WO2018004143A1 - 성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물 - Google Patents

성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물 Download PDF

Info

Publication number
WO2018004143A1
WO2018004143A1 PCT/KR2017/005965 KR2017005965W WO2018004143A1 WO 2018004143 A1 WO2018004143 A1 WO 2018004143A1 KR 2017005965 W KR2017005965 W KR 2017005965W WO 2018004143 A1 WO2018004143 A1 WO 2018004143A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
composition
exosome
adult stem
angiogenesis
Prior art date
Application number
PCT/KR2017/005965
Other languages
English (en)
French (fr)
Inventor
김성태
조은경
빈범호
이태룡
고용송
김새롬
홍가혜
Original Assignee
(주)아모레퍼시픽
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아모레퍼시픽, 포항공과대학교 산학협력단 filed Critical (주)아모레퍼시픽
Publication of WO2018004143A1 publication Critical patent/WO2018004143A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells

Definitions

  • composition for promoting angiogenesis comprising an exosome-simulated nanovesicle derived from adult stem cells as an active ingredient and a method for producing the exosome-simulated nanovesicle derived from adult stem cells.
  • Angiogenesis refers to the process by which new blood vessels are produced, which rarely occurs in normal in vivo, but is necessarily involved in the process of embryogenicity, corpus luteum formation or wound healing.
  • angiogenesis usually involves the reconstitution of blood vessels by the formation of lumen due to the degradation of the basal membrane, proliferation, proliferation, and differentiation of vascular endothelial cells due to protease by stimulation of angiogenesis factors. This consists in being generated.
  • the angiogenesis process is known to be tightly controlled by several types of promoters and inhibitors, including growth factors, cytokines, lipid metabolites and latent fragments of hemostatic proteins.
  • Serious disease develops when blood vessel formation, an important process for development, wound healing, and organ formation, does not occur properly. For example, if angiogenesis does not occur at the developmental stage, it may result in misplacement of the placenta and cause miscarriage, and the development of tissue ulcers and ischemia may cause organ dysfunction and further death. Recently, various cardiovascular diseases such as arteriosclerosis, myocardial infarction and angina pectoris, cerebral infarction, and acute limb ischemia have emerged as serious diseases with high mortality due to dietary changes, improved nutrition, and an increase in the elderly population.
  • Korean Patent Laid-Open No. 10-2011-0121848 is a prior art document relating to neovascular accelerators.
  • Angiogenesis treatment using angiogenesis is called angiogenesis treatment, and angiogenesis-promoting factors such as vascular endothelial growth factor (VEGF) are used as treatments for severe ischemia, but the isolation and purification of these factors are difficult and expensive. Therefore, there is a difficulty in clinical application, and the development of new and more effective factors for the treatment of diseases whose symptoms may be improved by vascular tissue repair is continuously required.
  • VEGF vascular endothelial growth factor
  • stem cells are undifferentiated cells and have the ability to differentiate into two or more different types of cells while having the ability of self-replication.
  • Stem cells can be classified into totipotent stem cells, pluripotent stem cells, and multipotent stem cells according to their differentiation capacity. It can be classified into stem cells and adult stem cells.
  • Embryonic stem cells are derived from preimplantation fertilized eggs or developing fetal genital tissues, while adult stem cells are derived from each organ in the adult, such as bone marrow, brain, liver and pancreas.
  • mesenchymal stem cells The effects of mesenchymal stem cells on vascular cells (such as neovascularization and inhibition) are well known (Front Neurosci., 24 (7): 194, 2013). Exosomes derived from mesenchymal stem cells are also known to have angiogenic effects and prevent cardiovascular disease. Thus, exosomes derived from mesenchymal stem cells have been spotlighted as new therapeutic substances in regenerative medicine (Front Immunol). , 4 (5): 370, 2014). However, exosomes derived from mesenchymal stem cells are difficult to isolate and purify and are difficult to utilize due to low yields.
  • an object of the present disclosure is to provide an angiogenesis-promoting composition comprising an exosome-simulated nanovesicle derived from adult stem cells as an active ingredient.
  • the present disclosure aims to provide a method for producing an adult exosome-derived exosome-simulated nanovesicles with high yield, which improves the problem of exosomes derived from adult stem cells.
  • the technology disclosed herein provides a composition for promoting angiogenesis comprising exosome-mimetic nanovesicles derived from adult stem cells as an active ingredient.
  • the exosome-simulated nanovesicle is included in the filtrate of adult stem cells passed through the adult stem cells in the order of small filters from the filters of the larger size to the membrane filter of two or more different sizes Nano sized vesicles.
  • the exosome-simulated nanovesicle may be one having a diameter of 30 to 200 nm.
  • the exosome-simulated nanovesicle is 10% and iodixanol at a density gradient ultracentrifugation using 10% and 50% concentrations of iodixanol from the filtrate of adult stem cells. It may be located between 50% concentration of iodixanol.
  • the adult stem cells may be mesenchymal stem cells derived from one or more selected from the group consisting of bone marrow, umbilical cord blood, blood, skin, fat and placenta.
  • the adult stem cells may be cultured by treatment with TNF- ⁇ .
  • the adult stem cells may be cultured by treatment with TNF- ⁇ after passage to passage 6.
  • the membrane filter may have an average pore size of 1 to 10 ⁇ m size.
  • the ultracentrifugation may be performed at 100,000 ⁇ g or more.
  • the composition may be to induce or increase the migration of vascular endothelial cells.
  • the composition may be to promote angiogenesis in a disease that requires angiogenesis.
  • the disease requiring angiogenesis may be one or more selected from the group consisting of wounds, burns, ulcers, ischemia, arteriosclerosis, angina pectoris, myocardial infarction, cerebrovascular disease and alopecia.
  • the composition may be a pharmaceutical composition or a food composition.
  • the technology disclosed herein is a method for producing exosome-mimetic nanovesicles derived from adult stem cells, comprising the steps of: (1) culturing adult stem cells; (2) harvesting the cultured adult stem cells and suspending them in a buffer solution; (3) sequentially passing the suspension through two or more membrane filters of different sizes in order from the largest filter to the smallest filter to produce a filtrate; And (4) obtaining exosome-simulated nanovesicles through ultracentrifugation from the filtrate.
  • the method provides a method for producing exosome-simulated nanovesicles derived from adult stem cells.
  • the technology disclosed herein has the effect of providing a composition for promoting angiogenesis comprising an exosome-simulated nano-vesicle derived from adult stem cells as an active ingredient.
  • the technology disclosed herein has the effect of providing a method for producing a high yield of exosome-simulated nanovesicles derived from adult stem cells, which improves the problem of conventional exosomes derived from adult stem cells. .
  • Figure 1 shows a process for producing an exosome-simulated nanovesicle derived from mesenchymal stem cells according to one test example of the present specification.
  • Figure 2 shows the analysis results of exosome-simulated nano-vesicles derived from mesenchymal stem cells prepared according to one test example of the present specification.
  • Figure 2a shows the shape of the exosome-like nanovesicles
  • Figure 2b shows the size of the exosome-like nanovesicles.
  • Figure 3 shows the results of comparing the amount and particle number of the exosomes derived from the conventional mesenchymal stem cells and the exosome-simulated nanovesicle derived from the mesenchymal stem cells according to the present specification.
  • Figure 4 shows a Matrigel plug assay flow chart according to one test example of the present specification.
  • Figures 5a and 5b shows the neovascularization effect of exosome-simulated nanovesicles derived from mesenchymal stem cells prepared according to one test example of the present specification.
  • Figures 6a and 6b shows the immune cell infiltration effect of exosome-simulated nanovesicles derived from mesenchymal stem cells prepared according to one test example of the present specification.
  • Figures 7a, 7b and 7c shows the effect of exosome-simulated nanovesicles derived from mesenchymal stem cells prepared according to one test example of the present disclosure on endothelial cell proliferation and migration.
  • Figures 8a and 8b shows the effect of exosome-simulated nanovesicles derived from mesenchymal stem cells prepared according to one test example of the present disclosure on macrophage migration.
  • Figures 9a and 9b shows the effect of macrophages treated with exosome-simulated nanovesicles derived from mesenchymal stem cells prepared according to one test example of the present disclosure on endothelial cell migration.
  • the present specification is to improve the problems with the conventional exo-derived stem cells derived from adult stem cells to produce a high yield of exo-simulated nano-vesicles derived from adult stem cells, the exo-simulated nano-vesicles derived from adult stem cells It was confirmed that there is an excellent neovascularization effect.
  • the technology disclosed herein provides a composition for promoting angiogenesis comprising exosome-mimetic nanovesicles derived from adult stem cells as an active ingredient.
  • active ingredient alone refers to a component that may exhibit the desired activity alone or together with a carrier having no activity.
  • exosome-simulated nanovesicle refers to a nanoscale vesicle obtained from adult stem cells, and refers to a vesicle having a nanosize similar to exosomes, which are extracellular vesicles.
  • the exosome-simulated nanovesicle is included in the filtrate of adult stem cells passed through the adult stem cells in the order of small filters from the filters of the larger size to the membrane filter of two or more different sizes Nano sized vesicles.
  • the exosome-simulated nanovesicle may be one having a diameter of 30 to 200 nm. More specifically, the exosome-simulated nanovesicle is 30 nm or more, 32 nm or more, 34 nm or more, 36 nm or more, 38 nm or more, 40 nm or more, 42 nm or more, 44 nm or more, 46 nm or more, 48 200 nm or less, 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, 100 nm or more 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, or 70 nm or less.
  • the exosome-simulated nanovesicle may have a diameter of 30 to 100
  • the exosome-simulated nanovesicle may be one having an average diameter of 40 to 55 nm. More specifically, the exosome-simulated nanovesicle is at least 40 nm, at least 42 nm, at least 44 nm, at least 46 nm, at least 48 nm or at least 50 nm, but at most 55 nm, at most 54 nm, at most 53 nm, It may have an average diameter of 52 nm or less, 51 nm or less, or 50 nm or less.
  • the exosome-simulated nanovesicle may be one having an average diameter of 42 to 53 nm, 46 to 52 nm, 48 to 52 nm, or 50 nm.
  • the exosome-simulated nanovesicle is 10% and iodixanol at a density gradient ultracentrifugation using 10% and 50% concentrations of iodixanol from the filtrate of adult stem cells. It may be located between 50% concentration of iodixanol.
  • the adult stem cells can be autologous or allogeneic stem cells, and can be derived from any type of animal, including humans and non-human mammals.
  • the adult stem cells may be mesenchymal stem cells derived from one or more selected from the group consisting of bone marrow, umbilical cord blood, blood, skin, fat and placenta.
  • the adult stem cells may be cultured by treatment with TNF- ⁇ .
  • the adult stem cells may be cultured by treatment with TNF- ⁇ after passage to passage 6.
  • the membrane filter may have an average pore size of 1 to 10 ⁇ m size.
  • the membrane filter may be composed of three kinds of filters having different sizes, such as a filter having an average pore size of 1 to 2 ⁇ m, a filter having an average pore size of 4 to 6 ⁇ m, and It may consist of a filter having an average pore size of 9 to 10 ⁇ m.
  • the ultracentrifugation may be performed at 100,000 ⁇ g or more, specifically 100,000 to 200,000 ⁇ g, or 100,000 to 150,000 ⁇ g, or 150,000 to 200,000 ⁇ g.
  • the exosome-simulated nanovesicle may be, for example, a chemical or physical modification of the membrane components to efficiently perform the desired function in the target cell.
  • the membrane component of the exosome-simulated nanovesicle is modified by a chemical method using a thiol group (-SH) or an amine group (-NH 2 ), or a target-inducing substance to the exosome-simulated nanovesicle.
  • the composition may further include components other than the membrane.
  • the composition may be to induce or increase the migration of vascular endothelial cells.
  • the composition may be to promote angiogenesis in a disease that requires angiogenesis.
  • the disease requiring angiogenesis may be one or more selected from the group consisting of wounds, burns, ulcers, ischemia, arteriosclerosis, angina pectoris, myocardial infarction, cerebrovascular disease and alopecia.
  • the technology disclosed herein provides a method for promoting angiogenesis comprising administering to a subject in need thereof an exosome-like nanovesicle derived from an adult stem cell in an amount effective for angiogenesis. .
  • the techniques disclosed herein provide exosome-like nanovesicles derived from adult stem cells for promoting angiogenesis in a subject.
  • the technology disclosed herein provides a use for preparing an exosome-like nanovesicle containing composition derived from adult stem cells for promoting angiogenesis in a subject.
  • the adult stem cell-derived exosome-like nanovesicles may be applied or administered to a subject in the form of a pharmaceutical composition or a food composition.
  • the angiogenesis may be to induce or increase the migration of vascular endothelial cells.
  • the angiogenesis may be to promote angiogenesis in a disease requiring angiogenesis.
  • the composition may be a lyophilized formulation.
  • the composition may be a lyophilized formulation in a sealed packaging or ready-to-use sealed package.
  • the present disclosure also comprises an exosome-simulated nano-vesicle derived from the adult stem cells as an active ingredient and having a lyophilized formulation; It provides a kit for promoting angiogenesis, including; and sterile water or purified water.
  • the kit may be contained in a sealed packaging material or packaging container ready-to-use.
  • the composition may be a pharmaceutical composition.
  • the pharmaceutical composition may further contain, in addition to exosome-simulated nanovesicles, preservatives, stabilizers, hydrating or emulsifying accelerators, pharmaceutical adjuvants such as salts and / or buffers for osmotic pressure control, and other therapeutically useful substances. It may be formulated in various oral or parenteral dosage forms according to conventional methods.
  • the oral dosage forms include, for example, tablets, pills, hard and soft capsules, solutions, suspensions, emulsifiers, syrups, powders, powders, fine granules, granules, pellets, and the like, and these formulations include surfactants in addition to active ingredients. , Diluents (eg lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and glycine), glidants (eg silica, talc, stearic acid and its magnesium or calcium salts and polyethylene glycols). .
  • Diluents eg lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and glycine
  • glidants eg silica, talc, stearic acid and its magnesium or calcium salts and polyethylene glycols.
  • Tablets may also contain binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and polyvinylpyrrolidine, optionally starch, agar, alginic acid or its sodium salt Pharmaceutical additives such as disintegrants, absorbents, colorants, flavors, and sweeteners.
  • binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and polyvinylpyrrolidine, optionally starch, agar, alginic acid or its sodium salt
  • Pharmaceutical additives such as disintegrants, absorbents, colorants, flavors, and sweeteners.
  • the tablets can be prepared by conventional mixing, granulating or coating methods.
  • parenteral dosage form may be a transdermal dosage form, for example, an injection, drop, ointment, lotion, gel, cream, spray, suspension, emulsion, suppository, patch, or the like. It may be, but is not limited thereto.
  • the daily dosage of the drug depends on a variety of factors, such as the progress of the subject to be administered, the onset, age, health status, complications, etc.
  • the composition in one aspect 50 ⁇ g / kg to 50 mg / kg in another aspect may be administered by dividing 1 to 3 times a day, the dosage Does not limit the scope of the invention in any way.
  • the composition may be a food composition.
  • the food composition may be in a liquid or solid dosage form, for example, various foods, beverages, gums, teas, vitamin complexes, dietary supplements, and the like, and may be used in the form of powders, granules, tablets, capsules, or beverages. Can be.
  • the food composition of each formulation may be appropriately selected and blended by those skilled in the art according to the formulation or purpose of use, in addition to the active ingredient, and synergistic effects may occur when applied simultaneously with other raw materials.
  • liquid component that can be contained in addition to the active ingredient disclosed herein, and may include various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks.
  • natural carbohydrates include conventional sugars such as disaccharides such as monosaccharides, glucose and fructose, polysaccharides such as maltose and sucrose, dextrins and cyclodextrins, and sugar alcohols such as xylitol, sorbitol and erythritol. Etc.
  • natural flavoring agents such as, tauumatin, stevia extract (for example, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (for example, saccharin, aspartame, etc.) can be advantageously used.
  • the proportion of natural carbohydrates may generally be about 1-20 g, in one aspect about 5-12 g, per 100 ml of the compositions disclosed herein.
  • the food composition may contain various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, colorants and neutralizing agents (such as cheese and chocolate), pectic acid and salts thereof, alginic acid and the like. Salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks, and the like. In another aspect it may include a pulp for the production of natural fruit juices and vegetable drinks.
  • the components can be used independently or in combination.
  • the ratio of the additive may vary, but is generally selected from 0.001 to about 20 parts by weight per 100 parts by weight of the composition disclosed herein.
  • the present disclosure provides a method for producing exosome-mimetic nanovesicles derived from the adult stem cells, comprising the steps of: (1) culturing the adult stem cells; (2) harvesting the cultured adult stem cells and suspending them in a buffer solution; (3) sequentially passing the suspension through two or more membrane filters of different sizes in order from the largest filter to the smallest filter to produce a filtrate; And (4) obtaining exosome-simulated nanovesicles through ultracentrifugation from the filtrate.
  • the method provides a method for producing exosome-simulated nanovesicles derived from adult stem cells.
  • Test Example 1 Human Mesenchyme Stem Cells (Human mesenchymal stem cells, hMSCs Derived Exosomes -copy Nano Vegicle ( exosome -mimetic nanovesicles , NVs Manufacturing
  • exosome-simulated nanovesicles were prepared using bone marrow-derived mesenchymal stem cells, which are a kind of adult stem cells.
  • the mesenchymal stem cells account for 0.01% of all bone marrow cells, and are multipotency cells that can differentiate into chondrocytes, skeletal cells, and neurons.
  • exosome-simulated nanovesicles derived from human mesenchymal stem cells cells were cultured up to passage 6 and treated with TNF- ⁇ (20 ng / mL) for 12 hours to increase the neovascularization effect. Further incubation. Then, after washing the cells twice with PBS buffer, using a sterile cell scrapper to remove the cells and precipitated the cells at 600 ⁇ g, 5 minutes conditions. The precipitated cells were resuspended in PBS buffer, and then sequentially passed through a membrane filter having an average pore size of 10 ⁇ m, 5 ⁇ m, and 1 ⁇ m five times, respectively, to prepare nano-size exosome-simulated nanovesicles.
  • Test Example 2 Human Mesenchyme Stem Cells (Human mesenchymal stem cells, hMSCs Analysis of exosome-mimetic nanovesicles (NVs) derived from
  • NVs were added to glow-discharged carbon-coated copper grids (Electron Microscopy Sciences, Fort Washington, PA). After allowing NVs to be absorbed on the grid for 1 hour, the grid was fixed for 10 minutes with 4% paraformaldehyde and washed with a drop of deionized water, then negative with 2% uranyl acetate (Ted Pella, Redding, CA). Negative staining was performed. Electron micrographs were recorded with a JEM 1011 microscope (JEOL, Tokyo, Japan) at an acceleration voltage of 100 kV.
  • Test Example 3 Human Mesenchyme Stem Cells (Human mesenchymal stem cells, hMSCs Derived Exosomes -copy Nano Vegicle ( exosome -mimetic nanovesicles , NVs In vivo () of the effect in vivo ) analysis
  • exosome-simulated nanovesicles derived from the mesenchymal stem cells prepared above
  • exosome-simulated nanovesicles (Matrigel (0.5mL)), which is an extracellular matrix component complex 10 ⁇ g) was mixed and injected subcutaneously into 6-week-old male mice, and 7 days later, the injected Matrigel was obtained, followed by immunofluorescence staining.
  • VEGF 250 ng
  • CD31, an endothelial cell marker, and F4 / 80, a macrophage marker were stained, and the nuclei of cells were stained using Hoechst, and the images were observed using a confocal microscope (see FIG. 4).
  • Test Example 4 Human Mesenchyme Stem Cells (Human mesenchymal stem cells, hMSCs Derived Exosomes -copy Nano Vegicle ( exosome -mimetic nanovesicles , NVs In Vitro of Efficacy in vitro ) analysis
  • HMEC-1 Human microvascular endothelial cells (HMEC-1) were cultured by dispensing 5 ⁇ 10 4 cells / well into 96-well plates, and exosome-simulated nanovesicles derived from mesenchymal stem cells were prepared at various concentrations (0 , 0.1, 1, 10 ⁇ g / mL) and further incubated for 24 hours. Without washing, 10 ⁇ L / well of WST-1 reagent was added to the culture, followed by incubation at 37 ° C. for 4 hours, and the absorbance was measured at a wavelength of 420-480 nm. VEGF (10 ng / mL) was used as a positive control.
  • Polycarbonate membranes (8- ⁇ m pore: macrophages, 12- ⁇ m pore: endothelial cells) were coated with 0.1% gelatin. Cells were incubated at 37 ° C. for 30 minutes in serum-free media containing 5 ⁇ M of 5-chloromethylfluorescein diacetate (CMFDA), and the cells were resuspended in fresh serum-free media. Cells stained with CMFDA were dispensed at 3 ⁇ 10 4 cells / well in the lower chamber and the membrane precoated with gelatin was placed on it.
  • CMFDA 5-chloromethylfluorescein diacetate
  • CM cell culture fluid
  • Mouse-derived macrophages (RAW264.7) were cultured and treated with exosome-simulated nanovesicles derived from mesenchymal stem cells at various concentrations (0, 0.01, 0.1, 1 ⁇ g / mL) for 24 hours. In order to remove dead cells, the cells were centrifuged at 500 ⁇ g for 5 minutes and then cultured with a macrophage-derived cell culture (CM) through 0.22 ⁇ m filtration.
  • CM macrophage-derived cell culture
  • RNA was isolated from the cell using Trizol cDNA was prepared using a high capacity RNA to cDNA kit (AB Applied Biosystems). Each cDNA (30ng) was subjected to real-time PCR using the LightCycler 2.0 PCR system (Roche Diagnostics) using One Step SYBR RT-PCR Kit (TaKaRa Bio). At this time, the type of primer used is as follows.
  • Test Result 1 Mesenchyme Stem cell Exosomes -copy Nanovesicle Manufacturing and Analysis Results
  • exosome-simulated nanovesicles derived from mesenchymal stem cells were passaged to passage 6 and treated with TNF- ⁇ (20 ng / mL) for 12 hours to increase the neovascularization effect.
  • Exosome-simulated nanovesicles were prepared by culturing, and the shape and size of the exosome-simulated nanovesicles prepared as shown in FIGS. 2A and 2B were confirmed by transmission electron microscopy and dynamic light scattering analysis. The prepared exosome-simulated nanovesicles were found to have an average diameter of 47.55 ⁇ 5.03 nm.
  • exosomes based on one 150 mm culture dish It was confirmed that the simulated nano-vesicles can be obtained about 40 times as much protein and about 150 times as many particles as compared to exosomes (see FIG. 3). Therefore, the conventional separation and purification is difficult and the yield is very low can solve the problem that the exosomes derived from mesenchymal stem cells difficult to utilize.
  • mice were subcutaneously injected with Matrigel, an extracellular matrix component complex, mixed with exosome-like nanovesicles. After one day, the injected Matrigel was obtained and subjected to immunofluorescence staining.
  • Matrigel fragments were stained using the macrophage marker F4 / 80. As shown in FIGS. 6A and 6B, PBS staining results were similar to those of CD31 staining. Compared with the group, it was confirmed that a large number of macrophages infiltrated into Matrigel in the exosome-simulated nanovesicle (10 ⁇ g) group derived from mesenchymal stem cells. This was a similar effect to the positive control VEGF (250 ng).
  • the VEGF group was observed to collect more infiltrating macrophages around the newly generated blood vessels (solid white line). This phenomenon is observed when damage and / or regeneration of blood vessels and blood vessels occurs (Int J Dev Biol., 55 (4-5): 495-503, 2011). It was indirectly found to be unhealthy compared to blood vessels produced by exosome-simulated nanovesicles derived from mesenchymal stem cells.
  • HMEC-1 human microvascular endothelial cells
  • WST-1 proliferation assay confirmed the proliferation rate of endothelial cells treated with exosome-like nanovesicles derived from mesenchymal stem cells, and correlated with exosome-like nanovesicles treated with various concentrations of mesenchymal stem cells. The proliferative effect of endothelial cells was not confirmed (see FIG. 7A).
  • exosome-like nanoparticles derived from mesenchymal stem cells at a concentration of 1 ⁇ g / mL It was confirmed that the vesicles had the highest endothelial cell migration effect (see FIGS. 7B and 7C).
  • VEGF (10 ng / mL) was used as a positive control.
  • mouse macrophages (Raw264.7) were cultured and exosomes derived from mesenchymal stem cells -Simulated nanovesicles were treated at various concentrations (0, 0.01, 0.1, 1 ⁇ g / mL) and confirmed the effect of migration of macrophages.
  • exosome-simulated nanovesicles derived from mesenchymal stem cells have the effect of inducing endothelial and macrophage migration to form neovascularization. Accordingly, it was confirmed that symptomatic relief and improvement effects such as damage to cells can be expected.
  • mouse macrophages (Raw264.7) were cultured and various concentrations (0, 0.01, 0.1, 1 ⁇ g / mL) of the mesenchymal stem cell-derived exosome-simulated nanovesicles were treated for 24 hours to obtain a cell culture (conditioned medium, CM).
  • CM conditioned medium
  • exosomes derived from mesenchymal stem cell of 1 ⁇ g / mL were confirmed that the endothelial cell migration effect was highest in the cell culture obtained from the macrophage treated with simulated nanovesicles (see FIGS. 9A and 9B).
  • VEGF (10 ng / mL) was used as a positive control.
  • exosome-simulated nanovesicles derived from mesenchymal stem cells induce infiltration of immune cells (macrophages, etc.) in vivo, thereby inducing or promoting endothelial cell migration, thereby finally forming neovascularization. It was found that it affects.
  • Exosome-simulated nano-vesicles 50mg, galactooligosaccharide 200mg, lactose 60mg and malt sugar 140mg were mixed and granulated using a fluidized bed dryer, and then added to the tableting machine by adding a sugar ester (6mg) sugar tablets to prepare a tablet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Reproductive Health (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 명세서에는 종래 성체줄기세포 유래의 엑소좀의 문제점을 개선시킨 성체줄기세포 유래의 엑소좀-모사 나노베지클을 유효성분으로 포함하는 혈관 신생 촉진용 조성물 및 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 제조하는 방법이 개시된다. 상기 엑소좀-모사 나노베지클은 성체줄기세포를 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시킨 성체줄기세포의 여과물에 포함된 나노 크기의 베지클이다.

Description

성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물
본 명세서에는 성체줄기세포 유래의 엑소좀-모사 나노베지클을 유효성분으로 포함하는 혈관 신생 촉진용 조성물 및 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 제조하는 방법이 개시된다.
혈관 신생(angiogenesis)이란 새로운 혈관이 생성되는 과정을 말하며, 정상적인 생체 조건에서는 드물게 일어나지만, 배발생, 황체 형성 또는 상처 치료 과정에서는 반드시 수반되는 과정이다.
혈관 신생이 일어나는 과정은 일반적으로 혈관 신생 촉진 인자의 자극에 의하여 프로테아제로 인한 혈관 기저막의 분해, 혈관 내피세포의 이동, 증식 및 혈관 내피세포의 분화에 의한 관강의 형성으로 혈관이 재구성되어 새로운 모세혈관이 생성되는 것으로 이루어진다. 혈관 생성 과정은 생장인자, 사이토카인, 지질대사물질 및 지혈 단백질의 잠재성 단편 등 여러 종류의 촉진 인자와 억제 인자에 의해 엄격하게 통제되는 것으로 알려져 있다.
발생 및 상처 치유, 기관 형성에 중요한 과정인 혈관 생성이 제대로 일어나지 않을 경우 심각한 질환이 발생하게 된다. 예를 들어, 발생 단계에서 혈관 형성이 되지 않을 경우 태반의 미발달을 초래하여 유산의 원인이 될 수 있으며, 조직의 궤양 및 허혈의 발생이 기관의 기능 이상을 유발시키고 더 나아가 사망에 이르게 한다. 최근 식생활의 변화, 영양 상태의 개선과 노년 인구의 증가에 따라 동맥경화, 심근경색 및 협심증, 뇌경색, 급성사지허혈과 같은 다양한 심혈관계 질환이 성인 사망률의 수위를 차지하는 심각한 질환으로 대두되고 있으나 뚜렷한 치료법이 정립되지 않은 상태이며, 이러한 허혈성 질환을 치료하기 위해 신생 혈관 형성을 유도 또는 촉진하는 새로운 치료법 및 인자의 개발이 주목을 받고 있다(김덕경 et al, 대한내분비학회, 16(3), 328-338, 2001). 신생혈관 촉진제 관련하여 선행문헌으로 한국 공개특허번호 제10-2011-0121848호가 있다.
혈관 신생을 이용한 생체 질환의 치료를 혈관 신생 치료라 하며, 혈관내피 성장인자(VEGF)와 같은 혈관 신생 촉진 인자가 중증의 국소 빈혈을 위한 치료제로 사용되고 있으나, 상기 인자들의 분리 및 정제가 어려우며, 고가이므로 임상 적용에 어려움이 있고, 혈관성 조직 복구에 의해 증상이 개선될 수 있는 질환의 치료를 위해 보다 효과적이고 새로운 인자들의 발굴이 지속적으로 요구되고 있는 실정이다.
한편, 줄기세포(stem cell)란 미분화된 세포로서 자기 복제 능력을 가지면서 두 개 이상의 서로 다른 종류의 세포로 분화하는 능력을 갖는 세포를 말한다. 줄기세포는 분화능에 따라 만능 줄기세포(totipotent stem cell), 전분화능 줄기세포(pluripotent stem cells), 다분화능(다능성) 줄기세포(multipotent stem cells)로 분류할 수 있으며, 세포학적 유래에 따라 배아줄기세포와 성체줄기세포로 분류할 수 있다. 배아줄기세포는 착상 전 수정란이나 발생중인 태아 생식기 조직 등에서 유래하는 반면, 성체줄기세포는 성체 내에서 존재하는 각 기관, 예를 들면 골수, 뇌, 간, 췌장 등에서 유래한다.
중간엽 줄기세포가 혈관세포에 미치는 영향(신생 혈관 생성 및 억제 등)은 잘 알려져 있다(Front Neurosci., 24(7):194, 2013). 중간엽 줄기세포 유래의 엑소좀 또한 신생 혈관 생성 효과 및 심혈관 질환 예방 효과가 있음이 알려져 있으며, 이로 인해 중간엽 줄기세포 유래의 엑소좀은 재생의학 분야에서 새로운 치료 물질로서 각광을 받고 있다(Front Immunol., 4(5):370, 2014). 그러나, 중간엽 줄기세포 유래의 엑소좀은 분리 및 정제하기가 어렵고 수득률이 낮은 문제로 인해 그 활용이 어렵다.
일 측면에서, 본 명세서는 성체줄기세포 유래의 엑소좀-모사 나노베지클을 유효성분으로 포함하는 혈관 신생 촉진용 조성물을 제공하는 것을 목적으로 한다.
다른 측면에서, 본 명세서는 종래 성체줄기세포 유래의 엑소좀의 문제점을 개선시킨, 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 높은 수득률로 제조하는 방법을 제공하는 것을 목적으로 한다.
일 측면에서, 본 명세서에 개시된 기술은 성체줄기세포 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles)을 유효성분으로 포함하는 혈관 신생 촉진용 조성물을 제공한다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 성체줄기세포를 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시킨 성체줄기세포의 여과물에 포함된 나노 크기의 베지클인 것일 수 있다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 30 내지 200 nm의 직경을 갖는 것일 수 있다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 성체줄기세포의 여과물로부터 10% 및 50% 농도의 이오딕사놀을 이용한 밀도 구배 초원심분리 시, 10% 농도의 이오딕사놀과 50% 농도의 이오딕사놀 사이에 위치하는 것일 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 골수, 제대혈, 혈액, 피부, 지방 및 태반으로 이루어진 군에서 선택되는 1 이상으로부터 유래된 중간엽 줄기세포일 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 TNF-α를 처리하여 배양한 것일 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 passage 6까지 계대배양한 후 TNF-α를 처리하여 배양한 것일 수 있다.
예시적인 일 구현예에서, 상기 멤브레인 필터는 1 내지 10 ㎛ 크기의 평균 공극을 갖는 것일 수 있다.
예시적인 일 구현예에서, 상기 초원심분리는 100,000 ×g 이상에서 수행하는 것일 수 있다.
예시적인 일 구현예에서, 상기 조성물은 혈관 내피세포의 이동을 유도 또는 증가시키는 것일 수 있다.
예시적인 일 구현예에서, 상기 조성물은 혈관 신생이 요구되는 질환에서 혈관 신생을 촉진하는 것일 수 있다.
예시적인 일 구현예에서, 상기 혈관 신생이 요구되는 질환은 상처, 화상, 궤양, 허혈, 동맥경화증, 협심증, 심근경색, 뇌혈관성 질환 및 탈모증으로 이루어진 군에서 선택되는 1 이상일 수 있다.
예시적인 일 구현예에서, 상기 조성물은 약학 조성물 또는 식품 조성물일 수 있다.
다른 측면에서, 본 명세서에 개시된 기술은 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles)을 제조하는 방법으로서, (1) 성체줄기세포를 배양하는 단계; (2) 배양된 성체줄기세포를 수확하여 완충용액에 현탁시키는 단계; (3) 상기 현탁액을 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시켜 여과물을 제조하는 단계; 및 (4) 상기 여과물로부터 초원심분리를 통해 엑소좀-모사 나노베지클을 수득하는 단계;를 포함하는 성체줄기세포 유래의 엑소좀-모사 나노베지클을 제조하는 방법을 제공한다.
일 측면에서, 본 명세서에 개시된 기술은 성체줄기세포 유래의 엑소좀-모사 나노베지클을 유효성분으로 포함하는 혈관 신생 촉진용 조성물을 제공하는 효과가 있다.
다른 측면에서, 본 명세서에 개시된 기술은 종래 성체줄기세포 유래의 엑소좀의 문제점을 개선시킨, 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 높은 수득률로 제조하는 방법을 제공하는 효과가 있다.
도 1은 본 명세서의 일 시험예에 따라 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 제조하는 공정을 나타낸 것이다.
도 2는 본 명세서의 일 시험예에 따라 제조된 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 분석 결과를 나타낸 것이다. 도 2a는 엑소좀-모사 나노베지클의 형태, 도 2b는 엑소좀-모사 나노베지클의 크기를 나타낸다.
도 3은 종래 중간엽 줄기세포 유래의 엑소좀과 본 명세서에 따른 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 단밸질의 양 및 입자수를 비교한 결과를 나타낸 것이다.
도 4는 본 명세서의 일 시험예에 따른 Matrigel plug assay 흐름도를 나타낸 것이다.
도 5a 및 5b는 본 명세서의 일 시험예에 따라 제조된 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 신생 혈관 생성 효과를 나타낸 것이다.
도 6a 및 6b는 본 명세서의 일 시험예에 따라 제조된 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 면역세포 침윤 효과를 나타낸 것이다.
도 7a, 7b 및 7c는 본 명세서의 일 시험예에 따라 제조된 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 내피세포 증식 및 이동에 미치는 영향을 나타낸 것이다.
도 8a 및 8b는 본 명세서의 일 시험예에 따라 제조된 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 대식세포 이동에 미치는 영향을 나타낸 것이다.
도 9a 및 9b는 본 명세서의 일 시험예에 따라 제조된 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클로 처리된 대식세포가 내피세포 이동에 미치는 영향을 나타낸 것이다.
이하, 본 발명을 상세히 설명한다.
본 명세서는 종래 성체줄기세포 유래의 엑소좀이 갖는 문제점을 개선하여 성체줄기세포 유래의 엑소좀-모사 나노베지클을 높은 수득률로 제조하였고, 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클이 우수한 신생 혈관 촉진 효과가 있음을 확인하였다.
일 측면에서, 본 명세서에 개시된 기술은 성체줄기세포 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles)을 유효성분으로 포함하는 혈관 신생 촉진용 조성물을 제공한다.
본 명세서에서 "유효성분"은 단독으로 목적으로 하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체 등과 함께 목적으로 하는 활성을 나타낼 수 있는 성분을 의미한다.
본 명세서에서 "엑소좀-모사 나노베지클"은 성체줄기세포로부터 얻은 나노 크기의 베지클을 의미하는 것으로서, 세포외 소낭인 엑소좀과 유사한 나노 크기를 갖는 베지클을 의미한다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 성체줄기세포를 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시킨 성체줄기세포의 여과물에 포함된 나노 크기의 베지클인 것일 수 있다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 30 내지 200 nm의 직경을 갖는 것일 수 있다. 더욱 구체적으로, 상기 엑소좀-모사 나노베지클은 30 nm 이상, 32 nm 이상, 34 nm 이상, 36 nm 이상, 38 nm 이상, 40 nm 이상, 42 nm 이상, 44 nm 이상, 46 nm 이상, 48 nm 이상 또는 50 nm 이상이면서, 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하, 140 nm 이하, 130 nm 이하, 120 nm 이하, 110 nm 이하, 100 nm 이하, 95 nm 이하, 90 nm 이하, 85 nm 이하, 80 nm 이하, 75 nm 이하 또는 70 nm 이하의 직경을 갖는 것일 수 있다. 예컨대, 상기 엑소좀-모사 나노베지클은 30 내지 100 nm, 40 내지 80 nm, 50 내지 100 nm, 또는 50 내지 80 nm의 직경을 갖는 것일 수 있다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 40 내지 55 nm의 평균 직경을 갖는 것일 수 있다. 더욱 구체적으로, 상기 엑소좀-모사 나노베지클은 40 nm 이상, 42 nm 이상, 44 nm 이상, 46 nm 이상, 48 nm 이상 또는 50 nm 이상이면서, 55 nm 이하, 54 nm 이하, 53 nm 이하, 52 nm 이하, 51 nm 이하 또는 50 nm 이하의 평균 직경을 갖는 것일 수 있다. 예컨대, 상기 엑소좀-모사 나노베지클은 42 내지 53 nm, 46 내지 52 nm, 48 내지 52 nm, 또는 50 nm의 평균 직경을 갖는 것일 수 있다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 성체줄기세포의 여과물로부터 10% 및 50% 농도의 이오딕사놀을 이용한 밀도 구배 초원심분리 시, 10% 농도의 이오딕사놀과 50% 농도의 이오딕사놀 사이에 위치하는 것일 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 자가 또는 동종 유래의 줄기세포일 수 있으며, 인간 및 비인간 포유류를 포함하는 임의 유형의 동물로부터 유래할 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 골수, 제대혈, 혈액, 피부, 지방 및 태반으로 이루어진 군에서 선택되는 1 이상으로부터 유래된 중간엽 줄기세포일 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 TNF-α를 처리하여 배양한 것일 수 있다.
예시적인 일 구현예에서, 상기 성체줄기세포는 passage 6까지 계대배양한 후 TNF-α를 처리하여 배양한 것일 수 있다.
예시적인 일 구현예에서, 상기 멤브레인 필터는 1 내지 10 ㎛ 크기의 평균 공극을 갖는 것일 수 있다.
예시적인 일 구현예에서, 상기 멤브레인 필터는 크기가 다른 세 종류의 필터로 구성될 수 있으며, 예컨대 1 내지 2 ㎛ 크기의 평균 공극을 갖는 필터, 4 내지 6 ㎛ 크기의 평균 공극을 갖는 필터, 및 9 내지 10 ㎛ 크기의 평균 공극을 갖는 필터로 구성될 수 있다.
예시적인 일 구현예에서, 상기 초원심분리는 100,000 ×g 이상, 구체적으로 100,000 내지 200,000 ×g, 또는 100,000 내지 150,000 ×g, 또는 150,000 내지 200,000 ×g에서 수행하는 것일 수 있다.
예시적인 일 구현예에서, 상기 엑소좀-모사 나노베지클은 예컨대, 표적 세포에서 원하는 기능을 효율적으로 수행할 수 있도록 막 성분이 화학적 또는 물리적으로 변형된 것일 수 있다. 예를 들어, 엑소좀-모사 나노베지클의 막 성분이 티올기(-SH) 또는 아민기(-NH2)를 이용하여 화학적인 방법으로 변형되거나, 엑소좀-모사 나노베지클에 표적유도 물질, 세포막융합 물질, 폴리에틸렌글리콜을 화학적으로 결합시켜 막 이외의 성분을 더 포함하는 것일 수 있다.
예시적인 일 구현예에서, 상기 조성물은 혈관내피세포의 이동을 유도 또는 증가시키는 것일 수 있다.
예시적인 일 구현예에서, 상기 조성물은 혈관 신생이 요구되는 질환에서 혈관 신생을 촉진하는 것일 수 있다.
예시적인 일 구현예에서, 상기 혈관 신생이 요구되는 질환은 상처, 화상, 궤양, 허혈, 동맥경화증, 협심증, 심근경색, 뇌혈관성 질환 및 탈모증으로 이루어진 군에서 선택되는 1 이상일 수 있다.
또 다른 측면에서, 본 명세서에 개시된 기술은 혈관 신생에 유효한 양의 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 이를 필요로 하는 대상에게 투여하는 것을 포함하는, 혈관 신생 촉진 방법을 제공한다.
또 다른 측면에서, 본 명세서에 개시된 기술은 대상의 혈관 신생을 촉진하기 위한 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 제공한다.
또 다른 측면에서, 본 명세서에 개시된 기술은 대상의 혈관 신생을 촉진하기 위한 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클 함유 조성물을 제조하기 위한 용도를 제공한다.
예시적인 일 구현예에서, 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클은 약학 조성물 또는 식품 조성물의 형태로 대상에 적용 또는 투여하는 것일 수 있다.
예시적인 일 구현예에서, 상기 혈관 신생은 혈관 내피세포의 이동을 유도 또는 증가시키는 것일 수 있다.
예시적인 일 구현예에서, 상기 혈관 신생은 혈관 신생이 요구되는 질환에서 혈관 신생을 촉진하는 것일 수 있다.
예시적인 일 구현예에서, 상기 조성물은 동결건조된 제형일 수 있다. 상기 조성물은 즉시 사용 가능하도록(ready-to-use) 밀봉된 포장재 또는 포장 용기에 담긴 동결건조된 제형일 수 있다.
본 명세서는 또한 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클을 유효성분으로 포함하고 동결건조된 제형을 갖는 조성물; 및 멸균수 또는 정제수;를 포함하는 혈관 신생 촉진용 키트를 제공한다. 상기 키트는 즉시 사용 가능하도록(ready-to-use) 밀봉된 포장재 또는 포장 용기에 담긴 것일 수 있다.
예시적인 일 구현예에 따르면, 상기 조성물은 약학 조성물인 것일 수 있다.
상기 약학 조성물은 엑소좀-모사 나노베지클 이외에 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 약제학적 보조제 및 기타 치료적으로 유용한 물질을 추가로 함유할 수 있으며, 통상적인 방법에 따라 다양한 경구 투여제 또는 비경구 투여제 형태로 제형화할 수 있다.
상기 경구 투여제는 예를 들면, 정제, 환제, 경질 및 연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 분제, 산제, 세립제, 과립제, 펠렛제 등이 있으며, 이들 제형은 유효성분 이외에 계면 활성제, 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로오스 및 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및 폴리에틸렌 글리콜)를 함유할 수 있다. 정제는 또한 마그네슘 알루미늄 실리케이트, 전분페이스트, 젤라틴, 트라가칸스, 메틸셀룰로오스, 나트륨 카복시메틸셀룰로오스 및 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제, 흡수제, 착색제, 향미제, 및 감미제 등의 약제학적 첨가제를 함유할 수 있다. 상기 정제는 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.
또한, 상기 비경구 투여 형태로는 경피 투여형 제형일 수 있으며, 예를 들어 주사제, 점적제, 연고, 로션, 겔, 크림, 스프레이, 현탁제, 유제, 좌제(坐劑), 패취 등의 제형일 수 있으나, 이에 제한되는 것은 아니다.
상기 유효성분의 투여량 결정은 통상의 기술자의 수준 내에 있으며, 약물의 1일 투여 용량은 투여하고자 하는 대상의 진행 정도, 발병 시기, 연령, 건강상태, 합병증 등의 다양한 요인에 따라 달라지지만, 성인을 기준으로 할 때 일 측면에서 상기 조성물 1 ㎍/kg 내지 200 mg/kg, 다른 일 측면에서 50 ㎍/kg 내지 50 mg/kg을 1일 1 내지 3회 분할하여 투여할 수 있으며, 상기 투여량은 어떠한 방법으로도 본 발명의 범위를 한정하는 것이 아니다.
예시적인 일 구현예에 따르면, 상기 조성물은 식품 조성물인 것일 수 있다.
상기 식품 조성물은 액상 또는 고체 상태의 제형일 수 있고, 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등이 있고, 분말, 과립, 정제, 캡슐 또는 음료인 형태로 사용될 수 있다. 각 제형의 식품 조성물은 유효성분 이외에 해당 분야에서 통상적으로 사용되는 성분들을 제형 또는 사용 목적에 따라 당업자가 어려움 없이 적의 선정하여 배합할 수 있으며, 다른 원료와 동시에 적용할 경우 상승 효과가 일어날 수 있다.
본 명세서에 개시된 유효성분 외에 함유할 수 있는 액체 성분에는 특별한 제한점이 없으며, 통상의 음료와 같이 여러가지 향미제 또는 천연 탄수화물 등을 추가성분으로 포함할 수 있다. 상기 천연 탄수화물의 예로는 모노사카라이드, 포도당, 과당 등의 디사카라이드, 말토스, 슈크로스 등의 폴리사카라이드, 덱스트린, 시클로덱스트린 등의 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당 알코올 등이 있다. 상기의 향미제로는 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제(예를 들어 사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 명세서에 개시된 조성물 100 ml 당 일반적으로 약 1 내지 20 g, 일 측면에서 약 5 내지 12 g일 수 있다.
상기 식품 조성물은 일 측면에서 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그 염, 알긴산 및 그 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 포함할 수 있다. 다른 측면에서 천연 과일 주스 및 야채 음료의 제조를 위한 과육을 포함할 수 있다. 상기 성분들은 독립적으로 또는 조합하여 사용될 수 있다. 상기 첨가제의 비율은 다양할 수 있으나, 본 명세서에 개시된 조성물 100 중량부 당 0.001 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.
또 다른 측면에서, 본 명세서는 상기 성체줄기세포 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles)을 제조하는 방법으로서, (1) 성체줄기세포를 배양하는 단계; (2) 배양된 성체줄기세포를 수확하여 완충용액에 현탁시키는 단계; (3) 상기 현탁액을 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시켜 여과물을 제조하는 단계; 및 (4) 상기 여과물로부터 초원심분리를 통해 엑소좀-모사 나노베지클을 수득하는 단계;를 포함하는 성체줄기세포 유래의 엑소좀-모사 나노베지클을 제조하는 방법을 제공한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
시험예 1. 인간 중간엽 줄기세포(Human mesenchymal stem cells, hMSCs ) 유래의 엑소좀 -모사 나노베지클 ( exosome -mimetic nanovesicles , NVs )의 제조
본 시험예에서는 성체줄기세포의 일종인 골수 유래 중간엽 줄기세포를 이용하여 엑소좀-모사 나노베지클을 제조하였다. 상기 중간엽 줄기세포는 전체 골수 세포의 0.01%를 차지하고 있으며, 연골세포, 골격세포, 신경세포 등으로 분화할 수 있는 다능성(multipotency) 세포이다.
인간 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 제조하기 위해서, 세포를 passage 6까지 배양하고 신생 혈관 생성 효과를 증가시키기 위해서, TNF-α(20 ng/mL)를 처리하여 12시간 동안 추가로 배양하였다. 이후, PBS buffer로 세포를 두 번 washing한 후, 멸균된 cell scrapper를 이용하여 세포를 떼어내고 600 ×g, 5분 조건에서 세포를 침전시켰다. 침전된 세포는 PBS buffer로 재현탁시킨 후, 10 ㎛, 5 ㎛, 1 ㎛의 평균 공극 크기를 갖는 멤브레인 필터를 각각 5번씩 순차적으로 통과시켜 나노 크기의 엑소좀-모사 나노베지클을 제조하였다. 또한, 순수한 엑소좀-모사 나노베지클만을 분리하기 위해서, 튜브에 이오딕사놀(iodixanol) 50%, 10% 및 샘플을 아래에서부터 쌓고 밀도 구배 초원심분리(density gradient ultracentrifugation)를 100,000 ×g, 2시간, 4 ℃ 조건에서 수행하였다. 10%와 50% 이오딕사놀 사이에 존재하는 순수한 엑소좀-모사 나노베지클 층을 모으고, 버퍼 교환을 위해 HBS buffer로 희석하여 초원심분리를 100,000 ×g, 2시간, 4 ℃ 조건에서 수행하였다(도 1 참조).
시험예 2. 인간 중간엽 줄기세포(Human mesenchymal stem cells, hMSCs ) 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles, NVs)의 분석
(1) 투과 전자 현미경(Transmission Electron Microscopy; TEM )
글로-방전 탄소-코팅 구리 그리드(glow-discharged carbon-coated copper grids)(Electron Microscopy Sciences, Fort Washington, PA)에 정제된 NVs을 가하였다. NVs가 1시간 동안 그리드 상에 흡수되도록 한 후, 그리드를 4% 파라포름알데하이드로 10분간 고정시켰으며 탈이온수의 물방울로 세척한 다음, 2% 우라닐 아세테이트(Ted Pella, Redding, CA)로 음성 염색(negative stain)하였다. 전자 현미경 사진은 100 kV의 가속 전압에서 JEM 1011 microscope(JEOL, Tokyo, Japan)로 기록되었다.
(2) 동적 광 산란법(Dynamic light scattering; DLS)
NVs의 크기 분포를 Zetasizer Nano ZS(Malvern Instrument Ltd., Malvern, U.K.)로 측정하였다. 상대적 빈도에 기초한 크기 분포는 10 × 30 s에 대한 산란 강도에서 샘플을 통과하는 적외선(파장 = 633 nm)으로 측정하였다.
시험예 3. 인간 중간엽 줄기세포(Human mesenchymal stem cells, hMSCs ) 유래의 엑소좀 -모사 나노베지클 ( exosome -mimetic nanovesicles , NVs ) 효능의 인 비보( in vivo ) 분석
(1) Matrigel plug assay
상기 제조한 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 신생 혈관 생성 및 면역세포 침윤 효과를 확인하기 위해서, 세포 외 기질 성분 복합체인 Matrigel(0.5mL)에 엑소좀-모사 나노베지클(10 μg)을 섞어 6주령 수컷 마우스에 피하 주사하고, 7일 후에 주입한 Matrigel을 얻어 면역형광염색법을 수행하였다. 양성 대조군으로는 VEGF(250 ng)을 사용하였다. 내피세포 마커인 CD31과 대식세포 마커인 F4/80를 염색하였고, Hoechst을 활용하여 세포의 핵을 염색한 후, 공초점 현미경을 사용하여 이미지를 관찰하였다(도 4 참조).
시험예 4. 인간 중간엽 줄기세포(Human mesenchymal stem cells, hMSCs ) 유래의 엑소좀 -모사 나노베지클 ( exosome -mimetic nanovesicles , NVs ) 효능의 인 비트로( in vitro ) 분석
(1) Proliferation assay( WST -1)
인간 내피세포(Human microvascular endothelial cell, HMEC-1)를 96-웰 플레이트에 5 × 104 cells/well씩 분주하여 배양하고, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 다양한 농도(0, 0.1, 1, 10 μg/mL)로 처리한 후 24시간 동안 추가 배양하였다. Washing 과정 없이, 배양액에 WST-1 시약을 10 μL/well로 첨가한 후 4시간 동안 37 ℃에서 배양하고 420-480 nm의 파장에서 흡광도를 측정하였다. 양성 대조군으로 VEGF(10 ng/mL)를 사용하였다.
(2) Migration assay(Boyden chamber assay)
폴리카보네이트 멤브레인(8-μm pore: 대식세포, 12-μm pore: 내피세포)을 0.1% 젤라틴으로 코팅하였다. 세포는 5 μM의 5-chloromethylfluorescein diacetate(CMFDA)가 포함된 serum-free media로 30분 동안 37 ℃에서 배양하여 세포질을 염색한 후, 염색이 끝난 세포는 새로운 serum-free media로 재현탁시켰다. 아래쪽 챔버에 CMFDA로 염색된 세포를 3 × 104 cells/well로 분주하고, 그 위에 젤라틴으로 미리 코팅한 멤브레인을 올렸다. 이후, 챔버를 뒤집어서 2시간 동안 37 ℃의 인큐베이터에서 배양한 다음, 다시 챔버를 뒤집어서 위쪽 챔버에 처리하고자 하는 다양한 농도의 엑소좀-모사 나노베지클 또는 세포 배양액(CM)을 넣은 후, 뒤집어서 2시간 동안 37 ℃의 인큐베이터에서 추가 배양하였다. 세포의 이동이 끝나면, 70% ice-cold 에탄올을 이용하여 고정시킨 후, 형광현미경으로 관찰하였다. 양성 대조군으로는 VEGF(10 ng/mL) 및 EGM2-MV를 사용하였다.
(3) Preparation of conditioned medium(CM)
마우스 유래 대식세포(RAW264.7)를 배양하고, 다양한 농도(0, 0.01, 0.1, 1 μg/mL)의 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 처리하여 24시간 동안 배양하였다. 죽은 세포 등을 제거하기 위해, 500 ×g, 5분간 원심분리를 한 후 0.22 μm filtration을 통해 대식세포 유래 세포 배양액(CM)을 얻었다.
(4) RNA isolation and Real-time PCR
Trizol을 이용하여 세포의 RNA를 분리한 후, High capacity RNA to cDNA kit(AB Applied Biosystems)를 활용하여 cDNA을 만들었다. 각 cDNA(30ng)는 One Step SYBR RT-PCR Kit(TaKaRa Bio)를 활용하여 LightCycler 2.0 PCR system(Roche Diagnostics)으로 real-time PCR을 진행하였다. 이때, 사용한 프라이머의 종류는 다음과 같다.
서열번호 1 : hKGF Forward 5'-AAAGGGGATTCCTGTAAGAG-3'
서열번호 2 : hKGF Reverse 5'-TGCTGGAACTGGTTCTTTAT-3'
서열번호 3 : hTGF-α Forward 5'-TGTTATCTTCAAGCCAGGTT-3'
서열번호 4 : hTGF-α Reverse 5'-GGTCTCCTGAGCAGTGTTAG-3'
서열번호 5 : hGAPDH Forward 5'-CGAGATCCCTCCAAAATCAA-3'
서열번호 6 : hGAPDH Reverse 5'-TTCACACCCATGACGAACAT-3'
시험결과 1. 중간엽 줄기세포 유래의 엑소좀 -모사 나노베지클의 제조 및 분석 결과
중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 제조하기 위해서, 세포를 passage 6까지 계대배양하고 신생 혈관 생성 효과를 증가시키기 위해서, TNF-α(20 ng/mL)를 처리하여 12시간 추가 배양하여 엑소좀-모사 나노베지클을 제조하였으며, 도 2a 및 2b에서 보는 바와 같이 제조된 엑소좀-모사 나노베지클의 형태와 크기를 투과 전자 현미경 및 동적 광산란 분석을 통해 확인하였다. 제조된 엑소좀-모사 나노베지클은 47.55 ± 5.03 nm의 평균 직경을 갖는 것으로 나타났다.
또한, 동일한 배양 조건에서 분리 및 정제한 기존의 중간엽 줄기세포 유래의 엑소좀과 본 명세서에 따른 엑소좀-모사 나노베지클의 수득률을 비교하면, 1개의 150 mm 배양 접시를 기준으로 엑소좀-모사 나노베지클은 엑소좀에 비해 단백질 양으로는 약 40배, 입자수로는 약 150배 많은 양을 얻을 수 있음을 확인하였다(도 3 참조). 따라서, 종래 분리 및 정제가 어렵고 수득률이 매우 낮아 그 활용이 어려운 중간엽 줄기세포 유래의 엑소좀이 갖는 문제를 해결할 수 있다.
시험결과 2. 중간엽 줄기세포 유래의 엑소좀 -모사 나노베지클의 신생 혈관 생성 효과
(1) 중간엽 줄기세포 유래의 엑소좀 -모사 나노베지클의 신생 혈관 생성 및 면역세포 침윤 효과
중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 신생 혈관 생성 및 면역세포 침윤 효과를 확인하기 위해서, 세포 외 기질 성분 복합체인 Matrigel에 엑소좀-모사 나노베지클을 섞어 마우스에 피하 주사하고 7일 뒤 주입한 Matrigel을 얻어 면역형광염색법을 시행하였다.
내피세포 마커로 잘 알려진 CD31을 활용하여 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 신생 혈관 생성 효과를 확인한 결과, 도 5a 및 5b에서 보는 바와 같이 대조군(PBS)에 비해 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클(10 μg) 그룹은 Matrigel 내부에 새로운 혈관을 많이 생성하였으며, 이는 기존에 혈관 관련 연구에서 많이 사용하는 양성 대조군인 VEGF(250 ng)와 유사한 효과임을 확인하였다. 특히, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클 그룹은 VEGF 그룹보다 곧고 길쭉하며, 끊어짐이 적은 혈관을 더 많이 관찰할 수 있었다.
또한, 신생 혈관이 생성된 주변의 면역세포 침윤 정도를 확인하기 위해서, 대식세포 마커인 F4/80을 활용하여 Matrigel 절편을 염색한 결과, 도 6a 및 6b에서 보는 바와 같이 CD31 염색 결과와 유사하게 PBS 그룹에 비해 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클(10 μg) 그룹에서 Matrigel 내로 많은 수의 대식세포가 침윤되었음을 확인하였다. 이는 양성 대조군인 VEGF(250 ng)와 유사한 효과였다. 더불어, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클 그룹과 달리 VEGF 그룹은 침윤된 대식세포가 새롭게 생성된 혈관 주변(흰색 실선)에 더 많이 모여 있는 현상이 관찰되었다. 이러한 현상은 혈관 및 혈관 주변에 손상 또는 그로 인한 재생 등이 일어나는 경우에 관찰되는 것으로서(Int J Dev Biol., 55(4-5):495-503, 2011), VEGF에 의해 새롭게 생성된 혈관이 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클에 의해 생성된 혈관에 비해 건강하지 않음을 간접적으로 알 수 있었다.
결론적으로, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 신생 혈관 생성 및 면역세포 침윤 효과를 확인하였다.
(2) 중간엽 줄기세포 유래의 엑소좀 -모사 나노베지클이 내피세포 증식 및 이동에 미치는 영향
중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 Matrigel 내부에 새로운 혈관을 생성하는 효과가 내피세포의 증식 또는 이동에 의한 효과인지 확인하기 위해서, 인간 내피세포(Human microvascular endothelial cell, HMEC-1)를 배양하고 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 다양한 농도(0, 0.1, 1, 10 μg/mL)로 처리한 후 내피세포의 증식 및 이동 효과를 확인하였다.
WST-1 proliferation assay로 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 처리된 내피세포의 증식률을 확인한 결과, 다양한 농도의 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클 처리 여부와 상관 없이 내피세포의 증식 효과는 확인하지 못하였다(도 7a 참조). 그러나, boyden chamber assay를 통해 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 처리된 내피세포의 이동 효과를 확인한 결과, 1 μg/mL의 농도에서 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클의 내피세포 이동 효과가 가장 높음을 확인하였다(도 7b, 7c 참조). 양성 대조군으로는 VEGF(10 ng/mL)를 사용하였다.
(3) 중간엽 줄기세포 유래의 엑소좀 -모사 나노베지클이 대식세포 이동에 미치는 영향
중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 신생 혈관 생성 지역으로 면역세포 침윤을 직접적으로 유도하는지 확인하기 위해서, 마우스 대식세포(Raw264.7)를 배양하고 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 다양한 농도(0, 0.01, 0.1, 1 μg/mL)로 처리한 후 대식세포의 이동 효과를 확인하였다.
Boyden chamber assay를 통해 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 처리된 대식세포의 이동 효과를 확인한 결과, 기존과 유사하게 1 μg/mL의 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 처리된 대식세포가 가장 많이 이동하였으며, 양성 대조군으로 처리한 VEGF(10 ng/mL)보다 더 많은 대식세포 이동 유도 효과가 있음을 확인할 수 있었다(도 8a, 8b 참조).
결과를 종합해 보면, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클은 내피세포와 대식세포의 이동을 유도하여 신생 혈관을 형성하는 효과가 있음을 알 수 있었다. 이에 따라, 세포의 손상 등의 증상 완화 및 개선 효과를 기대할 수 있음을 확인하였다.
(4) 중간엽 줄기세포 유래의 엑소좀 -모사 나노베지클로 처리된 대식세포가 내피세포 이동에 미치는 영향
중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 대식세포를 통해 간접적으로 내피세포의 이동에 미치는 영향을 확인하기 위해, 마우스 대식세포(Raw264.7)를 배양하고 다양한 농도(0, 0.01, 0.1, 1 μg/mL)의 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 처리하여 24시간 동안 배양한 후 세포 배양액(conditioned medium, CM)을 얻었다. 세포 배양액은 상기와 동일한 시험 방법을 통해 내피세포의 이동 효과를 확인하였다.
Boyden chamber assay를 통해 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클로 처리된 대식세포 세포 배양액의 내피세포 이동 효과를 확인한 결과, 기존과 유사하게 1 μg/mL의 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 처리된 대식세포에서 얻은 세포 배양액에서 내피세포 이동 효과가 가장 높은 것을 확인하였다(도 9a, 9b 참조). 또한, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클을 내피세포에 직접 처리한 것과 유사 혹은 더 우수한 효과가 있음을 알 수 있었다. 양성 대조군으로는 VEGF(10 ng/mL)를 사용하였다.
이에 따라, 중간엽 줄기세포 유래의 엑소좀-모사 나노베지클이 생체 내에서 면역세포(대식세포 등)의 침윤을 유도하고, 이들에 의해 내피세포의 이동이 유도 또는 촉진됨으로써 최종적으로 신생 혈관 형성에 영향을 미치는 것을 알 수 있었다.
본 발명의 일 측면에 따른 조성물의 제형예를 아래에서 설명하나, 다른 여러 가지 제형으로도 응용 가능하며, 이는 본 발명을 한정하고자 함이 아닌 단지 구체적으로 설명하고자 함이다.
[ 제형예 1] 주사제
엑소좀-모사 나노베지클 50 mg, 주사용 멸균 증류수 적량, pH 조절제 적량을 혼합하고, 통상의 주사제의 제조방법에 따라 1 앰플당(2㎖) 상기의 성분 함량으로 제조하였다.
[ 제형예 2] 연질캅셀제
엑소좀-모사 나노베지클 50mg, L-카르니틴 80~140mg, 대두유 180mg, 팜유 2mg, 식물성 경화유 8mg, 황납 4mg 및 레시틴 6mg을 혼합하고, 통상의 방법에 따라 1캡슐 당 400mg씩 충진하여 연질캅셀제를 제조하였다.
[ 제형예 3] 정제
엑소좀-모사 나노베지클 50mg, 갈락토올리고당 200mg, 유당 60mg 및 맥아당 140mg을 혼합하고 유동층 건조기를 이용하여 과립한 후 당 에스테르(sugar ester) 6mg을 첨가하여 타정기로 타정하여 정제를 제조하였다.
[ 제형예 4] 과립제
엑소좀-모사 나노베지클 50mg, 무수결정 포도당 250mg 및 전분 550mg을 혼합하고, 유동층 과립기를 사용하여 과립으로 성형한 후 포에 충진하여 과립제를 제조하였다.
[ 제형예 5] 드링크제
엑소좀-모사 나노베지클 50mg, 포도당 10g, 구연산 0.6g, 및 액상 올리고당 25g을 혼합한 후 정제수 300ml를 가하여 각 병에 200ml씩 충진하였다. 병에 충진한 후 130℃에서 4~5초간 살균하여 드링크제 음료를 제조하였다.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
서열번호 1 : hKGF Forward 5’-AAAGGGGATTCCTGTAAGAG-3’
서열번호 2 : hKGF Reverse 5’-TGCTGGAACTGGTTCTTTAT-3’
서열번호 3 : hTGF-α Forward 5’-TGTTATCTTCAAGCCAGGTT-3’
서열번호 4 : hTGF-α Reverse 5’-GGTCTCCTGAGCAGTGTTAG-3’
서열번호 5 : hGAPDH Forward 5’-CGAGATCCCTCCAAAATCAA-3’
서열번호 6 : hGAPDH Reverse 5’-TTCACACCCATGACGAACAT-3’

Claims (14)

  1. 성체줄기세포 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles)을 유효성분으로 포함하는 혈관 신생 촉진용 조성물.
  2. 제 1항에 있어서,
    상기 엑소좀-모사 나노베지클은 성체줄기세포를 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시킨 성체줄기세포의 여과물에 포함된 나노 크기의 베지클인, 혈관 신생 촉진용 조성물.
  3. 제 1항에 있어서,
    상기 엑소좀-모사 나노베지클은 30 내지 200 nm의 직경을 갖는 것인, 혈관 신생 촉진용 조성물.
  4. 제 1항에 있어서,
    상기 엑소좀-모사 나노베지클은 성체줄기세포의 여과물로부터 10% 및 50% 농도의 이오딕사놀을 이용한 밀도 구배 초원심분리 시, 10% 농도의 이오딕사놀과 50% 농도의 이오딕사놀 사이에 위치하는 것인, 혈관 신생 촉진용 조성물.
  5. 제 1항에 있어서,
    상기 성체줄기세포는 골수, 제대혈, 혈액, 피부, 지방 및 태반으로 이루어진 군에서 선택되는 1 이상으로부터 유래된 중간엽 줄기세포인, 혈관 신생 촉진용 조성물.
  6. 제 1항에 있어서,
    상기 성체줄기세포는 TNF-α를 처리하여 배양한 것인, 혈관 신생 촉진용 조성물.
  7. 제 1항에 있어서,
    상기 성체줄기세포는 passage 6까지 계대배양한 후 TNF-α를 처리하여 배양한 것인, 혈관 신생 촉진용 조성물.
  8. 제 1항에 있어서,
    상기 멤브레인 필터는 1 내지 10 ㎛ 크기의 평균 공극을 갖는 것인, 혈관 신생 촉진용 조성물.
  9. 제 1항에 있어서,
    상기 초원심분리는 100,000 ×g 이상에서 수행하는 것인, 혈관 신생 촉진용 조성물.
  10. 제 1항에 있어서,
    상기 조성물은 혈관 내피세포의 이동을 유도 또는 증가시키는 것인, 혈관 신생 촉진용 조성물.
  11. 제 1항에 있어서,
    상기 조성물은 혈관 신생이 요구되는 질환에서 혈관 신생을 촉진하는 것인, 혈관 신생 촉진용 조성물.
  12. 제 11항에 있어서,
    상기 혈관 신생이 요구되는 질환은 상처, 화상, 궤양, 허혈, 동맥경화증, 협심증, 심근경색, 뇌혈관성 질환 및 탈모증으로 이루어진 군에서 선택되는 1 이상인, 혈관 신생 촉진용 조성물.
  13. 제 1항에 있어서,
    상기 조성물은 약학 조성물 또는 식품 조성물인, 혈관 신생 촉진용 조성물.
  14. 제 1항 내지 제 13항 중 어느 한 항에 따른 성체줄기세포 유래의 엑소좀-모사 나노베지클(exosome-mimetic nanovesicles)을 제조하는 방법으로서,
    (1) 성체줄기세포를 배양하는 단계;
    (2) 배양된 성체줄기세포를 수확하여 완충용액에 현탁시키는 단계;
    (3) 상기 현탁액을 2개 이상의 크기가 다른 멤브레인 필터로 크기가 큰 필터에서 작은 필터 순으로 순차적으로 통과시켜 여과물을 제조하는 단계; 및
    (4) 상기 여과물로부터 초원심분리를 통해 엑소좀-모사 나노베지클을 수득하는 단계;를 포함하는 성체줄기세포 유래의 엑소좀-모사 나노베지클을 제조하는 방법.
PCT/KR2017/005965 2016-06-30 2017-06-08 성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물 WO2018004143A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0082981 2016-06-30
KR1020160082981A KR102623437B1 (ko) 2016-06-30 2016-06-30 성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물

Publications (1)

Publication Number Publication Date
WO2018004143A1 true WO2018004143A1 (ko) 2018-01-04

Family

ID=60786095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005965 WO2018004143A1 (ko) 2016-06-30 2017-06-08 성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물

Country Status (3)

Country Link
KR (1) KR102623437B1 (ko)
TW (1) TWI746588B (ko)
WO (1) WO2018004143A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235108A (zh) * 2020-02-19 2020-06-05 大连医科大学附属第一医院 一种细胞膜纳米囊泡及其制备方法
CN111670029A (zh) * 2018-01-31 2020-09-15 首尔大学校产学协力团 源自成体干细胞的纳米囊泡及其在靶向治疗中的应用
WO2021235800A1 (ko) * 2020-05-22 2021-11-25 주식회사 엠디뮨 단백질 항상성 조절인자가 풍부한 세포 유래 베시클 및 이의 제조 방법
CN114599380A (zh) * 2019-09-06 2022-06-07 美德邈医药公司 利用细胞衍生囊泡的用于预防或治疗唾液腺疾病的组合物
EP4024048A4 (en) * 2019-08-30 2023-12-20 Numais Co., Ltd. METHOD FOR DIAGNOSING AND TREATING ATHEROSCLERosis BY USING A NANOVESICLE TARGET SITE TO ALTER BLOOD FLOW

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151744A1 (ko) * 2018-01-31 2019-08-08 서울대학교산학협력단 성체줄기세포 유래의 나노베시클 및 이의 표적 치료용 용도
KR20200087898A (ko) * 2019-01-11 2020-07-22 주식회사 엑소코바이오 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 모발이식 성공률 증가용 조성물
KR102142479B1 (ko) * 2020-01-09 2020-08-07 주식회사 엠디뮨 세포 압출기 및 세포 압출방법
EP4289938A1 (en) * 2021-02-02 2023-12-13 MDimune Inc. Cell-derived vesicles with increased cellular uptake capacity and method for producing same
CN117769353A (zh) * 2021-04-28 2024-03-26 仁川大学校产学协力团 细胞外囊泡冻干保护剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158536B1 (ko) 2010-05-03 2012-06-21 한국과학기술원 뚝갈 추출물의 분획물을 유효성분으로 함유하는 신생혈관 촉진제

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KWON, Y. W.: "Tumor necrosis factor-alpha.-activated mesenchymal stem ce promote endothelial progenitor cell homing and angiogenesis", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1832, no. 12, 2013, pages 2136 - 2144, XP028768880, DOI: 10.1016/j.bbadis.2013.08.002 *
LOBB, R. J. ET AL.: "Optimized exosome isolation protocol for cell culture supernatant and human plasma", JOURNAL OF EXTRACELLULAR VESICLES, vol. 4, 2015, pages 27031, XP055279331, DOI: 10.3402/jev.v4.27031 *
LOPATINA, T. ET AL.: "Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential", CELL COMMUNICATION AND SIGNALING, vol. 12, no. 26, 2014, pages 1 - 12, XP021182051, DOI: 10.1186/1478-811X-12-26 *
MERINO-GONZALEZ, CONSUELO ET AL.: "Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potenical clinical application", FRONTIERS IN PHYSIOLOGY, vol. 7, 9 February 2013 (2013-02-09), pages 1 - 9, XP055398494, DOI: 10.3389/fphys.2016.00024 *
SHABBIR, A.: "Mesenchymal stem cell exosomes induce proliferation and m igration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro", STEM CELLS AND DEVELOPMENT, 2015, pages 1635 - 1647, XP055583096, DOI: doi:10.1089/scd.2014.0316 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670029A (zh) * 2018-01-31 2020-09-15 首尔大学校产学协力团 源自成体干细胞的纳米囊泡及其在靶向治疗中的应用
EP4024048A4 (en) * 2019-08-30 2023-12-20 Numais Co., Ltd. METHOD FOR DIAGNOSING AND TREATING ATHEROSCLERosis BY USING A NANOVESICLE TARGET SITE TO ALTER BLOOD FLOW
CN114599380A (zh) * 2019-09-06 2022-06-07 美德邈医药公司 利用细胞衍生囊泡的用于预防或治疗唾液腺疾病的组合物
CN111235108A (zh) * 2020-02-19 2020-06-05 大连医科大学附属第一医院 一种细胞膜纳米囊泡及其制备方法
WO2021235800A1 (ko) * 2020-05-22 2021-11-25 주식회사 엠디뮨 단백질 항상성 조절인자가 풍부한 세포 유래 베시클 및 이의 제조 방법

Also Published As

Publication number Publication date
TW201805010A (zh) 2018-02-16
KR102623437B1 (ko) 2024-01-11
TWI746588B (zh) 2021-11-21
KR20180003322A (ko) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018004143A1 (ko) 성체줄기세포 유래의 엑소좀-모사 나노베지클을 포함하는 혈관 신생 촉진용 조성물
WO2017164517A1 (ko) 인삼 유래의 엑소좀 유사 베지클을 유효성분으로 포함하는 항노화용 조성물
WO2017057881A1 (ko) 인삼 유래의 엑소좀 유사 베지클을 포함하는 탈모 방지 또는 육모 촉진용 조성물
JP6919951B2 (ja) 幹細胞から抽出されたエキソソームを有効成分として含む骨粗鬆症の予防または治療用の組成物
US10251824B2 (en) Method for inducing pluripotent stem cells and pluripotent stem cells prepared by said method
WO2019004757A9 (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 가려움증 억제 또는 개선 용도
US20190030079A1 (en) Composition for inducing beige adipocyte differentiation containing exosome derived from stem cells
WO2021230487A1 (ko) 양막상피세포 유래 엑소좀을 유효성분으로 함유하는 안구질환 예방 또는 치료용 조성물
KR102311832B1 (ko) 줄기세포 유래 엑소좀을 포함하는 상처 치료, 피부 개선 및 탈모 방지 또는 치료용 조성물 및 그 제조방법
WO2022177217A2 (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 피부재생, 미백, 항산화 또는 상처 치료용 조성물 및 이의 용도
KR20190123709A (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 피부장벽 강화 내지 기능 개선 용도
WO2019031729A2 (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 비알콜성 단순 지방간 또는 비알콜성 지방간염의 개선 용도
WO2018093233A1 (ko) 지방줄기세포유래 엑소좀을 유효성분으로 포함하는 간 섬유증 예방 또는 치료용 조성물
WO2021261929A1 (ko) 신규 락토바실러스 루테리 균주 및 이의 용도
WO2017052242A1 (ko) 인삼 유래의 엑소좀 유사 베지클을 포함하는 미백용 조성물
KR102311835B1 (ko) 줄기세포 유래 엑소좀을 포함하는 상처 치료, 피부 개선 및 탈모 방지 또는 치료용 조성물 및 그 제조방법
WO2021040416A1 (ko) 비쑥 추출물을 유효성분으로 포함하는 골대사성 질환으로 유발된 골소실 예방 또는 치료용 약제학적 조성물
WO2021045595A1 (ko) 치아 주변조직 유래 다분화능 줄기세포를 포함하는 비만 또는 비알코올성 지방간의 예방 또는 치료용 약학적 조성물
KR102312937B1 (ko) 시신경 질환 예방 및 치료용 약학적 조성물
WO2024090922A1 (ko) 줄기세포 배양액 및 상기로부터 분리된 세포외소포를 유효성분으로 포함하는 뇌신경계 질환의 예방 또는 치료용 약학적 조성물
WO2020022541A1 (ko) 엑소좀을 유효성분으로 포함하는 급성 간부전의 예방 또는 치료용 조성물
WO2018056676A1 (ko) 퍼플콘 추출물을 함유하는 피부 질환의 예방 또는 치료용 약제학적 조성물
KR20190098052A (ko) 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 궤양성 대장염의 개선 용도
KR20190015106A (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 비알콜성 단순 지방간 또는 비알콜성 지방간염의 개선 용도
WO2019066434A1 (ko) 사포게닌과 엑소좀을 유효성분으로 포함하는 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820420

Country of ref document: EP

Kind code of ref document: A1