体を隔壁で覆った後突起状構造体の上部が露出するまで上から切削した物の断面SEM写真で、手順4に相当する一例である。 突起状構造体を隔壁で覆った後突起状構造体の上部が露出するまで上から切削し、突起状構造体を途中まで除去したところの断面SEM写真で、手順5の途中段階に相当する一例である。 手順5の完了後に相当する一例である断面SEM写真である。 本発明の他の実施の一形態である深溝を高密度に集積した場合の製造方法の例を示す概略図である。 深溝の製造方法を示す概略図である。 高密度に集積した深溝の製造方法の概略図である。 基板の最上層を突起型構造体と自己整合的にエッチングした場合で、かつ、単一の深溝の製造方法の概略図である。 高密度に集積した深溝の製造方法の概略図である。 本発明の実施の一形態である深溝の製造方法であり、隔壁が積層である場合である。 基板もしくは突起状構造体が積層である場合で、深溝の底部にこれらの一部を意図的に残した場合を示す図である。 積層の隔壁を用いて深溝の上部の開口を広げた製造工程の途中の断面SEM写真を示す。左側は写真の原図であり、右側は被写体の構造を説明する概略図である。有機物の突起状構造体を除去する前の段階を示す図である。 隔壁を積層とし、高密度に集積した深溝の製造方法の概略図である。 単素子の製造工程の一例を示す図である。 FeFETを同一の基板上に高集積化する場合の製造工程の一例を示す図である。 本発明にかかる電子回路の製造方法を示す図である。 強誘電体が溝の底面と側面のみを覆う実例を示す図であり、左側は断面SEM写真であり、右側は被写体の説明を示す。 本発明の別の一形態であるFeFETの製造方法を示す図である。 本発明に係るメモリセルアレイの形状を説明する図である。面内の集積度が(a)8Fの場合、(b)6Fの場合。 本発明に係るメモリセルアレイの等価回路を説明する図である。面内の集積度が(a)8Fの場合、(b)6Fの場合。 本発明に係るメモリセルアレイの動作条件を説明する図である。面内の集積度が(a)8Fの場合、(b)6Fの場合。 本発明に係るメモリセルアレイの書込みディスターブ耐性の測定結果を示した図である。面内の集積度が(a)8Fの場合、(b)6Fの場合。 本発明に係る面内の集積度が6Fでランダムアクセス可能な多階層メモリセルアレイの製造工程概略を示した図である。 本発明に係る面内の集積度が4Fの多階層メモリセルアレイの製造工程概略を示した図である。
1 基体(半導体基板)
2 憶体
3 
4 隔壁
10 上面
11 側面
12 底面
本発明における記憶体とは、全体にもしくは部分的に記憶機能を有する立体を意味する。すなわち記憶体は、記憶機能を有する材料単体から成る立体の場合もあれば、記憶機能を有する材料の層と記憶機能を有しない材料の層の積層から成る立体を示す場合もある。記憶体の一例として、強誘電体と常誘電体の2層から成る立体が挙げられる。
本発明の実施の形態は、図1a、1b、1cに示すような断面構造を有する半導体記憶素子である。すなわち、半導体基板1の上に記憶体2と導体3を重ねた積層構造を有し、前記記憶体2の底面12は半導体基板1に接し、前記記憶体2の上面10は導体3に接し、前記記憶体2の側面11は隔壁4に接して囲まれた半導体記憶素子である。導体3と半導体をゲート電極と基板電極として用いる。記憶体2が積層から成る場合は、記憶体2のうち少なくとも導体3と接する部分は導体ではなく、また、記憶体2のうち少なくとも半導体と接する部分は半導体ではない。
本発明にかかる半導体記憶素子は、その形状に3つの特徴を持つ。3つの特徴とはすなわち、(1)前記記憶体の底面12の幅が100nm以下であること、(2)前記記憶体2の上面10と底面12の間の最も短い距離は前記底面12の幅の2倍以上であること、(3)前記記憶体2の側面11の幅は底面12よりも上のいずれの位置でも底面12の幅と同じで一定か、もしくは、底面12以外の底面12よりも上の位置で最も広いこと、である。
前記記憶体2の側面11は、図1aのように平らであることもあるが、図1bのように波面であることもあり、また、図1cのように緩い曲面であることもある。また、前記記憶体2は図1a、1bのように密に詰まっていることもあるが、図1cのように中に空孔を含むこともある。
前記記憶体2のうち隔壁4に囲まれていない部分は、図1a、1b、1c、2のように、隔壁4の外側にもはみ出て存在することもあるが、図3のようにすべて除去されることもあり、あるいは、図4のように導体3の真下だけを残して除去されることもある。図3のような形状は、例えば、記憶体2の上面10を隔壁4の上面の高さと同じになるまで切削もしくは研磨した後で導体3を形成することによって実現される。また、図4のような形状は、例えば、導体3を記憶体2の上に成膜した後でリソグラフィとエッチングによって成形し、同時に記憶体2も自己整合的に成形することによって実現される。
図1a、1b、1c、2、3、4、に例示した本発明の実施の形態では、いずれの場合でも、前記記憶体2の側面11の幅は底面12よりも上のいずれの位置でも底面12の幅と同じで一定か、もしくは、底面12以外の底面12よりも上の位置で最も広い。この断面形状は高アスペクトな溝を先に用意しその溝の中に記憶体2を埋め込む製造方法に特有である。本発明とは異なる方法、例えば、記憶体2を高アスペクトに直接エッチングする成形方法では、記憶体2の側面の幅は、半導体基板1に接する底面12で最も広く、導体3側に向かって上に行くほど狭くなる点で、本発明とは異なる。
本発明の実施の一形態である半導体記憶素子は、その隔壁が2層以上の積層であることもある。例えば隔壁が2層の場合を図5に示す。半導体基板および記憶体に直接的に接する隔壁aは、より外側に位置する隔壁bとはエッチング速度が異なる。隔壁aを隔壁bよりもエッチング速度の速い材料としたい場合には、例えば、隔壁aとしてシリコン酸化物を用い、隔壁bとしてシリコン窒化物、チタン、チタン酸化物、チタン窒化物、アルミ酸化物、アルミ窒化物などを用い、エッチングは隔壁aのシリコン酸化物を選択的に速くエッチングする条件で行う。例えば、CF4などのフッ素系ガスをプロセスガスとして用いた反応性イオンエッチング(RIE)がこれに相当する。
本発明の実施の一形態はまた、例えば図6のような強誘電体ゲートトランジスタ(FeFET)であることもある。隔壁は図1のような単層であることもあるが、図2で示したように2層以上であることもある。図6では3層である。エッチング速度の異なる2つ以上の材料の積層を隔壁に用いると、エッチングによって深溝の開口部が上に向かうほど開くような傾斜をつけることができる。
図6(a)は、金属-強誘電体-絶縁体-半導体のMFIS構造と呼ばれる積層構造を持つFeFETである。そのソースおよびドレイン領域は緩衝(バッファ)絶縁体の形状をもとにして、イオン注入法などによって自己整合的に半導体基板上に形成されている。図6のFeFETのチャネル長、すなわちソース領域とドレイン領域間の距離(L)は、バッファ絶縁体の下底の長さに等しくなる。また図6のFeFETの強誘電体の実効的な厚さ(H)は緩衝絶縁体上面から導体下面までの距離である。従って、本発明の実施の一形態であるFeFETの強誘電体の実効的な厚さ(H)は深溝の深さに依存し、強誘電体の管理膜厚(d)に因らない。ここで管理膜厚とは凹凸のない水平面上に成膜した場合の膜厚をさす。FeFETの本番試料と同時もしくは直前か直後に、凹凸のない水平面、例えばパターンのないシリコン結晶基板の上に膜厚モニターとして同条件で成膜する。その膜厚をエリプソメーター等の非破壊測定法や断面SEM像観察等の破壊測定法で測定することで、本番試料を破壊することなく本番試料の上に成膜された正確な膜厚を知ることができる。このような水平面上の膜厚の把握は比較的容易である。それと垂直な方向例えば深溝の内壁への成膜速度は水平面上よりも一般的に遅い。
本発明の実施の一形態であるFeFETを作製する前には、予定している成膜方法と成膜条件を用いた試験成膜を行うことによって、強誘電体の水平面上での成膜速度V(nm/sec)、深溝の内壁への成膜速度V(nm/sec)、の2つの情報と、深溝の幅L(nm)をあらかじめ把握しておくとよい。VとVの関係を例えばV=k×Vと表現する。深溝の内壁への成膜速度は水平面上よりも一般的に遅いため、0<k≦1である。深溝に強誘電体の薄膜を隙間なく埋め込むのに要する成膜時間t(sec)とすると、2×V×t ≧ L、すなわち、2×k×V×t ≧ L、の関係が成り立つ。強誘電体に限らず他材料であっても、これらの関係式は成り立つ。言い換えると、深溝に強誘電体の薄膜を隙間なく埋め込むための成膜時間t(sec)はt ≧ L/(2×k×Va)で、その際に膜厚モニター試料を用いて確認できる水平面での管理膜厚dは、d=V×t≧L/(2×k)である。
本発明の実施の一形態である半導体記憶素子では、深溝の中に埋め込む記憶体を有機金属気相成長(MOCVD)法により成膜することもある。MOCVD法は段差被覆性が良い特徴を持つ。例えば図3のFeFETの製造工程では、強誘電体材料をMOCVD法によって適切な成膜条件で成膜することで、深溝の内壁面および水平面の上への成膜速度の比、すなわち前記のk=Vb/Vの値を1に近づけることが可能である。高アスペクトな深溝に効率よく記憶体を埋め込むためには、kがより大きく、1に近いほど良い。例えば、L=80nmの深溝の中に強誘電体を埋め込む場合、k=1ならばdは最低40nmあれば深溝の底面まで強誘電体の薄膜を隙間なく埋め込むことができる。
本発明にかかるFeFETすなわち埋め込み型のFeFETでは、メモリウィンドウを広く確保するためには強誘電体の実効的な膜厚を大きくすればよく、これは埋め込む溝を深く設計することによって実現され、チャネル長Lには依存しない。図6(b)(c)(d)に実験結果の一例を挙げる。これらはHの異なるFeFETの各々の断面SEM写真とその概略図およびドレイン電流-ゲート電圧(Id-Vg)特性の実測データを示している。断面SEM写真から判断すると、(b)H=370nm(c)H=420nm(d)H=540nmであった。図6(b)(c)(d)に例示した3つのFeFETに共通して、Lは約100nmであった。またこれらのFeFETに共通して、ゲート積層構造のMFISはこの順にIr、Ca-Sr-Bi-Ta-O酸化物のCSBT強誘電体、HfO2絶縁体、Si半導体、であった。これらのCSBTはMOCVD法により成膜された。またこれらのFeFETに共通して、ソース・ドレインはP+のイオン注入により、突起状構造体に自己整合的にSi半導体基板上に形成され、加速エネルギーは5keV, ドーズは5E12であった。またこれらのFeFETに共通して、Irの上部電極をエッチングにより形成した後で約800℃,30分間の多結晶化アニールを酸素と窒素の混合ガス中で行った。図6(b)のFeFETは、図6(c)(d)のFeFETよりもやや高い温度でアニールされた。図6(b)(c)(d)に例示した3つのFeFETについて、Vgを±4Vの範囲で掃引しながらIdを測定してId-Vg曲線を調べた。Id=1.0E-9(A/μm)を示すVgをVthと判定し、Id-Vg曲線上の左右2つのVthの差をメモリウィンドウと定義した。その結果、各メモリウィンドウは図6(b)0.6 V(c)0.8 V(d)1.1
Vだった。すなわち、FeFETのHが大きいほどメモリウィンドウは広くなる傾向が確かに見られた。なお、ゲート幅(W)は図6(b)(c)(d)のFeFETの順に80μm、200μm、200μmであった。メモリウィンドウはゲート幅の大きさには依存しない。
本発明の実施の一形態である半導体記憶素子では、FeFETのメモリウィンドウを広く確保する目的でC/Cを出来るだけ小さくするために、Cを大きくする。FeFETの動作中の不用意なチャージ注入やリーク電流を避けてFeFETの性能を維持するためには、緩衝絶縁体の物理膜厚を極端に薄くすることは有益でない。従って、Cを大きくするためには、緩衝絶縁体に印加される電圧の割合を出来るだけ小さくする。この目的のためには、比誘電率εIの高い高誘電体(high-k)材料を緩衝絶縁体に用いることが有効である。緩衝絶縁体は強誘電体の多結晶化を目的とした高温焼成の際に引き起こされる、強誘電体と半導体の間の元素の相互拡散を防止する役割を持つ。この点において、例えば、SrBi2Ta2O9やCaxSr1-xBi2Ta2O9などのビスマス層状ペロブスカイト型強誘電体と共にFeFETに用いる緩衝絶縁体として好適なhigh-k材料は、HfO2や(HfO2)y(Al2O3)1-yなどである。
本発明の実施の一形態である半導体記憶素子は、エッチングによって成型された緩衝絶縁体と、それに自己整合的な位置関係にあるソースおよびドレイン領域を持つ半導体基板と、同じく緩衝絶縁体に自己整合的な位置関係にある隔壁の中の深溝が先に作製され、その後深溝の中に有機金属気相成長法によって強誘電体が埋め込まれたFeFETである。導体を強誘電体の上に成膜し、ゲート電極形状にエッチングで成形する。導体を成形する際には、図7のように、同時に自己整合的に強誘電体もエッチングすることもある。また導体および強誘電体の上部は化学機械研磨(CMP)法などの表面平坦化法によって自己整合的に成形されることもある。以上のように強誘電体による隣接素子間の連結を断つ結果、図8のように複数のFeFETを高密度に集積した場合であっても、隣接FeFET間で隣のFeFETに誤ってデータを書き込む等の誤動作を防げる。
本発明の実施の一形態である深溝の製造方法の例を概略図(図9)で説明する。
基板を用意し(手順1)、この上に幅が100nm以下の突起状構造体を形成し(手順2)、これを隔壁で覆う(手順3)。突起状構造体の上部が露出するまで上から切削(手順4)した後、突起状構造体を除去する(手順5)。
図10は、ある基板上に形成した突起状構造体の断面SEM写真であり手順2に相当する一例である。突起状構造体の幅は82nm、高さは525nmである。基板は積層であることもある。図11は、3層の積層から成る基板上に幅69.5nm、高さ481nmの突起状構造体を形成した物の断面SEM写真である。図12は突起状構造体を隔壁で覆った物の断面SEM写真で、手順3に相当する一例である。図13は、突起状構造体を隔壁で覆った後突起状構造体の上部が露出するまで上から切削した物の断面SEM写真で、手順4に相当する一例である。図14は、突起状構造体を隔壁で覆った後突起状構造体の上部が露出するまで上から切削し、突起状構造体を途中まで除去したところの断面SEM写真で、手順5の途中段階に相当する一例である。図15は、手順5の完了後に相当する一例である断面SEM写真である。
図10から14まで写真にみられる突起状構造体は炭素を含む有機物であり、図14、15で突起状構造体を除去した方法は酸素プラズマエッチングである。隔壁はシリコン酸化物である。いずれの図においても、左側は写真の原図であり、右側は被写体の構造を説明する概略図である。
本発明の実施の一形態である深溝を高密度に集積した場合の製造方法の例を概略図(図16)で説明する。基板を用意し(手順1)、この上に幅が100nm以下の突起状構造体を形成し(手順2)、これを隔壁で覆う(手順3)。突起状構造体の上部が露出するまで上から表面平坦化の研磨を行う(手順4)。その後、突起状構造体を除去する(手順5)。
本発明では、突起状構造体が積層からなることもある。突起型構造体の最下層を除く他の層を選択的に除去する場合で、かつ、単一の深溝の製造方法の概略図を図17に、高密度に集積した深溝の製造方法の概略図を図18に、各々示した。
本発明ではまた、基板が積層からなることもある。基板の最上層を突起型構造体と自己整合的にエッチングした場合で、かつ、単一の深溝の製造方法の概略図を図19に、高密度に集積した深溝の製造方法の概略図を図20に、各々示した。
本発明の実施の一形態である深溝の製造方法では、隔壁が積層であることもある。例えば図21のように、外側の隔壁bの材料として、内側の隔壁aよりもエッチング速度の遅い材料を選択した場合、適切な条件で上から同時にエッチングすると、隔壁aの減少が隔壁bよりも速いため、深溝の上部の開口が底部よりも広くなる。基板もしくは突起状構造体が積層である場合には、図22のように深溝の底部にこれらの一部を意図的に残すこともある。
図23に、積層の隔壁を用いて深溝の上部の開口を広げた製造工程の途中の断面SEM写真を示す。左側は写真の原図であり、右側は被写体の構造を説明する概略図である。図23ではまだ有機物の突起状構造体を除去する前の段階である。図23の積層の隔壁は、隔壁aがシリコン酸化物、隔壁bがアルミ酸化物である。適切なエッチング条件を選択することにより、深溝の開口部に基板から上に向かうほど広くなるような傾斜をつけることもある。例えば図23のように、適切なエッチング条件によれば、深溝の上部の開口は逆三角形の形状まで広げることも可能である。同様に隔壁を積層とし、高密度に集積した深溝の製造方法の概略図を図24に示した。
本発明の実施の一形態は、前述の製造方法で形成された深溝に機能性材料を埋め込んだ電子デバイスである。深溝に埋め込む物質は特に限定されない。例えば、強誘電体材料や磁性体材料、電荷捕獲材料などの記憶体を埋め込んだ記憶素子が挙げられる。また、導体を埋め込んだ電気配線が挙げられる。また、光透過材料を埋め込んだ光配線が挙げられる。いずれの場合でも、本発明によれば、埋め込む物質は直接エッチングされることがないためエッチンダメージを受けるリスクが抑えられる。また、難エッチング材料であっても幅100nm以下で実効的な高さが幅の2倍を超える高アスペクト形状に容易に成形できるため、材料に由来するエッチング加工精度に因らずに基板内で高集積化することが可能である。深溝に上記の各種材料を埋め込む方法は、段差被覆性に優れるCVDやMOCVD法が有効である。
本発明の一形態である埋め込み型の強誘電体ゲート電界効果トランジスタ(FeFET)の製造方法について詳細に説明する。図25に単素子の製造工程の一例を示した。まず(1)表面をフッ酸処理したシリコン半導体基板を用意する。
次に(2)ハフニウム酸化物を含む高誘電体をバッファ絶縁体として製膜する。
次に(3)電子線描画等のリソグラフィで、深溝の原型となる有機物のレジストのパターンをバッファ絶縁体上に立てる。パターンの線幅は100nm以下で、高さはその2倍以上である。
次に(4)深溝の原型となるパターンをマスクにしてバッファ絶縁体をエッチングし基板表面を露出させる。
次に(5)深溝の原型となるパターンとバッファ絶縁体に対して自己整合的に、基板表面にイオン注入する。注入されたイオンは後述の活性化アニールを経て、FeFETのソースとドレインを形成する。注入条件は、例えば基板がp型であれば、基板を局所的にn型化するイオンを浅く注入するとよい。例えば一価のリン(P+)を加速エネルギー5keV、ドーズ量5×1012/cmの条件でイオン注入することもある。
次に(6)深溝の原型となるパターンを覆うように、隔壁となる絶縁体を成膜する。この絶縁体はシリコン酸化物、シリコン窒化物、アルミ酸化物、ハフニウム酸化物等の材料を用いた積層から成り、2層のこともあり、あるいは3層以上のこともある。成膜の順番すなわち積層の順番はすべての組み合わせがあり得る。例えば2層の場合は、先にシリコン酸化物次にシリコン窒化物のこともあればその逆のこともあるし、先にハフニウム酸化物次にシリコン酸化物のこともあればその逆のこともある。
(7)全体を上からエッチングする。エッチングしたくない領域はあらかじめ保護膜で覆っておく。エッチング時間は、深溝の原型となるパターンの上部が露出するまでの時間になるように調整する。好適なエッチング条件は、隔壁に用いた材料の主要な部分の選択的エッチングに適したプロセスガスを用いて垂直方向の異方性が強まるような条件である。例えば、隔壁が主にシリコン酸化物から成る場合には、プロセスガスにアルゴンとCFを用いて、アンテナRFとバイアスRFが各々250W、300Wの誘導結合プラズマ型反応性イオンエッチング(ICP-RIE)を用いるとよい。
次にオプションとして必要に応じて、(8)溝の上部の開口部を広げるためのエッチングを行うこともある。エッチングしたくない領域を保護膜で覆った後で、隔壁を成す積層のうち内側を外側よりも選択的にRIE等でエッチングする条件か、もしくは基板に対して斜め上方向からアルゴンイオンミリング等で異方的にエッチングする条件を用いるとよい。
次に、(9)露出している深溝の原型となるパターンを、隔壁およびバッファ絶縁体に対して選択的に除去し深溝を形成する。深溝の原型となるパターンがレジストの場合は酸素プラズマエッチングで除去するとよい。
次に(10)強誘電体を深溝の上から成膜する。強誘電体を成膜する前に、本製造工程の初期で基板表面に注入されたイオンを活性化するためのアニールを行いFeFETのソースとドレインを形成することもある。強誘電体の成膜条件は、段差被覆性の良い成膜方法、例えば有機金属気相成長法や原子層堆積法などで成膜する。強誘電体材料は、この例のようにバッファ絶縁体がハフニウム酸化物を含む高誘電体である場合には、SrBi2Ta2O9やCaxSr1-xBi2Ta2O9などのビスマス層状ペロブスカイト型強誘電体を用いる。
次に(11)導体を成膜する。導体の成膜よりも前もしくは成膜よりも後で強誘電体の多結晶化を目的とした高温アニールを行う。強誘電体にSrBi2Ta2O9やCaxSr1-xBi2Ta2O9などのビスマス層状ペロブスカイト型強誘電体を用いる場合には、多結晶化のためのアニール温度は約700℃から800℃の間の高温であることが多い。強誘電体多結晶化アニールは、本製造工程の初期で基板表面に注入されたイオンを活性化するためのアニールが未だ為されていない場合には、これを兼ねることもある。強誘電体多結晶化アニールは、導体を成膜しゲート形状に成形した後に行うこともあるが、導体の成膜前に行うこともある。アニールを導体の成膜後に行う場合は、導体には高温耐性が求められる。高温耐性を有する導体材料としてプラチナやイリジウムなどの貴金属を用いることが多い。また、原子層堆積法などの適切な成膜方法によればチタンやタンタルの窒化物も高温耐性を有することもある。一方、アニールを導体の成膜前に行う場合は、導体には高温耐性が求められないため、プラチナやイリジウム以外の廉価な導体材料にも選択肢が広がる。廉価な導体材料とは例えば、アルミ、チタン、ハフニウム、タンタル、シリコン、あるいはそれらの窒化物や化合物のうち導電性を持つものが挙げられる。
(12)導体上には、FeFETのゲートの形状にレジストパターンをリソグラフィで形成する。
(13)レジストパターンを型にして導体のみ、もしくは導体と強誘電体の両方をエッチングする。この目的のためのレジストパターンの位置は、基板上でのその射影像が、本製造工程の初期に深溝の原型として使ったパターンの射影像を覆う位置である。必然的に、FeFETのゲートは基板上のチャネル領域を覆う。
(14)最後にレジストを除去し、ソース、ドレイン、基板、ゲートへのコンタクトホールの形成を適宜行う。図25の製造方法を用いて、金属-強誘電体-絶縁体-半導体のいわゆるMFIS構造から成るFeFETを製造できる。本発明によれば、FeFETのチャネル長は工程(3)の深溝の原型となるパターンの幅で決定され、FeFETの実効的な厚さは工程(9)の深溝の深さで決定されるため、FeFETの基板面内での微細化と大きなメモリウィンドウの確保を両立することができる。
上記工程(1)から(14)に例示した材料のうち、工程(3)でバッファ絶縁体上に立てる深溝の原型となるパターンの材料を有機物のレジストではなく無機物のポリシリコンなどの耐熱性の材料に変更することで、工程(3)以降でより高いプロセス温度を利用することができるようになる。このことは工程(6)で隔壁となる絶縁体を成膜する際により高い成膜温度の利用を可能にし、その結果、隔壁となる絶縁体の質の向上が期待できる。
図26に、FeFETを同一の基板上に高集積化する場合の製造工程の一例を示す。図25で一例を示したFeFET単素子の製造工程と本質的には同様であるが、図25の(7)に相当する工程、すなわち、深溝の原型となるパターンの上部が露出するまで切削する工程では、図26に示したように化学機械研磨(CMP)法で表面を平坦化することもある。また、図25の(12)から(14)に相当する工程、すなわち、導体をゲートの形状に加工する工程では、加工方法にCMP法を採用すると、深溝の開口部に埋め込まれた導体が自己整合的にFeFETのチャネル領域の真上の位置に合うため、マスク枚数の削減につながり好ましい。
本発明の一形態である電子回路は、幅の異なる溝の中に記憶機能を有する材料を同時に成膜して得られた2個以上の素子で構成され、溝の幅を変えることで溝の内部に充填される記憶機能を有する材料の基板からの高さを制御し、各素子の記憶機能の強さを可変にすることを特徴とする電子回路である。本発明により記憶素子と非記憶素子を容易に混載することができる。
本発明にかかる電子回路の製造方法を図27を用いて説明する。図25および図26に一例を示したFeFETの製造工程と本質的には同様であるが、図25の(3)に相当する工程、すなわち、バッファ絶縁体上にリソグラフィでレジストをパタニングする工程で、溝の原型となるパターンは幅の広いものと狭いものの複数種類を形成する。その結果、同一基板上に複数の幅の異なる溝が形成される。この基板上に記憶機能を有する材料を適切な管理膜厚で同時に成膜する。幅の狭いパターンを原型とする溝には、その容積の多くの割合を記憶機能を有する材料が占めることで、最終的に記憶機能を有する材料の実効的な高さが大きくなる。
一方、幅の広いパターンを原型とする溝では、その底面と側面のみを記憶機能を有する材料が覆い、最終的に記憶機能を有する材料の実効的な高さが小さくなる。記憶機能を有する材料の例として強誘電体を用い、本発明を用いてFeFETを製造すると、幅の狭い溝から製造されたFeFETの強誘電体は実効的に厚いため、FeFETのメモリウィンドウは大きく、FeFETは不揮発記憶機能を強く発現する。
また、幅の広い溝から製造されたFeFETの強誘電体は実効的に薄いため、FeFETのメモリウィンドウは小さく、FeFETの不揮発記憶機能は弱くなる。FeFETでは、強誘電体の膜厚が減るにつれてメモリウィンドウが減少し、素子の記憶機能が低下することはすでに知られている(特許文献1)。幅の広いパターンを原型とする溝の上から成膜した強誘電体が溝の底面と側面のみを覆う実例として、図28の左側に断面SEM写真を右側に被写体の説明を示した。
本発明の別の一形態であるFeFETの製造方法について図29を用いて説明する。
<手順1>半導体基板の表面にバッファ絶縁体を成膜し、その上に有機物の突起型構造体を形成する。突起状構造体をマスクにしてバッファ絶縁体をエッチングしたあと、突起状構造体とバッファ絶縁体をマスクにして自己整合的に、半導体基板上にソースとドレインのためのイオン注入を行う。基板上でソースとドレインの間の距離はチャネル長(L)である。
<手順2>突起状構造体を隔壁で覆う。
<手順3>全体を上からエッチングする。このとき、隔壁の高さは、突起状構造体の中心のから左右に距離Lだけ離れた位置における隔壁の高さH1よりも、突起状構造体の側面に接する隔壁の高さH2のほうが、より低くなるまでエッチングする。
<手順4>突起状構造体を酸素プラズマで選択的にエッチングし、浅い溝を形成する。
<手順5>溝の上から強誘電体を成膜する。
<手順6>強誘電体の上から導体を成膜する。
<手順7>導体をリソグラフィとエッチングで溝の真上にゲート形状に成形する。
本発明では、溝の型となる突起型構造体の幅を100nm以下にすることで、チャネル長が100nm以下のFeFETを、強誘電体のエッチングに依ることなく製造できる。隔壁を、強誘電体およびバッファ絶縁体よりも低誘電率な材料で製造することにより、FeFETのゲート-基板間の静電容量をチャネル領域で有効に高めることができる。ゲート - ソース・ドレイン間オーバーラップ領域でのゲート-基板間の静電容量はチャネル領域でのそれよりも小さくなる。隔壁が厚いほどこの傾向は強まる。
本発明により製造されたFeFETは、強誘電体を埋め込む溝が浅いため、回転塗布による金属有機化合物分解法(MOD)やスパッタ等の物理成膜法などの段差被覆性が必ずしも高くない成膜方法によっても強誘電体を成膜することができる。本発明にかかる浅い溝に埋め込む強誘電体の比誘電率は100よりも小さい材料が望ましい。
以上のように、本発明によれば、難エッチング材料である強誘電体材料をエッチングすること無しに、チャネル長100nm以下で強誘電体の実効的な厚さ(H)がその2倍以上の高アスペクトな強誘電体ゲートトランジスタ(FeFET)のゲート積層構造を製造することが出来る。しかしFeFETを強誘電体層のエッチング無しに製造出来るという利点を生かすためには、FeFETを集積して回路化する場合にも回路製造上の工夫が必要である。すなわち、強誘電体層のエッチングを要するコンタクトホール形成の頻度を下げるような回路レイアウトの工夫が必要である。
FeFETを集積して回路化する好適な例としてNAND型フラッシュメモリアレイおよびNOR型フラッシュメモリアレイが挙げられる。これらのフラッシュメモリを強誘電体NANDおよび強誘電体NORと称する。強誘電体NANDおよび強誘電体NORのいずれのメモリアレイにおいても、1個のメモリセルが1個のFeFETである。半導体プロセスの世代に特徴的な最小加工寸法をFとすると、強誘電体NANDは1メモリセルの占有面積を4F2まで縮小し集積度が高いかわりにメモリセルへのアクセス方法をルールで制約するという特徴を持つ。強誘電体NORではメモリセルへのランダムアクセスを可能にするかわりに1メモリセルの占有面積を4F2よりも緩めて集積度を下げることを甘受するという特徴を持つ。強誘電体NANDは、その高集積性によって、コンタクトホール形成の頻度は既に従来から最低限に抑えられている。一方で強誘電体NORは、従来のメモリセルのレイアウトのままではソースもしくはドレイン端子用コンタクトホール形成の頻度が高いため、埋め込み型のFeFETのゲート積層構造が強誘電体エッチングレスで製造できるという利点を十分に生かせなかった。
本発明は、メモリセルへのランダムアクセスが可能で、かつ、コンタクトホール形成の頻度が少ない強誘電体NORのメモリセルアレイを提供する。本発明に係る強誘電体NORのメモリセルアレイは、半導体基板上に形成する活性領域の形状に特徴を有する。図30に1メモリセルの占有面積が8F2の場合(図30(a)のA)および6F2の場合(図30(b)のA)の強誘電体NORの半導体基板上の活性領域の形状を例示する。これらの活性領域は梯子に似た形状を特徴とする。この形状を採用することで、共通の電位を与えたいドレイン領域同士をコンタクトホールを介さずに短絡することができる。同様に、共通の電位を与えたいソース領域同士を、コンタクトホールを介さずに短絡することができる。本発明に係る強誘電体NORのメモリセルアレイは、メモリセルのFeFETの形状および製造方法を限定しない。すなわち、本発明に係る強誘電体NORのメモリセルアレイを構成するメモリセルは埋め込み型のFeFETであってもよいし、プレーナー型のFeFETであってもよい。
1個のメモリセルが埋め込み型のnチャネル型FeFETである場合を例にとり、1メモリセルの占有面積が8F2の場合(図30(a))および6F2の場合(図30(b))について、強誘電体NORのメモリセルアレイの製造工程の概略を工程AからFに例示する。メモリセルであるFeFETは、図30(a)図30(b)の工程Cの図では埋め込み型の場合を表現しているが、前述のように、プレーナー型であってもよい。
強誘電体NORのメモリセルアレイの等価回路を1メモリセルの占有面積が8F2の場合(図31(a))および6F2の場合(図31(b))について示す。ひとつのメモリセルアレイを共有するメモリセルの基板端子同士は互いに同電位で、これをウェル電位と称する。ウェルは、例えば、図30(a)図30(b)の工程Aに見られるような梯子上の活性領域とその輪郭を成す素子分離領域を形成する前に、メモリセルアレイとなるべき領域にp型の深いイオン注入を行うことにより形成される。メモリセルに共通のp型のウェルを面内2次元的にも深さ方向にも取り囲むような形状になるように、あらかじめn型のウェルを深くかつ広く形成しておくこともある。
本発明に係る強誘電体NORを動作させるための電圧印加条件の例を、1メモリセルの占有面積が8F2の場合(図32(a))および6F2の場合(図32(b))について示す。図32の例では、メモリセルはnチャネル型のFeFETである。メモリセルは埋め込み型のFeFETであってもよいし、プレーナー型のFeFETであってもよい。nチャネル型のFeFETのId-Vg特性を測定すると、反時計回りの向きにId-Vgヒステリシス曲線を描く。すなわち大まかに言うと、基板端子に対してゲート端子に負の電圧パルスを与えるとFeFETのしきい値(Vth)は高くなり、基板端子に対してゲート端子に正の電圧パルスを与えるとFeFETのVthは低くなる。一方、フローティングゲート型やMONOS型などの電子捕獲型のフラッシュメモリセルは、FeFETとは向きが反対のId-Vg曲線を示す。例えばnチャネル型の電子捕獲型のフラッシュメモリセルのId-Vg特性を測定すると、時計回りの向きにId-Vgヒステリシス曲線を描く。
強誘電体NORのメモリセルアレイの動作を図32の例を用いて説明する。すべての動作条件を網羅するのに、a,b,c,dの4個のメモリセルがあれば足りる。まず、強誘電体NORのメモリセルアレイを一括消去する。一括消去の動作では、メモリセルであるnチャネル型のFeFETのゲート端子に対して、基板端子すなわちnウェルに正の電圧パルスを与える。これは基板端子に対してゲート端子に負の電圧パルスを与えることと、相対的に同じである。従って、一括消去によって、メモリセルa,b,c,dのVthは高い側に揃う。次に、強誘電体NORのメモリセルアレイにランダムに書き込む。このランダム書込みの動作では、書込むべく選択したメモリセルaの基板端子すなわちnウェルに対して、ゲート端子に正の電圧パルスを与え、メモリセルaのVthを低い側に動かす。
選択メモリセルaに書き込む際には、非選択メモリセルb,c,dのVthはその時の高低に依らず変化の少ないことが求められる。すなわち、強誘電体NORのメモリセルアレイには書き込みディスターブ耐性が求められる。また、選択メモリセルaを読み出す際には、選択メモリセルaのVthが読み出し動作の繰り返しによっても変化の少ないこと、および非選択メモリセルb,c,dのVthはその時の高低に依らず変化の少ないことが求められる。すなわち、強誘電体NORのメモリセルアレイには読み出しディスターブ耐性が求められる。
本発明に係る強誘電体NORは、1メモリセルの占有面積が8F2の場合(図30(a))に、6F2の場合(図30(b))よりも書込みディスターブ耐性が高いという特徴を持つ。以下にこれを説明する。1メモリセルの占有面積が8F2の場合(図33(a))および6F2の場合(図33(b))を想定し、強誘電体NORの書き込みディスターブ耐性を最も厳しい2条件に対して調べた。すなわち、選択メモリセルaに書き込む際に、非選択メモリセルbが消去状態であってその消去状態を維持できるかどうか、かつ、非選択メモリセルdが書込み状態であってその書込み状態を維持できるかどうかを調べた。具体的には、消去条件:Ve1=Ve2=5.7 Vで一括消去後、書き込み条件:Vw1=7.2 Vでランダムにメモリセルを選択して書込む過程で、
非選択メモリセルb、dに隣接する選択メモリセルaに書き込んでいる状況を想定した。このとき、非選択メモリセルbは消去後に非選択となり、非選択メモリセルdは書込み後に非選択となったものと想定した。これらのメモリセルb、dに対して、書き込みディスターブの最も厳しい2条件に相当する電圧条件を与えて、その後読み出し動作を行うことによりVthを測定した。
メモリセルとして、ゲートエリアサイズがL=10μm、W=150μmのプレーナー型のFeFET一個を用意した。ゲート積層構造はIr / CSBT / HfO2/Siである。 CSBTの膜厚は約400nmである。図32(a)(b)の表記を用いると、消去条件はVe1=Ve2=5.7 V、書き込み条件はVw1=7.2 V、読み出し条件はVr1=1.6 V, Vr2=0.1Vで、Id=1.5E-6Aを示すVgをVthと判定した。書き込み電圧パルスの幅は10μsで、消去電圧パルスの幅はそれよりも十分長く1msとした。
1メモリセルの占有面積が8F 2 の場合(図33(a))
メモリセルbの状態はVe1=Ve2=5.7
Vで消去された状態で、Vthの初期値はVth=1.52Vであった。メモリセルdの状態はVw1=7.2 Vで書込まれた状態で、Vthの初期値はVth=0.46Vであった。これらのメモリセルbとdの書き込みもしくは消去状態を維持したまま、近接するメモリセルaにのみ書込む場合を想定した。具体的には、Vw1=7.2 VとVw2(変数)を印加し、その都度、メモリセルbとdのVthを読み出した。Vw2(変数)は0Vから7.2Vまで変化させた。
その結果、図33(a)に見られるように、Vw2=4.8 VのときにメモリセルbとメモリセルdのVthの差は、0V≦Vw2≦7.2Vの範囲で最大のΔVth =0.96Vとなった。Vw2=4.8 Vのとき、メモリセルbのVth=1.46V、メモリセルdのVth=0.50V、を各々読み出した。
1メモリセルの占有面積が6F 2 の場合(図33(b))
メモリセルbの状態はVe1=Ve2=5.7
Vで消去された状態で、Vthの初期値はVth=1.49Vであった。メモリセルdの状態はVw1=7.2 Vで書込まれた状態で、Vthの初期値はVth=0.47Vであった。これらのメモリセルbとdの書き込みもしくは消去状態を維持したまま、近接するメモリセルaにのみ書込む場合を想定した。具体的には、Vw1=7.2 VとVw2(変数)を印加し、その都度、メモリセルbとdのVthを読み出した。Vw2(変数)は0Vから7.2Vまで変化させた。
その結果、図33(b)に見られるように、Vw2=7.2VのときにメモリセルbとメモリセルdのVthの差は、0V≦Vw2≦7.2Vの範囲で最大のΔVth =0.70Vとなった。Vw2=7.2 Vのとき、メモリセルbのVth=1.22V、メモリセルdのVth=0.52V、を各々読み出した。
上記の結果から、1メモリセルの占有面積が8F2の場合は1メモリセルの占有面積が6F2の場合よりも、メモリセルbとメモリセルdのVthの差が大きくなるようなVw2を選ぶことが出来るから、書込みディスターブ耐性がより高く優れていると言える。
また、本発明によれば、難エッチング材料である強誘電体材料をエッチングすること無しに、チャネル長100nm以下で強誘電体の実効的な厚さ(H)がその2倍以上の高アスペクトな強誘電体ゲートトランジスタ(FeFET)のゲート積層構造を製造することが出来る。この利点を生かし、FeFETをメモリセルとしてこれを3次元的に集積したメモリセルアレイを製造することが出来る。図34に強誘電体NORメモリセルアレイの製造方法の一例を、図35に強誘電体NANDメモリセルアレイの製造方法の一例をそれぞれ示す。本発明に係る3次元的メモリセルアレイの製造工程では、半導体を成膜により形成すること以外は前述のメモリセル単体の製造工程の例と基本的には同じであるため再度の詳細な記載を割愛する。成膜により形成される半導体とは、例えば、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、スズ(Sn)の各単体酸化物やこれらの複合酸化物を基体とする酸化物半導体の他に、ポリシリコンなど、製造方法が単結晶バルク成長ではなく膜の堆積であるような半導体を指す。
強誘電体NORメモリセルアレイ(図34)、強誘電体NANDメモリセルアレイ(図35)ともに、メモリセルを面内には2行2列以上で規則的に配列し、高さ方向には2階以上の階層に積み重ねたメモリセルアレイである。それらは、高さ方向において、最隣接する階層が互いに対を組み、各対の中では共有するゲート端子を挟んで上下に鏡像反転の位置関係を持ってメモリセルを積み重ねることを特徴としている。1階層あたり面内に、図34では6Fの、図35では4Fの高集積性を有し、それらがn階の多数階層に積み重なることで、本発明によればビットコストの低いメモリセルアレイを提供できる。

Claims (22)

  1. 半導体と記憶体と導体を重ねた積層構造を有し、前記記憶体は互いに区別し得る安定な状態を2つ以上有し同時には前記状態の1つを選択する物体であって、
    前記記憶体の向かい合う二面のうち一面は前記半導体に接し、もう一面は前記導体に接し、前記記憶体の側面は前記二面とは平行せず、前記記憶体の側面は隔壁に接して囲まれ、前記記憶体の、前記半導体と平行な方向の断面は、前記半導体と接する面で最も面積が狭く、前記半導体から離れるほど面積は同じかもしくは広くなり、前記断面の最小幅は100nm以下であって、前記導体と前記半導体の間の最も短い距離は、前記断面の最小幅の2倍以上であることを特徴とする半導体記憶素子。
  2. 前記隔壁は、エッチング速度の異なる2つ以上の材料の積層から成ることを特徴とする請求項1に記載の半導体記憶素子。
  3. 前記記憶体は緩衝絶縁体と強誘電体の積層から成り、前記強誘電体は前記半導体と直接には接触せず、前記緩衝絶縁体は前記隔壁よりも比誘電率が高い誘電体であることを特徴とする請求項1又は2に記載の半導体記憶素子。
  4. ゲート、ソース、ドレイン、基板の4端子を備えたトランジスタであって、ゲート端子は前記導体に接続され、前記ゲート端子と基板端子との間に印加される電圧は前記記憶体と前記半導体から成る積層に印加される電圧と等しく、ソース端子はソース領域に接続され、ドレイン端子はドレイン領域に接続され、前記ソース領域および前記ドレイン領域は、互いに重複しない前記半導体の一部であって、前記記憶体が前記半導体と接する面を間に挟み境界を接して両側に並ぶことを特徴とする請求項3に記載の半導体記憶素子。
  5. 基板の上に聳立する突起型構造体を形成し、前記突起型構造体の幅は100nm以下でありかつ高さは幅の2倍以上であって、
    前記突起型構造体を隔壁で覆い、前記隔壁で覆われた前記突起型構造体を上から基板に向かう方向に削った後、前記突起型構造体を選択的に除去することによって、幅が100nm以下の溝を前記隔壁の中に形成する素子の製造方法。
  6. 前記突起型構造体は有機物から成り、前記隔壁は無機物から成り、前記突起型構造体を酸素プラズマエッチングで選択的に除去することを特徴とする請求項5に記載の素子の製造方法。
  7. 前記突起型構造体は2層以上の積層から成り、このうち少なくとも最下層を除く他の層を選択的に除去することを特徴とする請求項5に記載の製造方法。
  8. 前記基板は2層以上の積層から成ることを特徴とする請求項5,6,7のいずれか1項に記載の素子の製造方法。
  9. 前記隔壁は、エッチング速度の異なる2つ以上の材料の積層から成ることを特徴とする請求項5,6,7,8のいずれか1項に記載の素子の製造方法。
  10. 前記溝の開口部に基板から上に向かうほど広くなるような傾斜をつけることを特徴とする請求項5,6,7,8,9のいずれか1項に記載の素子の製造方法。
  11. 請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に電気的導体を入れることを特徴とする電気配線の製造方法。
  12. 前記隔壁は光を遮断する材料であって、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に光透過材料を入れることを特徴とする光配線の製造方法。
  13. 請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に記憶体を入れることを特徴とする記憶素子の製造方法。
  14. 前記基板の少なくとも表面は半導体であって、前記隔壁を形成する前には、あらかじめ前記突起型構造体に対して自己整合的に前記ソース領域と前記ドレイン領域を前記半導体の中に形成し、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた前記溝の中に強誘電体材料を入れることを特徴とする強誘電体ゲートトランジスタの製造方法。
  15. 前記記憶体は有機金属気相成長法により成膜した強誘電体を含むことを特徴とする請求項14に記載の強誘電体ゲートトランジスタの製造方法。
  16. 前記突起型構造体の幅を2種類以上設け、請求項5,6,7,8,9,10のいずれか1項に記載の方法で得られた2個以上の幅の異なる溝の中に記憶体を同時に成膜して得られた2個以上の素子で構成され、前記溝の幅を変えることで前記溝の内部に充填される前記記憶体の基前記板からの高さを制御し、各素子の記憶機能の強さを可変にすることを特徴とする電子回路の製造方法。
  17. 半導体の上に突起型構造体を形成し、前記突起型構造体に対して自己整合的にソース領域とドレイン領域を形成し、前記半導体および前記突起型構造体の上を覆うように隔壁を形成し、前記突起型構造体とその周囲の隔壁とを上から基板に向かう方向に削った後、前記突起型構造体を選択的に除去することによって隔壁の中に溝を形成し、前記隔壁のうち前記溝の壁面であるところの高さは、前記溝の幅に相当する距離だけ前記溝の中心から離れた位置における前記隔壁の高さと比べて、同じかまたはより低く、前記溝の中に強誘電体材料を入れることを特徴とする強誘電体ゲートトランジスタの製造方法。
  18. 請求項4に記載の半導体記憶素子1個を1個のメモリセルとし、前記メモリセルを基板面内に2行2列以上で規則的に配列したメモリセルアレイであって、共通のメモリセルアレイに属するメモリセルの基板端子同士は互いに同電位であり、横方向の一列に並んだ2個以上のメモリセルのゲート端子同士を電気的に短絡するゲート線と、縦方向の一列に並んだ2個以上のメモリセルのドレイン端子同士を電気的に短絡するドレイン線と、縦方向の一列に並んだ2個以上のメモリセルのソース端子同士を電気的に短絡するソース線を備え、ドレイン線はソース線と並行し、ゲート線はドレイン線およびソース線と直交し、ドレイン線を構成するためのドレイン端子同士の短絡およびソース線を構成するためのソース端子同士の短絡は、両者共にコンタクトホールを介することなく、各メモリセルのドレイン領域およびソース領域に相当する半導体の活性領域同士の連結によってなされていることを特徴とするメモリセルアレイ。
  19. 前記メモリセルは縦方向の隣接する二列毎に対を組み、各一対の中で1本のソース線を共有し、ソース線を挟んで両側にドレイン線を有し、二列のメモリセルはソース線に対して左右対称な配置を有することを特徴とする請求項18に記載のメモリセルアレイ。
  20. 請求項1,2,3,4のいずれか1項に記載の半導体記憶素子をメモリセルとし、前記メモリセルを、基板面内には2行2列以上で規則的に配列し、かつ、前記基板に垂直な方向すなわち高さ方向には2階以上の階層に積み重ねたメモリセルアレイであって、高さ方向には上下で最近接する2つの階層同士が互いに対を組み、各対の中では上下のメモリセルが導体を挟んで面対称に向かい合い、上下の向かい合うメモリセル同士が導体を共有することを特徴とするメモリセルアレイ。
  21. 請求項18のメモリセルアレイを1階層単位とし、前記階層単位を2階以上積み重ねたメモリセルアレイであって、高さ方向には上下で最近接する2つの階層単位同士が互いに対を組み、各対の中では上下のメモリセルがゲート線を挟んで面対称に向かい合い、上下の向かい合うメモリセル同士がゲート線を共有することを特徴とするメモリセルアレイ。
  22. 請求項19のメモリセルアレイを1階層単位とし、前記階層単位を2階以上積み重ねたメモリセルアレイであって、高さ方向には上下で最近接する2つの階層単位同士が互いに対を組み、各対の中では上下のメモリセルがゲート線を挟んで面対称に向かい合い、上下の向かい合うメモリセル同士がゲート線を共有することを特徴とするメモリセルアレイ。
PCT/JP2017/024402 2016-07-06 2017-07-03 半導体記憶素子その他の素子およびその製造方法 WO2018008609A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197003553A KR102312062B1 (ko) 2016-07-06 2017-07-03 반도체 기억소자, 그 밖의 소자 및 그 제조방법
CN201780041826.4A CN109643720B (zh) 2016-07-06 2017-07-03 半导体存储元件、其他元件及其制造方法
EP17824212.9A EP3483936A4 (en) 2016-07-06 2017-07-03 SEMICONDUCTOR MEMORY ELEMENT, OTHER ELEMENTS, AND MANUFACTURING METHOD THEREOF
US16/315,784 US11069713B2 (en) 2016-07-06 2017-07-03 Semiconductor memory element, other elements, and their production methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016134625 2016-07-06
JP2016-134625 2016-07-06
JP2017092894A JP7248966B2 (ja) 2016-07-06 2017-05-09 半導体記憶素子、電気配線、光配線、強誘電体ゲートトランジスタ及び電子回路の製造方法並びにメモリセルアレイ及びその製造方法
JP2017-092894 2017-05-09

Publications (2)

Publication Number Publication Date
WO2018008609A1 true WO2018008609A1 (ja) 2018-01-11
WO2018008609A9 WO2018008609A9 (ja) 2018-03-22

Family

ID=60912119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024402 WO2018008609A1 (ja) 2016-07-06 2017-07-03 半導体記憶素子その他の素子およびその製造方法

Country Status (1)

Country Link
WO (1) WO2018008609A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204159A (ja) * 1995-01-26 1996-08-09 Sony Corp 半導体不揮発性メモリ装置
JP2003078051A (ja) * 2002-06-26 2003-03-14 Sony Corp 不揮発性半導体記憶装置
JP2004172355A (ja) * 2002-11-20 2004-06-17 National Institute Of Advanced Industrial & Technology 強誘電体メモリアレイ
JP2005072520A (ja) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd 半導体装置
JP2010182889A (ja) * 2009-02-05 2010-08-19 Toshiba Corp 半導体記憶装置及びその製造方法
JP2010258472A (ja) * 2010-07-09 2010-11-11 Sony Corp 半導体装置およびその製造方法
WO2015012359A1 (ja) * 2013-07-25 2015-01-29 独立行政法人産業技術総合研究所 強誘電体デバイス及びその製造方法
JP2016046271A (ja) * 2014-08-19 2016-04-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Sgtを有する半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204159A (ja) * 1995-01-26 1996-08-09 Sony Corp 半導体不揮発性メモリ装置
JP2003078051A (ja) * 2002-06-26 2003-03-14 Sony Corp 不揮発性半導体記憶装置
JP2004172355A (ja) * 2002-11-20 2004-06-17 National Institute Of Advanced Industrial & Technology 強誘電体メモリアレイ
JP2005072520A (ja) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd 半導体装置
JP2010182889A (ja) * 2009-02-05 2010-08-19 Toshiba Corp 半導体記憶装置及びその製造方法
JP2010258472A (ja) * 2010-07-09 2010-11-11 Sony Corp 半導体装置およびその製造方法
WO2015012359A1 (ja) * 2013-07-25 2015-01-29 独立行政法人産業技術総合研究所 強誘電体デバイス及びその製造方法
JP2016046271A (ja) * 2014-08-19 2016-04-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Sgtを有する半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483936A4 *

Also Published As

Publication number Publication date
WO2018008609A9 (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
US10128257B2 (en) Select transistors with tight threshold voltage in 3D memory
TWI713203B (zh) 記憶體元件及其製作方法
CN108538846B (zh) 在堆叠体开口中形成存储器单元薄膜
TWI595631B (zh) 半導體裝置及其製造方法
KR102312062B1 (ko) 반도체 기억소자, 그 밖의 소자 및 그 제조방법
US10643709B2 (en) Methods and operating a 3D memory device
US9899408B2 (en) Non-volatile memory device having vertical structure and method of manufacturing the same
US10868042B1 (en) Ferroelectric memory device containing word lines and pass gates and method of forming the same
KR20080033100A (ko) 수직 채널 메모리, 이의 제조 방법 및 이를 이용하는 구동방법
WO2011156695A1 (en) Air gap isolation between the bit lines of a non-volatile memory and methods of manufacturing the same
TW201214630A (en) Non-volatile memory with flat cell structures and air gap isolation
JP2007299975A (ja) 半導体装置およびその製造方法
JP2011023464A (ja) 半導体記憶装置
US9935119B2 (en) Dual control gate spacer structure for embedded flash memory
TW201838193A (zh) 半導體裝置及半導體裝置之製造方法
US9252150B1 (en) High endurance non-volatile memory cell
US20220328525A1 (en) Semiconductor memory devices and methods of manufacturing thereof
WO2018008609A1 (ja) 半導体記憶素子その他の素子およびその製造方法
TW201635608A (zh) 記憶體裝置及其製造方法
TWI788653B (zh) 立體記憶體裝置及其製造方法
US10510766B2 (en) Flash memory structure with reduced dimension of gate structure and methods of forming thereof
US20090218615A1 (en) Semiconductor device and method of manufacturing the same
CN113497054A (zh) 立体存储器装置及其制造方法
JP2005294392A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197003553

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017824212

Country of ref document: EP

Effective date: 20190206