TWI788653B - 立體記憶體裝置及其製造方法 - Google Patents

立體記憶體裝置及其製造方法 Download PDF

Info

Publication number
TWI788653B
TWI788653B TW109111571A TW109111571A TWI788653B TW I788653 B TWI788653 B TW I788653B TW 109111571 A TW109111571 A TW 109111571A TW 109111571 A TW109111571 A TW 109111571A TW I788653 B TWI788653 B TW I788653B
Authority
TW
Taiwan
Prior art keywords
layer
common source
substrate
epitaxial
memory device
Prior art date
Application number
TW109111571A
Other languages
English (en)
Other versions
TW202139436A (zh
Inventor
林威良
蔡文哲
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW109111571A priority Critical patent/TWI788653B/zh
Publication of TW202139436A publication Critical patent/TW202139436A/zh
Application granted granted Critical
Publication of TWI788653B publication Critical patent/TWI788653B/zh

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

一種立體記憶體裝置包括基底、形成於基底上的多個堆疊結構、多個共同源極線接觸窗與多個NOR快閃記憶體。基底具有與一方向平行且交替排列的多條共同源極線與多個記憶體單元區。堆疊結構位於記憶體單元區上並包括一接地選擇線層以及一字元線層。共同源極線接觸窗則沿另一方向配置,以連接共同源極線。NOR快閃記憶體設於記憶體單元區內,且每個NOR快閃記憶體至少包括穿過堆疊結構的一磊晶柱、位在磊晶柱與字元線層之間的一電荷捕捉層與位在電荷捕捉層與字元線層之間的一高介電常數層。磊晶柱在穿過接地選擇線層的部分具有內縮側壁。

Description

立體記憶體裝置及其製造方法
本發明是有關於一種半導體記憶體技術,且特別是有關於一種立體記憶體裝置及其製造方法。
在高密度記憶體裝置的製造中,積體電路中每單位面積的資料量已成為關鍵因素。特別是為了達到有競爭力的位元成本(bit cost),每一位元的單元尺寸不斷縮小,但是對於傳統的平面NOR快閃記憶體陣列結構來說仍舊不足。尤其是低Vcc/功率應用的2T-NOR快閃記憶體,其需求的是選擇電晶體要具備低臨界電壓(Vt)且不發生擊穿(punch through)。
由於平面記憶體單元的尺寸縮小是藉由減小記憶體單元的閘極長度方式來達成,所以一旦閘極長度變小就會縮短通道長度,容易發生汲極區與源極區之間不正常的擊穿現象,而嚴重影響此記憶體單元的電性表現,而導致資料誤判。
本發明提供一種立體記憶體裝置,能同時達到縮減記憶體單元面積與避免擊穿現象發生的功效。
本發明另提供一種立體記憶體裝置的製造方法,能製作出記憶體單元密度高且不易發生擊穿的NOR快閃記憶體。
本發明的立體記憶體裝置,包括基底、多個堆疊結構、多個共同源極線接觸窗以及多個NOR快閃記憶體。基底具有與一第一方向平行且交替排列的多條共同源極線(CSL)與多個記憶體單元(cell)區。堆疊結構則形成於基底的多個記憶體單元區上,且每個堆疊結構包括與基底電性隔離的一接地選擇線(GSL)層以及與接地選擇線層電性隔離並形成於其上的一字元線(WL)層。共同源極線接觸窗沿一第二方向形成於基底的多條共同源極線上,以連接每個共同源極線。NOR快閃記憶體則穿過堆疊結構並設置於多個記憶體單元區內,且每個NOR快閃記憶體包括一磊晶柱、一電荷捕捉層、一高介電常數(high-k)層與一第一絕緣層。磊晶柱是從基底磊晶形成,且磊晶柱在穿過接地選擇線層的部分具有內縮側壁。電荷捕捉層是位在磊晶柱與堆疊結構中的WL層之間;高介電常數層則是位在電荷捕捉層與WL層之間。第一絕緣層位在磊晶柱的上述內縮側壁與GSL層之間。
在本發明的一實施例中,每個共同源極線接觸窗並與共同源極線直接接觸。
在本發明的一實施例中,上述電荷捕捉層環繞磊晶柱並可延伸至字元線層的上表面與下表面。
在本發明的一實施例中,上述立體記憶體裝置還可包括一第二絕緣層,形成於所述共同源極線接觸窗與所述堆疊結構之間
在本發明的一實施例中,上述立體記憶體裝置還可包括形成於磊晶柱的頂面內的多個第一導電型摻雜區。
在本發明的一實施例中,上述立體記憶體裝置還可包括形成於磊晶柱底下的基底內的多個第二導電型摻雜區。
在本發明的一實施例中,上述基底為矽基底,上述磊晶柱為矽磊晶柱。
本發明的立體記憶體裝置的製造方法,包括提供一個具有與一第一方向平行且交替排列的多個共同源極線(CSL)區與多個記憶體單元(cell)區的基底。然後,在所述基底上形成一堆疊結構,且堆疊結構包括互相交替的N+1層第一材料層與N層第二材料層,N為大於1的整數。於記憶體單元區上的堆疊結構中形成多個穿孔,直到露出基底,再從所述基底成長多個磊晶柱貫穿所述穿孔。在共同源極線區上的堆疊結構中形成多個第一狹縫,並露出最上層的第二材料層,其中每個第一狹縫對準每個共同源極線區。先完全移除最上層的第二材料層,以形成露出每個磊晶柱的一部分的第一空間,再在第一狹縫的表面與露出的每個磊晶柱的表面共形地沉積一電荷捕捉層。接著,在第一狹縫下方形成露出多個共同源極線區的多個第二狹縫,並露出最下層的第二材料層。完全移除最下層的第二材料層,以形成露出每個磊晶柱的另一部分的第二空間,再進行熱氧化法,以於露出的每個磊晶柱的表面與所述共同源極線區的表面形成熱氧化層。於第一空間與第二空間中露出的熱氧化層的表面與電荷捕捉層的表面上沉積一高介電常數(high-k)層,然後在第一空間與第二空間內沉積金屬材料。之後,在原本的第一狹縫與第二狹縫的位置形成截斷金屬材料的多個第三狹縫,並露出基底,其中留在第一空間內的金屬材料作為字元線,留在第二空間內的金屬材料係作為接地選擇線。進行離子植入製程,以在露出的基底內形成多條共同源極線。然後在第三狹縫內沉積絕緣層,再沿一第二方向於所述絕緣層中形成多個共同源極線接觸窗,分別連接所述多個共同源極線。
基於上述,本發明將記憶體陣列改成立體裝置,不但能縮減記憶體單元面積,還可藉由製程的改良,在NOR快閃記憶體中加入high-k層作為阻擋氧化層(blocking oxide)與能隙工程穿隧氧化層(bandgap engineered tunnel oxide),並且可選擇使用金屬閘極(字元線)來改善記憶體性能。此外,本發明的製程方法可實現在GSL與磊晶通道之間設置品質佳的絕緣層,以避免擊穿現象發生。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
以下內容提供許多不同的實施方式或實施例,用於實施本發明的不同特徵。而且,這些實施例僅為示範例,並不用來限制本發明的範圍與應用。再者,為了清楚起見,各區域或結構元件的相對尺寸(如長度、厚度、間距等)及相對位置可能縮小或放大。另外,在各圖式中使用相似或相同的元件符號表示相似或相同元件或特徵。
圖1是依照本發明的第一實施例的一種立體記憶體裝置的俯視圖;圖2是圖1的I-I’線段的剖面示意圖。
請同時參照圖1與圖2,第一實施例的立體記憶體裝置10包括基底100、多個堆疊結構102、多個共同源極線接觸窗104以及多個NOR快閃記憶體106。基底100具有與一第一方向平行且交替排列的多條共同源極線(CSL)108與多個記憶體單元(cell)區110。堆疊結構102則形成於基底100的多個記憶體單元區110上,且每個堆疊結構102包括與基底100電性隔離的一接地選擇線(GSL)層112以及與接地選擇線層112電性隔離並形成於其上的一字元線(WL)層114。更詳細地說,每個堆疊結構102至少由三層絕緣層116與上述接地選擇線層112和字元線層114所構成,並藉由絕緣層116達成接地選擇線層112和字元線層114的電性隔離。在一實施例中,接地選擇線層112和字元線層114都是金屬材料(例如鎢);在另一實施例中,接地選擇線層112是多晶矽,而字元線層114是金屬材料(例如鎢)。共同源極線接觸窗104是沿一第二方向形成於基底10的多條共同源極線108上,以連接每個共同源極線108,且共同源極線接觸窗104可與共同源極線108直接接觸。在本實施例中,第一方向垂直於第二方向;但本發明並不限於此,上述第一方向也可與第二方向之間具有一夾角(如銳角)。多條位元線BL可平行第二方向配置,並電性耦接至底下的NOR快閃記憶體106,共同源極線接觸窗104則經由同一條線路CSL外接出去。
請繼續參照圖2,第一實施例中的NOR快閃記憶體106則穿過堆疊結構102並設置於記憶體單元區110內,且每個NOR快閃記憶體106至少包括一磊晶柱118、一電荷捕捉層120、一高介電常數(high-k)層122與一第一絕緣層124。磊晶柱118是從基底100磊晶形成的,其中上述基底100為矽基底,則磊晶柱118為矽磊晶柱,所以不同於傳統由多晶矽構成的元件通道,具有更高的遷移率(mobility)可改善元件的效能,且磊晶柱118在穿過接地選擇線層112的部分具有內縮側壁118a。也就是說,磊晶柱118的截面形狀若是圓形,則穿過接地選擇線層112的部分的直徑會小於其他部分的直徑,這是因為在此處具有第一絕緣層124來隔離磊晶柱118與接地選擇線層112,且第一絕緣層124可以是藉由熱氧化法形成的熱氧化層。然而,本發明並不限於此,上述磊晶柱118的截面形狀也可以是橢圓形、方形、多邊形或其組合。至於電荷捕捉層120是位在磊晶柱118與堆疊結構102中的字元線層114之間;舉例來說,電荷捕捉層120的位置可環繞磊晶柱118並延伸至字元線層114的上表面114a與下表面114b,因此電荷捕捉層120的結構會如同圖3所示,其顯示磊晶柱118與電荷捕捉層120的立體圖。在一實施例中,電荷捕捉層120例如ONO層或ONONO層。而高介電常數層122是位在電荷捕捉層120與字元線層114之間。在一實施例中,高介電常數層122的材料例如二氧化鉿(HfO2 )、二氧化鈦(TiO2 )、二氧化锆(ZrO2 )、氧化鉭(Ta2 O5 )或氧化鋁(Al2 O3 )。另外,在本實施例中,於共同源極線接觸窗104與堆疊結構102之間有一第二絕緣層126,作為電性隔離結構。
在圖2中,立體記憶體裝置10還包括形成於磊晶柱118的頂面118b內的第一導電型摻雜區128,且第一導電型摻雜區128可與共同源極線108具有相同的導電型。另外,在磊晶柱118底下的基底100內還可形成有第二導電型摻雜區130,其可調節接地選擇線層112的臨界電壓(Vt),以使GSL的Vt變小並具有很窄的Vt分布。在一實施例中,上述第一導電型是n型、上述第二導電型是p型;在另一實施例中,上述第一導電型是p型、上述第二導電型是n型。
為了更清楚瞭解本發明的立體記憶體裝置的結構,請參照圖4,其中僅顯示第一實施例的WL層114、GSL層112、基底100、磊晶柱118、CSL 108與CSL接觸窗104。從圖4可觀察到,代表元件通道的磊晶柱118是被WL層114包圍,所以本發明的立體記憶體裝置10是屬於GAA元件,因此具有較佳的閘極可控性(gate controllability)與較佳的元件效能。
圖5A至圖5R是依照本發明的第二實施例的一種立體記憶體裝置的製造流程剖面示意圖。
請先參照圖5A,提供一個基底500,其具有共同源極線(CSL)區502與記憶體單元(cell)區504,且本實施例可對照圖1得到,基底500的共同源極線區502與記憶體單元區504實際上是在第一方向平行且交替排列的多個區域;也就是說,共同源極線區502是後續要形成共同源極線(請見圖1標示的108)的區域,記憶體單元區504是後續要形成記憶體的區域(請見圖1標示的110)。然後,在基底500上形成一堆疊結構506,且堆疊結構506包括互相交替的N+1層第一材料層與N層第二材料層,N為大於1的整數。譬如圖5A顯示的是三層第一材料層5081 、5082 、5083 與兩層第二材料層5101 、5102 構成的堆疊結構506。然而,本發明並不限於此,堆疊結構506中也可加設其他中間層,以利製程進行。
接著,請參照圖5B,於記憶體單元區504上的堆疊結構506中形成多個穿孔512,直到露出基底500。在本實施例中,穿孔512的底部512a可低於基底500的頂面500a。然而,本發明並不限於此;在另一實施例中,穿孔512的底部512a可與基底500的頂面500a齊平。而在形成穿孔512之後,還可額外進行一道P型離子植入製程513,以調節後續形成之接地選擇線的臨界電壓(Vt)。
然後,請參照圖5C,從基底500成長多個磊晶柱514貫穿穿孔512。舉例來說,基底500若是矽基底,則磊晶形成的磊晶柱514可為(單晶)矽磊晶柱。在本實施例中,磊晶柱514的形成方式可採型目前既有的磊晶製程。
接著,請參照圖5D,為了在共同源極線區502上的堆疊結構506中形成多個狹縫,可先在基底500上全面形成一層第三材料層516,且形成方式可以利用沉積或塗佈的方式,在堆疊結構506上形成覆蓋磊晶柱514的膜層。上述第三材料層516可與第一材料層5083 是相同材料,以利後續製程。但是,本發明並不限於此,第三材料層516的材料也可不同於第一材料層5083 。為了表面的平坦度,還可在第三材料層516形成後進行如CMP的平坦化製程。
然後,請參照圖5E,在第三材料層516上形成一層硬罩幕層518,其中硬罩幕層518為了後續蝕刻形成狹縫時能作為蝕刻罩幕,所以較佳是選用蝕刻率遠低於堆疊結構506的材料;在一實施例中,硬罩幕層518的材料例如多晶矽、第一材料層5081, 2, 3 的材料例如氧化矽、第二材料層51081,2 的材料例如氮化矽。但是,本發明並不限於此,上述材料的選用也可根據需求做變化。
之後,請參照圖5F,圖案化硬罩幕層518,使其形成預定形成狹縫的開口518a,並暴露出第三材料層516。
隨後,請參照圖5G,以圖案化的硬罩幕層518作為蝕刻罩幕,蝕刻去除開口518a內的第一材料層5083 、最上層的第二材料層5102 和部分第一材料層5082 ,而形成位在共同源極線區502上的第一狹縫520,並露出最上層的第二材料層5102 ,其中第一狹縫520較佳是對準共同源極線區502。
接著,請參照圖5H,完全移除最上層的第二材料層,以形成露出每個磊晶柱514的一部分的第一空間522。完全移除最上層的第二材料層的方法例如蝕刻,且所述蝕刻相對於第一材料層5082, 3 而對第二材料層5102 具有高選擇比。
之後,請參照圖5I,在第一狹縫520的表面與露出的每個磊晶柱514的表面共形地沉積一電荷捕捉層524,其中電荷捕捉層524例如ONO層或ONONO層。由於製程的關係,除了磊晶柱514的表面,電荷捕捉層524還會全面形成在其他結構層露出的表面,如硬罩幕層518、第三材料層516、第一材料層5082, 3 的表面。
接著,請參照圖5J,在第一狹縫502下方形成露出共同源極線區502的第二狹縫526,並露出最下層的第二材料層5101 。在一實施例中,形成第二狹縫526的步驟包括先回蝕刻電荷捕捉層524,直到露出第一狹縫520的底面,再使用為了形成第一狹縫520的光罩進行微影蝕刻製程,直到露出基底500。在一實施例中,形成第二狹縫526的步驟包括先回蝕刻電荷捕捉層524,直到露出第一狹縫520的底面,再使用剩下的電荷捕捉層524作為蝕刻罩幕,蝕刻掉第一狹縫520下方的第一材料層5082 、最下層的第二材料層5101 與第一材料層5081
然後,請參照圖5K,完全移除最下層的第二材料層,以形成露出每個磊晶柱514的另一部分的第二空間528。完全移除最下層的第二材料層的方法例如蝕刻,且所述蝕刻相對於第一材料層5081, 2 而對第二材料層5101 具有高選擇比。
接著,請參照圖5L,進行熱氧化法,以於露出的每個磊晶柱514的表面與共同源極線區502的表面形成熱氧化層530。由於熱氧化層530的品質佳,所以能降低擊穿現象發生的機率,其中熱氧化層530的厚度例如在100nm~300nm之間,且會使得磊晶柱514於熱氧化層530所在部位具有內縮側壁514a。
之後,請參照圖5M,於第一空間522與第二空間528中露出的熱氧化層530的表面與電荷捕捉層524的表面上沉積一高介電常數(high-k)層532,其中沉積高介電常數層532的方法例如PVD、CVD、ALD等。高介電常數層532的材料例如二氧化鉿(HfO2 )、二氧化鈦(TiO2 )、二氧化锆(ZrO2 )、氧化鉭(Ta2 O5 )或氧化鋁(Al2 O3 )。由於製程的關係,除了上述提及的表面,高介電常數層532還會全面形成在其他結構層露出的表面,如硬罩幕層518、第一材料層5081, 2 的表面。
然後,請參照圖5N,在第一空間522與第二空間528內沉積金屬材料534,金屬材料534例如鎢。
之後,請參照圖5O,在原本的第一狹縫(請見圖5J的520)與第二狹縫(請見圖5J的526)的位置形成截斷金屬材料534的第三狹縫536,並露出基底500,其中留在第一空間528內的金屬材料534可作為字元線,留在第二空間528內的金屬材料可作為接地選擇線。而且,形成第三狹縫536的步驟可使用為了形成第一狹縫的光罩進行微影蝕刻製程,直到露出基底500。另外,在蝕刻出第三狹縫536之前,可選擇先移除硬罩幕層(請見圖5N的518)、第三材料層(請見圖5N的516)與部分堆疊結構506(如第一材料層5083 ),直到露出磊晶柱514的頂面514b。但是,本發明並不限於此,也可在第三狹縫536形成之後的後續製程將上述膜層移除。
接著,請參照圖5P,進行離子植入製程538,以在露出的基底500內形成多條共同源極線540。同時,若是磊晶柱514的頂面514b已露出,則可在進行上述離子植入製程538的同時,在每個磊晶柱514的頂面514形成摻雜區542,有助於改善後續電性接觸的導電率。
然後,請參照圖5Q,在第三狹縫536內沉積絕緣層544,其中沉積絕緣層544的方法例如低溫氧化層沉積( Low Temperature Oxidation )等。
隨後,請參照圖5R,於絕緣層544中形成共同源極線接觸窗546,連接共同源極線540,其中形成共同源極線接觸窗546方是例如先在絕緣層544中蝕刻形成露出共同源極線540的開口,然後於此開口中沉積金屬材料(如鎢)直到填滿口,再進行如CMP的金屬平坦化步驟,得到共同源極線接觸窗546。若是對照圖1可得到,共同源極線接觸窗(請見圖1標示的104)是沿第二方向排列,並且每一條共同源極線(請見圖1標示的108)都至少有一個共同源極線接觸窗,以由同一條線路CSL連接。由於本實施例的共同源極線接觸窗546是利用一道沉積製程連通至基底500內的共同源極線540,所以本發明的立體記憶體裝置能達成按位元(by-bit)抹除的操作。
以下說明本發明的立體記憶體裝置的電路及其操作。
首先,關於立體記憶體裝置的PGM操作,可採行常見的方式,譬如利用+Vg FN注入(FN Injection)或者通道熱電子注入(Channel-hot-electron injection)的方式對被選記憶體單元進行PGM(編程)。
關於立體記憶體裝置的ERS(抹除)操作,則有兩種方式。圖6顯示的是立體記憶體裝置於可選字元線的抹除操作;圖7顯示的是立體記憶體裝置於可選位元的抹除操作。
在圖6中,兩條WL分別連接四個NOR快閃記憶體,若要抹除虛線框住的兩個NOR快閃記憶體,則可對共同源極線供應抹除電壓Vers1以及對接地選擇線GSL0供應抹除電壓Vers2,字元線WL0為0V,其餘線路則維持浮動(floating),以完成按分頁(by-page)抹除的操作。
在圖7中,為了抹除虛線框住的單一個NOR快閃記憶體,可對字元線WL0供應小於0V的抹除電壓Vgers以及對位元線BL0供應抹除電壓Vders,其餘線路則為0V,以完成by-bit抹除的操作。
關於立體記憶體裝置的read(讀取)操作,如圖8所示。
在圖8中顯示的是一種低功率讀取的操作,虛線框住的是要讀取的記憶體單元,未選單元的字元線WL1和接地選擇線GSL1都是0V;被選單元的字元線WL0為0V(其中低臨界電壓LVt > 0V且高臨界電壓HVt > 0V)、對接地選擇線GSL0供應Vcc且不需要增壓電路(pumping circuit),供應位元線BL0、BL1的電壓都是讀取電壓Vblr。
綜上所述,本發明將NOR快閃記憶體陣列改成垂直式的立體記憶體裝置,不但能縮減記憶體單元面積,還可藉由製程的改良,在NOR快閃記憶體中加入high-k材料作為阻擋介電層與能隙工程穿隧介電層。此外,本發明的製程方法可實現在GSL與磊晶通道之間設置品質佳的絕緣層,以避免擊穿現象發生;還能選擇沉積金屬作為閘極(字元線),進而改善記憶體單元的性能。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10:立體記憶體裝置 100、500:基底 102、506:堆疊結構 104、546:共同源極線接觸窗 106:NOR快閃記憶體 108、540:共同源極線 110、504:記憶體單元區 112:接地選擇線層 114:字元線層 114a:上表面 114b:下表面 116、544:絕緣層 118、514:磊晶柱 118a、514a:內縮側壁 118b、500a、514b:頂面 120、524:電荷捕捉層 122、532:高介電常數層 124:第一絕緣層 126:第二絕緣層 128:第一導電型摻雜區 130:第二導電型摻雜區 502:共同源極線區 5081 、5082 、5083 :第一材料層 5101 、5102 :第二材料層 512:穿孔 512a:底部 513:P型離子植入製程 516:第三材料層 518:硬罩幕層 518a:開口 520:第一狹縫 522:第一空間 526:第二狹縫 528:第二空間 530:熱氧化層 534:金屬材料 536:第三狹縫 538:離子植入製程 542:摻雜區 BL、BL0、BL1:位元線 CSL:線路 GSL0、GSL1:接地選擇線 Vblr:讀取電壓 Vers1、Vers2、Vgers、Vders:抹除電壓 WL0、WL1:字元線
圖1是依照本發明的第一實施例的一種立體記憶體裝置的俯視圖。 圖2是圖1的I-I’線段的剖面示意圖。 圖3顯示圖2中的磊晶柱與電荷捕捉層的立體示意圖。 圖4是第一實施例的一種立體記憶體裝置的立體略圖。 圖5A至圖5R是依照本發明的第二實施例的一種立體記憶體裝置的製造流程剖面示意圖。 圖6是依照本發明的第三實施例的一種立體記憶體裝置於抹除操作期間的一種電路圖。 圖7是依照本發明的第三實施例的一種立體記憶體裝置於抹除操作期間的另一種電路圖。 圖8是依照本發明的第四實施例的一種立體記憶體裝置於讀取操作期間的一種電路圖。
10:立體記憶體裝置
100:基底
102:堆疊結構
104:共同源極線接觸窗
106:NOR快閃記憶體
108:共同源極線
110:記憶體單元區
112:接地選擇線層
114:字元線層
114a:上表面
114b:下表面
116:絕緣層
118:磊晶柱
118a:內縮側壁
118b:頂面
120:電荷捕捉層
122:高介電常數層
124:第一絕緣層
126:第二絕緣層
128:第一導電型摻雜區
130:第二導電型摻雜區

Claims (10)

  1. 一種立體記憶體裝置,包括:基底,具有與一第一方向平行且交替排列的多數條共同源極線(CSL)與多數個記憶體單元(cell)區;多數個堆疊結構,形成於所述基底的所述多數個記憶體單元區上,每個所述堆疊結構包括與所述基底電性隔離的一接地選擇線(GSL)層以及與所述接地選擇線層電性隔離並形成於其上的一字元線(WL)層;多數個共同源極線接觸窗,沿一第二方向形成於所述基底的所述多數條共同源極線上,以連接每個所述共同源極線,其中所述第一方向與所述第二方向不相同;以及多數個NOR快閃記憶體,穿過所述堆疊結構並設置於所述多數個記憶體單元區內,且每個所述NOR快閃記憶體包括:一磊晶柱,從所述基底磊晶形成,且所述磊晶柱在穿過所述接地選擇線層的部分具有內縮側壁;一電荷捕捉層,位在所述磊晶柱與所述堆疊結構中的所述字元線層之間;一高介電常數(high-k)層,位在所述電荷捕捉層與所述字元線層之間;以及一第一絕緣層,位在所述磊晶柱的所述內縮側壁與所述接地選擇線層之間。
  2. 如請求項1所述的立體記憶體裝置,其中每個所述共同源極線接觸窗與所述共同源極線直接接觸。
  3. 如請求項1所述的立體記憶體裝置,其中所述電荷捕捉層環繞所述磊晶柱並延伸至所述字元線層的上表面與下表面。
  4. 如請求項1所述的立體記憶體裝置,更包括第二絕緣層,形成於所述共同源極線接觸窗與所述堆疊結構之間。
  5. 如請求項1所述的立體記憶體裝置,更包括多數個第一導電型摻雜區,形成於所述磊晶柱的頂面內。
  6. 如請求項1所述的立體記憶體裝置,更包括多數個第二導電型摻雜區,形成於所述磊晶柱底下的所述基底內。
  7. 如請求項1所述的立體記憶體裝置,其中所述第一方向與所述第二方向之間具有一夾角。
  8. 如請求項1所述的立體記憶體裝置,其中所述第一方向垂直於所述第二方向。
  9. 如請求項1所述的立體記憶體裝置,其中所述基底為矽基底,所述磊晶柱為矽磊晶柱。
  10. 一種立體記憶體裝置的製造方法,包括:提供一基底,具有與一第一方向平行且交替排列的多數個共同源極線(CSL)區與多數個記憶體單元(cell)區;在所述基底上形成一堆疊結構,所述堆疊結構包括互相交替的N+1層第一材料層與N層第二材料層,N為大於1的整數;於所述多數個記憶體單元區上的所述堆疊結構中形成多數個 穿孔,直到露出所述基底;從所述基底成長多數個磊晶柱貫穿所述多數個穿孔;在所述多數個共同源極線區上的所述堆疊結構中形成多數個第一狹縫,並露出最上層的所述第二材料層,其中每個所述第一狹縫對準每個所述共同源極線區;完全移除最上層的所述第二材料層,以形成露出每個所述磊晶柱的一部分的第一空間;在所述多數個第一狹縫的表面與露出的每個所述磊晶柱的表面共形地沉積一電荷捕捉層;在所述多數個第一狹縫下方形成露出多數個共同源極線區的多數個第二狹縫,並露出最下層的所述第二材料層;完全移除最下層的所述第二材料層,以形成露出每個所述磊晶柱的另一部分的第二空間;進行熱氧化法,以於露出的每個所述磊晶柱的表面與所述多數個共同源極線區的表面形成熱氧化層;沉積一高介電常數(high-k)層於所述第一空間與所述第二空間中露出的所述熱氧化層的表面與所述電荷捕捉層的表面上;在所述第一空間與所述第二空間內沉積金屬材料;在原本的所述第一狹縫與所述第二狹縫的位置形成截斷所述金屬材料的多數個第三狹縫,並露出所述基底,其中位於所述第一空間內的所述金屬材料係作為字元線,位於所述第二空間內的所述金屬材料係作為接地選擇線; 進行離子植入製程,以在露出的所述基底內形成多數個共同源極線;在所述多數個第三狹縫內沉積絕緣層;以及在所述絕緣層內形成多數個共同源極線接觸窗,沿一第二方向分別連接所述多數個共同源極線。
TW109111571A 2020-04-07 2020-04-07 立體記憶體裝置及其製造方法 TWI788653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109111571A TWI788653B (zh) 2020-04-07 2020-04-07 立體記憶體裝置及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109111571A TWI788653B (zh) 2020-04-07 2020-04-07 立體記憶體裝置及其製造方法

Publications (2)

Publication Number Publication Date
TW202139436A TW202139436A (zh) 2021-10-16
TWI788653B true TWI788653B (zh) 2023-01-01

Family

ID=79601117

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109111571A TWI788653B (zh) 2020-04-07 2020-04-07 立體記憶體裝置及其製造方法

Country Status (1)

Country Link
TW (1) TWI788653B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232538A (en) * 2011-01-19 2012-08-01 Macronix Int Co Ltd Memory architecture of 3D nor array
TW201711138A (zh) * 2015-09-15 2017-03-16 旺宏電子股份有限公司 改進三維反或閘快閃記憶體之閘極電容的結構與操作方法
US20180261616A1 (en) * 2017-03-07 2018-09-13 Samsung Electronics Co., Ltd. Semiconductor device
TWI668846B (zh) * 2019-01-14 2019-08-11 旺宏電子股份有限公司 立體nand記憶體的鋸齒型電荷儲存結構
US10559580B2 (en) * 2015-10-01 2020-02-11 Samsung Electronics Co., Ltd. Semiconductor memory device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232538A (en) * 2011-01-19 2012-08-01 Macronix Int Co Ltd Memory architecture of 3D nor array
TW201711138A (zh) * 2015-09-15 2017-03-16 旺宏電子股份有限公司 改進三維反或閘快閃記憶體之閘極電容的結構與操作方法
US10559580B2 (en) * 2015-10-01 2020-02-11 Samsung Electronics Co., Ltd. Semiconductor memory device
US20180261616A1 (en) * 2017-03-07 2018-09-13 Samsung Electronics Co., Ltd. Semiconductor device
TWI668846B (zh) * 2019-01-14 2019-08-11 旺宏電子股份有限公司 立體nand記憶體的鋸齒型電荷儲存結構

Also Published As

Publication number Publication date
TW202139436A (zh) 2021-10-16

Similar Documents

Publication Publication Date Title
US10128257B2 (en) Select transistors with tight threshold voltage in 3D memory
US9595535B1 (en) Integration of word line switches with word line contact via structures
EP1912254B1 (en) Vertical-channel FinFET SONOS memory and manufacturing method thereof
US9716101B2 (en) Forming 3D memory cells after word line replacement
US9293204B2 (en) Non-volatile memory cell with self aligned floating and erase gates, and method of making same
US8928060B2 (en) Architecture to improve cell size for compact array of split gate flash cell
US20150357413A1 (en) Three Dimensional NAND Device Having a Wavy Charge Storage Layer
JP5781733B2 (ja) 不揮発性メモリセル及びその製造方法
CN110649033B (zh) 3d存储器件及其制造方法
US10892279B1 (en) NAND string containing separate hole and electron tunneling dielectric layers and methods for forming the same
JP2008004915A (ja) 柱構造を有するnandフラッシュメモリアレイ及びその製造方法
US20130161717A1 (en) Non-volatile memory device and method for fabricating the same
US9230971B2 (en) NAND string containing self-aligned control gate sidewall cladding
US10985179B2 (en) Memory arrays and methods used in forming a memory array comprising strings of memory cells and operative through-array-vias
CN111211131B (zh) 3d存储器件及其制造方法
US11127862B2 (en) Three-dimensional non-volatile memory device and method of manufacturing the same
US7723775B2 (en) NAND flash memory device having a contact for controlling a well potential
JP2018107176A (ja) 半導体装置の製造方法および半導体装置
CN110676257A (zh) 3d存储器件及其制造方法
TWI788653B (zh) 立體記憶體裝置及其製造方法
US11145674B1 (en) 3D memory device and method of manufacturing the same
CN109449162B (zh) 3d存储器件的制造方法及3d存储器件
US9882033B2 (en) Method of manufacturing a non-volatile memory cell and array having a trapping charge layer in a trench
CN115132735A (zh) 半导体结构及其制造方法
US20220383953A1 (en) Three-dimensional memory structure fabricated using repeated active stack sections