WO2018003984A1 - レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ - Google Patents

レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ Download PDF

Info

Publication number
WO2018003984A1
WO2018003984A1 PCT/JP2017/024208 JP2017024208W WO2018003984A1 WO 2018003984 A1 WO2018003984 A1 WO 2018003984A1 JP 2017024208 W JP2017024208 W JP 2017024208W WO 2018003984 A1 WO2018003984 A1 WO 2018003984A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
lens
molding die
manufacturing
holder
Prior art date
Application number
PCT/JP2017/024208
Other languages
English (en)
French (fr)
Inventor
良夫 佐野
清水 浩
Original Assignee
ホヤ レンズ タイランド リミテッド
良夫 佐野
清水 浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 良夫 佐野, 清水 浩 filed Critical ホヤ レンズ タイランド リミテッド
Priority to CN201780005296.8A priority Critical patent/CN108472833B/zh
Priority to JP2018525302A priority patent/JP6693671B2/ja
Priority to KR1020187018332A priority patent/KR102225330B1/ko
Priority to EP17820338.6A priority patent/EP3479984B1/en
Publication of WO2018003984A1 publication Critical patent/WO2018003984A1/ja
Priority to US16/019,208 priority patent/US11072097B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00413Production of simple or compound lenses made by moulding between two mould parts which are not in direct contact with one another, e.g. comprising a seal between or on the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • B29D11/00528Consisting of two mould halves joined by an annular gasket
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/30Mounting, exchanging or centering
    • B29C33/308Adjustable moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers

Definitions

  • the present invention relates to a method for manufacturing a lens mold, a method for manufacturing a spectacle lens, and a spectacle lens.
  • the spectacle lens In addition to having various types of designs according to the usage environment and purpose of the spectacle wearer, the spectacle lens needs to have optical performance according to the refractive error and adjustment error of each wearer.
  • Many design conditions for example, distance power (spherical power, astigmatic power, astigmatic axis), addition power, prism power, optical design type, progressive zone length, inset amount, center thickness, edge (Thickness, outer diameter, etc.) are required, and the combination is extremely enormous. For this reason, it is very difficult to stock up all types of finished lenses (lenses whose optical surfaces are optically finished) in advance.
  • spectacle lenses such as progressive-power spectacle lenses (hereinafter referred to as “progressive lenses”), prism prescription lenses (hereinafter referred to as “prism lenses”), and eccentric lenses is made in advance after receiving customer orders.
  • the lens blank is processed on the basis of individual design conditions. For example, in the case of a progressive lens, a progressive surface that is optically finished is formed on the front surface (convex surface) of the lens, and a semi-finished lens blank that is formed thick without being optically finished on the rear surface (concave surface) of the lens. Are stored, and an optimal semi-finished lens is selected according to the customer's order.
  • this semi-finished lens is optically finished by cutting and polishing using a cutting machine (curve generator) and a polishing machine according to the customer's order contents, Progressive lenses with optical performance are manufactured. Furthermore, with progressive lenses, for the purpose of making the lens thinner and lighter, prism thinning has been used in which the rear surface of the semi-finished lens is cut so that prisms with a perpendicular base direction are added to the left and right lenses in the same amount. It is done from.
  • two molds for molding the front and rear surfaces of the lens are held at a predetermined interval, and an adhesive tape is wound around the mold to form a lens mold.
  • a casting polymerization method using a tape mold method in which a plastic lens raw material solution is injected into the mold and polymerized and cured to form a lens has been conventionally used (see, for example, Patent Documents 1 and 2).
  • An embodiment of the present invention provides a method for manufacturing a lens mold and a method for manufacturing a spectacle lens that can accommodate various lens order contents with a small number of lens blanks.
  • the present inventors have conducted intensive research, and as a result, based on the positions and postures of the first molding die and the second molding die constituting the molding die in the spatial coordinates, the first molding die. And it discovered that the said subject was solved by rotating and / or inclining and holding
  • one embodiment of the present invention is the following [1] to [3].
  • the position and orientation determination step for specifying the position and orientation in coordinates, and the position and orientation in the spatial coordinates, at least one of the first mold and the second mold is rotated and / or inclined.
  • the first mold and the second mold are held while maintaining the rotation angle and / or the inclination angle of the reference surface of the first mold with respect to the reference surface of the second mold.
  • the molding die holding step and the molding surface R1 of the first molding die and the molding surface R2 of the second molding die are arranged to face each other, so that the first molding die and the second molding die are An assembly process for assembling a lens mold while fixing the outer periphery.
  • FIG. 1 is a flowchart of a method for manufacturing a lens mold according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a first mold used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a second mold used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • FIG. 4 is a schematic process diagram of the manufacturing method of the lens mold according to the first embodiment of the present invention.
  • FIG. 5 is a schematic side view of a second jig and a second mold holder used in the method for manufacturing a lens mold according to the first embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for manufacturing a lens mold according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a first mold used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • FIG. 3 is
  • FIG. 6 is a schematic top view of a second jig and a second mold holder used in the method for manufacturing a lens mold according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a first mold holder used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a lens mold in which only the first mold manufactured by the method of manufacturing a lens mold according to the embodiment of the present invention is inclined.
  • FIG. 9 is a schematic diagram of the lens mold 1 in which the first mold and the second mold manufactured by the lens mold manufacturing method according to the embodiment of the present invention are inclined.
  • FIG. 10 is a schematic process diagram of the manufacturing method of the lens mold according to the second embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a lens mold forming system including a lens mold forming apparatus.
  • FIG. 12 is a flowchart of a method for manufacturing a spectacle lens according to an embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a spectacle lens (prism lens) which is an example of a spectacle lens according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for manufacturing a lens mold according to an embodiment of the present invention.
  • the method for manufacturing a lens mold according to the first embodiment of the present invention includes a position and orientation determining step S101, a mold holding step S102, and an assembly step S103. Below, the detail about each process is demonstrated.
  • FIG. 2 is a schematic cross-sectional view of a first mold used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • First mold 11 as shown in FIG. 2, having a concave molding surface R 1 for transferring formed one optical surface of the lens (convex).
  • the reference surface F 1 , the reference axis A 1, and the reference point O 1 of the first mold 11 are used as a reference.
  • the reference surface F 1 of the first mold 11 is a surface including the outer periphery 111 of the molding surface R 1 in the first mold 11.
  • FIG. 3 is a schematic cross-sectional view of a second mold used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • the second mold 12, as shown in FIG. 3, has a convex molding surface R 2 for the other optical surface of the lens (concave) is transferred and formed.
  • the reference surface F 2 of the second mold 12 refers to a surface including the outer periphery 121 of the surface facing the molding surface R 2 in the second mold 12.
  • the reference point O 2 of the second mold 12 refers to a point that intersects the reference axis A 2 on the reference plane F 2 .
  • molding die 12 are formed with materials, such as glass, resin, and a metal.
  • the first mold 11 and the second mold 12 may be made of the same material or different materials.
  • FIG. 4 is a schematic process diagram of the manufacturing method of the lens mold according to the first embodiment of the present invention. Below, the manufacturing method of the lens shaping die which concerns on embodiment of this invention shown in FIG. 1 is demonstrated, referring FIG.
  • Step S101 Position and orientation determined step S101, the first mold 11 having a molding surface R 1 to form one optical surface of the lens and, second having a molding surface R 2 to form the other optical surface
  • the position and orientation in the spatial coordinates of the second mold 12 are specified.
  • the first mold 11 is placed on the first jig 21, and the second mold 12 is moved to the second jig 22.
  • Installed in The first jig 21 includes a placement part 211, a grip part 212, and a shaft part 213.
  • the second jig 22 includes a placement part 221, a grip part 222, and a shaft part 223.
  • the mounting portions 211 and 221 have shapes and configurations that allow the first molding die 11 and the second molding die 12 to be placed, and mount the first molding die 11 and the second molding die 12. By setting, the reference surfaces F 1 and F 2 of the first mold 11 and the second mold 12 can be determined.
  • Mounting portion 211 and 221 capable of rotating the first mold 11 and second mold 12 in a state of being placed, in the circumferential direction reference axis A 1 and the reference axis A 2 as a rotation axis A rotating part (not shown) is preferably provided.
  • the holding parts 212 and 222 can hold and fix the outer circumferences of the first mold 11 and the second mold 12, respectively. Since the first jig 21 and the second jig 22 include the grip portions 212 and 222, the positions of the outer circumferences of the first mold 11 and the second mold 12 can be specified. The first mold 11 and the second mold 12 can be more stably fixed.
  • the grips 212 and 222 are driven by a drive unit (not shown) such as an air cylinder provided in the first jig 21 and the second jig 22.
  • the shaft portions 213 and 223 are respectively formed by independently attaching the first molding die 11 and the second molding die 12 fixed by the placement portions 211 and 221 and the gripping portions 212 and 222 to the first molding die holder 31 and
  • the second mold holder 32 can be inclined.
  • FIG. 5 is a schematic side view of the second jig 22 and the second mold holder 32 used in the manufacturing method of the lens mold according to the first embodiment of the present invention.
  • FIG. 6 is a schematic top view of the second jig 22 and the second mold holder 32 used in the manufacturing method of the lens mold according to the first embodiment of the present invention.
  • tool 22 provided with the mounting part 221 is demonstrated with reference to FIG.5 and FIG.6.
  • the placement portion 221 of the second jig 22 is not particularly limited as long as the second mold 12 can be placed thereon, and has an opening described below.
  • the size of the opening of the mounting portion 221 of the second jig 22 is such that the second molding die 12 can be held from below by the second molding die holder 32 so that the second molding die 12 can be held from below. As seen, it is larger than the second mold holder 32. In addition, the size of the opening is smaller than the diameter of the second mold 12 for mounting the second mold 12. Further, the opening of the mounting portion 221 of the second jig 22 is such that the second mold holding tool 32 that holds the second mold 12 from below is relatively horizontal with the second jig 22. It opens also in the horizontal direction so that movement (C direction of the arrow shown in FIG. 6) is possible. That is, the mounting portion 221 has, for example, a substantially U shape by having the opening.
  • the second jig 22 moves the gripping part 222 in the direction of the arrow A shown in FIG. 6 with respect to the second mold 12 placed on the placement part 221, and the gripping part 222 causes the second jig 22 to move.
  • the mold 12 is gripped.
  • the second mold holder 32 moves from below the placement part 221 toward the second mold 12 through the opening, and the second mold holder 32 moves the second mold 12 from below. Hold.
  • the second jig 22 moves the holding part 222 in the direction indicated by the arrow B in FIG. 6 with respect to the second mold 12 held from below by the second mold holder 32.
  • the second mold 12 is opened by moving in a direction away from the outer peripheral portion.
  • the second mold holder 32 moves through the opening in the horizontal direction while holding the second mold 12, and separates the second mold 12 from the second jig 22.
  • the outer diameters of the first mold 11 fixed by the first jig 21 and the second mold 12 fixed by the second jig 22 are measured, respectively,
  • the centering (centering) of the mold 11 and the second mold 12 is performed.
  • Results of the centering is a spatial coordinate that the first respectively origin reference point O 2 of the reference point O 1 and the second mold 12 of the mold 11, first mold 11 and second mold Twelve main parts are determined as positions based on spatial coordinates.
  • a space is obtained by adding a prism measurement reference point in the progressive lens or a geometric center (geometric center of the spectacle lens) that is substantially the same position as the optical center in the single focus lens.
  • the first molding die 11 and the second molding die 12 are placed on the placement portions 211 and 221, respectively, so that the reference surfaces F 1 and F 2 are determined.
  • the attitude of the two molds 12 in the spatial coordinates is determined based on the reference planes F 1 and F 2 .
  • the mold holding step S102 rotates and / or tilts at least one of the first mold 11 and the second mold 12 based on the position and posture in the spatial coordinates specified in the position and posture determination step S101.
  • the rotation angle and / or the inclination angle of the reference surface F1 of the first mold 11 with respect to the reference surface F2 of the second mold 12 are maintained, and the first mold 11 and the second mold are maintained. Hold the mold 12.
  • the mold holding step S ⁇ b> 102 after rotating and / or tilting at least one of the first mold 11 and the second mold 12, the reference surface F 2 of the second mold 12. Maintaining the rotation angle and / or the inclination angle of the reference surface F 1 of the first mold 11 with respect to the first mold 11 and the second mold 12, respectively, the first mold holder 31. And held by the second mold holder 32.
  • the "rotation" of the first mold 11 and second mold 12 refers to the motion to turn in the circumferential direction reference axis A 1 and the reference axis A 2 as a rotation axis.
  • “Inclination” of the first mold 11 and the second mold 12 refers to a movement of inclining the reference plane F 1 and the reference plane F 2 .
  • As a method of inclining the first mold 11 and the second mold 12 it is performed by driving the shaft portions 213 and 223. By tilting the first mold 11 and the second mold 12, the inclination angle of the reference surface F1 of the first mold 11 with respect to the reference surface F2 of the second mold 12 is specified. To do.
  • FIG. 7 is a schematic diagram of a first mold holder used in the method for manufacturing a lens mold according to the embodiment of the present invention.
  • the first mold holder 31 and the second mold holder 32 have substantially the same structure and function, the first mold holder 31 will be described as a representative with reference to FIG.
  • the first mold holder 31 includes a column 311, a suction part 312, and a shaft part 313.
  • the second mold holder 32 includes a column 321, a suction part 322, and a shaft part 323.
  • the column 311 is composed of three or more columns.
  • the first mold 11 and one end thereof are in contact with each other, and the respective columns 311 are driven to control the inclination of the first mold 11. Further, the support column 311 can maintain the tilt angle of the tilted first mold 11.
  • the adsorption unit 312 adsorbs the first mold 11.
  • the suction part 312 is connected to a vacuum generator (not shown) such as a vacuum pump and an ejector, and the suction part 312 becomes negative pressure by being suctioned in close contact with the first mold 11. One mold 11 can be held.
  • the suction part 312 can maintain the rotation angle of the first mold 11 by holding the first mold 11.
  • the shaft portion 313 rotates the first mold holding tool 31 around the shaft C while maintaining the rotation angle and / or the inclination angle of the first mold 11 by the support column 311 and the suction portion 312. be able to.
  • the axis C is independent of the reference axis A 1 and the reference axis A 2 .
  • the first jig 21 is used to determine the spatial coordinates of the first mold 11 specified in the process S101.
  • the first mold 11 is tilted according to the position and orientation information.
  • the process diagram of FIG. 4 as an example, only the first molding die 11 is inclined, but both the first molding die 11 and the second molding die 12 may be inclined. Only the second mold 12 may be inclined.
  • the first mold 11 may be further rotated, both the first mold 11 and the second mold 12 may be rotated, or only the second mold 12 may be rotated. Good.
  • the first molding die 11 and the second molding die held by the first jig 21 and / or the second jig 22 are used. 12, the first mold holder 31 and the second mold holder 32 are brought closer to each other.
  • the rotation angle and / or the inclination angle of the reference surface F1 of the first mold 11 with respect to the reference surface F2 of the second mold 12 are determined.
  • the first mold 11 and the second mold 12 are held by the first mold holder 31 and the second mold holder 32, respectively.
  • the holder 32 may be rotated to adjust the rotation angle of the second mold.
  • the rotation angle and / or the inclination angle of the reference surface F1 of the first mold 11 with respect to the reference surface F2 of the second mold 12 is maintained until the lens mold is assembled.
  • the mold holding step S102 it is preferable to further include a positioning step for specifying the positions of the first mold 11 and the second mold 12 in the spatial coordinates.
  • the positioning step as shown in the process diagram of S102 (d) of FIG. 4, the first mold 11 and the second mold 11 held by the first mold holder 31 and the second mold holder 32 are used.
  • the mold 12 the dimensions required for assembling the lens mold are measured by the measuring devices 41 and 42, respectively.
  • the dimensions of the first mold 11 and second mold 12 required for assembly of the lens mold e.g., a distance from the reference point O 1 in the reference axis A 1 to the forming surface R 1, the reference axis A 2 second forming at the reference point O distance from 2 to the forming surface R 2, the distance from the first mold holder 31 of the suction unit 312 of the reference axis a 1 to the forming surface R 1, and the reference axis a 2 in is a distance from the suction part 322 of the mold holder 32 to the forming surface R 2.
  • the measuring devices 41 and 42 include a micro gauge and a dial gauge as a contact type measuring device, and a laser displacement meter and a pressure gauge as a non-contact type measuring device.
  • the positioning step refers to the measured dimensional information of the first mold 11 and the second mold 12 and adjusts the position and orientation information in the spatial coordinates specified in the position and orientation determination step S101.
  • the final first mold 11 and second mold 12 for assembling the lens mold are positioned in spatial coordinates.
  • Assembly process S103 is the molding surface R 2 of the molding surface R 1 and the second molding die 12 of the first mold 11 is arranged to face, the outer periphery of the first mold 11 and second mold 12 Assemble the lens mold.
  • the rotation angle and / or the inclination of the reference surface F1 of the first mold 11 with respect to the reference surface F2 of the second mold 12 is shown.
  • the angle is maintained, and the first mold 11 and the second mold 12 are arranged to face each other at a predetermined interval based on the lens design conditions (for example, the center thickness of the lens and the edge thickness).
  • FIG. 8 is a schematic diagram of a lens mold in which only the first mold manufactured by the method of manufacturing a lens mold according to the embodiment of the present invention is inclined. As shown in FIG. 8, the lens mold 1 fixed by the adhesive tape 13 is provided with a gap 14 between the first mold 11 and the second mold 12, and the first mold 11. forming surface R 1 of the lens mold 1 which is closed surrounded by at the inner surface of the second mold surface R 2 of the mold 12, and the adhesive tape 13 is formed.
  • FIG. 9 is a schematic diagram of the lens mold 1 in which the first mold and the second mold manufactured by the lens mold manufacturing method according to the embodiment of the present invention are inclined.
  • the lens mold 1 in which both the first mold 11 and the second mold 12 shown in FIG. 9 are inclined has an effect that the effective diameter of the obtained lens can be increased.
  • the pressure-sensitive adhesive tape 13 is a strip-shaped resin film composed of a film serving as a base material and a pressure-sensitive adhesive, and a pressure-sensitive adhesive layer is formed on one surface.
  • a base material is not specifically limited, For example, polyester, such as polyolefin, such as polyethylene and a polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, is used by processing it into a film form.
  • the pressure-sensitive adhesive for example, an acrylic type or a silicon type is preferably used.
  • the pressure-sensitive adhesive is resistant to the lens raw material solution so that the lens raw material solution is not dissolved in the lens raw material solution when the lens raw material solution is injected into the lens mold and at the time of thermosetting, and an optical defect is not generated in the lens. What has is preferable. In addition, you may provide an intermediate
  • the winding start position S of the adhesive tape 13 that fixes the outer periphery of the first mold 11 and the second mold 12.
  • a position having a width capable of injecting the lens raw material liquid is set as a winding start position S of the adhesive tape 13.
  • the outer periphery of the first mold 11 and the second mold 12 is fixed with the adhesive tape 13 in the assembly step S ⁇ b> 103.
  • molding die 12 using the gasket which can be used may be sufficient.
  • the gasket is made of an elastic resin.
  • a thermoplastic polyurethane elastomer can be used as a material for the gasket.
  • the thermoplastic polyurethane elastomer is composed of a soft segment and a hard segment.
  • the soft segment is made of, for example, polymeric glycol
  • the hard segment is made of, for example, a monomolecular chain extender and diisocyanate.
  • the types and amounts of the polymeric glycol, the monomolecular chain extender, and the diisocyanate can be appropriately changed depending on the shape of the gasket and the molding material of the lens to be molded. Further, as the material of the gasket, any other material having appropriate elasticity can be used. For example, materials such as ultra-low density polyethylene and polyolefin elastomer can be used.
  • ⁇ Selective process> Method of manufacturing a lens mold according to the first embodiment, when the molding surface R 1 consists of a progressive surface, the position and orientation determined step, it is preferable to identify the progressive surface.
  • molding die 11 consists of a progressive surface. From the viewpoint that it is necessary to specify the progressive surface in specifying the position and orientation in the spatial coordinates of the first mold 11 and the second mold 12, the progressive surface is specified in the position and orientation determination step S101. It is preferable to do.
  • manufacturing a lens mold having a progressive surface if the lens mold manufacturing method according to the first embodiment is used, it is not necessary to manage many types of jigs, and jigs can be managed. Not complicated.
  • the first mold 11 and the second mold 12 are centered in the position and orientation determining step S101 or the mold holding step S102.
  • Axing means detecting an axis that can serve as a reference for the position and orientation of the mold. Examples of the axis include an optical axis, a geometric center axis, a prism base direction, a progressive direction, an astigmatic axis direction, and an axis related thereto. As the centering performed on the first mold 11, when the prism lens is manufactured, the prism base is centered.
  • the centering performed with respect to the first molding die 11 when the molding surface R1 of the first molding die 11 is a progressive surface, the shafting in the progressive direction is performed.
  • the centering performed on the second mold 12 when the astigmatic prescription lens is manufactured, the centering in the astigmatic axis direction is performed.
  • the alignment of the first mold 11 and the second mold 12 is, for example, an image of an image detected by detecting reflection of light such as a laser, detecting a step of a marking line, and detecting optical characteristics using an automens meter. It is done by processing.
  • the manufacturing method of the lens mold according to the first embodiment at least one of the first mold 11 and the second mold 12 is rotated and / or inclined, so that the second mold 12 rotation angle of the reference surface F 1 of the first mold 11 with respect to the reference plane F 2, and / or to maintain the tilt angle, it is possible to hold the first mold 11 and second mold 12 It is possible to manufacture lens molds corresponding to various lens order contents.
  • the manufacturing method of the lens mold according to the first embodiment the first mold 11 having the molding surface R 1 and the second mold having the molding surface R 2 according to the order contents. Since the lens mold can be manufactured by specifying the position and orientation of the mold 12 in the spatial coordinates, it is not necessary to form a thick non-finished surface side of the lens blank, and the utilization rate of the lens raw material liquid is improved. be able to.
  • the method for manufacturing a lens mold according to the second embodiment of the present invention differs from the method for manufacturing a lens mold according to the first embodiment in a mold holding step S102. Since other parts are substantially the same, the description is omitted.
  • FIG. 10 is a schematic process diagram of a method for manufacturing a lens mold according to the second embodiment of the present invention. Below, the manufacturing method of the lens shaping die concerning embodiment of this invention is demonstrated, referring FIG.
  • ⁇ Mold holding step S102> In the mold holding step S102, the first mold 11 and the second mold 12 are held by the first mold holder 31 and the second mold holder 32, respectively, and then the position and posture determination step. Based on the position and orientation in the spatial coordinates specified in S101, at least one of the first mold 11 and the second mold 12 is rotated and / or inclined, and the reference plane F of the second mold 12 The rotation angle and / or the inclination angle of the reference surface F1 of the first mold 11 with respect to 2 is maintained and held.
  • the mold holding step S102 first, as shown in the process diagram of S102 (a) of FIG. 10, the first mold 11 and the second mold 22 held by the first jig 21 and the second jig 22 are used.
  • the second mold 12 is held by the first mold holder 31 and the second mold holder 32. At this time, the first jig 21 and the second jig 22 are not rotated and / or inclined.
  • the first mold 11 is formed from the first jig 21 and the second jig 22 held in S102 (a) of FIG. And the second mold 12 is released.
  • the first mold that is specified using the first mold holder 31 and the second mold holder 32 is identified.
  • the first molding die 11 is rotated and / or tilted according to the position and orientation of the 11 and second molding die 12 in the spatial coordinates, and the first molding with respect to the reference surface F 2 of the second molding die 12 is performed.
  • the rotation angle and / or the inclination angle of the reference surface F1 of the first mold 11 with respect to the reference surface F2 of the second mold 12 is maintained until the lens mold is assembled.
  • both the first molding die 11 and the second molding die 12 may be tilted. Only the second mold 12 may be inclined.
  • both the first mold 11 and the second mold 12 are shown as being rotated. However, the first mold 11 and the second mold 12 are illustrated. Only one of them may be rotated.
  • the first columns 312 and 322 of the first mold holder 31 and the second mold holder 32 are driven, and the first mold 31 and the second mold 12 are driven.
  • the mold 11 and the second mold 12 can be set to a desired inclination angle.
  • the mold holding step S102 it is preferable to further include a positioning step for specifying the positions of the first mold 11 and the second mold 12 in the spatial coordinates. Since the positioning step is substantially the same as that of the first embodiment, the description is omitted.
  • the same effect as that of the manufacturing method of the lens molding die according to the first embodiment can be obtained.
  • the first jig 21 and the second jig 22 rotate the first mold 11 and the second mold 12. And / or tilting is not required, and therefore the rotating part and the shaft parts 213 and 223 for rotating and / or tilting the first jig 21 and the second jig 22 are unnecessary, and the first jig 21 and the second jig 22 are unnecessary.
  • the tool 21 and the second jig 22 can be simplified.
  • FIG. 11 is a configuration diagram of a lens mold forming system including a lens mold forming apparatus.
  • the lens mold forming system 50 according to the embodiment of the present invention constitutes a part of a spectacle lens supply system that manufactures spectacle lenses in response to an online order from an orderer.
  • a spectacle store 60 is shown as an example of an ordering source, and a factory 80 of a lens manufacturer is shown as an example of a lens manufacturer.
  • the spectacle store 60 and the factory 80 are connected via a communication medium 51.
  • the communication medium 51 for example, the Internet, a public communication line, a dedicated line or the like can be used, and a relay station is provided in the middle. It may be.
  • the ordering source is the spectacle store 60.
  • the present invention is not limited to this, and may be an ophthalmic clinic, an individual, a sales office of a lens manufacturer, or the like.
  • the number of ordering sources is not limited to one, and many ordering sources can be connected to the lens manufacturer via the communication medium 51.
  • the spectacle store 60 is provided with an ordering terminal 61 and a frame shape measuring device 62 for measuring the shape of the spectacle frame (the inner peripheral shape of the rim frame and the outer peripheral shape of the lens that becomes the target lens shape).
  • the ordering terminal 61 has a communication means for connecting to the factory 80 side via the communication medium 51, and can transmit and receive information necessary for ordering the lens.
  • the factory 80 performs processing for receiving an order from the ordering terminal 61 and processing for creating data necessary for manufacturing the lens based on the content of the order, and a factory server which is a computer for storing the data 90, and a lens mold forming apparatus 100 that forms a lens mold based on the contents of the order and the created data.
  • the factory server 90 includes a processing unit 91 and a storage unit 92.
  • the order receiving processing unit 911 and the design data processing unit 912 create order receiving data 921 and design data 922.
  • the processing unit 91 receives an order from the ordering terminal 61 and stores the received order data 921 as received order data 921, and a design data process for calculating the shape of the spectacle lens based on the received order data 921 and storing it as design data 922.
  • a machining data creation unit 913 that creates device control data and machining conditions in various manufacturing processes based on the order data 921 and the design data 922 and stores them as machining data 923.
  • the storage unit 92 includes lens information 924, frame information 925, and first and second mold information necessary for processing in the processing unit 91 in addition to the order data 921, design data 922, and processing data 923.
  • the mold information 926 and the like are also stored.
  • the design data processing unit 912 has a function of calculating the lens shape of the uncut lens and the lens shape after the target lens processing on the lens.
  • the design data processing unit 912 has a function of designing a lens shape subjected to uncut prism thinning and a function of designing a lens shape subjected to oval prism thinning when the received lens is a progressive lens. And have.
  • the design data 922 includes the shape information on the front and rear surfaces of the lens in each lens shape, information on the arrangement of the front and back surfaces thereof, information on the shape of the lens assumed on the lens, prism measurement reference point position information, prism refractive power, and the like.
  • the prism refractive power is the uncut prism thinning and its base direction (vertical), and the lens prism thinning and its base direction (vertical).
  • the processed data processing unit 913 uses a prism refractive power when the uncut prism thinning stored in the design data 922 is performed (uncut prism if no prescription prism is provided).
  • the first molding die with respect to the reference surface of the second molding die based on the refractive power of the lens (sinning) and the prismatic shinning when the sphere prism shinning is applied (or the sphere prism shinning when there is no prescription prism).
  • the first mold 11 and the second mold 12 to be used are selected based on the design data 922 including the calculated inclination angle and the mold information 926.
  • the rotation angle of the reference surface F1 of the first mold relative to the reference surface F2 of the second mold is also determined. Further, a mold holding interval that is a holding interval between the first mold 11 and the second mold 12 is calculated. The calculated tilt angle, rotation angle, mold holding interval, tools to be used (first mold 11 and second mold 12), and the like are stored in the processing data 923.
  • the order data 921 includes, for example, spectacle lens information, spectacle frame information, prescription values, layout information, and the like.
  • the lens information 924 includes the lens material, refractive index, optical design type of the lens front and back surfaces, lens outer diameter, lens center thickness, edge thickness, eccentricity, base curve, progressive band length, inset amount, beveling type, There are dyeing colors, coating types, prism thinning types (uncut prism thinning, jade prism thinning), etc.
  • the frame information 925 include a product identification name, a frame size, a material, a frame curve, a lens shape, a frame shape and a lens shape measured by a frame tracer.
  • Examples of the prescription value include spherical power, astigmatism power, astigmatism axis, prescription prism, and addition power.
  • Examples of the layout information include interpupillary distance, near pupil distance, and eye point position.
  • the lens mold forming apparatus 100 includes a jig 110, a mold holder 120, an adhesive tape winding apparatus 130, and a control apparatus 140 that is a computer for controlling these.
  • the jig 110 includes the first jig 21 and the second jig 22 described above.
  • the mold holder 120 includes the first mold holder 31 and the second mold holder 32 described above.
  • the tape winding device 130 pulls out the adhesive tape from the adhesive tape roll, a tape holding unit that holds the adhesive tape roll rotatably about an axis parallel to the rotation axis of the lens mold, and is drawn out.
  • the control device 140 is connected to the factory server 90 via a network, and can receive data such as order data 921, design data 922, machining data 923, and the like stored in the storage unit 92 of the factory server 90.
  • the control device 140 includes a rotation driving unit and a movement driving unit of the jig 110, a support driving unit of the mold holder 120, a suction unit driving unit and a shaft unit driving unit, and a tape applying mechanism unit of the tape winding device 130.
  • a control unit that controls the driving unit, the tape cutting mechanism unit driving unit, and the like is provided.
  • a computer, a programmable controller, a combination thereof, or the like can be used as the control device 140.
  • FIG. 12 is a flowchart of a method for manufacturing a spectacle lens according to an embodiment of the present invention.
  • the method for manufacturing a spectacle lens according to the embodiment of the present invention manufactures the lens mold described above, which includes a position and orientation determining step S101, a mold holding step S102, and an assembly step S103.
  • a lens molding die assembled by the method includes a filling step S104 for filling a lens raw material solution containing a monomer composition, and a curing step S105 for polymerizing and curing the filled lens raw material solution to mold a lens.
  • the lens mold 1 of the spectacle lens assembled by the processes from S101 to S103 proceeds to the filling process S104.
  • ⁇ Filling step S104> In the filling step S104, the pressure-sensitive adhesive tape 13 of the lens mold 1 assembled in the assembly step S103 is partially peeled to form an injection port that connects the gap 14 and the outside. Then, the raw material liquid of the plastic lens is injected into the gap 14 from this injection port. When the lens raw material liquid fills the gap 14 and reaches the injection port, the injection is stopped, and the adhesive tape 13 is attached again to the injection port.
  • the monomer composition which comprises the lens raw material liquid used by this invention is not specifically limited, As a monomer composition, the composition containing a polythiourethane resin is mentioned, for example.
  • the polythiourethane resin include a combination of a polyisocyanate compound and a polythiol compound, or epithio group-containing compounds such as bis ( ⁇ -epithiopropyl) sulfide and bis ( ⁇ -epithiopropyl) disulfide.
  • the polyisocyanate compound include 1,3-diisocyanatomethyl-cyclohexane and xylene diisocyanate.
  • polythiol compound examples include pentaerythritol tetrakis- (2-mercaptoacetate), 2,5-dimercaptomethyl-1,4-dithiane, mercaptomethyl-dithia-octanedithiol and bis (mercaptomethyl) -trithiaundecane-dithiol. Etc.
  • known additives usually used in the production of plastic lenses can be added within a range not impairing the effects of the present invention.
  • colorants such as ultraviolet absorbers, dyes and pigments for improving light absorption characteristics, antioxidants and anti-coloring agents for improving weather resistance, etc., improve moldability. And the like.
  • Examples of the ultraviolet absorber include benzotriazole-based, benzophenone-based, and salicylic acid-based ultraviolet absorbers.
  • Examples of the color material include anthraquinone and azo color materials.
  • Examples of the antioxidant or anti-coloring agent include monophenol-based, bisphenol-based, polymer-type phenol-based, sulfur-based, and phosphorus-based antioxidants or anti-coloring agents.
  • Examples of the mold release agent include fluorine surfactants, silicone surfactants, acidic phosphate esters and higher fatty acids.
  • ⁇ Curing step S105> the lens mold 1 filled with the monomer composition is put into a polymerization furnace and heated to a predetermined temperature to polymerize the raw material monomer. After completion of the polymerization, the lens mold 1 is taken out from the polymerization furnace and cooled to room temperature, and then the adhesive tape 13, the first mold 11 and the second mold 12 are removed, and the molded prism lens is taken out.
  • the lens mold 1 is constructed, and the lens is molded by the casting polymerization method using the lens mold 1, and various prescriptions are applied to the uncut lens (before the lens processing). (Finished lens) can be manufactured.
  • a progressive power lens as an uncut lens having a progressive surface on the front surface of the lens can be manufactured.
  • the spectacle lens manufactured in this way is subjected to various surface treatments (coating) on the front and back surfaces of the lens according to the contents of the order, and then processed into a desired target shape and attached to the spectacle frame. Become.
  • FIG. 13 is a schematic cross-sectional view of a spectacle lens (prism lens) which is an example of a spectacle lens according to an embodiment of the present invention.
  • Spectacle lenses 2 manufactured by the manufacturing method of the spectacle lens as shown in FIG. 13, which is one end edge thickness D t and the other end edge thickness D b is Mixed lens.
  • one end edge thickness D t is thinner than the other end edge thickness D b.
  • the spectacle lens 2 has a lens convex surface 2A and a lens concave surface 2B, and an edge surface 2C is formed around the lens convex surface 2A and the concave surface 2B.
  • the lens convex surface 2A may have a progressive surface.
  • the lens concave surface 2B can be a spherical surface, an aspherical surface, a progressive surface, a toroidal surface, or a non-toroidal lens.
  • the lens convex surface 2A and the lens concave surface 2B of the spectacle lens 2 can be made smoother by forming the lens by the casting polymerization method using the lens mold 1 than by forming by cutting.
  • the arithmetic average roughness Ra of JIS B0601: 2001 on the lens convex surface 2A and the lens concave surface 2B of the spectacle lens 2 is preferably 1.0 ⁇ m or less, more preferably 0.9 ⁇ m or less, and 0.8 ⁇ m or less. More preferably.
  • the material of the spectacle lens 2 needs to be a material that transmits visible light, and preferably has a refractive index of 1.50 or more and 2.00 or less, more preferably 1.52 or more and 1.90 or less. Preferably, it is 1.54 or more and 1.80 or less. Examples of materials whose refractive index falls within the above range include acrylic resins, thiourethane resins, and thioepoxy resins.
  • the manufacturing method of the lens mold according to the first embodiment is as follows. First mold 11 and the spatial coordinates of the second mold 12 having a molding surface R 2 to form the other optical surface having a molding surface R 1 to form one optical surface of the lens A position and orientation determination step S101 for specifying the position and orientation in Based on the position and orientation in the spatial coordinates, at least one of the first mold 11 and the second mold 12 is rotated and / or tilted, and the first mold 12 with respect to the reference surface F 2 of the second mold 12.
  • the lens mold forming system 50 After being held by the holder 31 and the second mold holder 32, at least one of the first mold 11 and the second mold 12 is rotated and / or tilted, so that the reference of the second mold 12 can be obtained. rotation angle of the reference surface F 1 of the first mold 11 to the surface F 2, and / or by keeping the inclination angle held. Further, the lens mold forming system 50 will be summarized with reference to FIG. Regarding the lens mold forming system 50, for example, the following embodiment [1] or [2] may be mentioned.
  • a server 90 and a lens mold forming apparatus 100 are provided, The server (90) receives a processing unit 911 that receives an order from the ordering terminal 61, and a processing unit that creates data necessary for manufacturing a lens based on the received order contents (in FIG. 11, a design data processing unit 912).
  • the lens mold molding device 100 includes a jig 110, a mold holder 120, a tape winding device 130, and a control device 140 for controlling them, and is connected to the server 90 via a network.
  • the lens mold forming system 50 capable of receiving data necessary for manufacturing the lens from the server 90.
  • Lens mold forming system 51 Communication medium 60 ... Glasses Store 61 ... Ordering terminal 62 ... Frame shape measuring device 80 ... Factory 90 ... Factory server 91 ... Processing unit 92 ... Storage unit 100 ... Lens mold forming device 110 ... Jig 120 ... Mold holder 130 ... Adhesive Loop winding device 140 ... Control device 911 ... Order processing unit 912 ... Design data processing unit 913 ... Processing data processing unit 921 ... Order data 922 ... Design data 923 ... Processing data 924 ... Lens information 925 ... Frame information 926 ... Molding mold Information R 1 , R 2 ... Molding surface F 1 , F 2 ... Reference surface A 1 , A 2 ... Reference axis O 1 , O 2 ... Reference point D t , D b ... Edge thickness

Abstract

レンズの一方の光学面を形成するための成形面Rを有する第1の成形型、及び、他方の光学面を形成するための成形面Rを有する第2の成形型の空間座標における位置及び姿勢を特定する位置及び姿勢決め工程S101と、上記空間座標における位置及び姿勢に基づいて、上記第1の成形型及び上記第2の成形型の少なくとも一方を回転、及び/又は傾斜させ、上記第2の成形型の基準面に対する上記第1の成形型の基準面の回転角度、及び/又は傾斜角度を維持して、上記第1の成形型及び上記第2の成形型を保持する成形型保持工程S102と、上記第1の成形型の成形面R及び上記第2の成形型の成形面Rを対向して配置させ、上記第1の成形型及び上記第2の成形型の外周を固定してレンズ成形型を組み立てる組み立て工程S103とを備えるレンズ成形型の製造方法。

Description

レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ
 本発明は、レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズに関する。
 眼鏡レンズは、眼鏡装用者の使用環境や目的に応じた様々なタイプの設計を有する上に、個々の装用者の屈折異常や調節異常に応じた光学性能を備える必要があることから、製造にあたって、多くの設計条件(例えば、遠用部屈折力(球面屈折力、乱視屈折力、乱視軸)、加入屈折力、プリズム屈折力、光学設計タイプ、累進帯長、インセット量、中心厚、コバ厚、外径等)を必要とし、その組み合わせは極めて膨大となる。このため、予め全ての種類のフィニッシュトレンズ(両光学面が光学的に仕上げられているレンズ)を備蓄しておくことは非常に困難である。
 累進屈折力眼鏡レンズ(以下、「累進レンズ」と称す)、プリズム処方レンズ(以下、「プリズムレンズ」と称す)及び偏心レンズ等の眼鏡レンズの製造は、顧客の注文を受けてから予め製造してあるレンズブランクを個別の設計条件に基づいて加工する受注生産が一般的である。例えば、累進レンズの場合、レンズ前面(凸面)に光学的に仕上げられた累進面が形成されていて、レンズ後面(凹面)は光学的に仕上げられずに肉厚に形成されたセミフィニッシュトレンズブランクを備蓄しておき、顧客の注文に応じて最適なセミフィニッシュトレンズが選択される。そして、このセミフィニッシュトレンズの後面側を、顧客の注文内容に応じて、切削加工機(カーブジェネレータ)及び研磨加工機を用いて切削加工及び研磨加工をすることで光学的に仕上げて、所望の光学性能を備えた累進レンズが製造される。
 さらに、累進レンズでは、レンズをより薄く、また軽くする目的で、基底方向が垂直のプリズムを左右のレンズに同じだけ付加するように、セミフィニッシュトレンズの後面を切削加工するプリズムシニング加工が従来から行なわれている。
 セミフィニッシュトレンズブランクを製造する方法の一つとして、レンズの前面及び後面を成形する2枚の成形型を所定の間隔で保持し、その周囲に粘着テープを巻きつけてレンズ成形型を形成し、その成形型にプラスチックレンズ原料液を注入し重合硬化させてレンズを成形する、テープモールド法を用いた注型重合法が従来から用いられている(例えば、特許文献1及び2参照)。
国際公開WO2010/114023号 特開2010-120165号公報
 しかしながら、上述のように、レンズブランクを切削加工及び研磨加工により眼鏡レンズを受注生産する場合は、少ない種類のレンズブランクで様々な注文内容に対応できるようにするために、レンズブランクの非仕上げ面側を厚めに形成しなければならず、体積の大きいレンズブランクを大量に製造して備蓄することが必要になる。
 また、特許文献1及び2で提案されている技術では、2枚の成形型を所定の傾斜角を持たせて保持するためには、ホルダー及び傾斜角設定具等の治具類が必要となる。
 本発明の一実施例は、少ない種類のレンズブランクで様々なレンズの注文内容に対応可能であるレンズ成形型の製造方法及び眼鏡レンズの製造方法を提供する。
 上記課題を解決するために、本発明者らは鋭意研究した結果、成形型を構成する第1の成形型及び第2の成形型の空間座標における位置及び姿勢に基づいて、第1の成形型及び第2の成形型の少なくとも一方を回転、及び/又は傾斜させて保持することにより、上記課題を解決することを見出した。
 すなわち、本発明の一実施例は、以下の[1]~[3]である。
 [1]レンズの一方の光学面を形成するための成形面Rを有する第1の成形型、及び、他方の光学面を形成するための成形面Rを有する第2の成形型の空間座標における位置及び姿勢を特定する位置及び姿勢決め工程と、上記空間座標における位置及び姿勢に基づいて、上記第1の成形型及び上記第2の成形型の少なくとも一方を回転、及び/又は傾斜させ、上記第2の成形型の基準面に対する上記第1の成形型の基準面の回転角度、及び/又は傾斜角度を維持して、上記第1の成形型及び上記第2の成形型を保持する成形型保持工程と、上記第1の成形型の成形面R及び上記第2の成形型の成形面Rを対向して配置させ、上記第1の成形型及び上記第2の成形型の外周を固定してレンズ成形型を組み立てる組み立て工程と、を備える、レンズ成形型の製造方法。
 [2][1]に記載の方法により組み立てられたレンズ成形型内にモノマー組成物を含むレンズ原料液を充填する充填工程と、充填された上記レンズ原料液を重合硬化させて眼鏡レンズを成形する硬化工程と、を備える眼鏡レンズの製造方法。
 [3]レンズの表面におけるJIS B0601:2001の算術平均粗さRaが1.0μm以下である眼鏡レンズ。
 上述した一実施例によれば、様々なレンズの注文内容に対応可能であるレンズ成形型の製造方法及び眼鏡レンズの製造方法を提供することができる。
図1は、本発明の実施の形態に係るレンズ成形型の製造方法のフローチャートである。 図2は、本発明の実施の形態に係るレンズ成形型の製造方法で用いる第1の成形型の模式的断面図である。 図3は、本発明の実施の形態に係るレンズ成形型の製造方法で用いる第2の成形型の模式的断面図である。 図4は、本発明の第1の実施の形態に係るレンズ成形型の製造方法の模式的工程図である。 図5は、本発明の第1の実施の形態に係るレンズ成形型の製造方法で用いる第2の治具及び第2の成形型保持具の側面模式図である。 図6は、本発明の第1の実施の形態に係るレンズ成形型の製造方法で用いる第2の治具及び第2の成形型保持具の上面模式図である。 図7は、本発明の実施の形態に係るレンズ成形型の製造方法で用いる第1の成形型保持具の模式図である。 図8は、本発明の実施の形態に係るレンズ成形型の製造方法で製造した第1の成形型のみを傾斜させたレンズ成形型の模式図である。 図9は、本発明の実施の形態に係るレンズ成形型の製造方法で製造した第1の成形型及び第2の成形型を傾斜させたレンズ成形型1の模式図である。 図10は、本発明の第2の実施の形態に係るレンズ成形型の製造方法の模式的工程図である。 図11は、レンズ成形型形成装置を含むレンズ成形型形成システムの構成図である。 図12は、本発明の実施の形態に係る眼鏡レンズの製造方法のフローチャートである。 図13は、本発明の実施の形態に係る眼鏡レンズの一例である眼鏡レンズ(プリズムレンズ)の模式的断面図である。
 以下、本発明の好ましい実施形態について、図面を参照して詳しく説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。
[レンズ成形型の製造方法]
(第1の実施の形態)
 図1は、本発明の実施の形態に係るレンズ成形型の製造方法のフローチャートである。
 本発明の第1の実施の形態に係るレンズ成形型の製造方法は、図1に示すように、位置及び姿勢決め工程S101と、成形型保持工程S102と、組み立て工程S103とを備える。
 以下に、各工程についての詳細を説明する。
 まず、各工程で用いる第1の成形型及び第2の成形型について説明する。
 図2は、本発明の実施の形態に係るレンズ成形型の製造方法で用いる第1の成形型の模式的断面図である。第1の成形型11は、図2に示すように、レンズの一方の光学面(凸面)を転写形成するための凹面状の成形面Rを有する。第1の成形型11の空間座標における位置及び姿勢を特定するために、第1の成形型11の基準面F、基準軸A及び基準点Oを基準として用いる。第1の成形型11の基準面Fとは、第1の成形型11において、成形面Rの外周111を含む面をいう。第1の成形型11の基準軸Aとは、第1の成形型11の基準面Fの法線であって、成形面Rの幾何学中心を通る中心軸をいう。第1の成形型11の基準点Oとは、基準面Fにおいて、基準軸Aと交わる点をいう。
 図3は、本発明の実施の形態に係るレンズ成形型の製造方法で用いる第2の成形型の模式的断面図である。第2の成形型12は、図3に示すように、レンズの他方の光学面(凹面)を転写形成するための凸面状の成形面Rを有する。第2の成形型12の空間座標における位置及び姿勢を特定するために、第2の成形型12の基準面F、基準軸A及び基準点Oを用いる。第2の成形型12の基準面Fとは、第2の成形型12において、成形面Rと対向する面の外周121を含む面をいう。第2の成形型12の基準軸Aとは、第2の成形型12の基準面Fの法線であって、成形面Rの幾何学中心を通る中心軸をいう。第2の成形型12の基準点Oとは、基準面Fにおいて、基準軸Aと交わる点をいう。
 第1の成形型11及び第2の成形型12は、ガラス、樹脂及び金属等の材料により形成される。第1の成形型11及び第2の成形型12は、同一の材料であってもよく、異なる材料であってもよい。
 図4は、本発明の第1の実施の形態に係るレンズ成形型の製造方法の模式的工程図である。以下に、図1で示す本発明の実施の形態に係るレンズ成形型の製造方法について、図4を参照しながら説明する。
<位置及び姿勢決め工程S101>
 位置及び姿勢決め工程S101は、レンズの一方の光学面を形成するための成形面Rを有する第1の成形型11、及び、他方の光学面を形成するための成形面Rを有する第2の成形型12の空間座標における位置及び姿勢を特定する。
 位置及び姿勢決め工程S101は、図4のS101の工程図で示すように、第1の成形型11を第1の治具21に設置し、第2の成形型12を第2の治具22に設置して行う。
 第1の治具21は、載置部211と、把持部212と、軸部213とを備える。第2の治具22は、載置部221と、把持部222と、軸部223とを備える。
 載置部211,221は、第1の成形型11及び第2の成形型12を載置可能な形状及び構成を有しており、第1の成形型11及び第2の成形型12を載置することで、第1の成形型11及び第2の成形型12のそれぞれの基準面F,Fを決定することができる。載置部211,221は、第1の成形型11及び第2の成形型12を載置した状態で、基準軸A及び基準軸Aを回転軸として周方向に回転させることが可能な回転部(図示せず)が設けられていることが好ましい。
 把持部212,222は、それぞれ第1の成形型11及び第2の成形型12の外周を把持して固定することができる。第1の治具21及び第2の治具22が把持部212,222を備えることで、第1の成形型11及び第2の成形型12の外周の位置を特定することができ、更に、第1の成形型11及び第2の成形型12をより安定して固定することができる。把持部212,222は、第1の治具21及び第2の治具22に備えられるエアシリンダ等の駆動部(図示せず)により駆動する。
 軸部213,223は、載置部211,221及び把持部212,222で固定された第1の成形型11及び第2の成形型12をそれぞれ独立して第1の成形型保持具31及び第2の成形型保持具32に対して傾斜させることができる。
 図5は、本発明の第1の実施の形態に係るレンズ成形型の製造方法で用いる第2の治具22及び第2の成形型保持具32の側面模式図である。図6は、本発明の第1の実施の形態に係るレンズ成形型の製造方法で用いる第2の治具22及び第2の成形型保持具32の上面模式図である。載置部221を備える第2の治具22について、図5及び図6を参照して説明する。第2の治具22の載置部221は、第2の成形型12を載置可能な形状であれば特に限定されず、以下で説明する開口部を有する。
 第2の治具22の載置部221が有する開口部の大きさは、第2の成形型12を第2の成形型保持具32で下方から保持できるように、載置部221の下方から見て、第2の成形型保持具32よりも大きい。また、開口部の大きさは、第2の成形型12を載置するため第2の成形型12の径よりも小さい。さらに、第2の治具22の載置部221に有する開口部は、第2の成形型12を下方から保持した第2の成形型保持具32が第2の治具22と相対的に水平移動(図6で示す矢印のC方向)を可能とするように、水平方向にも開口している。つまり、載置部221は、当該開口部を有することによって、例えば、略U字型の形状となる。
 第2の治具22は、載置部221上に載置した第2の成形型12に対して、図6で示す矢印のA方向に把持部222を移動させ、把持部222で第2の成形型12を把持する。第2の成形型保持具32は、載置部221の下方から開口部を通して第2の成形型12に向かって移動し、第2の成形型保持具32が第2の成形型12を下方から保持する。第2の治具22は、第2の成形型保持具32で下方から保持された第2の成形型12に対して、図6で示す矢印のB方向に把持部222を第2の成形型の外周部から遠ざかる方向に移動させ、第2の成形型12を開放する。
 第2の成形型保持具32は、第2の成形型12を保持した状態で水平方向に開口部を通して移動し、第2の成形型12を第2の治具22から離す。
 具体的な作業としては、第1の治具21で固定された第1の成形型11及び第2の治具22で固定された第2の成形型12の外径をそれぞれ計測し、第1の成形型11及び第2の成形型12の芯出し(センタリング)を行う。芯出しの結果は、第1の成形型11の基準点O及び第2の成形型12の基準点Oをそれぞれ原点とする空間座標とし、第1の成形型11及び第2の成形型12の要部が空間座標に基づいた位置として決定される。ここで、成形面R及び成形面Rにおいて、累進レンズにおけるプリズム測定基準点、又は単焦点レンズにおける光学中心と略同一位置となる幾何学中心(眼鏡レンズの幾何学中心)を加えて空間座標に基づいた位置として決定することが好ましい。
 第1の成形型11及び第2の成形型12は、それぞれ載置部211,221に載置されていることで、基準面F,Fが決定し、第1の成形型11及び第2の成形型12の空間座標における姿勢が基準面F,Fに基づいて決定される。
<成形型保持工程S102>
 成形型保持工程S102は、位置及び姿勢決め工程S101で特定された空間座標における位置及び姿勢に基づいて、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させ、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して、第1の成形型11及び第2の成形型12を保持する。
 本実施形態において、成形型保持工程S102は、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させた後に、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して、第1の成形型11及び第2の成形型12のそれぞれを第1の成形型保持具31及び第2の成形型保持具32で保持する。
 ここで、第1の成形型11及び第2の成形型12の「回転」とは、基準軸A及び基準軸Aを回転軸として周方向に回す動きをいう。第1の成形型11及び第2の成形型12の「傾斜」とは、基準面F及び基準面Fを傾ける動きをいう。
 第1の成形型11及び第2の成形型12を回転させる方法としては、載置部211,221に設けられている回転部を駆動させることにより行う。第1の成形型11及び第2の成形型12を回転させることで、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度を特定のものにする。
 第1の成形型11及び第2の成形型12を傾斜させる方法としては、軸部213,223を駆動させることにより行う。第1の成形型11及び第2の成形型12を傾斜させることで、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの傾斜角度を特定のものにする。
 図7は、本発明の実施の形態に係るレンズ成形型の製造方法で用いる第1の成形型保持具の模式図である。図7を参照して、本実施形態において採用する第1の成形型保持具31及び第2の成形型保持具32について説明する。第1の成形型保持具31及び第2の成形型保持具32は、実質的に同じ構造及び機能を有するので、代表して第1の成形型保持具31について図7を用いて説明する。第1の成形型保持具31は、支柱311と、吸着部312と、軸部313とを備える。第2の成形型保持具32は、支柱321と、吸着部322と、軸部323とを備える。
 支柱311は、3本以上からなり、第1の成形型11とそれぞれの一端が接触し、それぞれの支柱311を駆動させることで、第1の成形型11の傾斜を制御することができる。また、支柱311は、傾斜させた第1の成形型11の傾斜角度を維持することができる。
 吸着部312は、第1の成形型11を吸着する。吸着部312は、真空ポンプ及びエジェクタ等の真空発生装置(図示せず)に連結されており、第1の成形型11と密着した状態で吸着することにより、吸着部312内が負圧となり第1の成形型11を保持することができる。吸着部312は、第1の成形型11を保持することで、第1の成形型11の回転角度を維持することができる。
 軸部313は、支柱311及び吸着部312によって、第1の成形型11の回転角度、及び/又は傾斜角度を維持しつつ、軸Cを回転中心として第1の成形型保持具31を回転させることができる。なお、軸Cは、基準軸A1、基準軸A2とは無関係である。
 成形型保持工程S102は、まず、図4のS102(a)の工程図で示すように、第1の治具21を用いて、工程S101で特定された第1の成形型11の空間座標における位置及び姿勢の情報に応じて、第1の成形型11を傾斜させる。
 図4の工程図では、一例として、第1の成形型11のみを傾斜させた形態として示したが、第1の成形型11及び第2の成形型12の両方を傾斜させてもよく、第2の成形型12のみを傾斜させてもよい。なお、第1の成形型11を更に回転させてもよく、第1の成形型11及び第2の成形型12の両方を回転させてもよく、第2の成形型12のみを回転させてもよい。
 次いで、図4のS102(b)の工程図で示すように、第1の治具21、及び/又は第2の治具22によって保持されている第1の成形型11及び第2の成形型12に対して、第1の成形型保持具31及び第2の成形型保持具32を近づける。
 そして、図4のS102(c)の工程図で示すように、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して、第1の成形型11及び第2の成形型12のそれぞれを第1の成形型保持具31及び第2の成形型保持具32で保持する。保持後、保持具32を回転させて、第2の成形型の回転角度を調整してもよい。なお、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度は、レンズ成形型の組み立て終了時まで維持される。
 次いで、成形型保持工程S102後において、第1の成形型11及び第2の成形型12の空間座標における位置を特定する位置決め工程をさらに備えることが好ましい。
 位置決め工程は、図4のS102(d)の工程図で示すように、第1の成形型保持具31及び第2の成形型保持具32で保持された第1の成形型11及び第2の成形型12において、レンズ成形型の組み立てに必要な寸法をそれぞれ測定装置41,42で測定する。レンズ成形型の組み立てに必要な第1の成形型11及び第2の成形型12の寸法としては、例えば、基準軸Aにおける基準点Oから成形面Rまでの距離、基準軸Aにおける基準点Oから成形面Rまでの距離、基準軸Aにおける第1の成形型保持具31の吸着部312から成形面Rまでの距離、及び基準軸Aにおける第2の成形型保持具32の吸着部322から成形面Rまでの距離等である。測定装置41,42は、例えば、接触型測定装置としてはマイクロゲージ及びダイヤルゲージ等が挙げられ、非接触型測定装置としてはレーザ変位計及び圧力計等が挙げられる。
 位置決め工程は、測定した第1の成形型11及び第2の成形型12の寸法情報を参照し、位置及び姿勢決め工程S101で特定された空間座標における位置及び姿勢の情報を調整することで、レンズ成形型を組み立てる最終的な第1の成形型11及び第2の成形型12の空間座標における位置決めを行う。
<組み立て工程S103>
 組み立て工程S103は、第1の成形型11の成形面R及び第2の成形型12の成形面Rを対向して配置させ、第1の成形型11及び第2の成形型12の外周を固定してレンズ成形型を組み立てる。
 具体的な作業としては、図4のS103の工程図で示すように、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持し、レンズの設計条件(例えば、レンズの中心厚、コバ厚)に基づいて、第1の成形型11及び第2の成形型12を所定の間隔で対向するように配置する。そして、第1の成形型11と第2の成形型12の相対的な回転角度、傾斜角度及び位置を保持した状態で、第1の成形型11の外周面及び第2の成形型12の外周面に、粘着テープ巻付装置130を用いて粘着テープ13が、その粘着剤層側を内側にして1周より少し多く巻き付けて貼り付けられている。第1の成形型11及び第2の成形型12の位置関係は、粘着テープ13によって固定される。
 図8は、本発明の実施の形態に係るレンズ成形型の製造方法で製造した第1の成形型のみを傾斜させたレンズ成形型の模式図である。粘着テープ13によって固定されたレンズ成形型1は、図8に示すように、第1の成形型11と第2の成形型12との間に、間隙14が設けられ、第1の成形型11の成形面R、第2の成形型12の成形面R、及び粘着テープ13の内面とで囲まれて閉塞したレンズ成形型1が形成される。粘着テープ13は、巻き初めの位置Sから1周より少し多く巻き付けて貼り付けられている。粘着テープを用いて外周を固定することで、第1の成形型11及び第2の成形型12の位置及び姿勢を維持しつつ、安価且つ簡便にレンズ成形型が形成できる。
 図9は、本発明の実施の形態に係るレンズ成形型の製造方法で製造した第1の成形型及び第2の成形型を傾斜させたレンズ成形型1の模式図である。図9に示す第1の成形型11及び第2の成形型12を共に傾斜させたレンズ成形型1は、得られるレンズの有効径を大きくすることができるという効果を奏する。
 粘着テープ13は、基材となるフィルムと粘着剤とから構成される帯状の樹脂製フィルムであり、一方の面に粘着剤層が形成されている。
 基材は特に限定されず、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルを、フィルム状に加工することにより使用される。
 粘着剤は、例えば、アクリル系、シリコン系等が好適に使用される。粘着剤は、レンズ原料液がレンズ成形型内に注入された際及び熱硬化時に、レンズ原料液中に溶解して、レンズに光学的欠損を発生させないように、レンズ原料液に対して耐性を有するものが好ましい。
 なお、基材上には、基材及び粘着剤の密着性を改善させる目的で中間層を設けてもよい。
 組み立て工程S103において、第1の成形型11及び第2の成形型12の外周を固定する粘着テープ13の巻き初めの位置Sを任意に設定することが好ましい。レンズ原料液を注入する際は、粘着テープ13の巻き初めの位置Sの近傍から注入することになるため、第1の成形型11及び/又は第2の成形型12を傾斜させた後でも、レンズ原料液を注入可能な幅を有する位置を粘着テープ13の巻き初めの位置Sとして設定する。
 図4の工程図では、一例として、組み立て工程S103において粘着テープ13で第1の成形型11及び第2の成形型12の外周を固定する形態として示したが、粘着テープ13の代わりに、繰り返し使用可能な、ガスケットを用いて、第1の成形型11及び第2の成形型12の外周を固定する形態であってもよい。
 ガスケットは、弾性を有する樹脂で構成される。ガスケットの材料としては、例えば、熱可塑性ポリウレタンエラストマー等を用いることができる。熱可塑性ポリウレタンエラストマーは、ソフトセグメント及びハードセグメントで構成される。ソフトセグメントは例えばポリメリックグリコールからなり、ハードセグメントは、例えば単分子鎖延長剤及びジイソシアネートからなる。なお、ポリメリックグリコール、単分子鎖延長剤及びジイソシアネートの種類及び量等は、ガスケットの形状及び成型するレンズの成型材料等によって適宜変更することができる。また、ガスケットの材料としては、その他、適度な弾性を有する材料であれば使用可能であり、例えば超低密度ポリエチレン、ポリオレフィンエラストマー等の材料を用いることもできる。
<選択的工程>
 第1の実施の形態に係るレンズ成形型の製造方法は、成形面Rが累進面からなる場合、位置及び姿勢決め工程において、累進面を特定することが好ましい。
 累進レンズのレンズ成形型1を製造する場合、第1の成形型11の成形面Rは、累進面からなる。第1の成形型11及び第2の成形型12の空間座標における位置及び姿勢を特定するに当たって、累進面を特定しておく必要があるという観点から、位置及び姿勢決め工程S101で累進面を特定することが好ましい。
 累進面を有するレンズ成形型を製造する場合、第1の実施の形態に係るレンズ成形型の製造方法を用いれば、多くの種類の治具類を管理する必要がなく、治具類の管理が複雑にならない。
 第1の実施の形態に係るレンズ成形型の製造方法は、位置及び姿勢決め工程S101又は成形型保持工程S102において、第1の成形型11及び第2の成形型12の軸出しを行うことが好ましい。軸出しは、成形型の位置及び姿勢の基準となりえる軸を検出することを意味する。軸としては、光軸、幾何中心軸、プリズム基底方向、累進方向、乱視軸方向、又はこれに関連する軸等が挙げられる。
 第1の成形型11に対して行う軸出しとしては、プリズムレンズを製造する場合、プリズム基底方向の軸出しが行われる。また、第1の成形型11に対して行う軸出しとしては、第1の成形型11の成形面Rが累進面からなる場合、累進方向の軸出しが行われる。
 第2の成形型12に対して行う軸出しとしては、乱視処方レンズを製造する場合、乱視軸方向の軸出しが行われる。
 第1の成形型11及び第2の成形型12の軸出しは、例えば、レーザ等の光の反射検出、ケガキ線の段差検出、及びオートメンズメータ等による光学特性検出により検出した画像についての画像処理によって行われる。
 第1の実施の形態に係るレンズ成形型の製造方法によれば、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させ、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して、第1の成形型11及び第2の成形型12を保持することができるので、様々なレンズの注文内容に対応したレンズ成形型を製造することができる。
 また、第1の実施の形態に係るレンズ成形型の製造方法によれば、注文内容に応じて、成形面Rを有する第1の成形型11、及び、成形面Rを有する第2の成形型12の空間座標における位置及び姿勢を特定してレンズ成形型を製造することができるので、レンズブランクの非仕上げ面側を厚めに形成する必要がなくなり、レンズ原料液の利用率を向上させることができる。
(第2の実施の形態)
 本発明の第2の実施の形態に係るレンズ成形型の製造方法は、第1の実施の形態に係るレンズ成形型の製造方法と比して、成形型保持工程S102が異なる。その他については実質的に同様であるので記載を省略する。
 図10は、本発明の第2の実施の形態に係るレンズ成形型の製造方法の模式的工程図である。以下に、本発明の実施の形態に係るレンズ成形型の製造方法について、図10を参照しながら説明する。
<成形型保持工程S102>
 成形型保持工程S102は、第1の成形型11及び第2の成形型12のそれぞれを第1の成形型保持具31及び第2の成形型保持具32で保持した後に、位置及び姿勢決め工程S101で特定された空間座標における位置及び姿勢に基づいて、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させ、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して保持する。
 成形型保持工程S102は、まず、図10のS102(a)の工程図で示すように、第1の治具21及び第2の治具22によって保持されている第1の成形型11及び第2の成形型12を、第1の成形型保持具31及び第2の成形型保持具32により保持する。このとき、第1の治具21及び第2の治具22は、回転、及び/又は傾斜させていない状態である。
 次いで、図10のS102(b)の工程図で示すように、図10のS102(a)で保持していた第1の治具21及び第2の治具22から、第1の成形型11及び第2の成形型12を離す。
 次いで、図10のS102(b)及び(c)の工程図で示すように、第1の成形型保持具31及び第2の成形型保持具32を用いて、特定された第1の成形型11及び第2の成形型12の空間座標における位置及び姿勢に応じて、第1の成形型11を回転、及び/又は傾斜させ、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して保持する。なお、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度は、レンズ成形型の組み立て終了時まで維持される。
 図10の工程図では、一例として、第1の成形型11のみを傾斜させた形態として示したが、第1の成形型11及び第2の成形型12の両方を傾斜させてもよく、第2の成形型12のみを傾斜させてもよい。なお、図10の工程図では、一例として、第1の成形型11及び第2の成形型12の両方を回転させた形態として示したが、第1の成形型11及び第2の成形型12のいずれか一方のみを回転させてもよい。
 第1の成形型11及び第2の成形型12を傾斜させる方法としては、第1の成形型保持具31及び第2の成形型保持具32のそれぞれの支柱312,322を駆動させ、第1の成形型11及び第2の成形型12を所望の傾斜角度にすることができる。
 次いで、成形型保持工程S102後において、第1の成形型11及び第2の成形型12の空間座標における位置を特定する位置決め工程をさらに備えることが好ましい。位置決め工程は、第1の実施形態と実質的に同様であるので記載を省略する。
 本発明の第2の実施の形態に係るレンズ成形型の製造方法でも、第1の実施の形態に係るレンズ成形型の製造方法と同様の効果を得ることができる。
 また、本発明の第2の実施の形態に係るレンズ成形型の製造方法は、第1の治具21及び第2の治具22が第1の成形型11及び第2の成形型12を回転、及び/又は傾斜させることを要しないので、第1の治具21及び第2の治具22を回転、及び/又は傾斜させる回転部及び軸部213,223が不要であり、第1の治具21及び第2の治具22を簡略化することができる。
[レンズ成形型形成システム]
 図11は、レンズ成形型形成装置を含むレンズ成形型形成システムの構成図である。本発明の実施の形態に係るレンズ成形型形成システム50は、図11に示すように、発注元からのオンラインでの注文に応じて眼鏡レンズを製造する眼鏡レンズ供給システムの一部を構成しており、発注元の例として眼鏡店60を、レンズ製造元の例としてレンズメーカの工場80を示している。眼鏡店60と工場80とは通信媒体51を介して接続されており、通信媒体51としては、例えば、インターネット、公衆通信回線、専用回線等を利用することができ、途中に中継局を設けるようにしてもよい。
 なお、以下、発注元が眼鏡店60の場合で説明するが、これに限定されず、例えば眼科医院、個人、レンズメーカの営業所等であってもよい。また、発注元は一つに限られず、通信媒体51を介して多数の発注元がレンズ製造元に接続可能になっている。
 眼鏡店60には、注文用端末61と、眼鏡フレームの形状(リム枠の内周形状及び玉形となるレンズの外周形状)を測定するフレーム形状測定装置62が設置されている。注文用端末61は、通信媒体51を介して工場80側に接続するための通信手段を有し、レンズを注文するために必要な情報が送受信可能になっている。
 工場80には、注文用端末61からの注文を受注する処理と、その受注内容に基づいてレンズの製造に必要なデータを作成する処理とを行うとともに、それらデータを記憶するコンピュータである工場サーバ90と、受注内容及び作成されたデータ等に基づいてレンズ成形型を形成するレンズ成形型形成装置100とを有している。
 工場サーバ90は、処理部91と記憶部92とを有している。工場サーバ90は、眼鏡店60からレンズの注文を受け付けると、受注処理部911、設計データ処理部912により、受注データ921及び設計データ922を作成する。
 処理部91は、注文用端末61からの注文を受注し受注データ921として記憶する受注処理部911と、この受注データ921に基づいて眼鏡レンズの形状を計算し設計データ922として記憶する設計データ処理部912と、これら受注データ921及び設計データ922に基づいて各種製造工程における装置の制御データや加工条件を作成し加工データ923として記憶する加工データ作成部913とを有する。
 記憶部92は、受注データ921、設計データ922、及び、加工データ923の他に、処理部91での処理に必要な、レンズ情報924、フレーム情報925、第1及び第2の成形型の情報である成形型情報926等も記憶されている。
 設計データ処理部912は、アンカットレンズのレンズ形状とそのレンズ上に想定される玉形加工後のレンズ形状を計算する機能を有する。また、設計データ処理部912は、受注したレンズが累進レンズの場合には、アンカットプリズムシニングを施したレンズ形状を設計する機能と、玉形プリズムシニングを施したレンズ形状を設計する機能とを有している。そして、それぞれのレンズ形状におけるレンズ前面及び後面の形状情報、その前後面の配置に関する情報、レンズ上に想定される玉形形状情報、プリズム測定基準点位置情報、プリズム屈折力等が設計データ922に記憶される。なお、受注データに処方プリズムが指定されていない場合、プリズム屈折力は、アンカットプリズムシニング及びその基底方向(垂直)、並びに、玉形プリズムシニング及びその基底方向(垂直)となる。
 加工データ処理部913は、受注したレンズが累進レンズの場合に、設計データ922に記憶されているアンカットプリズムシニングを施した場合のプリズム屈折力(処方プリズムを有さない場合はアンカットプリズムシニング)と玉形プリズムシニングを施した場合のプリズム屈折力(処方プリズムを有さない場合は玉形プリズムシニング)に基づいて、第2の成形型の基準面に対する第1の成形型の基準面の傾斜角度を算定する機能を有する。また、これら算出された傾斜角度を含む設計データ922、成形型情報926に基づいて使用する第1の成形型11及び第2の成形型12が選定される。また、処方プリズムが指定されている場合には、第2の成形型の基準面Fに対する第1の成形型の基準面Fの回転角度も決定される。また、第1の成形型11及び第2の成形型12の保持間隔である成形型保持間隔が算出される。算出された傾斜角度、回転角度及び成形型保持間隔、並びに、使用するツール(第1の成形型11、第2の成形型12)等は、加工データ923に記憶される。
 ここで、受注データ921としては、例えば、眼鏡レンズ情報、眼鏡フレーム情報、処方値、レイアウト情報などがある。レンズ情報924としては、レンズ材質、屈折率、レンズ前後面の光学設計の種類、レンズ外径、レンズ中心厚、コバ厚、偏心、ベースカーブ、累進帯長、インセット量、ヤゲン加工の種類、染色カラー、コーティングの種類、プリズムシニングの種類(アンカットプリズムシニング、玉形プリズムシニング)などがある。フレーム情報925としては、例えば、製品識別名、フレームサイズ、素材、フレームカーブ、玉形形状、フレームトレーサによって測定されたフレーム形状及びレンズ形状等がある。処方値としては、例えば、球面屈折力、乱視屈折力、乱視軸、処方プリズム、加入屈折力等がある。レイアウト情報としては、例えば、瞳孔間距離、近用瞳孔間距離、アイポイント位置等がある。
 レンズ成形型形成装置100は、治具110、成形型保持具120、粘着テープ巻付装置130、及びこれらを制御するコンピュータである制御装置140を有している。
 治具110は、上述した第1の治具21及び第2の治具22を備える。成形型保持具120は、上述した第1の成形型保持具31及び第2の成形型保持具32を備える。
 テープ巻付装置130は、図示はしないが、粘着テープのロールをレンズ成形型の回転軸と平行な軸で回転可能に保持するテープ保持部と、粘着テープロールから粘着テープを引き出し、その引き出された先端の粘着面を第1の成形型11及び第2の成形型12の外周に貼り付けるテープ貼付機構部と、粘着テープを巻き付けた後にテープを切るテープカット機構部とを備える。
 制御装置140は、工場サーバ90にネットワークを介して接続されており、工場サーバ90の記憶部92に記憶された受注データ921、設計データ922、加工データ923等をデータ受信可能になっている。そして、制御装置140は、治具110の回転駆動手段及び移動駆動手段、成形型保持具120の支柱駆動手段、吸着部駆動手段及び軸部駆動手段、並びにテープ巻付装置130のテープ貼付機構部駆動手段及びテープカット機構部駆動手段等を制御する制御部を備える。制御装置140としては、コンピュータ、プログラマブルコントローラ、それらの組み合わせ等を用いることができる。
[眼鏡レンズの製造方法]
 図12は、本発明の実施の形態に係る眼鏡レンズの製造方法のフローチャートである。本発明の実施の形態に係る眼鏡レンズの製造方法は、図12に示すように、位置及び姿勢決め工程S101と、成形型保持工程S102と、組み立て工程S103とを備える上述したレンズ成形型の製造方法により組み立てられたレンズ成形型内にモノマー組成物を含むレンズ原料液を充填する充填工程S104と、充填されたレンズ原料液を重合硬化させてレンズを成形する硬化工程S105とを備える。
 S101からS103までのレンズ成形型の製造方法については上述したので、ここでの説明を省略する。
 S101からS103までの工程により組み立てられた眼鏡レンズのレンズ成形型1は、充填工程S104に移行する。
<充填工程S104>
 充填工程S104において、組み立て工程S103で組み立てられたレンズ成形型1の粘着テープ13を一部剥がして間隙14と外部とをつなぐ注入口を形成する。そして、この注入口から、プラスチックレンズの原料液を間隙14へ注入する。レンズ原料液が間隙14を満たし、注入口まで達したところで注入を停止し、注入口に再び粘着テープ13を貼り直す。
 本発明で用いるレンズ原料液を構成するモノマー組成物は特に限定されないが、モノマー組成物としては、例えば、ポリチオウレタン樹脂を含む組成物が挙げられる。ポリチオウレタン樹脂としては、ポリイソシアネート化合物とポリチオール化合物との組み合わせ、あるいはビス(β-エピチオプロピル)スルフィド及びビス(β-エピチオプロピル)ジスルフィド等のエピチオ基含有化合物などが挙げられる。上記ポリイソシアネート化合物としては、1,3-ジイソシアナトメチル-シクロヘキサン及びキシレンジイソシアネートなどが挙げられる。上記ポリチオール化合物としては、ペンタエリスリトールテトラキス-(2-メルカプトアセテート)、2,5-ジメルカプトメチル-1,4-ジチアン、メルカプトメチル-ジチア-オクタンジチオール及びビス(メルカプトメチル)-トリチアウンデカン-ジチオール等が挙げられる。
 本発明で用いるモノマー組成物には、通常プラスチックレンズの製造に用いる公知の添加剤を、本発明の効果を損なわない範囲で添加することができる。
 添加剤としては、例えば、吸光特性を改良するための、紫外線吸収剤、色素及び顔料等の色材、耐候性を改良するための、酸化防止剤及び着色防止剤等、成形加工性を改良するための離型剤等を挙げることができる。
 紫外線吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系及びサリチル酸系等の紫外線吸収剤が挙げられる。
 色材としては、例えば、アントラキノン系及びアゾ系等の色材が挙げられる。
 酸化防止剤又は着色防止剤としては、例えば、モノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系及びリン系等の酸化防止剤又は着色防止剤が挙げられる。
 離型剤としては、例えば、フッ素界面活性剤、シリコーン系界面活性剤、酸性リン酸エステル及び高級脂肪酸等が挙げられる。
<硬化工程S105>
 次いで、硬化工程S105において、モノマー組成物を充填したレンズ成形型1を重合炉に投入し、所定の温度に加熱して原料のモノマーを重合させる。
 重合終了後、レンズ成形型1を重合炉から取り出し、室温まで冷却した後、粘着テープ13、第1の成形型11、第2の成形型12を取り外し、成形されたプリズムレンズを取り出す。
 上述のように、レンズ成形型1を構成し、このレンズ成形型1を使用してレンズを注型重合法により成形することにより、様々な処方が施された、アンカットレンズ(玉形加工前のフィニッシュトレンズ)としての眼鏡レンズを製造することができる。また、レンズ前面に累進面を有するアンカットレンズとしての累進屈折力レンズも製造することができる。
 このように製造された眼鏡レンズは、受注内容に応じてレンズの表裏面に各種表面処理(コーティング)が施され、その後、所望の玉形に玉形加工され、眼鏡フレームに取り付けられて眼鏡となる。
[眼鏡レンズ]
 図13は、本発明の実施の形態に係る眼鏡レンズの一例である眼鏡レンズ(プリズムレンズ)の模式的断面図である。眼鏡レンズの製造方法により製造された眼鏡レンズ2は、図13に示すように、一端コバ厚Dと他端コバ厚Dが異なっているレンズである。図13に示す眼鏡レンズ2の例では、一端コバ厚Dが他端コバ厚Dより薄くなっている。
 眼鏡レンズ2は、レンズ凸面2Aと、レンズ凹面2Bとを有し、レンズ凸面2A、凹面2Bの周りには、コバ面2Cが形成されている。レンズ凸面2Aは、累進面を有してもよい。レンズ凹面2Bは、球面、非球面、累進面、トロイダル面、又は非トロイダルレンズとすることができる。
 眼鏡レンズ2のレンズ凸面2A及びレンズ凹面2Bは、レンズ成形型1を使用してレンズを注型重合法により成形することにより、切削加工で形成するよりも平滑にすることができる。
 眼鏡レンズ2のレンズ凸面2A及びレンズ凹面2BにおけるJIS B0601:2001の算術平均粗さRaが1.0μm以下であることが好ましく、0.9μm以下であることがより好ましく、0.8μm以下であることがさらに好ましい。眼鏡レンズ2のレンズ凸面2A及びレンズ凹面2Bの算術平均粗さRaが上記範囲であることによって、レンズ表面での散乱を減少させることができ、レンズの透明度を良好にすることができる。
 眼鏡レンズ2の材料は、可視光透過性の材料であることを要し、屈折率が1.50以上2.00以下であることが好ましく、1.52以上1.90以下であることがより好ましく、1.54以上1.80以下であることがさらに好ましい。屈折率が上記範囲に該当する材料としては、例えば、アクリル樹脂、チオウレタン樹脂、及びチオエポキシ樹脂等が挙げられる。
 最後に、本発明の第1及び第2の実施の形態について図等を用いて総括する。
 第1の実施の形態に係るレンズ成形型の製造方法は、図1~6に示すように、
 レンズの一方の光学面を形成するための成形面Rを有する第1の成形型11、及び、他方の光学面を形成するための成形面Rを有する第2の成形型12の空間座標における位置及び姿勢を特定する位置及び姿勢決め工程S101と、
 空間座標における位置及び姿勢に基づいて、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させ、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して、第1の成形型11及び第2の成形型12を保持する成形型保持工程S102と、
 第1の成形型11の成形面R及び第2の成形型12の成形面Rを対向して配置させ、第1の成形型11及び第2の成形型12の外周を固定してレンズ成形型1を組み立てる組み立て工程S103とを備える。
 第1の実施の形態に係るレンズ成形型の製造方法における成形型保持工程S102は、図4に示すように、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させた後に、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して、第1の成形型11及び第2の成形型12のそれぞれを第1の成形型保持具31及び第2の成形型保持具32で保持する。
 第2の実施の形態に係るレンズ成形型の製造方法における成形型保持工程S102は、図10に示すように、第1の成形型11及び第2の成形型12のそれぞれを第1の成形型保持具31及び第2の成形型保持具32で保持した後に、第1の成形型11及び第2の成形型12の少なくとも一方を回転、及び/又は傾斜させ、第2の成形型12の基準面Fに対する第1の成形型11の基準面Fの回転角度、及び/又は傾斜角度を維持して保持する。
 また、図11を参照して、レンズ成形型形成システム50について総括する。レンズ成形型形成システム50に関して、例えば、下記の〔1〕又は〔2〕の実施の形態が挙げられる。
〔1〕注文用端末61からの注文を受注する処理と、その受注内容に基づいてレンズの製造に必要なデータを作成する処理とを行うとともに、それらデータを記憶するサーバ90と、受注内容及び作成されたデータ等に基づいてレンズ成形型を形成するレンズ成形型形成装置100とを備える、レンズ成形型形成システム50。
〔2〕サーバ90と、レンズ成形型形成装置100とを備え、
 前記サーバ(90)が、注文用端末61からの注文を受注する処理部911、その受注内容に基づいてレンズの製造に必要なデータを作成する処理部(図11中で、設計データ処理部912及び設計データ処理部912)及び、成形型情報926が記憶された記憶部92を有し、
 前記レンズ型成型装置100が、治具110、成形型保持具120、テープ巻付装置130、及びこれらを制御する制御装置140を有し、且つ、前記サーバ90にネットワークを介して接続されており、サーバ90からレンズの製造に必要なデータを受信可能である、レンズ成形型形成システム50。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1…レンズ成形型
 2…眼鏡レンズ
 2A…レンズ凸面
 2B…レンズ凹面
 2C…コバ面
 11…第1の成形型
 111…成形面Rの外周
 12…第2の成形型
 121…成形面Rと対向する面の外周
 13…粘着テープ
 14…間隙
 21…第1の治具
 22…第2の治具
 211,221…載置部
 212,222…把持部
 213,223…軸部
 31…第1の成形型保持具
 32…第2の成形型保持具
 311,321…支柱
 312,322…吸着部
 313,323…軸部
 41,42…測定装置
 50…レンズ成形型形成システム
 51…通信媒体
 60…眼鏡店
 61…注文用端末
 62…フレーム形状測定装置
 80…工場
 90…工場サーバ
 91…処理部
 92…記憶部
 100…レンズ成形型形成装置
 110…治具
 120…成形型保持具
 130…粘着テープ巻付装置
 140…制御装置
 911…受注処理部
 912…設計データ処理部
 913…加工データ処理部
 921…受注データ
 922…設計データ
 923…加工データ
 924…レンズ情報
 925…フレーム情報
 926…成形型情報
 R,R…成形面
 F,F…基準面
 A,A…基準軸
 O,O…基準点
 D,D…コバ厚
 

Claims (14)

  1.  レンズの一方の光学面を形成するための成形面Rを有する第1の成形型、及び、他方の光学面を形成するための成形面Rを有する第2の成形型の空間座標における位置及び姿勢を特定する位置及び姿勢決め工程と、
     前記空間座標における位置及び姿勢に基づいて、前記第1の成形型及び前記第2の成形型の少なくとも一方を回転、及び/又は傾斜させ、前記第2の成形型の基準面に対する前記第1の成形型の基準面の回転角度、及び/又は傾斜角度を維持して、前記第1の成形型及び前記第2の成形型を保持する成形型保持工程と、
     前記第1の成形型の成形面R及び前記第2の成形型の成形面Rを対向して配置させ、前記第1の成形型及び前記第2の成形型の外周を固定してレンズ成形型を組み立てる組み立て工程と、
    を備える、レンズ成形型の製造方法。
  2.  前記成形型保持工程は、前記第1の成形型及び前記第2の成形型の少なくとも一方を回転させた後に、前記第2の成形型の前記基準面に対する前記第1の成形型の前記基準面の回転角度を維持して、前記第1の成形型及び前記第2の成形型のそれぞれを第1の成形型保持具及び第2の成形型保持具で保持する請求項1に記載のレンズ成形型の製造方法。
  3.  前記成形型保持工程は、前記第1の成形型及び前記第2の成形型の少なくとも一方を傾斜させた後に、前記第2の成形型の前記基準面に対する前記第1の成形型の前記基準面の傾斜角度を維持して、前記第1の成形型及び前記第2の成形型のそれぞれを第1の成形型保持具及び第2の成形型保持具で保持する請求項1に記載のレンズ成形型の製造方法。
  4.  前記成形型保持工程は、前記第1の成形型及び前記第2の成形型のそれぞれを第1の成形型保持具及び第2の成形型保持具で保持した後に、前記第1の成形型及び前記第2の成形型の少なくとも一方を回転させ、前記第2の成形型の基準面に対する前記第1の成形型の基準面の回転角度を維持して保持する請求項1に記載のレンズ成形型の製造方法。
  5.  前記成形型保持工程は、前記第1の成形型及び前記第2の成形型のそれぞれを第1の成形型保持具及び第2の成形型保持具で保持した後に、前記第1の成形型及び前記第2の成形型の少なくとも一方を傾斜させ、前記第2の成形型の基準面に対する前記第1の成形型の基準面の傾斜角度を維持して保持する請求項1に記載のレンズ成形型の製造方法。
  6.  前記成形型保持工程後において、前記第1の成形型及び前記第2の成形型の前記空間座標における位置を特定する位置決め工程をさらに備える請求項1~5のいずれか1項に記載のレンズ成形型の製造方法。
  7.  前記成形型保持工程において、3本以上の支柱を有する前記第1の成形型保持具及び前記第2の成形型保持具が、前記支柱で前記第1の成形型及び前記第2の成形型の回転、及び/又は傾斜を維持する請求項1~6のいずれか1項に記載のレンズ成形型の製造方法。
  8.  前記成形型保持工程において、前記第1の成形型保持具及び前記第2の成形型保持具のそれぞれの前記支柱を駆動させ、前記第1の成形型及び前記第2の成形型を傾斜させる請求項7に記載のレンズ成形型の製造方法。
  9.  前記組み立て工程は、粘着テープによって前記第1の成形型及び前記第2の成形型の外周を固定する請求項1~8のいずれか1項に記載のレンズ成形型の製造方法。
  10.  前記組み立て工程において、前記第1の成形型及び前記第2の成形型の外周を固定する前記粘着テープの巻き初めの位置を任意に設定する請求項9に記載のレンズ成形型の製造方法。
  11.  前記組み立て工程は、ガスケットによって前記第1の成形型及び前記第2の成形型の外周を固定する請求項1~8のいずれか1項に記載のレンズ成形型の製造方法。
  12.  前記成形面Rが累進面からなり、前記位置及び姿勢決め工程において、前記累進面を特定する請求項1~11のいずれか1項に記載のレンズ成形型の製造方法。
  13.  請求項1~12のいずれか1項に記載の方法により組み立てられたレンズ成形型内にモノマー組成物を含むレンズ原料液を充填する充填工程と、
     充填された前記レンズ原料液を重合硬化させて眼鏡レンズを成形する硬化工程と、
    を備える眼鏡レンズの製造方法。
  14.  レンズの表面におけるJIS B0601:2001の算術平均粗さRaが1.0μm以下である眼鏡レンズ。
     
PCT/JP2017/024208 2016-06-30 2017-06-30 レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ WO2018003984A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780005296.8A CN108472833B (zh) 2016-06-30 2017-06-30 镜片成形模的制造方法、眼镜镜片的制造方法及眼镜镜片
JP2018525302A JP6693671B2 (ja) 2016-06-30 2017-06-30 レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ
KR1020187018332A KR102225330B1 (ko) 2016-06-30 2017-06-30 렌즈 성형형의 제조 방법, 안경 렌즈의 제조 방법 및 안경 렌즈
EP17820338.6A EP3479984B1 (en) 2016-06-30 2017-06-30 Method for manufacturing lens forming mold, method for manufacturing eyeglass lens, and eyeglass lens
US16/019,208 US11072097B2 (en) 2016-06-30 2018-06-26 Method for manufacturing lens forming mold, method for manufacturing eyeglass lens, and eyeglass lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131088 2016-06-30
JP2016131088 2016-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/019,208 Continuation US11072097B2 (en) 2016-06-30 2018-06-26 Method for manufacturing lens forming mold, method for manufacturing eyeglass lens, and eyeglass lens

Publications (1)

Publication Number Publication Date
WO2018003984A1 true WO2018003984A1 (ja) 2018-01-04

Family

ID=60787366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024208 WO2018003984A1 (ja) 2016-06-30 2017-06-30 レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ

Country Status (6)

Country Link
US (1) US11072097B2 (ja)
EP (1) EP3479984B1 (ja)
JP (1) JP6693671B2 (ja)
KR (1) KR102225330B1 (ja)
CN (1) CN108472833B (ja)
WO (1) WO2018003984A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500257A (ja) * 1999-05-26 2003-01-07 エシロール アンテルナショナル コムパニージェネラル ドプテイク 光学レンズの成型方法及びその装置
JP2004077632A (ja) * 2002-08-13 2004-03-11 Mitsubishi Chemicals Corp プリズムシート
JP2008040497A (ja) * 2006-08-07 2008-02-21 Stephen M Dillon 均一拡散全方向性反射レンズ
WO2010114023A1 (ja) * 2009-03-31 2010-10-07 Hoya株式会社 累進屈折力眼鏡レンズの製造方法
WO2011105186A1 (ja) * 2010-02-23 2011-09-01 コニカミノルタオプト株式会社 光学素子の製造方法及び光学素子成形金型

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288221A (en) * 1992-05-18 1994-02-22 Essilor Of America, Inc. Apparatus for making ophthalmic lenses
US6099764A (en) * 1999-03-19 2000-08-08 Technology Resources International Corporation Method of lens casting without using a gasket
US6872120B2 (en) * 2000-02-16 2005-03-29 Seiko Epson Corporation Method of producing spectacle lens
FR2805901B1 (fr) * 2000-03-06 2002-05-31 Essilor Int Finissage d'une lentille optalmique
US7108812B2 (en) * 2002-05-17 2006-09-19 Konica Corporation Forming die unit adjusting method and forming apparatus
JP2004359481A (ja) * 2003-06-03 2004-12-24 Minolta Co Ltd レンズ成形用レプリカ型の製造方法
US7488170B2 (en) * 2004-04-09 2009-02-10 Konica Minolta Opto, Inc. Metallic mold for optical element and optical element
JP4992107B2 (ja) * 2004-08-02 2012-08-08 コニカミノルタアドバンストレイヤー株式会社 光学部品の製造装置
US7731872B2 (en) 2006-05-31 2010-06-08 Coopervision International Holding Company, Lp Methods and systems for forming ophthalmic lens mold assemblies
JP4944128B2 (ja) * 2006-12-26 2012-05-30 株式会社メニコン 眼用レンズの製造方法及び装置
JP4820348B2 (ja) * 2007-08-31 2011-11-24 株式会社メニコン コンタクトレンズおよびその製造方法
JP5269555B2 (ja) 2008-11-17 2013-08-21 株式会社タカラ モールドのテープ巻付け装置
KR20130013439A (ko) * 2011-07-28 2013-02-06 삼성전기주식회사 렌즈 성형 장치 및 이를 이용한 렌즈 성형 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500257A (ja) * 1999-05-26 2003-01-07 エシロール アンテルナショナル コムパニージェネラル ドプテイク 光学レンズの成型方法及びその装置
JP2004077632A (ja) * 2002-08-13 2004-03-11 Mitsubishi Chemicals Corp プリズムシート
JP2008040497A (ja) * 2006-08-07 2008-02-21 Stephen M Dillon 均一拡散全方向性反射レンズ
WO2010114023A1 (ja) * 2009-03-31 2010-10-07 Hoya株式会社 累進屈折力眼鏡レンズの製造方法
WO2011105186A1 (ja) * 2010-02-23 2011-09-01 コニカミノルタオプト株式会社 光学素子の製造方法及び光学素子成形金型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3479984A4 *

Also Published As

Publication number Publication date
CN108472833B (zh) 2021-04-06
EP3479984A4 (en) 2020-07-01
CN108472833A (zh) 2018-08-31
US11072097B2 (en) 2021-07-27
EP3479984B1 (en) 2022-06-15
KR102225330B1 (ko) 2021-03-10
KR20180088702A (ko) 2018-08-06
EP3479984A1 (en) 2019-05-08
JP6693671B2 (ja) 2020-05-13
JPWO2018003984A1 (ja) 2018-08-16
US20180339432A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP5331874B2 (ja) 累進屈折力眼鏡レンズの製造方法
KR101998550B1 (ko) 안경 렌즈 및 이를 제조하기 위한 방법
US9638938B2 (en) Polarizing lens and method of manufacturing the same
US10281738B2 (en) Method for manufacturing an ophthalmic lens
CN104105997B (zh) 眼镜用偏振塑料镜片及眼镜用偏振塑料镜片的制造方法
EP0341998B1 (en) Method of making multifocus ophthalmic lens
US10099439B2 (en) Method of manufacturing polarizing plastic lens
EP2992382B1 (en) Method for providing a head mounted optical system
JPWO2003008171A1 (ja) 樹脂レンズの製造方法とその樹脂レンズ
US10831033B2 (en) Method for encapsulating a light-guide optical element in a transparent capsule
WO2018003984A1 (ja) レンズ成形型の製造方法、眼鏡レンズの製造方法及び眼鏡レンズ
KR20160131121A (ko) 안경 렌즈 반가공 제품의 세트 및 상기 세트의 설계를 위한 방법, 안경 렌즈를 생산하는 방법 및 디바이스, 및 반가공 제품의 세트의 이용
CN110023066A (zh) 用于制造眼科制品的方法
CN106030378A (zh) 用于制造配备有插入件的眼科镜片的模具和方法
CN115047651A (zh) 眼镜用偏振镜片及其制造方法和检查方法、带框架眼镜的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525302

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018332

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820338

Country of ref document: EP

Effective date: 20190130