WO2018006524A1 - 一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液深度除铜的应用 - Google Patents

一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液深度除铜的应用 Download PDF

Info

Publication number
WO2018006524A1
WO2018006524A1 PCT/CN2016/105772 CN2016105772W WO2018006524A1 WO 2018006524 A1 WO2018006524 A1 WO 2018006524A1 CN 2016105772 W CN2016105772 W CN 2016105772W WO 2018006524 A1 WO2018006524 A1 WO 2018006524A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
formula
solution
nickel
chelating resin
Prior art date
Application number
PCT/CN2016/105772
Other languages
English (en)
French (fr)
Inventor
胡慧萍
王彩霞
邱雪景
程泽英
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610524804.0A external-priority patent/CN106179260B/zh
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2018006524A1 publication Critical patent/WO2018006524A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • C25C1/08Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Definitions

  • the present invention relates to a chelating resin and a process for the preparation thereof, in particular to a chelating resin having a 2-aminomethylpyridine functional group containing a tertiary amino group and an ester group, and a chelating resin for use in a chlorine salt system,
  • a method for deep purification of copper by a nickel electrolysis anolyte of a chloride salt-sulfate mixed system and a cobalt electrolysis anolyte of a chloride salt system belonging to the field of nonferrous metal hydrometallurgy.
  • nickel and cobalt metal in the process of producing electrolytic nickel and cobalt, it is necessary to purify impurities and remove impurity ions.
  • copper is the main impurity element in nickel electrolysis anolyte and cobalt electrolysis anolyte, and its standard potential (+0.337V) is much higher than the standard potential of nickel and cobalt (-0.25V, -0.28V), which is very easy to be in the cathode.
  • Precipitation is a priority, which seriously affects the quality of electro-nickel and electro-cobalt.
  • the content of copper is generally between 0.1 and 1.0 g/L, and the industry requires nickel electrolysis anolyte and cobalt electrolysis anolyte to contain copper ⁇ 2 mg/L after copper removal. Therefore, it is necessary to purify copper in depth.
  • the mass ratio of copper-nickel and copper-cobalt in the copper slag is greater than 20:1, respectively, so that copper must be selectively removed.
  • the copper-nickel-cobalt metals are adjacent in the periodic table, the atomic radii are similar, and the chemical properties are similar, which leads to the deep purification of nickel electrolyte and cobalt electrolyte to eliminate copper, which has long been a problem for the metallurgical industry at home and abroad.
  • the chelating resin adsorption method has the advantages of not producing copper slag, organic matter-contaminated electrolyte, and achieving deep copper removal.
  • existing chelating resins have a problem of low selectivity.
  • Wen Junjie uses a 2-aminomethylpyridine silica gel-loaded chelating resin containing a secondary amino group and a primary amino group, CuWRAM chelating resin, produced by Luoyang Plit Water Treatment Co., Ltd. according to US patent technology (Edward Rosenberg, Robert J.
  • the separation coefficient of copper and cobalt is also only 7.0 (study on the synthesis and properties of copper-chelating resin in the depth of white-blue cobalt solution. The master's thesis of Central South University, 2012), indicating that the resin is in nickel electrolyte and cobalt electrolyte. The separation selectivity of copper nickel and copper and cobalt is also not high enough.
  • the first object of the present invention is to provide a tertiary amino group.
  • an ester-based 2-aminomethylpyridine functional group resin the functional group has high selective chelation for copper ions, and has no chelation for nickel and cobalt ions, and can be used for a copper-containing nickel solution and Deep purification of copper in cobalt solution.
  • a second object of the present invention is to provide a method for preparing the chelate resin simply and at low cost.
  • a third object of the present invention is to provide an application of the chelating resin, which fully utilizes the selective chelation of copper ions by a special functional group contained in the chelating resin, and is applied to a nickel-containing nickel solution and a cobalt solution.
  • the deep removal of copper is particularly suitable for the high selective deep purification of copper in the nickel electrolysis anolyte of the chloride salt system or the chloride salt-sulfate mixed system and the cobalt electrolysis anolyte of the chloride salt system.
  • a chelating resin comprising a structural functional group of the formula 1:
  • a preferred chelating resin having the structure of Formula 2 or Formula 3:
  • n is the number of functional groups grafted onto the polystyrene backbone
  • n is the number of functional groups grafted on the silica gel skeleton
  • R is a methyl group or an ethyl group.
  • n is greater than 1, and the maximum value is less than or equal to the chlorine content on the polystyrene backbone.
  • the m is greater than or equal to 1, and the maximum value is less than or equal to the number of active hydroxyl groups on the surface of the silica gel skeleton.
  • the present invention also provides a method of preparing the chelate resin, the method comprising the steps of:
  • the intermediate of formula 4 is substituted with 3-chloropropyltrimethoxysilane or 3-chloropropyltriethoxysilane in a solution system containing triethylamine to obtain the middle of formula 5
  • the intermediate of the formula 5 is reacted with the activated silica gel in a solution system containing an organic base to obtain a chelating resin grafted with a functional group of the formula 1 on the silica gel matrix;
  • the intermediate of formula 4 and chloromethylated polystyrene are subjected to a substitution reaction in a solution system containing potassium iodide and triethylamine, thereby obtaining a chelate of a functional group of formula 1 grafted with a polystyrene matrix.
  • R is a methyl group or an ethyl group.
  • tert-butyl bromoacetate is added dropwise to a solution of 2-aminomethylpyridine-containing triethylamine/potassium iodide solution, and reacted at room temperature for 8-20 hours to obtain an intermediate of formula 4.
  • the molar ratio of 2-aminomethylpyridine, t-butyl bromoacetate and triethylamine is 1: (1 to 2): (1.2 to 1.8).
  • the amount of potassium iodide is from 1 to 5% by mole of 2-aminomethylpyridine.
  • the intermediate of formula 4 is slowly added dropwise to a solution of 3-chloropropyltrimethoxysilane or 3-chloropropyltriethoxysilane in triethylamine, and reacted at a temperature of 80 to 90 ° C. ⁇ 20h, an intermediate of formula 5 is obtained.
  • the molar ratio of 3-chloropropyltrimethoxysilane or 3-chloropropyltriethoxysilane to the intermediate of formula 4 and triethylamine is 1: (1 to 2): (1 to 2) ).
  • the activated silica gel is placed in an organic alkali solution system, and after stirring at 80 to 140 ° C for 0.5 to 1.5 hours, a solution containing the intermediate of the formula 5 is added dropwise to the system, and when the formula 5 is intermediate After the half of the solution of the body is added dropwise, the remaining portion of the solution containing the intermediate of formula 5 and the hydrochloric acid/ethanol mixed solution are simultaneously added dropwise to the system. After the completion of the dropwise addition, the temperature of the system is maintained, and the reaction is carried out for 36 to 48 hours. A chelating resin having a functional group of the formula 1 grafted to the silica gel substrate is obtained.
  • the ratio of the amount of the activated silica gel, the intermediate of the formula 5 to the organic base is 5 g: (4-8) mL: (3-9) g.
  • the concentration of hydrochloric acid in the hydrochloric acid/ethanol mixed solution is 1% to 5%, and the amount of hydrochloric acid is 2 to 4 times the molar amount of the organic base.
  • potassium iodide and triethylamine are added to be uniformly mixed, and then a solution containing the intermediate of the formula 4 is added, and the reaction is stirred at 85 to 90 ° C for 30 to 36 hours to obtain a polymerization.
  • the ratio of the amount of the chloromethylated polystyrene, the intermediate of the formula 4, and the triethylamine is: 4 g: (3.20 to 4.26) g: (1 to 2) mL.
  • the amount of potassium iodide is from 1 to 5% by mole of the intermediate of formula 4.
  • the activated silica gel used in the present invention is an acid-treated silica gel.
  • the present invention also provides the use of a chelating resin for selectively adsorbing copper ions in a copper-containing nickel solution and a cobalt solution.
  • the nickel-containing copper solution is a nickel electrolysis anolyte of a chloride salt system or a nickel electrolysis anolyte of a chloride salt/sulphate mixed system
  • the cobalt-containing copper solution is a cobalt electrolysis anolyte of a chlorine salt system.
  • the technical scheme of the present invention mainly aims at the problem that the existing chelate resin has poor selectivity in the copper-copper and cobalt-copper solution copper removal process.
  • a 2-aminomethylpyridine and a tert-butyl bromoacetate are substituted by a Hofmann alkylation reaction principle to prepare a 2-ammonia containing a tertiary amino group and an ester group.
  • the structural formulas of the methylpyridine compound AMPA and the 2-aminomethylpyridine compound AMPO, AMPA and AMPO containing only the tertiary amino group and the ester group are:
  • AMPO forms a complex with Cu(II) in the chloride solution, and the binding energy of N1s on the pyridine ring to the tertiary amine occurs at 1.3 eV and 0.6 eV, respectively.
  • pure AMPO forms a complex with Ni(II) in the chloride solution, and the binding energy of N1s on the pyridine ring is shifted by 1.1 eV, and the binding energy of N1s on the tertiary amine does not move.
  • AMPO Compared with pure AMPO, AMPO also forms a complex with Co(II) in the chloride solution, and the binding energy of N1s on the pyridine ring to the tertiary amine is shifted by 0.6eV and 0.45eV, respectively. It is indicated that the AMPO ligand containing only the tertiary amino group and no ester group has coordination with Cu(II) and coordination with Ni(II) and Co(II).
  • the complexes formed by AMPA, AMPO and Cu(II) in aqueous chloride solution were respectively cultured by solvent diffusion method, and single crystal x-ray diffraction analysis was carried out.
  • the results show that AMPA forms a penta-coordinated mononuclear complex Cu(AMPA)Cl 2 with Cu(II) in the chloride solution.
  • AMPA passes through the nitrogen atom on the pyridine ring and the nitrogen atom on the tertiary amine group and Cu ( II) Coordination, while the oxygen atom of the ester group also forms a coordination bond with Cu(II), and the central copper ion has a five-coordinate structure.
  • the molecular structure of the complex is as follows:
  • AMPO forms a pentacoordinated bridged dinuclear copper complex Cu 2 (AMPO) 2 Cl 4 with Cu(II) in the chloride solution, and AMPO passes through the nitrogen atom on the pyridine ring and the tertiary amine group and Cu ( II) Coordination, the central copper ion is a five-coordinate structure.
  • the molecular structure of the complex is as follows:
  • this AMPA has a selective recognition function for Cu(II) in an aqueous chloride solution.
  • AMPA has the function of selectively chelation of copper ions, it is difficult to be practically applied to the removal of copper in nickel-copper and cobalt-copper solutions because its complex with copper ions is difficult to separate from aqueous solutions. Therefore, the technical solution of the present invention successfully succeeds in the same group as the AMPA parent (functional group of Formula 1) Grafting onto a polystyrene matrix or a silica gel matrix to obtain a series of chelating resins, which well solves the problem that AMPA is difficult to separate from aqueous solution, while the chelating resin prepared by the present invention maintains the special selectivity of AMPA.
  • the function of chelate copper ions solves the main problem of poor separation selectivity of metal ions in the existing chelate resin adsorption method.
  • m 1 (g) is the mass of 2-aminomethylpyridine added to the reaction system
  • m 2 (g) is the actual output mass of the intermediate of formula 4
  • M 1 and M 2 (g/mol) are respectively 2- The molar molecular mass of aminomethylpyridine and the intermediate of formula 4.
  • m 3 (g) is the mass of the intermediate of formula 4 added to the reaction system;
  • m 4 (g) is the actual output mass of the intermediate of formula 5;
  • M 3 and M 4 (g/mol) are respectively in the middle of formula 4 The molar molecular mass of the intermediate, formula 5 intermediate.
  • the adsorption amount of the chelate resin containing the functional group of the formula 1 to the metal ion during the adsorption equilibrium is calculated according to the formula (C):
  • Q e (mmol/g) is the adsorption amount of metal ions per gram of dry resin in adsorption equilibrium
  • C 0 and C e (mmol/L) are respectively the concentration of metal ions in the solution before adsorption and when the adsorption reaches equilibrium
  • (L) is the volume of the aqueous solution to be adsorbed
  • W(g) is the dry weight of the resin.
  • the selectivity of the resin can be expressed by the selectivity coefficient ⁇ Cu/Me , which is calculated as follows:
  • Me nickel metal or cobalt metal
  • C e represents the concentration of metal ions in the solution when the adsorption reaches equilibrium
  • Q e represents the amount of metal ions adsorbed per gram of dry resin during adsorption equilibrium.
  • 3-chloropropyltrimethoxysilane or 3-chloropropyltriethoxysilane, triethylamine, anhydrous aprotic solvent are mixed uniformly, and the intermediate of formula 4 is added dropwise dropwise.
  • the temperature is raised to 80-90 ° C, and the magnetic stirring reaction is carried out for 10-20 h under heat preservation; after the reaction is finished, the colorless needle crystal of triethylamine hydrochloride produced by the reaction is removed by filtration, and the filtrate is evaporated to obtain an intermediate of formula 5;
  • the acidified activated silica gel and the organic base are added to the organic solvent, and after magnetic stirring at a temperature of 80 to 140 ° C for 1 hour, a mixture of the intermediate of the formula 5 and an inert organic solvent is added dropwise, and half of the mixture is added dropwise.
  • chloromethylated polystyrene is added to the inert organic solvent and swelled for 20-28 hours, then the potassium iodide and triethylamine are uniformly mixed, and the mixture of the inert organic solvent and the intermediate of the formula 4 is added dropwise dropwise.
  • the liquid is heated to 85-90 ° C, and the magnetic stirring reaction is carried out for 30-36 h under heat preservation; after the reaction is completed, it is washed successively with deionized water and ethanol, and filtered to obtain a solid product, which is subjected to Soxhlet extraction with ethanol for 24 hours, and suction-filtered to obtain a solid product. Drying at 50 ° C in vacuo to obtain a chelate resin (PS-AMPY-1) having a polystyrene substrate grafted with a functional group of formula 1;
  • the ratio of the amount of 3-chloropropyltrimethoxysilane or 3-chloropropyltriethoxysilane, the intermediate of the formula 4, and the triethylamine substance is: 1: (1 to 2): (1 to 2)
  • the aprotic solvent is one of toluene and N,N-dimethylformamide
  • the activated silica gel, the intermediate of formula 5, and the proportion of the organic base are 5 g: (4-8) mL: (3-9)
  • the concentration of hydrochloric acid is (1% to 5%)
  • the amount of hydrochloric acid is 2 to 4 times the molar amount of organic base
  • the ratio of chloromethyl polystyrene, intermediate of formula 4 and triethylamine is: 4g : (3.20 ⁇ 4.26)
  • the amount of potassium iodide is 1-5% of the molar amount of the intermediate of formula 4
  • the inert organic solvent is toluene,
  • a chelate resin having a 2-aminomethylpyridine functional group containing a tertiary amino group and an ester group is obtained for the first time, and a tertiary amino group, a pyridyl group and an ester group in the functional group are both
  • the copper ion undergoes a coordination reaction to form a chelate-type complex, and does not have a chelation effect on nickel or cobalt ions.
  • the chelating resin makes full use of the characteristics of its functional group, and can be used for selective removal of copper in a mixed solution of nickel-containing copper and cobalt-copper, and is particularly suitable for Cu 2 in an aqueous solution containing nickel-copper or cobalt-copper chloride. + Selective removal, the separation coefficient of copper, nickel, copper and cobalt is up to 2200 ⁇ 3500, with high adsorption selectivity.
  • the chelating resin has broad application prospects in the fields of nickel electrolyte and cobalt electrolyte copper removal process, separation and enrichment of heavy metals in environmental treatment.
  • the preparation method of the chelate resin is simple, low in cost, and is advantageous for industrial production.
  • Fig. 1 is a comparative analysis of FT-IR spectrum between a chelating resin (b) in which a functional group of the formula 1 is grafted with a silica gel matrix prepared by the method of the present invention.
  • the chelating resin grafted with a functional group of Formula 1 silica matrix at 3446cm -1, 1100cm -1, 468cm -1 at the left and right have strong absorption peaks, respectively, the silica structure in association matrix
  • the absorption peak at about 1731 cm -1 is the characteristic absorption peak of carbonyl; the absorption peak at 1575 cm -1 is CN stretching vibration peak on pyridylamine; the absorption peak at 1479 cm -1 is CN stretching vibration peak on aliphatic amine; pyridine
  • the CH bending vibration peak on the ring is at 684 cm -1 .
  • FIG. 2 FT- between a chelating resin (d) in which a commercially available chloromethylated polystyrene (c) and a polystyrene substrate obtained by the production method of the present invention are grafted with a functional group of formula 1 IR spectrum comparison analysis chart:
  • the chelating resin grafted with the functional group of the formula 1 in the polystyrene matrix has an absorption peak at 2977 cm -1 which is an aromatic ring CH stretching vibration peak at 1731 cm -
  • the absorption peak at about 1 is the characteristic absorption peak of carbonyl;
  • the absorption peak at 1595 cm -1 is CN stretching vibration peak on pyridylamine;
  • the absorption peak at 1486 cm -1 is CN stretching vibration peak on aliphatic amine; CH on pyridine ring
  • the bending vibration peak is at 987 cm -1 .
  • FIG. 3 Si-AMPY-1 prepared in Example 12 at different initial molar ratios of nickel/copper to chloride The distribution coefficient of Cu(II), Ni(II) and the selectivity coefficient of copper-nickel separation in aqueous solution;
  • FIG. 5 The distribution coefficient of Cu(II), Co(II) and the selectivity coefficient of copper and cobalt separation of Si-AMPY-1 prepared in Example 12 at different initial molar ratios of cobalt/copper to aqueous solution of chloride Graph;
  • Fig. 6 is a graph showing the distribution coefficient of Cu(II), Co(II) and the selectivity coefficient of copper and cobalt in the aqueous chloride solution of PS-AMPY-1 prepared in Example 13 at different initial molar ratios of cobalt/copper.
  • Table 1 shows the relationship between N-(tert-butoxycarbonylmethylene)-2-aminomethylpyridine prepared by different raw material ratios
  • AMPY-1 Butoxycarbonylmethylene-2-aminomethylpyridine (AMPY-1) in a yield of 55%.
  • the acidified activated silica gel and organic base are added to the anhydrous N,N-dimethylformamide (DMF) solvent, and the mixture is magnetically stirred at 80-140 ° C for 1 h, then added dropwise with a tertiary amine group.
  • a mixture of an ester-based 2-aminomethylpyridine-modified silane coupling agent and N,N-dimethylformamide (DMF) when it is added dropwise, a mixture of 5% hydrochloric acid and absolute ethanol is added dropwise liquid.
  • the system was stirred at a temperature of 80 to 140 ° C for 36 to 48 hours.
  • the solid product was subjected to Soxhlet extraction with methanol for 4-8 hours, and dried under vacuum at 50 ° C to obtain Si-AMPY-1.
  • the chelating resin Si-AMPY-1 prepared in Example 12 was used as an adsorbent to study the adsorption performance of the chelating resin on Cu(II)/Ni(II).
  • a simulated nickel chloride electrolyte was prepared using copper chloride and nickel chloride, wherein the nickel ion concentration was 60-70 g/L, the copper ion concentration was 1.0 g/L, and the pH of the solution was adjusted to 4.0.
  • the content of Cu(II) in the liquid after adsorption was determined by an absorption method.
  • the resin after adsorption saturation was desorbed with 2 mol/L of sulfuric acid, the desorption temperature was 40 ° C, and the desorption was completed after desorption was completed.
  • the content of Cu(II) and Ni(II) in the liquid after adsorption and the solution after desorption were determined by flame atomic absorption spectrometry.
  • Si-AMPY-1 dry resin was used in the nickel electrolysis anolyte of the chloride salt system.
  • the copper content in the solution was 0.052 mg/L after adsorption, and the copper-nickel mass ratio of the desorbed liquid was 21, which satisfied the nickel electrolysis anolyte.
  • Industrial requirements for deep purification of copper were 0.052 mg/L after adsorption, and the copper-nickel mass ratio of the desorbed liquid was 21, which satisfied the nickel electrolysis anolyte.
  • a simulated chlorine salt-sulfate system nickel electrolyte was prepared from copper chloride, nickel chloride and sodium sulfate, wherein the nickel ion concentration was 60-70 g/L, the copper ion concentration was 1.0 g/L, and the SO 4 2- ion concentration was 200 g / L, adjust the pH of the solution to 4.0.
  • the content of Cu(II) in the liquid after adsorption was determined by flame atomic absorption spectrometry.
  • the resin after adsorption saturation was desorbed with 2 mol/L of sulfuric acid, the desorption temperature was 40 ° C, and the desorption was completed after desorption was completed.
  • the content of Cu(II) and Ni(II) in the liquid after adsorption and the solution after desorption were determined by flame atomic absorption spectrometry.
  • Si-AMPY-1 dry resin was used in the simulated nickel electrolysis anolyte of chloride-sulfate mixed system. After adsorption, the liquid contained copper was 0.464 mg/L, and the copper-nickel mass ratio of the desorbed liquid was 20, which satisfied Nickel electrolytic anolyte deep purification of industrial requirements for copper removal.
  • the chelating resin Si-AMPY-1 prepared in Example 12 was used as an adsorbent to investigate the adsorption performance of the chelate resin on Cu(II)/Co(II).
  • a simulated cobalt electrolyte was prepared using copper chloride and cobalt chloride, wherein the cobalt ion concentration was 100-120 g/L, the copper ion concentration was 1.0 g/L, and the pH of the solution was adjusted to 4.0.
  • the resin after adsorption saturation was desorbed with 2 mol/L of sulfuric acid, the desorption temperature was 40 ° C, and the desorption was completed after desorption was completed.
  • the content of Cu(II) and Co(II) in the liquid after adsorption and the solution after desorption were determined by flame atomic absorption spectrometry.
  • the chelating resin PS-AMPY-1 prepared in Example 13 was used as an adsorbent, and the adsorption performance of the chelating resin on Cu(II)/Ni(II) was investigated.
  • a simulated nickel chloride electrolyte was prepared using copper chloride and nickel chloride, wherein the nickel ion concentration was 60-70 g/L, the copper ion concentration was 1.0 g/L, and the pH of the solution was adjusted to 4.0.
  • the content of Cu(II) in the liquid after adsorption was determined by an absorption method.
  • the resin after adsorption saturation was desorbed with 2 mol/L of sulfuric acid, the desorption temperature was 40 ° C, and the desorption was completed after desorption was completed.
  • the content of Cu(II) and Ni(II) in the liquid after adsorption and the solution after desorption were determined by flame atomic absorption spectrometry.
  • PS-AMPY-1 dry resin was used in nickel electrolysis anolyte of chloride salt system, after adsorption
  • the copper content in the medium is 0.044 mg/L, and the mass ratio of copper to nickel in the desorbed liquid is 30, which satisfies the industrial requirement for deep purification and removal of copper by nickel electrolysis anolyte.
  • a simulated chlorine salt-sulfate system nickel electrolyte was prepared from copper chloride, nickel chloride and sodium sulfate, wherein the nickel ion concentration was 60-70 g/L, the copper ion concentration was 1.0 g/L, and the SO 4 2- ion concentration was 200 g / L, adjust the pH of the solution to 4.0.
  • the content of Cu(II) in the liquid after adsorption was determined by flame atomic absorption spectrometry.
  • the resin after adsorption saturation was desorbed with 2 mol/L of sulfuric acid, the desorption temperature was 40 ° C, and the desorption was completed after desorption was completed.
  • the content of Cu(II) and Ni(II) in the liquid after adsorption and the solution after desorption were determined by flame atomic absorption spectrometry.
  • PS-AMPY-1 dry resin was used in the simulated nickel electrolysis anolyte of chloride-sulfate mixed system. After adsorption, the liquid contained copper was 0.38 mg/L, and the copper-nickel mass ratio of desorbed liquid was 28, which satisfied Nickel electrolytic anolyte deep purification of industrial requirements for copper removal.
  • the chelating resin PS-AMPY-1 prepared in Example 13 was used as an adsorbent to investigate the adsorption performance of the chelating resin on Cu(II)/Co(II).
  • a simulated cobalt electrolyte was prepared using copper chloride and cobalt chloride, wherein the cobalt ion concentration was 100-120 g/L, the copper ion concentration was 1.0 g/L, and the pH of the solution was adjusted to 4.0.
  • the resin after adsorption saturation was desorbed with 2 mol/L of sulfuric acid, the desorption temperature was 40 ° C, and the desorption was completed after desorption was completed.
  • the content of Cu(II) and Co(II) in the liquid after adsorption and the solution after desorption were determined by flame atomic absorption spectrometry.
  • PS-AMPY-1 dry resin was used in cobalt electrolysis anolyte, the copper content in the liquid after adsorption was 0.032mg/L, and the mass ratio of copper to cobalt in the desorbed liquid was 48, which satisfied the deep purification of copper by cobalt electrolysis anolyte. Industrial requirements.
  • Si-AMPY-1 and PS-AMPY-1 prepared in Examples 12 and 13 were used as adsorbents to study the selective adsorption performance of the chelate resin on Cu(II)/Ni(II) in the chloride solution.
  • Si-AMPY-1 and PS-AMPY-1 prepared in Examples 12 and 13 were used as adsorbents to study the selective adsorption performance of the chelating resin on Cu(II)/Co(II) in the chloride solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

提供了一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液中深度除铜的应用,该螯合树脂接枝有同时含叔胺基和酯基的2-氨甲基吡啶功能基团,该功能基团对镍(II)、钴(II)只发生物理吸附,而与铜(II)发生化学螯合作用,将其接枝在硅胶或聚苯乙烯等基体上,获得一系列螯合树脂,螯合树脂保留了功能基团特殊的选择性螯合铜的功能,且易于从溶液中实现分离,可以应用于含铜的镍、钴溶液中铜的选择性去除,特别适用于镍电解阳极液及钴电解阳极液高选择性深度净化除铜,可满足净化除铜的工业要求。

Description

一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液深度除铜的应用 技术领域
本发明涉及一种螯合树脂及其制备方法,特别涉及一种同时含叔胺基和酯基的2-氨甲基吡啶功能基团的螯合树脂,以及螯合树脂用于氯盐体系、氯盐-硫酸盐混合体系的镍电解阳极液和氯盐体系的钴电解阳极液深度净化除铜的方法;属于有色金属湿法冶金领域。
背景技术
为了得到高纯镍、钴金属,在生产电解镍、钴过程中,必须净化除杂,去除杂质离子。特别是铜作为镍电解阳极液和钴电解阳极液中的主要杂质元素,其标准电势(+0.337V)比镍、钴的标准电势(-0.25V、-0.28V)高很多,极易在阴极优先析出,严重影响电镍、电钴质量。
在镍电解阳极液和钴电解阳极液中,铜的含量一般在0.1-1.0g/L之间,工业上要求镍电解阳极液和钴电解阳极液的除铜后液含铜≤2mg/L,因此必须深度净化除铜。并且在金属镍、钴生产过程中,为了便于利用分离出来的伴生铜,还要求除铜渣中铜镍、铜钴质量比分别大于20:1,因此必须高选择性除铜。然而,铜镍钴金属在元素周期表中相邻,原子半径相近,化学性质相似,导致镍电解液和钴电解液深度净化除铜成为长期困扰国内外冶金界的难题。
与其他除铜方法相比,螯合树脂吸附法具有不产生除铜渣、无有机物污染电解液、实现深度除铜等优点。但现有螯合树脂存在选择性不高的问题。温俊杰使用洛阳普利特水处理有限公司根据美国专利技术生产的同时含仲胺基和伯胺基的2-氨甲基吡啶硅胶负载螯合树脂—CuWRAM螯合树脂(Edward Rosenberg,Robert J.Fischer.Materials and methods for the separation of copper ions and ferric iron in liquid solutions,USP 2004/0000523 A1),研究了其在Cu2+0.5~2.0g/L的氯盐体系及硫酸盐-氯盐混合体系等两种模拟镍电解液的除铜效果,该树脂在pH4、20℃下的铜饱和吸附容量为0.55~0.60mmol/g树脂,除铜后模拟电解液中Cu2+浓度小于2mg/L,能满足优质电镍生产要求。然而,针对氯盐体 系及氯盐-硫酸盐混合体系的模拟镍电解液,其解吸后液中铜镍质量比分别为5.89和5.93(温俊杰.新型硅胶-聚胺有机-无机复合树脂从钴(镍)电解液中除铜的基础研究.中南大学博士论文,2010)。说明该树脂在镍电解液中的铜镍分离选择性不够高。白蓝在此基础上发明了先改性后接枝方法,制得了含仲胺基团的2-氨甲基吡啶硅胶负载螯合树脂(Si-AMP-M-H螯合树脂)(胡慧萍,白蓝,陈启元等.一种硅胶负载氨甲基吡啶深度除铜螯合树脂的制备方法.国家发明专利,授权号ZL201110265187.4,授权日期:2013.10.23),研究表明,含仲胺基团的2-氨甲基吡啶硅胶负载螯合树脂(Si-AMP-M-H螯合树脂)在pH4、20℃下的铜饱和吸附容量为0.78mmol/g树脂(高于美国专利CuWRAM螯合树脂),尽管除铜后模拟电解液中含铜小于2mg/L(能满足优质电镍、电钴生产要求),但其氯化铜与氯化镍的铜镍分离系数仅为7.6,氯化铜与氯化钴的铜钴分离系数也仅为7.0(白蓝.钴电解液深度除铜螯合树脂的合成及性能研究.中南大学硕士学位论文,2012),说明该树脂在镍电解液和钴电解液中的铜镍及铜钴分离选择性也不够高。
发明内容
针对现有的螯合树脂在镍电解液和钴电解液除铜过程中存在铜镍、铜钴分离选择性不佳的问题,本发明的第一个目的在于提供了一种同时包含叔胺基和酯基的2-氨甲基吡啶功能基团的树脂,该功能基团对铜离子具有高选择性螯合作用,而对镍、钴离子无螯合作用,可用于含铜的镍溶液和钴溶液中铜的深度净化。
本发明的第二个目的在于提供一种简单、低成本制备所述螯合树脂的方法。
本发明的第三个目的在于提供所述螯合树脂的应用,充分利用所述螯合树脂含有的特殊功能基团对铜离子的选择性螯合作用,应用于含铜的镍溶液和钴溶液中铜的深度去除,特别适用于氯盐体系或氯盐-硫酸盐混合体系的镍电解阳极液及氯盐体系的钴电解阳极液的高选择性深度净化除铜。
为了实现上述技术目的,一种螯合树脂,该螯合树脂包含式1结构功能基团:
Figure PCTCN2016105772-appb-000001
优选的螯合树脂,具有式2或式3结构:
Figure PCTCN2016105772-appb-000002
其中,
n为聚苯乙烯骨架上接枝的功能基团数目;
m为硅胶骨架上接枝的功能基团数目;
Figure PCTCN2016105772-appb-000003
为硅胶骨架;
R为甲基或乙基。
所述的n大于1,最大值小于或等于聚苯乙烯骨架上的含氯量。
所述的m大于或等于1,最大值小于或等于硅胶骨架表面的活性羟基数目。
本发明还提供了一种制备所述的螯合树脂的方法,该方法包括以下步骤:
1)在惰性气氛保护下,2-氨甲基吡啶与溴乙酸叔丁酯在含三乙胺和碘化钾的溶液体系中进行取代反应,得到式4中间体;
2)在惰性气氛保护下,式4中间体与3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷在含三乙胺的溶液体系中进行取代反应,得到式5中间体;式5中间体与活化硅胶在含有机碱的溶液体系中反应,即得硅胶基体接枝有式1功能基团的螯合树脂;
或者,
在惰性气氛保护下,式4中间体与氯甲基化聚苯乙烯在含碘化钾和三乙胺的溶液体系中进行取代反应,即得聚苯乙烯基体接枝有式1功能基团的螯合树脂;
Figure PCTCN2016105772-appb-000004
Figure PCTCN2016105772-appb-000005
其中,
R为甲基或乙基。
优选的方案,将溴乙酸叔丁酯滴加至含2-氨甲基吡啶的三乙胺/碘化钾溶液体系中,在室温下反应8~20h,得到式4中间体。
较优选的方案,2-氨甲基吡啶、溴乙酸叔丁酯及三乙胺摩尔比为1:(1~2):(1.2~1.8)。
较优选的方案,碘化钾用量为2-氨甲基吡啶摩尔量的1~5%。
优选的方案,将式4中间体缓慢滴加至含3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷的三乙胺溶液中,在80~90℃温度下反应10~20h,得到式5中间体。
较优选的方案,3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷与式4中间体及三乙胺的摩尔比为1:(1~2):(1~2)。
优选的方案,活化硅胶置于有机碱溶液体系中,在80~140℃下,搅拌0.5~1.5h后,向所述体系中滴加含式5中间体的溶液,当所述含式5中间体的溶液滴加完一半后,余下部分含式5中间体的溶液与盐酸/乙醇混合溶液同时滴加至所述体系中,滴加完毕后,维持所述体系温度,反应36~48h,即得硅胶基体接枝有式1功能基团的螯合树脂。
较优选的方案,活化硅胶、式5中间体与有机碱的用量比为5g:(4~8)mL:(3~9)g。
较优选的方案,盐酸/乙醇混合溶液中盐酸的质量百分比浓度为1%~5%,盐酸的用量为有机碱摩尔量的2~4倍。
优选的方案,将氯甲基化聚苯乙烯采用溶剂溶胀后,加入碘化钾和三乙胺混合均匀,再加入含式4中间体的溶液,在85~90℃,搅拌反应30~36h,得到聚苯乙烯基体接枝有式1功能基团的螯合树脂。
优选的方案,氯甲基化聚苯乙烯、式4中间体及三乙胺的用量比为:4g:(3.20~4.26)g:(1~2)mL。碘化钾用量为式4中间体摩尔量的1~5%。
本发明采用的活化硅胶为酸处理后的硅胶。
本发明还提供了螯合树脂的应用,将所述螯合树脂应用于选择性吸附去除含铜的镍溶液和钴溶液中的铜离子。
优选的方案,含镍铜溶液为氯盐体系镍电解阳极液或氯盐/硫酸盐混合体系镍电解阳极液,含钴铜溶液为氯盐体系钴电解阳极液。
本发明的技术方案主要是针对现有螯合树脂在镍铜、钴铜溶液除铜工艺中存在选择性不佳的问题。本发明在前期研究中,利用霍夫曼烷基化反应原理,将2-氨甲基吡啶与溴乙酸叔丁酯发生取代反应,制备出一种同时含叔胺基和酯基的2-氨甲基吡啶化合物AMPA以及只含叔胺基不含酯基的2-氨甲基吡啶化合物AMPO,AMPA和AMPO的结构式分别为:
Figure PCTCN2016105772-appb-000006
采用x-射线光电子能谱(XPS)和单晶x-射线衍射分析,分别研究了AMPA和AMPO与氯化物水溶液中的Cu(II)、Ni(II)、Co(II)相互作用机理。
由XPS中各元素特征能谱峰拟合数据可知:与纯AMPA相比,AMPA与氯化物溶液中的Cu(II)形成了配合物,其N1s结合能发生了0.48eV的位移,酯基中C=O双键与C-O单键上的O1s结合能分别发生了-0.25eV和-0.35eV的位移。而与纯AMPA相比,AMPA与氯化物溶液中的Ni(II)、Co(II)并没有形成配合物,其N1s结合能与O1s结合能均未发生变化。说明这种既含叔胺基又含酯基的AMPA配体只与Cu(II)发生配位而不与Ni(II)、Co(II)发生配位。
与纯AMPO相比,AMPO与氯化物溶液中的Cu(II)形成了配合物,其吡啶环上与叔胺上的N1s结合能分别发生了1.3eV和0.6eV的位移。而与纯AMPO 相比,AMPO与氯化物溶液中的Ni(II)形成了配合物,其吡啶环上N1s结合能发生了1.1eV的位移,叔胺上N1s结合能未发生移动。且与纯AMPO相比,AMPO与氯化物溶液中的Co(II)也形成了配合物,其吡啶环上与叔胺上的N1s结合能分别发生了0.6eV和0.45eV的位移。说明这种只含叔胺基不含酯基的AMPO配体既与Cu(II)发生配位也与Ni(II)、Co(II)发生了配位。
分别将AMPA、AMPO与氯化物水溶液中Cu(II)所形成的配合物,通过溶剂扩散法培养了配合物单晶,并对其进行了单晶x-射线衍射分析。结果表明,AMPA与氯化物溶液中Cu(II)形成了五配位结构的单核配合物Cu(AMPA)Cl2,AMPA通过吡啶环上的氮原子和叔胺基上的氮原子与Cu(II)配位,同时酯基的氧原子也与Cu(II)形成了配位键,中心铜离子为五配位的结构。该配合物的分子结构如下:
Figure PCTCN2016105772-appb-000007
Cu(AMPA)Cl2配合物的分子结构。
然而,AMPO与氯化物溶液中Cu(II)形成了五配位结构的桥联双核铜配合物Cu2(AMPO)2Cl4,AMPO通过吡啶环上与叔胺基上的氮原子与Cu(II)配位,中心铜离子为五配位的结构。该配合物的分子结构如下:
Figure PCTCN2016105772-appb-000008
Cu(AMPO)2Cl4配合物的分子结构。
综上所述,这种AMPA对氯化物水溶液中的Cu(II)具有选择性识别功能。AMPA虽然具有选择性螯合铜离子的作用,但是由于其与铜离子形成的配合物难以从水溶液体系中分离,导致其难以实际应用于镍铜及钴铜溶液中铜的去除。因此,本发明的技术方案,成功地将与AMPA母体相同的基团(式1的功能基团) 接枝到聚苯乙烯基体或硅胶基体上,获得一系列螯合树脂,很好地解决了AMPA难以从水溶液中分离的缺陷,同时,本发明制备的螯合树脂保持了AMPA具有的特殊选择性螯合铜离子的功能,解决了现有螯合树脂吸附法存在的金属离子分离选择性不佳的主要问题。
式4中间体产率按式(A)计算:
Figure PCTCN2016105772-appb-000009
其中:m1(g)为加入反应体系的2-氨甲基吡啶质量;m2(g)为式4中间体的实际产出质量;M1、M2(g/mol)分别为2-氨甲基吡啶、式4中间体的摩尔分子质量。
式5中间体产率按式(B)计算:
Figure PCTCN2016105772-appb-000010
其中:m3(g)为加入反应体系的式4中间体的质量;m4(g)为式5中间体的实际产出质量;M3、M4(g/mol)分别为式4中间体、式5中间体的摩尔分子质量。
吸附平衡时含式1功能基团的螯合树脂对金属离子的吸附量按式(C)计算:
Figure PCTCN2016105772-appb-000011
其中:Qe(mmol/g)为吸附平衡时每克干树脂对金属离子的吸附量;C0、Ce(mmol/L)分别为吸附前、吸附达到平衡时溶液中金属离子浓度;V(L)为被吸附水溶液的体积;W(g)为树脂的干重。
树脂的选择性可以通过选择性系数βCu/Me来表示,其计算公式如下:
Figure PCTCN2016105772-appb-000012
其中:Me表示镍金属或者钴金属,Ce表示吸附达到平衡时溶液中金属离子浓度,Qe表示吸附平衡时每克干树脂对金属离子的吸附量。βCu/Fe值越大,树脂对Cu(II)的选择性更好。
本发明的螯合树脂的制备方法,具体的步骤为:
(a)制备式4中间体
在惰性气氛保护下,将2-氨甲基吡啶、三乙胺、碘化钾、质子溶剂混合均匀后,逐滴滴加溴乙酸叔丁酯,在室温下反应8~20h,反应完全后加入2M氯化钠并用乙酸乙酯进行萃取,随后加入无水硫酸镁静置一晚,过滤,滤液经旋转蒸发后通过柱层析纯化,得到式4中间体(AMPY-1);其中,2-氨甲基吡啶、溴乙酸叔丁酯、三乙胺物质的量之比为1:(1~2):(1.2~1.8);其中质子溶剂为无水乙醇、乙腈中的一种;碘化钾用量为2-氨甲基吡啶物质的量的1%~5%;
(b)制备硅胶基体接枝有式1功能基团的螯合树脂
在惰性气氛保护下,将3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷、三乙胺、无水非质子性溶剂混合均匀后,逐滴滴加式4中间体,升温至80~90℃,保温下磁力搅拌反应10~20h;反应结束后,过滤除去反应产生的三乙胺盐酸盐无色针状晶体,滤液蒸发后即得式5中间体;在惰性有机溶剂中加入经酸化处理后的活化硅胶及有机碱,在体系80~140℃下磁力搅拌1h后,逐滴滴加式5中间体与惰性有机溶剂的混合液,当其滴加一半时同时滴加盐酸与无水乙醇混合液;滴加完毕后,保持体系80~140℃下磁力搅拌反应36~48h;固体产物经甲醇索氏抽提4~8h后,50℃真空干燥,得到硅胶基体接枝有式1功能基团的螯合树脂(Si-AMPY-1);
或者,制备聚苯乙烯基体接枝有式1功能基团的螯合树脂
在惰性气氛保护下,向惰性有机溶剂中加入氯甲基化聚苯乙烯并溶胀20~28h,随后将碘化钾、三乙胺混合均匀后,逐滴滴加惰性有机溶剂与式4中间体的混合液,升温至85~90℃,保温下磁力搅拌反应30~36h;反应完成后,依次用去离子水、乙醇清洗,过滤得到固体产物,将其用乙醇索氏提取24h,抽滤得到固体产物,于50℃真空干燥,得到聚苯乙烯基体接枝有式1功能基团的螯合树脂(PS-AMPY-1);
其中,3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷、式4中间体、三乙胺物质的量之比为:1:(1~2):(1~2);非质子性溶剂为甲苯、N,N-二甲基甲酰胺中的一种;活化硅胶、式5中间体、有机碱用量比例为5g:(4~8)mL:(3~9)g,盐酸的质量浓度为(1%~5%),盐酸的用量为有机碱摩尔量的2~4倍;氯甲基聚苯乙烯、式4中间体及三乙胺的用量比为:4g:(3.20~4.26)g:(1~2)mL;碘化钾用量为式4中间体摩尔量的1~5%;惰性有机溶剂为甲苯、N,N-二甲基甲 酰胺中的一种,有机碱为葡甲胺、三乙胺中的一种;盐酸/乙醇混合溶液中盐酸的质量百分比浓度为1%~5%,盐酸的用量为有机碱摩尔量的2~4倍。
相对现有技术,本发明的技术方案带来的优点和积极效果:
本发明的技术方案,首次获得一种同时含叔胺基和酯基的2-氨甲基吡啶功能基团的螯合树脂,该功能基团中的叔胺基、吡啶基及酯基均与铜离子发生配位反应,形成螯合型配合物,而对镍、钴离子不具有螯合作用。该螯合树脂充分利用其功能基团的这种特性,可以用于含镍铜、钴铜混合溶液中铜的选择性去除,特别适应于对含镍铜或钴铜氯化物水溶液中的Cu2+选择性去除,其铜镍、铜钴分离选择系数最高可达2200~3500,具有很高的吸附选择性。该螯合树脂在镍电解液及钴电解液除铜工艺、环境治理中重金属的分离与富集等领域具备广阔的应用前景。此外,该螯合树脂的制备方法简单、成本低,有利于工业化生产。
附图说明
【图1】为活化硅胶(a)与本发明的制备方法所制得的硅胶基体接枝有式1功能基团的螯合树脂(b)之间的FT-IR光谱对比分析图:
其中,硅胶基体接枝有式1功能基团的螯合树脂在3446cm-1、1100cm-1、468cm-1左右处都有很强的吸收峰,这分别为基体二氧化硅结构中缔合的硅羟基伸缩振动峰,Si-O-Si键的伸缩振动吸收峰和弯曲振动吸收峰;除此之外,树脂在2983cm-1、2946cm-1处有出现的吸收峰为芳环C-H伸缩振动峰,在1731cm-1左右处的吸收峰为羰基的特征吸收峰;1575cm-1处的吸收峰为吡啶胺上C-N伸缩振动峰;1479cm-1处的吸收峰为脂肪胺上C-N伸缩振动峰;吡啶环上的C-H弯曲振动峰则在684cm-1处。
【图2】为商品氯甲基化聚苯乙烯(c)与本发明的制备方法所制得的聚苯乙烯基体接枝有式1功能基团的螯合树脂(d)之间的FT-IR光谱对比分析图:
其中,与氯甲基化聚苯乙烯相比,聚苯乙烯基体接枝有式1功能基团的螯合树脂在2977cm-1处有出现的吸收峰为芳环C-H伸缩振动峰,在1731cm-1左右处的吸收峰为羰基的特征吸收峰;1595cm-1处的吸收峰为吡啶胺上C-N伸缩振动峰;1486cm-1处的吸收峰为脂肪胺上C-N伸缩振动峰;吡啶环上的C-H弯曲振动峰则在987cm-1处。
【图3】为实施例12制备的Si-AMPY-1在不同镍/铜初始摩尔浓度比下对氯化物 水溶液中Cu(II)、Ni(II)的分配系数和铜镍分离选择性系数变化曲线图;
其中,在镍铜初始摩尔浓度比为5000时,树脂对铜镍的分离选择系数最高,达到3242。
【图4】为实施例13制备的PS-AMPY-1在不同镍/铜初始摩尔浓度比下对氯化物水溶液中Cu(II)、Ni(II)的分配系数和铜镍分离选择性系数变化曲线图:
其中,在镍铜初始摩尔浓度比为5000时,树脂对铜镍的分离选择系数最高,达到2241。
【图5】为实施例12制备的Si-AMPY-1在不同钴/铜初始摩尔浓度比下对氯化物水溶液中Cu(II)、Co(II)的分配系数和铜钴分离选择性系数变化曲线图;
其中,在钴铜初始摩尔浓度比为5000时,树脂对铜钴的分离选择系数最高,达到3385。
【图6】为实施例13制备的PS-AMPY-1在不同钴/铜初始摩尔浓度比下对氯化物水溶液中Cu(II)、Co(II)的分配系数和铜钴分离选择性系数变化曲线图:
其中,在钴铜初始摩尔浓度比为5000时,树脂对铜钴的分离选择系数最高,达到2491。
具体实施方式
以下通过实施例进一步说明本发明内容,而不是对本发明权利要求的保护范围的进一步限定。
实施例1~4
(a)制备N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶
在惰性气氛保护下,将2-氨甲基吡啶、三乙胺、碘化钾、无水乙醇混合均匀后,逐滴滴加溴乙酸叔丁酯,在室温下反应8~20h,反应完全后加入2M氯化钠并用乙酸乙酯进行萃取,随后加入无水硫酸镁静置一晚,过滤,滤液经旋转蒸发后通过柱层析纯化,得到N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶(AMPY-1)。
表1采用不同原料比制备的N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶与产率关系
Figure PCTCN2016105772-appb-000013
Figure PCTCN2016105772-appb-000014
实施例5~8
(a)制备N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶
在惰性气氛保护下,将10.23mL 2-氨甲基吡啶、16.73mL三乙胺、0.053g碘化钾、150mL无水乙醇混合均匀后,逐滴滴加14.41mL溴乙酸叔丁酯,在室温下反应8~20h,反应完全后加入2M氯化钠并用乙酸乙酯进行萃取,随后加入无水硫酸镁静置一晚,过滤,滤液经旋转蒸发后通过柱层析纯化,得到N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶(AMPY-1),其产率为55%。
(b)制备同时含叔胺基和酯基的2-氨甲基吡啶改性硅烷偶联剂
在惰性气氛保护下,将3-氯丙基三甲氧基硅烷、三乙胺、N,N-二甲基甲酰 胺(DMF)混合均匀后,逐滴滴加N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶和N,N-二甲基甲酰胺(DMF)的混合溶液,升温至80~90℃,保温下磁力搅拌反应10~20h。反应结束后过滤除去反应产生的三乙胺盐酸盐无色针状晶体。滤液蒸发后即为同时含叔胺基和酯基的2-氨甲基吡啶改性硅烷偶联剂。
表2同时含叔胺基和酯基的2-氨甲基吡啶改性硅烷偶联剂的制备
实施例9~12
(a)制备N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶
在惰性气氛保护下,将10.23mL 2-氨甲基吡啶、16.73mL三乙胺、0.053g碘化钾、150mL无水乙醇混合均匀后,逐滴滴加14.41mL溴乙酸叔丁酯,在室温下反应8~20h,反应完全后加入2M氯化钠并用乙酸乙酯进行萃取,随后加入无水硫酸镁静置一晚,过滤,滤液经旋转蒸发后通过柱层析纯化,得到N-(叔
Figure PCTCN2016105772-appb-000015
丁氧羰基亚甲基)-2-氨甲基吡啶(AMPY-1),其产率为55%。
(b)制备硅胶基体接枝有功能基团的螯合树脂
在惰性气氛保护下,将3-氯丙基三甲氧基硅烷、三乙胺、N,N-二甲基甲酰胺(DMF)混合均匀后,逐滴滴加N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶和N,N-二甲基甲酰胺(DMF)的混合溶液,升温至80~90℃,保温下磁力搅拌反应10~20h。反应结束后过滤除去反应产生的三乙胺盐酸盐无色针状晶体。滤液蒸 发后即为同时含叔胺基和酯基的2-氨甲基吡啶改性硅烷偶联剂,其产率为68%。
在无水N,N-二甲基甲酰胺(DMF)溶剂中加入经酸化处理后的活化硅胶及有机碱,在体系80~140℃下磁力搅拌1h后,逐滴滴加同时含叔胺基和酯基的2-氨甲基吡啶改性硅烷偶联剂与N,N-二甲基甲酰胺(DMF)的混合液,当其滴加一半时同时滴加5%盐酸与无水乙醇混合液。滴加完毕后,保持体系80~140℃下磁力搅拌反应36~48h。固体产物经甲醇索氏抽提4~8h后,50℃真空干燥,得到Si-AMPY-1。
表3硅胶基体接枝有功能基团的螯合树脂的制备
Figure PCTCN2016105772-appb-000016
实施例13~16
(a)制备N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶
在惰性气氛保护下,将10.23mL 2-氨甲基吡啶、16.73mL三乙胺、0.053g碘化钾、150mL无水乙醇混合均匀后,逐滴滴加14.41mL溴乙酸叔丁酯,在室温下反应8~20h,反应完全后加入2M氯化钠并用乙酸乙酯进行萃取,随后加入无水硫酸镁静置一晚,过滤,滤液经旋转蒸发后通过柱层析纯化,得到N-(叔丁氧羰基亚甲基)-2-氨甲基吡啶(AMPY-1),其产率为55%。
(b)制备同时含叔胺基和酯基的2-氨甲基吡啶聚苯乙烯基螯合树脂
在惰性气氛保护下,向15mL惰性有机溶剂中加入4g氯甲基化聚苯乙烯并溶胀20~28h,随后将0.02g碘化钾、1.69mL三乙胺混合均匀后,逐滴滴加5mL惰性有机溶剂与4.26g N-叔丁氧羰基亚甲基基-2-氨甲基吡啶的混合液,升温至90℃,保温下磁力搅拌反应36-48h。反应完成后,依次用去离子水、乙醇清洗, 过滤得到固体产物,将其用乙醇索氏提取24h,抽滤得到固体产物,于50℃真空干燥,得到聚苯乙烯基体接枝功能基团的螯合树脂(PS-AMPY-1)。
表4采用不同惰性溶剂制备的聚苯乙烯基体接枝功能基团的螯合树脂与铜离子吸附量的关系
Figure PCTCN2016105772-appb-000017
将实施例12中制备的螯合树脂Si-AMPY-1为吸附剂,研究螯合树脂对Cu(II)/Ni(II)的吸附性能。
(1)螯合树脂吸附法对氯盐体系的镍电解阳极液净化除铜效果
用氯化铜与氯化镍配制模拟氯化镍电解液,其中镍离子浓度为60~70g/L,铜离子浓度为1.0g/L,调节溶液pH值至4.0。称取0.05g Si-AMPY-1干树脂置于100mL锥形瓶中,加入50mL氯盐体系的镍电解阳极液,进行一次吸附后,模拟液中不断加入新鲜树脂进行三次吸附后,用火焰原子吸收法测定吸附后液中的Cu(II)含量。吸附饱和后的树脂用2mol/L的硫酸进行解吸,解吸温度40℃,解吸完全后得到解吸后液。用火焰原子吸收法测定吸附后液和解吸后液中的Cu(II)、Ni(II)含量。
实验结果:将Si-AMPY-1干树脂用于氯盐体系的镍电解阳极液,吸附后液中含铜为0.052mg/L,解吸后液的铜镍质量比为21,满足镍电解阳极液深度净化除铜的工业要求。
(2)螯合树脂吸附法对氯盐-硫酸盐体系的镍电解阳极液净化除铜效果
用氯化铜、氯化镍、硫酸钠配制模拟氯盐-硫酸盐体系镍电解液,其中镍离子浓度为60~70g/L,铜离子浓度为1.0g/L,SO4 2-离子浓度为200g/L,调节溶液pH值至4.0。称取0.05g Si-AMPY-1干树脂置于100mL锥形瓶中,加入50mL氯盐-硫酸盐体系的镍电解阳极液,进行一次吸附后,模拟液中不断加入新鲜树 脂进行三次吸附后,用火焰原子吸收法测定吸附后液中的Cu(II)含量。吸附饱和后的树脂用2mol/L的硫酸进行解吸,解吸温度40℃,解吸完全后得到解吸后液。用火焰原子吸收法测定吸附后液和解吸后液中的Cu(II)、Ni(II)含量。
实验结果:将Si-AMPY-1干树脂用于氯盐-硫酸盐混合体系的模拟镍电解阳极液,吸附后液含铜为0.464mg/L,解吸后液的铜镍质量比为20,满足镍电解阳极液深度净化除铜的工业要求。
将实施例12中制备的螯合树脂Si-AMPY-1为吸附剂,研究螯合树脂对Cu(II)/Co(II)的吸附性能。
用氯化铜与氯化钴配制模拟钴电解液,其中钴离子浓度为100~120g/L,铜离子浓度为1.0g/L,调节溶液pH值至4.0。称取0.05g Si-AMPY-1干树脂置于100mL锥形瓶中,加入50mL模拟钴电解阳极液,进行一次吸附后,向模拟液中不断加入新鲜树脂进行三次吸附后,用火焰原子吸收法测定吸附后液中的Cu(II)含量。吸附饱和后的树脂用2mol/L的硫酸进行解吸,解吸温度40℃,解吸完全后得到解吸后液。用火焰原子吸收法测定吸附后液和解吸后液中的Cu(II)、Co(II)含量。
实验结果:将Si-AMPY-1干树脂用于钴电解阳极液,吸附后液中含铜为0.034mg/L,解吸后液的铜钴质量比为41,满足钴电解阳极液深度净化除铜的工业要求。
将实施例13中制备的螯合树脂PS-AMPY-1为吸附剂,分别研究螯合树脂对Cu(II)/Ni(II)的吸附性能。
(1)螯合树脂吸附法对氯盐体系的镍电解阳极液净化除铜效果
用氯化铜与氯化镍配制模拟氯化镍电解液,其中镍离子浓度为60~70g/L,铜离子浓度为1.0g/L,调节溶液pH值至4.0。称取0.05g PS-AMPY-1干树脂置于100mL锥形瓶中,加入50mL氯盐体系的镍电解阳极液,进行一次吸附后,模拟液中不断加入新鲜树脂进行三次吸附后,用火焰原子吸收法测定吸附后液中的Cu(II)含量。吸附饱和后的树脂用2mol/L的硫酸进行解吸,解吸温度40℃,解吸完全后得到解吸后液。用火焰原子吸收法测定吸附后液和解吸后液中的Cu(II)、Ni(II)含量。
实验结果:将PS-AMPY-1干树脂用于氯盐体系的镍电解阳极液,吸附后液 中含铜为0.044mg/L,解吸后液的铜镍质量比为30,满足镍电解阳极液深度净化除铜的工业要求。
(2)螯合树脂吸附法对氯盐-硫酸盐体系的镍电解阳极液净化除铜效果
用氯化铜、氯化镍、硫酸钠配制模拟氯盐-硫酸盐体系镍电解液,其中镍离子浓度为60~70g/L,铜离子浓度为1.0g/L,SO4 2-离子浓度为200g/L,调节溶液pH值至4.0。称取0.05g PS-AMPY-1干树脂置于100mL锥形瓶中,加入50mL氯盐-硫酸盐体系的镍电解阳极液,进行一次吸附后,模拟液中不断加入新鲜树脂进行三次吸附后,用火焰原子吸收法测定吸附后液中的Cu(II)含量。吸附饱和后的树脂用2mol/L的硫酸进行解吸,解吸温度40℃,解吸完全后得到解吸后液。用火焰原子吸收法测定吸附后液和解吸后液中的Cu(II)、Ni(II)含量。
实验结果:将PS-AMPY-1干树脂用于氯盐-硫酸盐混合体系的模拟镍电解阳极液,吸附后液含铜为0.38mg/L,解吸后液的铜镍质量比为28,满足镍电解阳极液深度净化除铜的工业要求。
将实施例13中制备的螯合树脂PS-AMPY-1为吸附剂,研究螯合树脂对Cu(II)/Co(II)的吸附性能。
用氯化铜与氯化钴配制模拟钴电解液,其中钴离子浓度为100~120g/L,铜离子浓度为1.0g/L,调节溶液pH值至4.0。称取0.05g PS-AMPY-1干树脂置于100mL锥形瓶中,加入50mL模拟钴电解阳极液,进行一次吸附后,向模拟液中不断加入新鲜树脂进行三次吸附后,用火焰原子吸收法测定吸附后液中的Cu(II)含量。吸附饱和后的树脂用2mol/L的硫酸进行解吸,解吸温度40℃,解吸完全后得到解吸后液。用火焰原子吸收法测定吸附后液和解吸后液中的Cu(II)、Co(II)含量。
实验结果:将PS-AMPY-1干树脂用于钴电解阳极液,吸附后液中含铜为0.032mg/L,解吸后液的铜钴质量比为48,满足钴电解阳极液深度净化除铜的工业要求。
将实施例12、13中制备的Si-AMPY-1及PS-AMPY-1为吸附剂,分别研究螯合树脂对氯化物溶液中Cu(II)/Ni(II)的选择性吸附性能。
称取0.05g Si-AMPY-1树脂置于100mL锥形瓶中,加入50mL双组份重金属溶液,Cu(II)的初始浓度固定为0.04mmol/L,Ni(II)的初始浓度为0.04、0.4、2、4、20、40、80mmol/L,在313K下,pH=4时置于恒温振荡器中,以120r/min 的转速振荡100min,使吸附达到平衡,测定平衡时溶液中铜离子。
称取0.05g PS-AMPY-1树脂置于100mL锥形瓶中,加入50mL双组份重金属溶液,Cu(II)的初始浓度固定为0.04mmol/L,Ni(II)的初始浓度为0.04、0.4、2、4、20、40、80mmol/L,在313K下,pH=4时置于恒温振荡器中,以120r/min的转速振荡12h,使吸附达到平衡,测定平衡时溶液中铜离子。
实验结果:这两种螯合树脂对Cu(II)的吸附能力远大于对Ni(II)的吸附能力。并且随着镍铜初始摩尔浓度比的增加(1~5000),树脂对Cu(II)的分配系数逐渐增加,而对Ni(II)的分配系数逐渐降低,从而使得树脂对铜镍的分离选择系数不断升高,最高分别可达2241、3242。说明同时含叔胺基和酯基的2-氨甲基吡啶螯合树脂在高浓度Ni(II)的干扰下对Cu(II)具有非常高的吸附选择性。
将实施例12、13中制备的Si-AMPY-1及PS-AMPY-1为吸附剂,分别研究螯合树脂对氯化物溶液中Cu(II)/Co(II)的选择性吸附性能。
称取0.05g Si-AMPY-1树脂置于100mL锥形瓶中,加入50mL双组份重金属溶液,Cu(II)的初始浓度固定为0.04mmol/L,Co(II)的初始浓度为0.04、0.4、2、4、20、40、80mmol/L,在313K下,pH=4时置于恒温振荡器中,以120r/min的转速振荡100min,使吸附达到平衡,测定平衡时溶液中铜离子。
称取0.05g PS-AMPY-1树脂置于100mL锥形瓶中,加入50mL双组份重金属溶液,Cu(II)的初始浓度固定为0.04mmol/L,Co(II)的初始浓度为0.04、0.4、2、4、20、40、80mmol/L,在313K下,pH=4时置于恒温振荡器中,以120r/min的转速振荡12h,使吸附达到平衡,测定平衡时溶液中铜离子。
实验结果:这两种螯合树脂对Cu(II)的吸附能力远大于对Co(II)的吸附能力。并且随着钴铜初始摩尔浓度比的增加(1~5000),树脂对Cu(II)的分配系数逐渐增加,而对Co(II)的分配系数逐渐降低,从而使得树脂对铜钴的分离选择系数不断升高,最高分别可达2491、3385。说明同时含叔胺基和酯基的2-氨甲基吡啶螯合树脂在高浓度Co(II)的干扰下对Cu(II)也具有非常高的吸附选择性。

Claims (14)

  1. 一种螯合树脂,其特征在于:包含式1结构功能基团:
    Figure PCTCN2016105772-appb-100001
  2. 根据权利要求1所述的螯合树脂,其特征在于:具有式2或式3结构:
    Figure PCTCN2016105772-appb-100002
    其中,
    n为聚苯乙烯骨架上接枝的功能基团数目;
    m为硅胶骨架上接枝的功能基团数目;
    Figure PCTCN2016105772-appb-100003
    为硅胶骨架;
    R为甲基或乙基。
  3. 根据权利要求1所述的螯合树脂,其特征在于:所述的n大于1,最大值小于或等于聚苯乙烯骨架上的含氯量;所述的m大于或等于1,最大值小于或等于硅胶骨架表面的活性羟基数目。
  4. 制备权利要求1或2或3所述的螯合树脂的方法,其特征在于:包括以下步骤:
    1)在惰性气氛保护下,2-氨甲基吡啶与溴乙酸叔丁酯在含三乙胺和碘化钾的溶液体系中进行取代反应,得到式4中间体;
    2)在惰性气氛保护下,式4中间体与3-氯丙基三甲氧基硅烷或3-氯丙基三 乙氧基硅烷在含三乙胺的溶液体系中进行缩合反应,得到式5中间体;式5中间体与活化硅胶在含有机碱/盐酸的溶液体系中反应,即得硅胶基体接枝有式1功能基团的螯合树脂;
    或者,
    在惰性气氛保护下,式4中间体与氯甲基化聚苯乙烯在含碘化钾和三乙胺的溶液体系中进行取代反应,即得聚苯乙烯基体接枝有式1功能基团的螯合树脂;
    Figure PCTCN2016105772-appb-100004
    其中,
    R为甲基或乙基。
  5. 根据权利要求4所述的制备螯合树脂的方法,其特征在于:将溴乙酸叔丁酯滴加至含2-氨甲基吡啶的三乙胺/碘化钾溶液体系中,在室温下反应8~20h,得到式4中间体;其中,2-氨甲基吡啶、溴乙酸叔丁酯及三乙胺摩尔比为1:(1~2):(1.2~1.8);
  6. 根据权利要求5所述的制备螯合树脂的方法,其特征在于:碘化钾用量为2-氨甲基吡啶摩尔量的1~5%。
  7. 根据权利要求4所述的制备螯合树脂的方法,其特征在于:将式4中间体缓慢滴加至含3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷的三乙胺溶液中,在80~90℃温度下反应10~20h,得到式5中间体;其中,3-氯丙基三甲氧基硅烷或3-氯丙基三乙氧基硅烷与式4中间体及三乙胺的摩尔比为1:(1~2):(1~2)。
  8. 根据权利要求4所述的制备螯合树脂的方法,其特征在于:活化硅胶置于有机碱溶液体系中,在80~140℃下,搅拌0.5~1.5h后,向所述体系中滴加含式5中间体的溶液,当所述含式5中间体的溶液滴加完一半后,余下部分含式5中间体的溶液与盐酸/乙醇混合溶液同时滴加至所述体系中,滴加完毕后,维持体系 温度80~140℃,反应36~48h,即得硅胶基体接枝有式1功能基团的螯合树脂。
  9. 根据权利8所述的制备螯合树脂的方法,其特征在于:活化硅胶、式5中间体与有机碱的用量比为5g:(4~8)mL:(3~9)g。
  10. 根据权利9所述的制备螯合树脂的方法,其特征在于:所述盐酸/乙醇混合溶液中盐酸的质量百分比浓度为1%~5%,盐酸的用量为有机碱摩尔量的2~4倍。
  11. 根据权利4所述的制备螯合树脂的方法,其特征在于:将氯甲基化聚苯乙烯采用溶剂溶胀后,加入碘化钾和三乙胺混合均匀,再加入含式4中间体的溶液,在85~90℃,搅拌反应30~36h,得到聚苯乙烯基体接枝有式1功能基团的螯合树脂;其中,氯甲基化聚苯乙烯、式4中间体及三乙胺的用量比为4g:(3.20~4.26)g:(1~2)mL。
  12. 根据权利11所述的制备螯合树脂的方法,其特征在于:碘化钾用量为式4中间体摩尔量的1~5%。
  13. 权利要求1或2或3所述的螯合树脂的应用,其特征在于:应用于选择性吸附去除含镍铜溶液中的铜离子或含钴铜溶液中的铜离子。
  14. 根据权利要求11所述的螯合树脂的应用,其特征在于:所述的含镍铜溶液为氯盐体系镍电解阳极液或氯盐/硫酸盐混合体系镍电解阳极液;所述的含钴铜溶液为氯盐体系钴电解阳极液。
PCT/CN2016/105772 2016-07-05 2016-11-14 一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液深度除铜的应用 WO2018006524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610524804.0 2016-07-05
CN201610524804.0A CN106179260B (zh) 2016-07-05 一种螯合树脂及其制备方法和螯合树脂在含镍铜溶液深度除铜中的应用

Publications (1)

Publication Number Publication Date
WO2018006524A1 true WO2018006524A1 (zh) 2018-01-11

Family

ID=57465226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105772 WO2018006524A1 (zh) 2016-07-05 2016-11-14 一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液深度除铜的应用

Country Status (1)

Country Link
WO (1) WO2018006524A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044844A (zh) * 2021-11-11 2022-02-15 上海应用技术大学 一种螯合树脂及其制备方法与应用
CN114653373A (zh) * 2022-05-10 2022-06-24 中国矿业大学 一种高选择性镍树脂碳催化剂及其制备方法与应用
CN115286789A (zh) * 2022-07-29 2022-11-04 扬州中天利新材料股份有限公司 一种吸附镓专用螯合树脂及制备方法
CN115819652A (zh) * 2022-12-06 2023-03-21 中南大学 一种2-氨基戊二羟肟酸改性聚丙烯酸螯合树脂及其制备方法与应用
CN116730401A (zh) * 2023-05-23 2023-09-12 杭州普力材料科技有限公司 一种从dmc催化剂污泥中高选择性吸附回收钴的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441367A (zh) * 2011-09-08 2012-05-09 中南大学 一种硅胶负载氨甲基吡啶深度除铜螯合树脂的制备方法
CN103820810A (zh) * 2014-03-06 2014-05-28 中南大学 一种用于镍电解阳极液除铜的萃取剂、其制备方法及应用
WO2014159888A1 (en) * 2013-03-13 2014-10-02 Applied Materials, Inc. Methods of etching films comprising transition metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441367A (zh) * 2011-09-08 2012-05-09 中南大学 一种硅胶负载氨甲基吡啶深度除铜螯合树脂的制备方法
WO2014159888A1 (en) * 2013-03-13 2014-10-02 Applied Materials, Inc. Methods of etching films comprising transition metals
CN103820810A (zh) * 2014-03-06 2014-05-28 中南大学 一种用于镍电解阳极液除铜的萃取剂、其制备方法及应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044844A (zh) * 2021-11-11 2022-02-15 上海应用技术大学 一种螯合树脂及其制备方法与应用
CN114044844B (zh) * 2021-11-11 2023-09-26 上海应用技术大学 一种螯合树脂及其制备方法与应用
CN114653373A (zh) * 2022-05-10 2022-06-24 中国矿业大学 一种高选择性镍树脂碳催化剂及其制备方法与应用
CN115286789A (zh) * 2022-07-29 2022-11-04 扬州中天利新材料股份有限公司 一种吸附镓专用螯合树脂及制备方法
CN115286789B (zh) * 2022-07-29 2023-08-11 扬州中天利新材料股份有限公司 一种吸附镓专用螯合树脂及制备方法
CN115819652A (zh) * 2022-12-06 2023-03-21 中南大学 一种2-氨基戊二羟肟酸改性聚丙烯酸螯合树脂及其制备方法与应用
CN115819652B (zh) * 2022-12-06 2023-09-05 中南大学 一种2-氨基戊二羟肟酸改性聚丙烯酸螯合树脂及其制备方法与应用
CN116730401A (zh) * 2023-05-23 2023-09-12 杭州普力材料科技有限公司 一种从dmc催化剂污泥中高选择性吸附回收钴的方法
CN116730401B (zh) * 2023-05-23 2023-12-08 合肥普力先进材料科技有限公司 一种从dmc催化剂污泥中高选择性吸附回收钴的方法

Also Published As

Publication number Publication date
CN106179260A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018006524A1 (zh) 一种螯合树脂及其制备方法和螯合树脂在含铜的镍、钴溶液深度除铜的应用
CN108380177B (zh) 一种磁性改性氧化石墨烯水凝胶的制备方法
CN108976430B (zh) 一种酰腙连接的共价有机框架材料及其制备方法和应用
RU2012139837A (ru) Способ извлечения алюминия и железа из глиноземистых руд
JP2013040147A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
Murase et al. Synthesis and characterization of copper (II), nickel (II), and cobalt (II) binuclear complexes with a new tricyclic octadentate ligand, 1, 5, 8, 12, 15, 19, 22, 26-octaazatricyclo [17.9. 2.25, 15] dotriacontane (tcoa): trapping of carbon dioxide in a neutral aqueous solution
Shibahara et al. Preparation and characterization of sulfur-capped trinuclear molybdenum (IV) complexes with Mo3O3S cores and of sulfur-bridged dinuclear molybdenum (V) complexes with Mo2O3S cores. Crystal and molecular structures of Ba [Mo3O3S (Hnta) 3]. 10H2O and K2 [Mo3O3S (cys) 3]. 6H2O
US7517512B2 (en) Mesoporous organic-inorganic hybrid materials for separating gases
JP2013107826A (ja) 金属錯体、該金属錯体の製造方法および分離材
Wang et al. Unusual stabilities of 6, 6′-bis (aminomethyl)-2, 2′-bipyridyl chelates of transition-metal ions and crystal structures of the ligand and its copper (II) and nickel (II) complexes
JP2012020956A (ja) 金属錯体及びその製造方法
US7604683B2 (en) Gas separation method using adsorbent
CN110283333B (zh) 一种三维层柱结构双配体锌配合物及其制备方法
CN115430405B (zh) 一种修饰锆基mof吸附剂及其制备方法与应用
CN106179260B (zh) 一种螯合树脂及其制备方法和螯合树脂在含镍铜溶液深度除铜中的应用
Tanaka et al. Redox-active polyiron complexes with tetra (ethynylphenyl) ethene and [2, 2] paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire
CN114479109B (zh) 一种含n、s金属有机框架材料的制备及应用
Utsuno et al. Chiroptical properties of trigonal-bipyramidal complexes of copper (II), nickel (II), and cobalt (II) containing an optically active tetraamine
CN115554989B (zh) 一种前修饰锆基mof吸附剂及其制备方法与应用
JPH07112128A (ja) ニッケルとコバルトあるいはニッケル、コバルトとアルミニウムの分離のための吸着剤および分離方法
CN104788330B (zh) 一种手性双l‑亮氨酸盐酸盐的制备及合成方法
CN113856633B (zh) 一种双金属配位聚合物吸附剂、制备方法及其应用
US11466369B2 (en) Electroless plating solution and electroless plating method for recovering precious metal adsorbed on porous porphyrin polymer
CN110483378B (zh) 一种吡啶类醚类化合物及其制备方法和作为铜萃取剂的应用
CN116393101B (zh) 一种硅胶基吸附剂及钼铼联合分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908028

Country of ref document: EP

Kind code of ref document: A1