WO2018003703A1 - 半導体素子搭載用パッケージ基板の製造方法及び半導体素子実装基板の製造方法 - Google Patents
半導体素子搭載用パッケージ基板の製造方法及び半導体素子実装基板の製造方法 Download PDFInfo
- Publication number
- WO2018003703A1 WO2018003703A1 PCT/JP2017/023237 JP2017023237W WO2018003703A1 WO 2018003703 A1 WO2018003703 A1 WO 2018003703A1 JP 2017023237 W JP2017023237 W JP 2017023237W WO 2018003703 A1 WO2018003703 A1 WO 2018003703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring conductor
- insulating resin
- copper foil
- resin layer
- forming
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 204
- 239000004065 semiconductor Substances 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 82
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 295
- 239000011889 copper foil Substances 0.000 claims abstract description 211
- 229920005989 resin Polymers 0.000 claims abstract description 200
- 239000011347 resin Substances 0.000 claims abstract description 200
- 239000004020 conductor Substances 0.000 claims abstract description 168
- 238000007747 plating Methods 0.000 claims abstract description 94
- 229910052802 copper Inorganic materials 0.000 claims abstract description 81
- 239000010949 copper Substances 0.000 claims abstract description 81
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 25
- 238000010030 laminating Methods 0.000 claims abstract description 17
- 238000003475 lamination Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 41
- 238000005530 etching Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 19
- 238000003825 pressing Methods 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 238000007788 roughening Methods 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 7
- 238000000206 photolithography Methods 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 33
- 230000000149 penetrating effect Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 320
- 239000000126 substance Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 31
- -1 For example Substances 0.000 description 26
- 239000000047 product Substances 0.000 description 26
- 229910000679 solder Inorganic materials 0.000 description 19
- 239000010408 film Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000003822 epoxy resin Substances 0.000 description 16
- 229920000647 polyepoxide Polymers 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 13
- 239000011342 resin composition Substances 0.000 description 13
- 229910000077 silane Inorganic materials 0.000 description 12
- 229910052737 gold Inorganic materials 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- 239000011810 insulating material Substances 0.000 description 11
- 230000035515 penetration Effects 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 229920005992 thermoplastic resin Polymers 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 125000000753 cycloalkyl group Chemical group 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229920003986 novolac Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- 229920001955 polyphenylene ether Polymers 0.000 description 6
- 150000004756 silanes Chemical class 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 239000004962 Polyamide-imide Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000005065 mining Methods 0.000 description 5
- 229920002312 polyamide-imide Polymers 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 4
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 3
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- AHZMUXQJTGRNHT-UHFFFAOYSA-N [4-[2-(4-cyanatophenyl)propan-2-yl]phenyl] cyanate Chemical compound C=1C=C(OC#N)C=CC=1C(C)(C)C1=CC=C(OC#N)C=C1 AHZMUXQJTGRNHT-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 239000004643 cyanate ester Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000008155 medical solution Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- BSWWXRFVMJHFBN-UHFFFAOYSA-N 2,4,6-tribromophenol Chemical compound OC1=C(Br)C=C(Br)C=C1Br BSWWXRFVMJHFBN-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- FJYCAYKHNVQCJW-UHFFFAOYSA-N 2-[4-[4-(2-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C(=CC=CC=3)N)=CC=2)C=C1 FJYCAYKHNVQCJW-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- KHYXYOGWAIYVBD-UHFFFAOYSA-N 4-(4-propylphenoxy)aniline Chemical compound C1=CC(CCC)=CC=C1OC1=CC=C(N)C=C1 KHYXYOGWAIYVBD-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- SIZDMAYTWUINIG-UHFFFAOYSA-N [4-[1-(4-cyanatophenyl)ethyl]phenyl] cyanate Chemical compound C=1C=C(OC#N)C=CC=1C(C)C1=CC=C(OC#N)C=C1 SIZDMAYTWUINIG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XGZGKDQVCBHSGI-UHFFFAOYSA-N butyl(triethoxy)silane Chemical compound CCCC[Si](OCC)(OCC)OCC XGZGKDQVCBHSGI-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910001430 chromium ion Inorganic materials 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 1
- BAAAEEDPKUHLID-UHFFFAOYSA-N decyl(triethoxy)silane Chemical compound CCCCCCCCCC[Si](OCC)(OCC)OCC BAAAEEDPKUHLID-UHFFFAOYSA-N 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- LIQOCGKQCFXKLF-UHFFFAOYSA-N dibromo(dimethyl)silane Chemical compound C[Si](C)(Br)Br LIQOCGKQCFXKLF-UHFFFAOYSA-N 0.000 description 1
- DBUGVTOEUNNUHR-UHFFFAOYSA-N dibromo(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Br)(Br)C1=CC=CC=C1 DBUGVTOEUNNUHR-UHFFFAOYSA-N 0.000 description 1
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- CTIKAHQFRQTTAY-UHFFFAOYSA-N fluoro(trimethyl)silane Chemical compound C[Si](C)(C)F CTIKAHQFRQTTAY-UHFFFAOYSA-N 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- UCHOFYCGAZVYGZ-UHFFFAOYSA-N gold lead Chemical compound [Au].[Pb] UCHOFYCGAZVYGZ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 125000005921 isopentoxy group Chemical group 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- DRRZZMBHJXLZRS-UHFFFAOYSA-N n-[3-[dimethoxy(methyl)silyl]propyl]cyclohexanamine Chemical compound CO[Si](C)(OC)CCCNC1CCCCC1 DRRZZMBHJXLZRS-UHFFFAOYSA-N 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000003935 n-pentoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical compound C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 description 1
- 125000005484 neopentoxy group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- QBDSZLJBMIMQRS-UHFFFAOYSA-N p-Cumylphenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=CC=C1 QBDSZLJBMIMQRS-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000005054 phenyltrichlorosilane Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ASEHKQZNVUOPRW-UHFFFAOYSA-N tert-butyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C(C)(C)C ASEHKQZNVUOPRW-UHFFFAOYSA-N 0.000 description 1
- HXLWJGIPGJFBEZ-UHFFFAOYSA-N tert-butyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C(C)(C)C HXLWJGIPGJFBEZ-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 1
- BPCXHCSZMTWUBW-UHFFFAOYSA-N triethoxy(1,1,2,2,3,3,4,4,5,5,8,8,8-tridecafluorooctyl)silane Chemical compound CCO[Si](OCC)(OCC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F BPCXHCSZMTWUBW-UHFFFAOYSA-N 0.000 description 1
- ALVYUZIFSCKIFP-UHFFFAOYSA-N triethoxy(2-methylpropyl)silane Chemical compound CCO[Si](CC(C)C)(OCC)OCC ALVYUZIFSCKIFP-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- WUMSTCDLAYQDNO-UHFFFAOYSA-N triethoxy(hexyl)silane Chemical compound CCCCCC[Si](OCC)(OCC)OCC WUMSTCDLAYQDNO-UHFFFAOYSA-N 0.000 description 1
- FHVAUDREWWXPRW-UHFFFAOYSA-N triethoxy(pentyl)silane Chemical compound CCCCC[Si](OCC)(OCC)OCC FHVAUDREWWXPRW-UHFFFAOYSA-N 0.000 description 1
- BJDLPDPRMYAOCM-UHFFFAOYSA-N triethoxy(propan-2-yl)silane Chemical compound CCO[Si](OCC)(OCC)C(C)C BJDLPDPRMYAOCM-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- PADYPAQRESYCQZ-UHFFFAOYSA-N triethoxy-(4-methylphenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=C(C)C=C1 PADYPAQRESYCQZ-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- NJMOHBDCGXJLNJ-UHFFFAOYSA-N trimellitic anhydride chloride Chemical compound ClC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 NJMOHBDCGXJLNJ-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 1
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 1
- LGROXJWYRXANBB-UHFFFAOYSA-N trimethoxy(propan-2-yl)silane Chemical compound CO[Si](OC)(OC)C(C)C LGROXJWYRXANBB-UHFFFAOYSA-N 0.000 description 1
- XQEGZYAXBCFSBS-UHFFFAOYSA-N trimethoxy-(4-methylphenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=C(C)C=C1 XQEGZYAXBCFSBS-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/142—Metallic substrates having insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4857—Multilayer substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/315—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49822—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
Definitions
- the present invention relates to a method for manufacturing a semiconductor device mounting package substrate and a method for manufacturing a semiconductor device mounting substrate.
- CSP Chip Size / Scale Package
- a connection portion with an external wiring board in the mounting region not in the peripheral portion of the semiconductor chip.
- a polyimide film with bumps is bonded to the surface of a semiconductor chip, an electrical connection is made between the chip and a gold lead wire, and then epoxy resin is potted and sealed (see Non-Patent Document 1 below).
- a metal bump is formed on the temporary substrate at a position corresponding to the connection portion between the semiconductor chip and the external wiring substrate, the semiconductor chip is face-down bonded, and then transfer molded on the temporary substrate (see Non-Patent Document 2 below). ) Etc.
- a relatively thin plating layer is formed on the substrate surface, a plating resist is formed thereon, a conductor is formed to a required thickness by electroplating, and then the resist is peeled off.
- a semi-additive method in which the thin plating layer is removed by soft etching has attracted attention.
- a method of forming a thin copper foil layer by forming a peelable copper foil with a carrier formed by a heating / pressing press method instead of a thin plating layer and then removing the carrier has been studied.
- carrier copper having an ultrathin copper foil thickness of 1 ⁇ m to 5 ⁇ m
- a support substrate for circuit formation in which an insulating resin is provided on the carrier copper foil surface of the ultra-thin copper foil with foil, a wiring conductor is produced using electrolytic copper plating, etc., and then the support substrate with carrier copper foil is peeled off.
- Patent Document 1 a method for producing a package substrate for mounting a semiconductor element has been proposed (see, for example, Patent Document 1 below).
- the support substrate for circuit formation using the ultra-thin copper foil with carrier copper foil used in the manufacturing method of the package substrate for mounting a semiconductor element of Patent Document 1 described above is usually between the carrier copper foil and the ultra-thin copper foil ( In many cases, an extremely thin adhesive layer is provided on the interface. However, usually, the adhesive layer has a thickness of several tens of nanometers and has low resistance to chemicals.
- a hole such as a through hole may be opened by a drill or a laser for interlayer connection.
- a desmear process for removing smear is performed using a desmear liquid made of sodium permanganate or the like in order to remove the resin (smear) remaining inside the hole.
- the chemical solution (desmear liquid) is applied to the adhesive layer located between the carrier copper foil and the ultra-thin copper foil. May penetrate.
- medical solution osmose permeates the contact bonding layer between carrier copper foil and ultra-thin copper foil
- the adhesive strength of the interface of carrier copper foil and ultra-thin copper foil will fall.
- the decrease in the adhesive strength at the interface between the carrier copper foil and the ultrathin copper foil affects the production efficiency.
- the portion where the chemical solution has penetrated reaches the portion that becomes the product, the ultrathin copper foil may be corroded by the chemical solution and cause a product defect.
- the penetration of the chemical liquid causes contamination of the liquid and apparatus used in the subsequent process, and causes a malfunction of the apparatus.
- the side surface of the ultra-thin copper foil with carrier copper foil is covered with an insulating resin on the support substrate for circuit formation when the package substrate is manufactured.
- an insulating resin on the support substrate for circuit formation when the package substrate is manufactured.
- an object of the present invention is to provide a method for manufacturing a package substrate for mounting a semiconductor element and a method for manufacturing a semiconductor element mounting substrate with high production efficiency and high design freedom.
- Substrate formation for forming a circuit-forming support substrate including a first insulating resin layer, a release layer containing at least a silicon compound, and an ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m in this order A step (a), a first wiring conductor forming step (b) for forming a first wiring conductor by pattern electrolytic copper plating on the ultrathin copper foil of the circuit-forming support substrate, and the first A laminating step (c) in which a second insulating resin layer is disposed so as to be in contact with the wiring conductor, and the second insulating resin layer is laminated by heating and pressing; and the first insulating resin layer is provided with the first insulating layer.
- the first wiring conductor forming step (b) includes a step (b-1) of laminating a plating resist on the ultrathin copper foil, and a wiring circuit pattern is formed on the plating resist by photolithography.
- the laminating step (c) includes a step (c-1) of performing a roughening treatment on the surface of the first wiring conductor, and a step of applying the roughening treatment to the second insulating resin layer.
- the second wiring conductor forming step (d) includes a step (d-1) of forming a non-penetrating hole reaching the first wiring conductor in the second insulating resin layer, and the non-penetrating step.
- a method for manufacturing a substrate ⁇ 6> The method for manufacturing a package substrate for mounting a semiconductor element according to any one of ⁇ 1> to ⁇ 5>, wherein the thickness of the first insulating resin layer is 0.02 mm to 2.0 mm.
- the release layer and / or the ultrathin copper foil is removed using a sulfuric acid-based or hydrogen peroxide-based etching solution.
- the release layer and the first insulating resin are formed by using the release layer and the first insulating resin.
- the method for manufacturing a package substrate for mounting a semiconductor element according to any one of ⁇ 1> to ⁇ 9> including: ⁇ 11> The method for producing a package substrate for mounting a semiconductor element according to any one of ⁇ 1> to ⁇ 10>, wherein the release layer contains the silicon compound other than the silicone compound. ⁇ 12> The method for manufacturing a package substrate for mounting a semiconductor element according to any one of ⁇ 1> to ⁇ 11>, wherein the release layer is directly laminated on the first insulating resin layer.
- Substrate formation for forming a circuit-forming support substrate including a first insulating resin layer, a release layer containing at least a silicon compound, and an ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m in this order A step (a), a first wiring conductor forming step (b) for forming a first wiring conductor by pattern electrolytic copper plating on the ultrathin copper foil of the circuit-forming support substrate, and the first A laminating step (c) in which a second insulating resin layer is disposed so as to be in contact with the wiring conductor, and the second insulating resin layer is laminated by heating and pressing; and the first insulating resin layer is provided with the first insulating layer.
- ⁇ 14> The method for manufacturing a semiconductor element mounting substrate according to ⁇ 13>, wherein in the semiconductor element mounting step (g), the semiconductor element is mounted on the second wiring conductor via a bonding material.
- ⁇ 15> The method for producing a semiconductor element mounting substrate according to ⁇ 13> or ⁇ 14>, wherein the release layer is directly laminated on the first insulating resin layer.
- the manufacturing method of a semiconductor device mounting package substrate of the present invention it is possible to provide a manufacturing method of a semiconductor device mounting package substrate and a manufacturing method of a semiconductor device mounting substrate with high production efficiency and high design freedom. .
- the method for manufacturing a semiconductor device mounting package substrate according to the present embodiment (hereinafter sometimes simply referred to as “the manufacturing method of the present embodiment”) is as follows.
- a substrate forming step (a) for forming a circuit-forming support substrate including a first insulating resin layer, a release layer containing at least a silicon compound, and an ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m in this order (a )When, A first wiring conductor forming step (b) of forming a first wiring conductor by pattern electrolytic copper plating on the ultrathin copper foil of the circuit-forming support substrate;
- the circuit-forming support substrate includes a first insulating resin layer, a release layer containing at least a silicon compound, and an ultrathin thickness of 1 ⁇ m to 5 ⁇ m. Copper foil is included in this order.
- the interface between the ultrathin copper foil and the first insulating resin layer (for example, prepreg) (the ultrathin copper foil and the first insulating resin layer are bonded via the peeling layer)
- the adhesion strength (hereinafter also referred to as “peel strength” in the present specification) is excellent, and, for example, the chemical solution does not penetrate into the interface even in the desmear treatment, and the chemical resistance such as desmear resistance is excellent.
- the reason why the bonding strength at the interface between the ultrathin copper foil of the circuit forming support substrate and the first insulating resin layer is excellent is not clear, but the ultrathin copper The unevenness of several ⁇ m on the foil surface penetrates the peeling layer interposed at the interface and pierces the first insulating resin layer side, and melts when the first insulating resin layer is pressed (heated and pressurized). This is presumed to be due to the anchor effect caused by this.
- the peel strength can be determined by, for example, using a copper foil with a release layer (for example, the release layer is formed on a copper foil having a thickness of 1 ⁇ m to 20 ⁇ m) on the first insulating resin layer.
- the release layer is made of an inorganic component silicon. It is estimated that one of the reasons is that it is configured to include the compound. That is, when an ultra-thin copper foil with a carrier copper foil is used as in the past, an adhesive layer is often used between the first insulating resin layer and the ultra-thin copper foil.
- the release layer in this embodiment is composed of a compound containing silicon, which is an inorganic component, so it is unlikely to dissolve in a chemical solution used for desmear treatment, and it is estimated that the penetration of the chemical solution can be prevented.
- the above-mentioned anchor effect provides excellent adhesion strength at the interface between the ultrathin copper foil and the first insulating resin layer, it is speculated that such an element can also prevent the penetration of a chemical solution such as a desmear solution. .
- the package substrate for mounting a semiconductor element manufactured by the manufacturing method of this embodiment can also obtain wiring adhesion strength by embedding fine wiring in an insulating resin layer. Furthermore, according to the manufacturing method of the present embodiment, since it is possible to route with the minimum number of layers, it is possible to reduce the number of layers and manufacture a package substrate for mounting a semiconductor element with a total plate thickness thinner than the conventional one. It is possible to increase the wiring density of the semiconductor device mounting package substrate. Hereinafter, the manufacturing method of this embodiment will be described in detail.
- the substrate forming step (a) includes a first insulating resin layer, a release layer containing at least a silicon compound, and an ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m in this order. Is a step of forming.
- the first insulating resin layer the peeling layer and the ultrathin copper foil may be disposed only on one side, but it is preferable that these layers are disposed on both sides of the first insulating resin layer.
- the circuit-forming support substrate in this embodiment is preferably a two-layer core substrate with a release layer. The configuration of the circuit-forming support substrate (two-layer core substrate with a release layer) 1 will be described with reference to FIG. FIG.
- the circuit-forming support substrate 1 includes a release layer 3 and an ultrathin copper foil 4 on the both sides of a first insulating resin layer (for example, prepreg) 2.
- the insulating resin layer 2 is provided in order from the surface side.
- a support substrate for circuit formation it can be formed by forming a release layer on an ultrathin copper foil and placing it on the first insulating resin layer.
- the method is limited to the formation method. Instead, there is no particular limitation as long as the peeling layer and the ultrathin copper foil are laminated in this order on the first insulating resin layer.
- a copper foil having a fixed thickness on which a release layer is formed (hereinafter also referred to as “copper foil with a release layer”) is in contact with a first insulating resin layer such as a prepreg.
- the release layer and the ultrathin copper foil can be formed on the first insulating resin layer by stacking by heating and pressurizing.
- a circuit-forming support substrate including the layers and the ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m in this order can be obtained.
- the release layer-attached copper foil is not particularly limited.
- a copper foil having a release layer formed on a copper foil having a thickness of 1 ⁇ m to 20 ⁇ m can be used.
- a release layer may be formed on the first insulating resin layer, and then an ultrathin copper foil may be disposed to form a circuit forming support substrate.
- the lamination method and conditions are not particularly limited, but for example, for circuit formation by performing vacuum pressing under conditions of a temperature of 220 ⁇ 2 ° C., a pressure of 5 ⁇ 0.2 MPa, and a holding time of 60 minutes.
- a support substrate can be formed.
- the first insulating resin layer in the substrate forming step (a) is not particularly limited.
- an insulating resin material such as a thermosetting resin is applied to a base material such as a glass cloth.
- An impregnated prepreg, an insulating film material, or the like can be used.
- the “prepreg” is obtained by impregnating or coating a base material with an insulating material such as a resin composition. It does not specifically limit as a base material, The well-known thing used for the laminated board for various electrical insulation materials can be used suitably.
- a material which comprises a base material For example, inorganic fibers, such as E glass, D glass, S glass, or Q glass; Organic fibers, such as a polyimide, polyester, or tetrafluoro erylene; And those mixtures etc. are mentioned.
- the substrate is not particularly limited, and for example, a substrate having a shape such as a woven fabric, a nonwoven fabric, a robink, a chopped strand mat, or a surfacing mat can be used as appropriate.
- the material and shape of the substrate are selected depending on the intended use and performance of the molded product, and if necessary, one or more materials and shapes can be used.
- the thickness of the substrate is not particularly limited, but a substrate having a thickness of usually 0.02 to 0.50 mm can be used.
- a substrate having a thickness of usually 0.02 to 0.50 mm can be used as the base material.
- these base materials are preferable from the viewpoint of heat resistance, moisture resistance, and workability. It is.
- the insulating material is not particularly limited, and a known resin composition used as an insulating material for a printed wiring board can be appropriately selected and used.
- a thermosetting resin having good heat resistance and chemical resistance can be used as a base.
- a thermosetting resin A phenol resin, an epoxy resin, cyanate resin, a maleimide resin, an isocyanate resin, a benzocyclobutene resin, a vinyl resin etc. can be illustrated.
- a thermosetting resin may be used individually by 1 type, and may mix and use 2 or more types.
- thermosetting resins epoxy resins are excellent in heat resistance, chemical resistance, electrical properties, and are relatively inexpensive, and therefore can be suitably used as insulating materials.
- the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol A novolac type epoxy resin, diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalene diol, diglycidyl etherified product of phenols, diglycidyl etherified product of alcohols, and alkyl-substituted products thereof, halogen And a hydrogenated product.
- An epoxy resin may be used individually by 1 type, and may mix and use 2 or more types.
- the curing agent used together with the epoxy resin can be used without limitation as long as it cures the epoxy resin.
- These epoxy resin curing agents may be used alone or in combination of two or more.
- the cyanate resin is a resin that generates a cured product having a triazine ring as a repeating unit by heating, and the cured product has excellent dielectric properties. For this reason, it is suitable especially when high frequency characteristics are required.
- the cyanate resin is not particularly limited, and examples thereof include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, and 2,2-bis (3,5 dimethyl-4-silane.
- examples thereof include cyanate esterified products of benzene, phenol novolac and alkylphenol novolac.
- 2,2-bis (4-cyanatophenyl) propane is preferable because it has a particularly good balance between the dielectric properties and curability of the cured product and is inexpensive.
- These cyanate ester compounds and other cyanate resins may be used alone or in combination of two or more.
- the cyanate ester compound may be partially oligomerized in advance to a trimer or a pentamer.
- a curing catalyst or a curing accelerator can be used in combination with the cyanate resin.
- the curing catalyst for example, metals such as manganese, iron, cobalt, nickel, copper, and zinc can be used.
- organometallic salts such as 2-ethylhexanoate and octylate, and acetylacetone And organometallic complexes such as complexes.
- One curing catalyst may be used alone, or two or more curing catalysts may be mixed and used.
- phenols as a curing accelerator, monofunctional phenols such as nonylphenol and paracumylphenol, bifunctional phenols such as bisphenol A, bisphenol F, and bisphenol S, or phenol novolacs and cresol novolacs. These polyfunctional phenols can be used.
- a hardening accelerator may be used individually by 1 type, and may mix and use 2 or more types.
- the resin composition used as the insulating material can be blended with a thermoplastic resin in consideration of dielectric properties, impact resistance, film processability, and the like.
- a thermoplastic resin for example, a fluororesin, a polyphenylene ether, a modified polyphenylene ether, a polyphenylene sulfide, a polyvinylate, a polyetherimide, a polyetheretherketone, a polyacrylate, a polyamide, a polyamideimide And polybutadiene.
- a thermoplastic resin may be used individually by 1 type, and 2 or more types may be mixed and used for it.
- polyphenylene ether and modified polyphenylene ether examples include poly (2,6-dimethyl-1,4-phenylene) ether, an alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene, Alloying polymer of poly (2,6dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, alloying of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-maleic anhydride copolymer Polymer, alloyed polymer of poly (3,6-dimethyl-1,4-phenylene) ether and polyamide, alloy of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene
- functional groups such as amine groups, epoxy groups, carboxylic groups, and styryl groups are introduced at the ends of the polymer chains, or amine groups and epoxy groups are added to the side chains of the polymer chains
- Functional groups such as a group, a carboxyl group, a styryl group, and a methacryl group may be introduced.
- polyamideimide resin is useful from the viewpoint of excellent moisture resistance and good adhesive to metal.
- the raw material of the polyamide-imide resin is not particularly limited.
- the acidic component include trimellitic anhydride and trimellitic anhydride monochloride.
- the amine component include metaphenylenediamine, paraphenylenediamine, and 4 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, bis [4- (aminophenoxy) phenyl] sulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, and the like.
- the polyamide-imide resin may be modified with siloxane in order to improve the drying property.
- siloxane diamine can be used as an amino component.
- thermoplastic resins have been described mainly as insulating materials used for prepregs, but these thermoplastic resins are not limited to use as prepregs.
- thermoplastic resin film material
- thermoplastic resin film material
- An inorganic filler may be mixed in the resin composition used as the insulating material.
- the inorganic filler is not particularly limited, and examples thereof include alumina, aluminum hydroxide, magnesium hydroxide, clay, talc, antimony trioxide, antimony pentoxide, zinc oxide, fused silica, glass powder, quartz powder, and shirasu balloon. It is done. These inorganic fillers may be used alone or in combination of two or more.
- the resin composition used as the insulating material may contain an organic solvent.
- the organic solvent is not particularly limited, and is an aromatic hydrocarbon solvent such as benzene, toluene, xylene, or trimethylbenzene; a ketone solvent such as acetone, methyl ethyl ketone, or methyl inobutyl ketone; Ether solvents; alcohol solvents such as isopropanol and butanol; ether alcohol solvents such as 2-methoxyethanol and 2-butoxyethanol; N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and the like An amide-based solvent or the like can be used in combination as desired.
- the amount of the solvent in the varnish when preparing the prepreg is preferably in the range of 40 to 80% by mass with respect to the entire resin composition.
- the viscosity of the varnish is preferably in the range of 20 to 100 cP (20 to 100 mPa ⁇ s).
- the resin composition used as an insulating material may contain a flame retardant.
- the flame retardant is not particularly limited, and examples thereof include bromine compounds such as decabromodiphenyl ether, tetrabromobisphenol A, tetrabromophthalic anhydride, and tribromophenol, triphenyl phosphate, trixyl phosphate, and clay.
- Phosphorus compounds such as zirdiphenyl phosphate, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, red phosphorus and its modified products, antimony compounds such as antimony trioxide and antimony pentoxide, melamine, cyanuric acid, melamine cyanurate
- a known and customary flame retardant such as a triazine compound can be used.
- the above-mentioned curing agents, curing accelerators, and other various types such as thermoplastic particles, coloring agents, UV opaquers, antioxidants, reducing agents, etc., if necessary. Additives and fillers can be added.
- the prepreg includes, for example, a resin composition (including a varnish) such that the amount of the resin composition attached to the substrate is 20 to 90% by mass in terms of the resin content in the dried prepreg.
- a resin composition including a varnish
- After impregnating or coating the substrate it can be obtained by heating and drying at a temperature of 100 to 200 ° C. for 1 to 30 minutes to obtain a prepreg in a semi-cured state (B stage state).
- GHPL-830NS product name
- Mitsubishi Gas Chemical can be used as Mitsubishi Gas Chemical.
- 1 to 20 of this prepreg are stacked so as to have a desired thickness of the insulating resin layer, and on both surfaces, for example, a copper foil with a release layer, etc. It can heat-press with the structure arrange
- a normal copper-clad laminate technique can be applied. For example, using a multistage press, a multistage vacuum press, continuous forming, an autoclave forming machine, etc., the temperature is usually 100 to 250 ° C., and the pressure is 2 to 100 kg.
- the first insulating resin layer in addition to the above, a metal foil-clad laminate that is commercially available as a copper clad laminate (CCL) or the like, or a material obtained by removing the copper foil from the CCL is used. Can do.
- the thickness of the first insulating resin layer is not particularly limited because it is appropriately set as desired, but can be 0.02 mm to 2.0 mm, preferably 0.03 mm to 0.2 mm, and 0.04 mm. More preferably, it is 0.15 mm.
- the circuit-forming support substrate in the present embodiment includes a release layer containing at least a silicon compound and an ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m.
- the “peeling layer” includes at least a silicon compound, located between the first insulating resin layer and the ultrathin copper foil, and peel strength (x) between at least the first insulating resin layer and the peeling layer. Means a layer having a relationship of x ⁇ y with respect to the peel strength (y) between the ultrathin copper foil and the first wiring conductor.
- the release layer can contain a resin composition as required in addition to the silicon compound.
- a resin composition the above-mentioned thermosetting resin can be used, for example.
- the peel strength (z) between the release layer and the ultrathin copper foil has a relationship of x ⁇ z in relation to the peel strength (x). .
- the silicon compound is not particularly limited, for example, a silane compound represented by the following formula (1), a hydrolysis product thereof or a condensation product of the hydrolysis product (hereinafter collectively referred to as “ May be referred to as “silane compounds”).
- the release layer can be formed, for example, by applying a silicon compound composed of a single silane compound or a combination of a plurality of silane compounds on a copper foil or an ultrathin copper foil.
- the means for applying the silicon compound is not particularly limited, and for example, known means such as coating can be used.
- R 1 is an alkoxy group or a halogen atom
- R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group
- the hydrocarbon group is one or more hydrogen atoms May be substituted with a halogen atom
- R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group ( In the hydrocarbon group, one or more hydrogen atoms may be substituted with a halogen atom).
- the silane compound represented by the formula (1) preferably has at least one alkoxy group from the viewpoint of preventing the adhesion with the ultrathin copper foil from being excessively lowered. From the same viewpoint, the silane compound represented by the formula (1) preferably has at least one hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group.
- the silane compound represented by the formula (1) preferably has three alkoxy groups and one hydrocarbon group.
- the silane compound represented by the formula (1) it is preferable that both R 3 and R 4 are alkoxy groups.
- the alkoxy group is not particularly limited, but a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms) may be used. Can be mentioned.
- alkoxy groups include methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy, cyclohexiso Examples thereof include a xy group, an n-heptoxy group, and an n-octoxy group.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
- the alkyl group is not particularly limited.
- a linear or branched alkyl group having 1 to 20 carbon atoms preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms
- Examples of the alkyl group include a methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n-hexyl group, n- Examples include an octyl group and an n-decyl group.
- Examples of the cycloalkyl group include a cycloalkyl group having 3 to 10 carbon atoms (preferably a cycloalkyl group having 5 to 7 carbon atoms.
- Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclohexane group. Examples thereof include a butyl group and a cyclooctyl group.
- the aryl group is not particularly limited, and examples thereof include aryl groups having 6 to 20 carbon atoms (preferably 6 to 14).
- Examples of the aryl group include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like.
- one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
- a compound other than the silicone compound is preferable.
- a commercial product may be used in which such a silane compound is used as a silicon compound and the release layer is formed on a copper foil or an ultrathin copper foil.
- a release layer containing at least one selected from the group consisting of dimethyldimethoxysilane, n-propyltrimethoxysilane, phenyltrimethoxysilane, and hexyltrimethoxysilane as a silicon compound is formed on a copper foil. What was formed can be used, for example, "PCS" (brand name) by JX Nippon Mining & Metals Co., Ltd. is mentioned.
- the peel strength (x) between the release layer and the first insulating resin layer is not particularly limited, but in the manufacturing method of the present embodiment, the first step is performed in a step prior to the release step (e). From the viewpoint of physically peeling the first insulating resin layer in the peeling step (e) while preventing the insulating resin layer from peeling, 3 to 20 N ⁇ m is preferable, and 5 to 15 N ⁇ m is more preferable. 8 to 12 N ⁇ m is particularly preferable. For example, when the peel strength (x) is in the above range, the first insulating resin layer is physically peeled by a human hand or the like in the peeling step (e) while being peeled off during transport or processing. Can be easily peeled off.
- the peel strength (y) and the peel strength ( The difference (y ⁇ x) from x) is, for example, preferably 50 N ⁇ m or more, more preferably 100 N ⁇ m or more, and particularly preferably 200 N ⁇ m or more.
- peel strength (x) and / or peel strength (y) for example, for the peel strength (x), the type of the silicon compound in the release layer and the coating amount of the silicon compound are adjusted, or the peel strength (y). Can be adjusted to the above range by adjusting the press conditions, plating thickness, material, and conditions in the roughening treatment.
- the layer thickness of the release layer is not particularly limited, but is preferably 5 nm to 100 nm from the viewpoint of effectively preventing the penetration of the chemical by the anchor effect between the ultrathin copper foil and the first insulating resin layer. 10 nm to 80 nm is more preferable, and 20 nm to 60 nm is particularly preferable.
- the first insulating resin layer is arranged so that the surface of the first insulating resin layer and the surface of the release layer are in direct contact with each other. It is preferable to directly laminate the release layer thereon.
- the ultrathin copper foil has a thickness of 1 ⁇ m to 5 ⁇ m, preferably 2 ⁇ m to 4 ⁇ m, and more preferably 2.5 ⁇ m to 3.5 ⁇ m.
- the ultrathin copper foil has an average roughness (Rzjis) of 10 points shown in JISB0601: 2001 from the viewpoint of effectively preventing the penetration of the chemical solution by the anchor effect between the ultrathin copper foil and the first insulating resin layer. Both are preferably 0.3 ⁇ m to 3.0 ⁇ m, more preferably 0.5 ⁇ m to 2.0 ⁇ m, and particularly preferably 0.7 ⁇ m to 1.5 ⁇ m.
- a knurled electrodeposit layer (called “bake plating” in a bath) can be formed, or a roughening treatment such as oxidation treatment, reduction treatment or etching can be performed.
- the production conditions of the ultrathin copper foil are not particularly limited, but in the case of a copper sulfate bath, sulfuric acid 50-100 g / L, copper 30-100 g / L, liquid temperature 20-80 ° C., current density 0.5 conditions of ⁇ 100A / dm 2, when the copper pyrophosphate bath, potassium pyrophosphate 100 ⁇ 700 g / L, copper 10 ⁇ 50 g / L, liquid temperature 30 ⁇ 60 °C, pH8 ⁇ 12 , current density 0.5 ⁇ 10A /
- the condition of dm 2 is generally used, and various additives may be added in consideration of the physical properties and smoothness of copper.
- the ultra-thin copper foil can be formed using, for example, a peelable type copper foil or a copper foil having a certain thickness.
- the “peelable type” ultrathin copper foil is an ultrathin copper foil having a carrier, and the carrier is, for example, a peelable copper foil.
- the carrier is peeled off from the ultrathin copper foil in the substrate forming step (a).
- an ultrathin copper foil is formed using a copper foil having a constant thickness in the substrate forming step (a)
- a peeling layer is formed on the copper foil having a certain thickness to obtain a copper foil with a peeling layer.
- the means for forming the release layer on the copper foil is not particularly limited.
- the release layer can be formed by applying a silicon compound on the copper foil by a known method such as coating.
- a commercial item can also be used as said copper foil with a peeling layer, for example, using "PCS" (brand name) by the above-mentioned JX Nippon Mining & Metals Co., Ltd.
- the thickness of the fixed thickness copper foil (that is, the copper foil portion of the peelable layer-attached copper foil) is not particularly limited, but if desired, a desired thickness (1 ⁇ m to From the viewpoint of removing unnecessary portions up to 5 ⁇ m, it is preferably 1 ⁇ m or more, more preferably 1 ⁇ m to 20 ⁇ m. However, when the thickness of the copper foil having a certain thickness is 1 ⁇ m to 5 ⁇ m, the processing by the thickness reducing means may be unnecessary.
- the thickness reducing means a known method can be appropriately applied, and examples thereof include an etching process. The etching treatment can be performed, for example, by etching using a perhydrosulfuric acid based soft etching solution.
- a copper foil with a release layer in which the release layer is formed on a copper foil having a thickness of 1 ⁇ m to 20 ⁇ m can be used.
- a release layer-attached copper foil in which the release layer is formed on a copper foil having a thickness of 1 ⁇ m to 20 ⁇ m is used as the release layer and the first insulating resin.
- ultra-thin copper foil can be formed from copper foil of fixed thickness in a substrate formation process (a).
- the manufacturing method of this embodiment is not limited to this aspect, for example, when a 12 ⁇ m copper foil is used, a release layer is formed by coating or the like, and then laminated and pressed with the first insulating resin layer
- a circuit-forming support substrate By performing soft etching of the copper foil and adjusting the thickness of the copper foil to, for example, 3 ⁇ m to obtain an ultrathin copper foil, a circuit-forming support substrate can be produced.
- the said etching process is not specifically limited, It can carry out, after heating and pressurizing the copper foil with a peeling layer to the 1st insulating resin layer.
- an antirust process can be given to the adhesion surface with the peeling layer of ultra-thin copper foil (form an antirust process layer).
- the rust prevention treatment can be performed using any of nickel, tin, zinc, chromium, molybdenum, cobalt, or an alloy thereof.
- a thin film is formed on a copper foil by sputtering, electroplating or electroless plating, but electroplating is preferable from the viewpoint of cost.
- plating is performed using a plating layer containing one or more metal salts selected from the group consisting of nickel, tin, zinc, chromium, morbden and cobalt as the plating layer.
- a complexing agent such as citrate, tartrate or sulfamic acid may be added in a necessary amount.
- the plating solution is usually used in an acidic region and is plated at a temperature of room temperature to 80 ° C.
- the plating is appropriately selected from the range of normal current density of 0.1 to 10 A / dm 2 , normal time of 1 to 60 seconds, preferably 1 to 30 seconds.
- the amount of the rust-proofing metal varies depending on the type of metal, but is preferably 10 to 2000 ⁇ g / dm 2 in total. If the thickness of the rust-proofing layer is too thick, it may cause etching inhibition and a decrease in electrical characteristics, and if it is too thin, it may cause a decrease in peel strength with the resin.
- a chromate treatment layer is formed on the rust prevention treatment layer, it is useful because it can suppress a decrease in adhesive strength with the release layer. Specifically, it is performed using an aqueous solution containing hexagonal chromium ions.
- the chromate treatment can be performed by a simple immersion treatment, it is preferably carried out by a cathode treatment.
- Sodium dichromate is preferably used under the conditions of 0.1 to 50 g / L, pH 1 to 13, bath temperature 0 to 60 ° C., current density 0.1 to 5 A / dm 2 , and current time 0.1 to 100 seconds. It can also carry out using chromic acid or potassium dichromate instead of sodium dichromate.
- a coupling agent is further adsorbed on the antirust treatment layer.
- the silane coupling agent is not particularly limited, and examples thereof include epoxy-functional silanes such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-aminopropyltrimethoxysilane.
- Amine functional silane such as methoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-network propylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyltri Olefin-functional silanes such as methoxysilane and vinyltris (2-methoxyethoxy) silane, acrylic-functional silanes such as 3-allytoxypropyltrimethoxysilane, methacryl-functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3- Metacaptopropyl And mercapto-functional silanes such as trimethoxysilane is used, these may be used alone or may be used by mixing plural.
- These coupling agents are dissolved at a concentration of 0.1 to 15 G / L of a solvent such as water and applied to a metal foil at a temperature of room temperature to 50 ° C. or electrodeposited to be adsorbed.
- These silane coupling agents form a film by condensation bonding with a hydroxyl group of a rust preventive metal on the surface of the copper foil.
- a stable bond is formed by heating, ultraviolet irradiation or the like. If heating, dry at a temperature of 80 to 200 ° C. for 2 to 60 seconds. In the case of ultraviolet irradiation, it is performed in the range of 200 to 400 nm and 200 to 2500 mJ / dm 2 .
- a 1st wiring conductor formation process (b) is a process of forming a 1st wiring conductor by pattern electrolytic copper plating on the ultra-thin copper foil of the support substrate for circuit formation mentioned above.
- the first wiring conductor 6 is formed on the ultrathin copper foil 4 of the circuit forming support substrate 1 as shown in FIG. 1C.
- the means for forming the first wiring conductor is not particularly limited.
- the first wiring conductor can be formed by the following steps.
- a plating resist is laminated on the ultrathin copper foil (step (b-1)), and a wiring circuit pattern is formed on the plating resist by photolithography.
- Step (b-2) forming a first wiring conductor on the ultrathin copper foil having the wiring circuit pattern formed on the plating resist by pattern electrolytic copper plating (Step (b-3))
- the plating resist laminated on the ultrathin copper foil can be exposed and developed by photolithography to form a wiring circuit pattern on the plating resist.
- the first wiring conductor can be formed of plated copper by performing pattern electrolytic copper plating on the ultrathin copper foil having the wiring circuit pattern formed on the plating resist. . After forming the first wiring conductor, the plating resist is removed in step (b-4).
- the above-mentioned resist for plating is not particularly limited, and for example, a known one such as a commercially available dry film resist can be appropriately selected and used.
- photolithography including exposure, development, and removal of the resist
- a well-known method can be used suitably.
- the pattern width of the first wiring conductor is not particularly limited, and the width can be appropriately selected according to the application.
- the width can be 5 to 100 ⁇ m, and preferably 10 to 30 ⁇ m. it can.
- the laminating step (c) is a step of disposing a second insulating resin layer so as to be in contact with the first wiring conductor, and laminating the second insulating resin layer by heating and pressing.
- the laminating step (c) may be a step of further arranging a metal layer on the second insulating resin layer, heating and pressurizing, and laminating the second insulating resin layer and the metal layer.
- the second insulating resin layer 7 and the metal layer 8 can be laminated so as to be in contact with the first wiring conductor 6 as shown in FIG. 1D.
- FIG. 1D although it has the aspect which provided the metal layer, this embodiment is not limited to the said aspect.
- the same material for example, prepreg
- the thickness of the second insulating resin layer is not particularly limited because it is appropriately set as desired.
- the thickness can be 0.02 mm to 2.0 mm, and 0.03 mm to 0.2 mm. Is preferable, and 0.04 mm to 0.15 mm is more preferable.
- the metal layer for example, the same layer as the above-mentioned ultrathin copper foil can be used.
- an ultrathin copper foil with a carrier can be used as the ultrathin copper foil.
- the carrier is peeled after the ultrathin copper foil is disposed so as to be in contact with the second insulating resin layer, laminated by heating and pressing.
- the heating and pressing conditions for the second insulating layer and the metal layer are not particularly limited.
- vacuum pressing is performed under the conditions of a temperature of 220 ⁇ 2 ° C., a pressure of 25 ⁇ 0.2 MPa, and a holding time of 60 minutes.
- the second insulating layer and the metal layer can be stacked.
- the lamination step (c) is not particularly limited.
- the second insulating resin layer and the metal layer can be laminated by the following steps.
- a roughening treatment is performed on the surface of the first wiring conductor in order to obtain an adhesive force with the second insulating resin layer (step (c-1))
- An insulating resin layer is disposed so as to be in contact with the first wiring conductor subjected to the roughening treatment
- a metal layer is further disposed on the second insulating resin layer, heated and pressed, and the second An insulating resin layer and the metal layer can be laminated (step (c-2)).
- the said roughening process is not specifically limited, A well-known means can be used suitably, For example, the means using a copper surface roughening liquid is mentioned.
- the second wiring conductor forming step (d) a non-through hole reaching the first wiring conductor is formed in the second insulating resin layer, and the inner wall of the non-through hole is subjected to electrolytic copper plating and / or non-through.
- the second wiring conductor is formed by connection by electrolytic copper plating.
- the first wiring conductor 6 and the metal layer 8 are They are electrically connected through plated copper 9 formed on the inner wall of the non-through hole.
- the second wiring conductor 10 can be formed on the second insulating resin layer 7 by patterning the metal layer 8.
- the means for forming the non-through hole is not particularly limited, and for example, a known means such as a laser such as a carbon dioxide laser or a drill can be used.
- the non-through hole is formed in the second insulating resin layer via the metal layer, and is provided to electrically connect the second wiring conductor and the first wiring conductor formed in this step.
- the number and size of the non-through holes can be appropriately selected as desired.
- a desmear process can be performed using sodium permanganate aqueous solution.
- the second wiring conductor forming step (d) after forming the non-through hole, electrolytic copper plating and / or electroless copper plating is performed to form a copper plating film on the inner wall of the non-through hole, The wiring conductor and the second wiring conductor are electrically connected.
- the method for performing electrolytic copper plating and / or electroless plating is not particularly limited, and a known method can be employed.
- the copper plating may be either electrolytic copper plating or electroless plating, but it is preferable to perform both electrolytic copper plating and electroless plating.
- the second wiring conductor forming step (d) after the electrolytic / electroless copper plating process, the second wiring conductor is formed.
- the method for forming the second wiring conductor is not particularly limited, and for example, known means such as a subtractive method or a semi-additive method can be appropriately employed.
- the second wiring conductor forming step (d) is not particularly limited.
- a non-through hole reaching the first wiring conductor is formed in the second insulating resin layer (step (d) -1)), the inner wall of the non-through hole is connected by electrolytic copper plating and / or electroless copper plating (step (d-2)), and the second wiring conductor is formed by the subtractive method or the semi-additive method (Step (d-3)).
- the step (d-3) although not particularly limited, for example, the surface of the metal layer is adjusted, a dry film resist or the like is laminated, and a negative mask is attached to the exposure machine. Then, the circuit pattern is baked, and the dry film resist is developed with a developer to form an etching resist. Thereafter, an etching process is performed to remove a portion of copper having no etching resist with an aqueous ferric chloride solution, and then the resist is removed to form a second wiring conductor.
- an interlayer connection method applicable in the present embodiment, a method of applying chemical copper plating to a known laser-formed blind via portion (forming a wiring circuit by laser processing and then patterning by chemical copper plating) , A method for performing interlayer connection), a method for performing interlayer connection by piercing the entire insulating layer with a metal bump (preferably a copper bump) formed by plating or etching a metal foil in a portion to be a connection portion in advance, After a bump paste is printed on a predetermined location by screen printing etc. with a metal paste containing a metal filler such as solder, silver and copper in the insulating resin, the paste is cured by drying and electrical conduction between the inner and outer layers is ensured by heating and pressing. Things can be applied.
- a metal bump preferably a copper bump
- the peeling step (e) is a step of peeling off the first insulating resin layer from the circuit forming support substrate on which the first wiring conductor and the second wiring conductor are formed. After the peeling step (e), as shown in FIG. 1G, the first insulating resin layer is peeled off at the interface with the release layer 3, and the first insulating resin layer is formed on the release layer 3 and the ultrathin copper foil 4. A laminated body A in which the wiring conductor 6, the second insulating resin layer 7, and the second wiring conductor 10 are stacked is formed.
- the first insulating resin layer is peeled off at the interface between the first insulating resin layer and the peeling layer.
- a part of the peeling layer is the first insulating layer. It may be peeled off together with the resin layer.
- the aspect in which the first insulating resin layer is peeled off together with the peeling layer at the interface between the peeling layer and the ultrathin copper foil is also included.
- a means for peeling off the first insulating resin layer either physical means or chemical means can be adopted.
- the first insulating resin layer is physically applied by applying physical force to the peeling layer. Is preferably peeled off.
- a removal process (f) is a process of removing the said peeling layer and / or the said ultra-thin copper foil. After the removal step (f), as shown in FIG. 1H, the first wiring conductor 6 (inner layer) is embedded in the second insulating resin layer 7, and the first wiring conductor (inner layer) and the first wiring conductor 6 The semiconductor element mounting package substrate 20 in which the two wiring conductors 10 (outer layers) are electrically joined can be formed.
- the removal of the peeling layer and / or the ultrathin copper foil can be removed using a sulfuric acid-based or hydrogen peroxide-based etching solution.
- the peeling step (e) when the first insulating resin layer is peeled off at the interface with the peeling layer, and when the peeling layer is broken, a part thereof is peeled off together with the first insulating resin layer. In this case, the whole or a part of the peeling layer and the ultrathin copper foil are removed in the removing step (f).
- the first insulating resin layer is peeled off at the interface between the release layer and the ultrathin copper foil together with the release layer in the release step (e)
- only the ultrathin copper foil is removed in the removal step (f).
- the sulfuric acid-based or hydrogen peroxide-based etching solution is not particularly limited, and those used in the industry can be used.
- the semiconductor element mounting package substrate 20 is a two-layered semiconductor element mounting package substrate as in FIG. 2A, but the present invention is limited to this.
- An n-layer structure is formed. it can.
- the stacking step (c) and the circuit forming support substrate on which the first wiring conductor and the second wiring conductor are further formed By repeatedly performing the second wiring conductor forming step (d), peeling the first insulating resin layer, removing the release layer and the ultrathin copper foil, and cutting the package size It is possible to form a semiconductor device mounting package substrate having a build-up structure.
- the method for manufacturing a semiconductor element mounting substrate in the present embodiment includes a first insulating resin layer, a release layer containing at least a silicon compound, and an ultrathin copper foil having a thickness of 1 ⁇ m to 5 ⁇ m in this order.
- a substrate forming step (a) for forming a circuit forming support substrate, and a first wiring conductor formation for forming a first wiring conductor on the ultrathin copper foil of the circuit forming support substrate by pattern electrolytic copper plating A step (b), a laminating step (c) in which a second insulating resin layer is disposed so as to be in contact with the first wiring conductor, and the second insulating resin layer is laminated by heating and pressing; and the second step A non-through hole reaching the first wiring conductor is formed in the insulating resin layer, and an inner wall of the non-through hole is connected by electrolytic copper plating and / or electroless copper plating to form a second wiring conductor.
- a semiconductor device such as a bare chip is mounted as desired.
- the package substrate for mounting a semiconductor element may have a relatively thin structure as desired. For this reason, from the viewpoint of improving the handleability, a semiconductor element mounting substrate can be manufactured by mounting a semiconductor element such as a bare chip in the manufacturing process of the semiconductor element mounting package substrate as described below.
- the method for manufacturing a semiconductor element mounting substrate of the present embodiment uses a release layer containing a silicon compound, so that even when heat is applied to the substrate during reflow for a bonding material such as solder, the copper foil and It is possible to prevent the occurrence of blistering that occurs between the ultrathin copper foil.
- the silicon compound is preferably a compound other than the silicone compound.
- the semiconductor element mounting step (g) is a step of mounting the semiconductor element on the second wiring conductor.
- the steps from the substrate forming step (a) to the second wiring conductor forming step (d) in the method for manufacturing a semiconductor device mounting package substrate described above are sequentially performed.
- a semiconductor element is mounted on a circuit-forming support substrate on which the first wiring conductor and the second wiring conductor are formed.
- the circuit forming support substrate a substrate provided with a release layer, an ultrathin copper foil, a first wiring conductor, and a second wiring conductor only on one side of the first insulating resin layer is used.
- the surface of the first insulating resin layer on which the semiconductor element is not mounted is not particularly limited, but a metal such as copper foil may be laminated, or the surface of the first insulating resin layer is exposed. It may be.
- the semiconductor element is not particularly limited, and a desired element can be appropriately used.
- a bare chip in which gold bumps are formed on the aluminum electrode portion by a gold wire ball bonding method can be used.
- the semiconductor element can be mounted on the second wiring conductor via a bonding material.
- the bonding material is not particularly limited as long as it has a conductive means.
- solder or the like for example, solder balls, solder paste, or the like
- the semiconductor element can be mounted via a bonding material.
- the said surface treatment is not specifically limited, For example, formation of a nickel layer or a gold plating layer is mentioned.
- solder is used as the bonding material, a process such as reflow can be performed after the semiconductor element is mounted on the second wiring conductor. At this time, the reflow temperature is appropriately selected depending on the melting point of the bonding material, and can be set to 260 ° C. or more, for example.
- a method for manufacturing a semiconductor element mounting substrate in the present embodiment will be described with reference to FIGS.
- a substrate forming step (a) to a second wiring conductor forming step (d) are sequentially performed, A circuit-forming support substrate in which the release layer 3, the ultrathin copper foil 4, the first wiring conductor 6, and the second wiring conductor 10 are provided only on one side of the insulating resin layer is produced.
- a solder resist layer 13 having an opening A is formed on the second wiring conductor 10 (see FIG. 6A).
- the nickel layer 14 and the gold plating layer 15 are laminated and formed in the opening A (see FIG. 6B). Further, a solder ball is mounted on the gold plating layer 15 and reflowed at about 260 ° C. to produce a multilayer printed wiring board on which the solder ball 16 is formed (see FIG. 6C).
- the bare chip 17 on which the gold bumps are formed by the gold wire ball bonding method is aligned with the obtained multilayer printed wiring board and the aluminum electrode portion, and the bare chip 17 is mounted on the multilayer printed wiring board. Reflow the multi-layer printed wiring board mounted with solder and connect with solder. Next, it can be cleaned as desired and sealed with a mold resin 18 (see FIG. 6D). As the mold resin 18, a known resin used for sealing material can be appropriately selected and used. Thereafter, the first insulating resin layer 2 (prepreg layer) is peeled off by physical force in the same step as the above-described peeling step (e) (see FIG. 6E).
- the semiconductor element mounting substrate 30 is obtained by removing the ultrathin copper foil 4 and the release layer 3 using a perhydrosulfuric acid based soft etching solution or the like in the same manner as the above-described removal step (f). (See FIG. 6F).
- the release layer since the release layer is used, the occurrence of blistering due to the occurrence of peeling between the copper foil and the ultrathin copper foil during reflow is generated. It can be suppressed, and the alignment of the bare chip 17 and the like can be performed well, and the productivity is excellent.
- Example 1 ⁇ Substrate formation step (a)> Prepreg (first insulating resin layer 2 in FIG. 1A; thickness 0.100 mm: GHPL-830NS ST56 manufactured by Mitsubishi Gas Chemical Co., Ltd.) impregnated with bismaleimide triazine resin (BT resin) into glass cloth (glass fiber) ) Copper foil with a release layer (JX Nippon Mining Co., Ltd.) formed by coating a release layer composed of a silane compound on a 12 ⁇ m thick copper foil (release layer 3 in FIG.
- the dry film resist was developed using a 1% aqueous sodium carbonate solution to form a resist pattern for plating.
- pattern electrolytic copper plating electrolytic copper plating
- a copper sulfate plating line having a copper sulfate concentration of 60 to 80 g / L and a sulfuric acid concentration of 150 to 200 g / L, and the first wiring conductor (FIG. 1C).
- a first wiring conductor 6) was formed.
- the dry film resist was peeled and removed using an amine resist stripping solution.
- ⁇ Lamination process (c)> In order to obtain adhesion with the insulating resin, the surface of the first wiring conductor (copper pattern) was subjected to a roughening treatment using a copper surface roughening solution CZ-8100 (product name, manufactured by MEC Co., Ltd.). Next, a prepreg (second in FIG. 1D) is formed by impregnating glass cloth (glass fiber) with bismaleimide triazine resin (BT resin) on both sides of the circuit-forming support substrate on which the first wiring conductor is formed. Insulating resin layer 7; thickness 0.100 mm: product name “GHPL-830NS ST56”, manufactured by Mitsubishi Gas Chemical Co., Ltd.).
- an ultra-thin copper foil with a carrier copper foil of 18 ⁇ m thickness (ultra-thin copper foil (metal layer); thickness 2 ⁇ m: product name “MTEx”, manufactured by Mitsui Mining & Smelting Co., Ltd.) on the second insulating resin layer
- the carrier copper foil was placed in contact with the second insulating resin layer and vacuum pressed under conditions of a pressure of 2.5 ⁇ 0.2 MPa, a temperature of 220 ⁇ 2 ° C., and a holding time of 60 minutes. Thereafter, the carrier copper foil having a thickness of 18 ⁇ m is peeled off, and the second insulating resin layer and the ultrathin copper foil having a thickness of 2 ⁇ m (the metal layer 8 in FIG. 1D) are laminated on the first wiring conductor. A support substrate for formation was obtained.
- a desmear treatment is performed on the support substrate for circuit formation in which non-through holes are formed using a sodium permanganate aqueous solution at a temperature of 80 ⁇ 5 ° C. and a concentration of 55 ⁇ 10 g / L, and further by electroless copper plating.
- plating with a thickness of 0.4 to 0.8 ⁇ m plating with a thickness of 15 to 20 ⁇ m was performed by electrolytic copper plating.
- the inner wall of the non-through hole is connected by plating, and the first wiring conductor (inner layer) and the metal layer (outer layer) are electrically connected by plating of the inner wall of the non-through hole (plated copper 9 in FIG. 1E). It will be done.
- a dry film resist NIT225 (trade name, manufactured by Nichigo Morton Co., Ltd.) is laminated under the conditions of a temperature of 110 ⁇ 10 ° C. and a pressure of 0.50 ⁇ 0.02 MPa. did. Then, after pasting a negative mask, a circuit pattern was baked using a parallel exposure machine, and then a dry film resist was developed using a 1% sodium carbonate aqueous solution to form an etching resist. Next, after removing copper with no ferric chloride solution with an aqueous ferric chloride solution, the dry film resist is removed with an aqueous sodium hydroxide solution, and the second wiring conductor (second wiring conductor 10 in FIG. 1F) is removed. Formed.
- ⁇ Peeling step (e)> After forming the second wiring conductor, a physical force is applied to the boundary between the peel-off layer-attached copper foil and the first insulating resin layer (prepreg layer), so that the first wiring conductor and the second wiring are formed.
- the first insulating resin layer (prepreg layer) was peeled from the circuit-forming support substrate on which the conductor was formed to form a set of laminates (laminate A in FIG. 1G).
- the peeling step (e) after peeling off the first insulating resin layer (prepreg layer), the ultrathin copper foil and the release layer were removed using a perhydrosulfuric acid-based soft etching solution. Thereafter, a solder resist was formed, gold plating was finished, and the package size was cut to obtain a package substrate for mounting a semiconductor element (package substrate 20 for mounting a semiconductor element in FIG. 1H).
- Example 1 (Confirmation of chemical penetration)
- the laminate (laminate A in FIG. 1G) from which the first insulating resin layer was peeled in the peeling step (e) was observed from the release layer 3 side.
- FIG. 3 is a photograph of the laminate A in Example 1 observed from the release layer side. As shown in FIG. 3, in Example 1, the penetration of the chemical solution could not be confirmed on the surface of the release layer.
- Comparative Example 1 In the substrate forming step (a) of Example 1, a copper foil having no release layer instead of the release layer copper foil (PCS) (thickness: 12 ⁇ m, manufactured by JX Nippon Mining & Metals, trade name: Each step was carried out in the same manner as in Example 1 except that JDLC) was used. However, in Comparative Example 1, when the first insulating resin layer was peeled off in the peeling step (e), the copper foil was also peeled off, and a missing portion was formed at the bottom of the obtained semiconductor element mounting package substrate. .
- PCS release layer copper foil
- Comparative Example 2 A semiconductor element mounting package substrate of Comparative Example 2 was produced in the same manner as in Example 1 except that the circuit formation support substrate 12 shown in FIG. 4A was used in the substrate formation step (a) of Example 1. As shown in FIG. 4A, the circuit-forming support substrate 12 is not provided with a peeling layer on an ultrathin copper foil with carrier copper (thickness 3 ⁇ m: product name “MTEx”, manufactured by Mitsui Mining & Smelting Co., Ltd.) In this configuration, the carrier copper 11 is disposed so as to be in contact with the first insulating resin layer 2 without peeling off the carrier copper 11.
- the carrier copper 11 and the ultrathin copper foil 4 are laminated from the first insulating resin layer 2 side.
- the carrier copper 11 and the first insulating resin layer 2 (prepreg layer) at the interface between the carrier copper 11 and the ultrathin copper foil 4 as shown in FIG. 4B in the peeling step (e). was peeled off.
- FIG. 5 is a photograph of the laminate in Comparative Example 2 observed from the ultrathin copper foil side. As shown in FIG. 5, in the comparative example 2, it was confirmed that the chemical
- the circuit-forming support substrate used in the production method of the present invention is a substrate excellent in chemical resistance, and the production method of the present invention can be expected to improve the yield and is excellent in production efficiency.
- the manufacturing method of the present invention it is not necessary to cover the side surface of the detached core with the second insulating resin layer in order to prevent the penetration of the chemical solution, so that a relatively large detached core can be used. For this reason, the manufacturing method of this invention can raise the freedom degree of design of the package substrate for semiconductor element mounting.
- Example 2 (Preparation of semiconductor device mounting substrate)
- the substrate forming step (a) to the second wiring conductor forming step (d) in Example 1 are sequentially performed, and the release layer, the ultrathin copper foil, and the first wiring are formed only on one side of the first insulating resin layer.
- a circuit-forming support substrate provided with a conductor and a second wiring conductor was produced, and a solder resist layer 13 having an opening A was formed on the second wiring conductor (second wiring conductor 10 in FIG. 1F). (See FIG. 6A).
- a nickel layer 14 and a gold plating layer 15 were laminated in the opening A (see FIG. 6B).
- a solder ball was mounted on the gold plating layer 15 and reflowed at about 260 ° C. to produce a multilayer printed wiring board on which the solder ball 16 was formed (see FIG. 6C).
- the obtained multilayer printed wiring board was aligned with the bare chip 17 in which gold bumps were formed on the aluminum electrode portion by a ball bonding method of gold wires, and the bare chip 17 was mounted on the multilayer printed wiring board.
- the multilayer printed wiring board on which the bare chip 17 was mounted was reflowed at about 260 ° C. to perform solder connection, then washed and sealed with a mold resin 18 (see FIG. 6D).
- the first insulating resin layer 2 prepreg layer
- the ultrathin copper foil 4 and the release layer 3 were removed using a perhydrosulfuric acid-based soft etching solution to obtain a semiconductor element mounting substrate 30 (FIG. 6F).
- a perhydrosulfuric acid-based soft etching solution obtained in the same manner as in the removal step (f) of Example 1, the ultrathin copper foil 4 and the release layer 3 were removed using a perhydrosulfuric acid-based soft etching solution to obtain a semiconductor element mounting substrate 30 (FIG. 6F).
- abnormal portions such as swelling were not recognized at the time of reflow, and the alignment of the bare chip 17 could be performed well.
- Comparative Example 3 In the substrate formation step (a) of Example 2, a semiconductor element mounting substrate of Comparative Example 3 was produced in the same manner as Example 2 except that the circuit formation support substrate 12 (see FIG. 4A) in Comparative Example 2 was used. did. In Comparative Example 3 using the circuit-forming support substrate 12 having no release layer, peeling occurs between the copper foil and the ultrathin copper foil during reflow, and a 15 mm copper foil is formed on the substrate (70 mm ⁇ 240 mm size). Two blisters occurred. For this reason, when the bare chip 17 is aligned, a displacement occurs, resulting in a product defect.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
また、取扱い性等の観点から半導体素子搭載用パッケージ基板の製造方法の工程内において半導体素子を基板に搭載することが望まれる場合も想定される。しかし、従来方法の工程内で半導体素子を基板に搭載しようとすると、ハンダ等のリフロー時に金属層と極薄銅箔との間等に所謂膨れが生じる場合が多く、半導体素子搭載用パッケージ基板の製造方法の工程内においても半導体素子を基板に搭載できる手段の開発が求められていた。
<2> 前記第1の配線導体形成工程(b)は、前記極薄銅箔上にめっき用レジストをラミネートする工程(b-1)と、フォトリソグラフィーによって前記めっき用レジストに配線回路パターンを形成する工程(b-2)と、前記配線回路パターンが形成された前記極薄銅箔上に、パターン電解銅めっきにより第1の配線導体を形成する工程(b-3)と、前記めっき用レジストを除去する工程(b-4)と、を含む前記<1>に記載の半導体素子搭載用パッケージ基板の製造方法。
<3> 前記積層工程(c)は、前記第1の配線導体表面に粗化処理を施す工程(c-1)と、前記第2の絶縁樹脂層を、前記粗化処理を施した前記第1の配線導体と接するように配置し、前記第2の絶縁樹脂層上に金属層をさらに配置し、加熱加圧して、前記第2の絶縁樹脂層と前記金属層とを積層する工程(c-2)と、を含む前記<1>又は<2>に記載の半導体素子搭載用パッケージ基板の製造方法。
<4> 前記第2の配線導体形成工程(d)は、前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成する工程(d-1)と、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきにより接続させる工程(d-2)と、前記第2の配線導体をサブトラクティブ工法又はセミアディティブ工法にて形成する工程(d-3)と、を含む前記<1>~<3>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<5> 前記第2の配線導体形成工程(d)において、前記第1の配線導体及び前記第2の配線導体が形成された回路形成用支持基板に対し、更に、前記積層工程(c)及び前記第2の配線導体形成工程(d)を繰り返し行い、ビルドアップ構造を有する半導体素子搭載用パッケージ基板を製造する前記<1>~<4>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<6> 前記第1の絶縁樹脂層の厚さが、0.02mm~2.0mmである前記<1>~<5>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<7> 前記第2の配線導体形成工程(d)において、前記非貫通孔をレーザーによって形成する前記<1>~<6>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<8> 前記剥離工程(e)において、前記第1の絶縁樹脂層を物理的に剥離する前記<1>~<7>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<9> 前記除去工程(f)において、前記剥型層及び/又は前記極薄銅箔を硫酸系又は過酸化水素系エッチング液を用いて除去する前記<1>~<8>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<10> 前記基板形成工程(a)において、厚さが1μm~20μmの銅箔上に前記剥型層が形成された剥型層付銅箔を、前記剥型層と前記第1の絶縁樹脂層とが接するように前記第1の絶縁樹脂層上に配置し、その後前記剥型層付銅箔の前記銅箔部分にエッチング処理を施して前記極薄銅箔とする工程(a-1)を含む前記<1>~<9>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<11> 前記剥型層が、シリコーン化合物以外の前記ケイ素化合物を含む前記<1>~<10>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<12> 前記第1の絶縁樹脂層上に前記剥型層が直接積層された前記<1>~<11>のいずれか一つに記載の半導体素子搭載用パッケージ基板の製造方法。
<13> 第1の絶縁樹脂層と、ケイ素化合物を少なくとも含む剥型層と、厚さが1μm~5μmである極薄銅箔と、をこの順で含む回路形成用支持基板を形成する基板形成工程(a)と、前記回路形成用支持基板の前記極薄銅箔上に、パターン電解銅めっきによって第1の配線導体を形成する第1の配線導体形成工程(b)と、前記第1の配線導体と接するように第2の絶縁樹脂層を配置し、前記第2の絶縁樹脂層を加熱加圧して積層する積層工程(c)と、前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきによって接続させて第2の配線導体を形成する第2の配線導体形成工程(d)と、前記第2の配線導体上に半導体素子を搭載する半導体素子搭載工程(g)と、前記第2の配線導体上に前記半導体素子が搭載された回路形成用支持基板から、前記第1の絶縁樹脂層を剥離する剥離工程(e)と、前記剥型層及び/又は前記極薄銅箔を除去する除去工程(f)と、を含む半導体素子実装基板の製造方法。
<14> 前記半導体素子搭載工程(g)において、接合材を介して前記第2の配線導体上に前記半導体素子を搭載する前記<13>に記載の半導体素子実装基板の製造方法。
<15> 前記第1の絶縁樹脂層上に前記剥型層が直接積層された前記<13>又は<14>に記載の半導体素子実装基板の製造方法。
本実施形態の半導体素子搭載用パッケージ基板の製造方法(以下、単に『本実施形態の製造方法』と称することがある。)は、
第1の絶縁樹脂層と、ケイ素化合物を少なくとも含む剥型層と、厚さが1μm~5μmである極薄銅箔と、をこの順で含む回路形成用支持基板を形成する基板形成工程(a)と、
前記回路形成用支持基板の前記極薄銅箔上に、パターン電解銅めっきによって第1の配線導体を形成する第1の配線導体形成工程(b)と、
前記第1の配線導体と接するように第2の絶縁樹脂層を配置し、前記第2の絶縁樹脂層を加熱加圧して積層する積層工程(c)と、
前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきによって接続させて第2の配線導体を形成する第2の配線導体形成工程(d)と、
前記第1の配線導体及び前記第2の配線導体が形成された回路形成用支持基板から、前記第1の絶縁樹脂層を剥離する剥離工程(e)と、
前記剥型層及び/又は前記極薄銅箔を除去する除去工程(f)と、
を含む。
以下、本実施形態の製造方法について詳細に記載する。
基板形成工程(a)は、第1の絶縁樹脂層と、ケイ素化合物を少なくとも含む剥型層と、厚さが1μm~5μmである極薄銅箔とを、この順で含む回路形成用支持基板を形成する工程である。第1の絶縁樹脂層には、片面のみに剥型層と極薄銅箔が配置されていてもよいが、これらの層が第1の絶縁樹脂層の両面に配置されていることが好ましい。すなわち、本実施形態における回路形成用支持基板は、剥型層付き2層コア基板が好ましい。図1を用いて回路形成用支持基板(剥型層付き2層コア基板)1の構成について説明する。図1は、本発明の半導体素子搭載用パッケージ基板の製造方法の一実施形態を説明するための概略図である。図1A及び図1Bに示すように、回路形成用支持基板1は、第1の絶縁樹脂層(例えば、プリプレグ)2の両面に、剥型層3と極薄銅箔4とが、第1の絶縁樹脂層2の表面側から順に設けられている。
積層の方法や条件は、特に限定されるものではないが、例えば、温度220±2℃、圧力5±0.2MPa、保持時間60分間の条件にて真空プレスを実施することで、回路形成用支持基板を形成することができる。
基板形成工程(a)における第1の絶縁樹脂層としては、特に限定されるものではないが、例えば、ガラスクロス等の基材に熱硬化性樹脂等の絶縁性の樹脂材料(絶縁材料)を含浸させたプリプレグや、絶縁性のフィルム材等を用いることができる。
また、硬化促進剤としてはフェノール類を使用することが好ましく、ノニルフェノール、パラクミルフェノールなどの単官能フェノールや、ビスフェノールA、ビスフェノールF、ビスフェノールSなどの二官能フェノール、又は、フェノールノボラック、クレゾールノボラックなどの多官能フェノールなどを用いることができる。硬化促進剤は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。
第1の絶縁樹脂層の厚さは、所望に応じて適宜設定するので特に限定されないが、0.02mm~2.0mmとすることができ、0.03mm~0.2mmが好ましく、0.04mm~0.15mmが更に好ましい。
本実施形態における回路形成用支持基板は、ケイ素化合物を少なくとも含む剥型層及び厚さが1μm~5μmである極薄銅箔を備える。
式(1)
(式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基からなる群より選択される炭化水素基(前記炭化水素基は、一つ以上の水素原子がハロゲン原子で置換されていてもよい)、R3及びR4はそれぞれ独立に、ハロゲン原子、アルコキシ基、又は、アルキル基、シクロアルキル基及びアリール基からなる群より選択される炭化水素基(前記炭化水素基は、一つ以上の水素原子がハロゲン原子で置換されていてもよい)である。)
このようなシラン化合物をケイ素化合物として用いて剥型層を銅箔又は極薄銅箔上に形成したものは、市販品を用いてもよい。市販品としては、例えば、ジメチルジメトキシシラン、n-プロピルトリメトキシシラン、フェニルトリメトキシシラン、ヘキシルトリメトキシシランからなる群より選択される少なくとも1種をケイ素化合物として含む剥型層を銅箔上に形成したもの用いることができ、例えば、JX日鉱日石金属株式会社製の「PCS」(商品名)が挙げられる。
また、特に限定されるものではないが、剥離工程(e)における第1の絶縁樹脂層の剥離時に、極薄銅箔まで剥離するのを防止する観点から、剥離強度(y)と剥離強度(x)との差(y-x)は、例えば、50N・m以上が好ましく、100N・m以上が更に好ましく、200N・m以上が特に好ましい。
極薄銅箔は、厚さが1μm~5μmであり、好ましくは2μm~4μmであり、更に好ましくは2.5μm~3.5μmである。極薄銅箔は、極薄銅箔と第1の絶縁樹脂層とのアンカー効果により効果的に薬液の染み込みを防止する観点から、JISB0601:2001に示す10点の平均粗さ(Rzjis)が両面とも0.3μm~3.0μmのものであることが好ましく、0.5μm~2.0μmが更に好ましく、0.7μm~1.5μmが特に好ましい。
第1の配線導体形成工程(b)は、上述した回路形成用支持基板の極薄銅箔上に、パターン電解銅めっきによって第1の配線導体を形成する工程である。第1の配線導体形成工程(b)を経ることで、図1Cに示すように、回路形成用支持基板1の極薄銅箔4上に第1の配線導体6が形成される。第1の配線導体の形成手段は、特に限定されるものではないが、例えば、以下の工程によって第1の配線導体を形成することができる。
積層工程(c)は、前記第1の配線導体と接するように第2の絶縁樹脂層を配置し、前記第2の絶縁樹脂層を加熱加圧して積層する工程である。積層工程(c)は、前記第2の絶縁樹脂層上に金属層をさらに配置し、加熱加圧して、前記第2の絶縁樹脂層と前記金属層とを積層する工程であってもよい。積層工程(c)を経ることで、図1Dに示すように、第1の配線導体6と接するように第2の絶縁樹脂層7と金属層8とを積層させることができる。なお、図1Dにおいては、金属層を設けた態様をしているが本実施形態は当該態様に限定されるものではない。
第2の配線導体形成工程(d)は、前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきによって接続させて、第2の配線導体を形成する工程である。第2の配線導体形成工程(d)においては、電解銅めっき及び/又は無電解銅めっきが施されることにより、図1Eに示すように、第1の配線導体6と金属層8とが、非貫通孔の内壁に形成されためっき銅9を通じて電気的に接続される。その後、図1Fに示すように、金属層8をパターニングすることにより、第2の絶縁樹脂層7上に第2の配線導体10を形成することができる。
剥離工程(e)は、前記第1の配線導体及び前記第2の配線導体が形成された回路形成用支持基板から、前記第1の絶縁樹脂層を剥離する工程である。剥離工程(e)を経ると、図1Gに示すように、剥型層3との界面において第1の絶縁樹脂層が剥離され、剥型層3と極薄銅箔4上に、第1の配線導体6、第2の絶縁樹脂層7及び第2の配線導体10が積層した積層体Aが形成される。
除去工程(f)は、前記剥型層及び/又は前記極薄銅箔を除去する工程である。除去工程(f)を経ると、図1Hに示すように、第1の配線導体6(内層)が第2の絶縁樹脂層7中に埋設されており、第1の配線導体(内層)と第2の配線導体10(外層)とが電気的に接合された半導体素子搭載用パッケージ基板20を形成することができる。除去工程(f)においては、例えば、前記剥型層及び/又は前記極薄銅箔の除去を硫酸系又は過酸化水素系エッチング液を用いて除去することができる。例えば、剥離工程(e)において、第1の絶縁樹脂層が剥型層との界面において剥離された場合、及び、剥型層が破壊されてその一部が第1の絶縁樹脂層と共に剥離された場合には、除去工程(f)において剥型層の全体またはその一部及び極薄銅箔が除去される。また、剥離工程(e)において第1の絶縁樹脂層が剥型層と共に剥型層と極薄銅箔との界面で剥離された場合、除去工程(f)においては極薄銅箔のみが除去されることとなる。硫酸系又は過酸化水素系エッチング液は、特に限定されるものではなく、当業界で使用されているものを使用することができる。
本実施形態における半導体素子実装基板の製造方法は、第1の絶縁樹脂層と、ケイ素化合物を少なくとも含む剥型層と、厚さが1μm~5μmである極薄銅箔と、をこの順で含む回路形成用支持基板を形成する基板形成工程(a)と、前記回路形成用支持基板の前記極薄銅箔上に、パターン電解銅めっきによって第1の配線導体を形成する第1の配線導体形成工程(b)と、前記第1の配線導体と接するように第2の絶縁樹脂層を配置し、前記第2の絶縁樹脂層を加熱加圧して積層する積層工程(c)と、前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきによって接続させて第2の配線導体を形成する第2の配線導体形成工程(d)と、前記第2の配線導体上に半導体素子を搭載する半導体素子搭載工程(g)と、前記第2の配線導体上に前記半導体素子が搭載された回路形成用支持基板から、前記第1の絶縁樹脂層を剥離する剥離工程(e)と、前記剥型層及び/又は前記極薄銅箔を除去する除去工程(f)と、を含む。
一方、上述のように本実施形態の半導体素子実装基板の製造方法ではケイ素化合物を含む剥型層を用いていることから、はんだ等の接合材に対するリフロー時に基板に熱を加えても銅箔と極薄銅箔との間で生じるような膨れの発生を防止することができる。かかる観点からも、ケイ素化合物は、シリコーン化合物以外の化合物であることが好ましい。
以下、本実施形態の半導体素子実装基板の製造方法について説明するが、上述の半導体素子搭載用パッケージ基板の製造方法と共通する工程及び部材、材料については同様の条件や部材を用いることができ、好ましい範囲も同様である。このため、以下の説明において、上述の半導体素子搭載用パッケージ基板の製造方法と共通する箇所については説明を省略する。
半導体素子搭載工程(g)は、前記第2の配線導体上に前記半導体素子を搭載する工程である。本実施形態における半導体素子実装基板の製造方法では、上述の半導体素子搭載用パッケージ基板の製造方法における基板形成工程(a)~第2の配線導体形成工程(d)までの工程を順次おこない、前記第1の配線導体及び前記第2の配線導体が形成された回路形成用支持基板上に半導体素子を搭載する。この際、回路形成用支持基板は、第1の絶縁樹脂層の片側のみに、剥型層、極薄銅箔、第1の配線導体及び第2の配線導体が設けられたものを用いることが好ましい。また、第1の絶縁樹脂層の半導体素子が搭載されない側の面は特に限定はないが、銅箔等の金属が積層されていてもよいし、第1の絶縁樹脂層の表面が露出した状態であってもよい。
本実施形態の半導体素子実装基板の製造方法によれば、剥型層を用いるため、リフロー時に銅箔と極薄銅箔との間に生じるような剥がれが生じたことに起因する膨れの発生を抑制することができ、ベアチップ17の位置合せ等も良好に行うことができるなど生産性に優れる。
[実施例1]
<基板形成工程(a)>
ビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(図1Aにおける第1の絶縁樹脂層2;厚さ0.100mm:三菱ガス化学製GHPL-830NS ST56)の両面に、厚さ12μmの銅箔にシラン化合物で構成された剥型層(図1Aにおける剥型層3;厚さ:40nm)が塗布により形成された剥型層付銅箔(JX日鉱日石金属株式会社製、商品名:PCS)を、剥型層面が前記第1の絶縁樹脂層と接するように配置し、温度220±2℃、圧力5±0.2MPa、保持時間60分間の条件にて真空プレスを実施した。その後、過水硫酸系のソフトエッチング液を用いたエッチングにより前記銅箔の厚さを3μmに調整して、前記第1の絶縁樹脂層の両面に剥型層と極薄銅箔(図1Aにおける極薄銅箔4)とがこの順で設けられた回路形成用支持基板(図1Aにおける回路形成用支持基板1)を作製した。
回路形成用支持基板に、日立ビアメカニクス株式会社製のルータ加工機を用いてガイド穴を形成し、その後、過水硫酸系のソフトエッチング液を用いて表面を1~2μmエッチングした。次いで、温度110±10℃、圧力0.50±0.02MPaの条件で、『ドライフィルムレジストNIT225』(ニチゴー・モートン株式会社製、商品名)をラミネートした。ドライフィルムレジストへの回路パターンの焼付けを、前記ガイド穴を基準として平行露光機にて実施した後、1%炭酸ナトリウム水溶液を用いてドライフィルムレジストを現像し、めっき用レジストパターンを形成した。次いで、硫酸銅濃度60~80g/L、硫酸濃度150~200g/Lの硫酸銅めっきラインにて15~20μmほどのパターン電解銅めっき(電解銅めっき)を施し、第1の配線導体(図1Cにおける第1の配線導体6)を形成した。その後、アミン系のレジスト剥離液を用いてドライフィルムレジストを剥離除去した。
絶縁樹脂との密着力を得るため、第1の配線導体(銅パターン)表面を、銅表面粗化液CZ-8100(メック株式会社製、製品名)を用いて粗化処理を施した。次いで、第1の配線導体が形成された回路形成用支持基板の両面に、ビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(図1Dにおける第2の絶縁樹脂層7;厚さ0.100mm:三菱ガス化学製、製品名『GHPL-830NS ST56』))を配置した。次いで、第2の絶縁樹脂層上に厚さ18μmのキャリア銅箔付極薄銅箔(極薄銅箔(金属層);厚さ2μm:製品名『MTEx』、三井金属鉱業株式会社製)を、キャリア銅箔側が第2の絶縁樹脂層と接するように配置し、圧力2.5±0.2MPa、温度220±2℃、保持時間60分間の条件で、真空プレスした。その後、厚さ18μmのキャリア銅箔を剥離して、第1の配線導体上に第2の絶縁樹脂層と厚さ2μmの極薄銅箔(図1Dにおける金属層8)とが積層された回路形成用支持基板を得た。
第1の配線導体上に第2の絶縁樹脂層と金属層とが積層された回路形成用支持基板の両面に、炭酸ガスレーザー加工機LC-1C/21(日立ビアメカニクス株式会社製、商品名)を用いて、ビーム照射径Φ0.21mm、周波数500Hz、パルス幅10μs、照射回数7ショットの条件にて1穴ずつ加工し、金属層を介して第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成した。
第2の配線導体を形成した後、剥型層付銅箔と第1の絶縁樹脂層(プリプレグ層)との境界部に物理的な力を加えて、第1の配線導体及び第2の配線導体が形成された回路形成用支持基板から、第1の絶縁樹脂層(プリプレグ層)を剥離し、一組の積層体(図1Gにおける積層体A)とした。
剥離工程(e)において、第1の絶縁樹脂層(プリプレグ層)を剥離した後、極薄銅箔と剥型層とを、過水硫酸系のソフトエッチング液を用いて除去した。その後、ソルダーレジストを形成し、金めっき仕上げを行い、パッケージサイズに切断加工を施すことにより、半導体素子搭載用パッケージ基板(図1Hにおける半導体素子搭載用パッケージ基板20)を得た。
実施例1において剥離工程(e)にて第1の絶縁樹脂層が剥離された積層体(図1Gにおける積層体A)を、剥型層3側から観察した。図3は、実施例1における積層体Aを剥型層側から観察した写真である。図3に示すように、実施例1においては、剥型層表面に薬液の染み込みは確認できなかった。
実施例1の基板形成工程(a)において、剥型層付銅箔(PCS)の代わりに剥型層を有しない銅箔(厚さ:12μm、JX日鉱日石金属株式会社製、商品名:JDLC)を用いた以外は、実施例1と同様にして各工程を実施した。しかし、比較例1においては、剥離工程(e)において第1の絶縁樹脂層を剥離した際に、銅箔も剥離し、得られた半導体素子搭載用パッケージ基板の底部に欠落部が形成された。
実施例1の基板形成工程(a)において、図4Aに示す回路形成用支持基板12を用いた以外は実施例1と同様にして、比較例2の半導体素子搭載用パッケージ基板を作製した。回路形成用支持基板12は、図4Aに示すように、キャリア銅付極薄銅箔(厚さ3μm:製品名『MTEx』、三井金属鉱業株式会社製)に剥型層を設けず、且つ、キャリア銅11を剥離せずにキャリア銅11が第1の絶縁樹脂層2と接するように配置された形態である。即ち、比較例2における回路形成用支持基板12は、第1の絶縁樹脂層2側から、キャリア銅11と極薄銅箔4とが積層されている。尚、比較例2においては、剥離工程(e)において、図4Bに示すように、キャリア銅11と極薄銅箔4との界面でキャリア銅11と第1の絶縁樹脂層2(プリプレグ層)を剥離させた。
比較例2において、剥離工程(e)を経た後、極薄銅箔4側から、キャリア銅11及び第1の絶縁樹脂層2(プリプレグ層)が剥離された積層体を観察した。図5は、比較例2における積層体を極薄銅箔側から観察した写真である。図5に示すように、比較例2においては極薄銅箔表面にデスミア処理時の薬液が染み込んでいることが確認された。
(半導体素子実装基板の作製)
実施例1における基板形成工程(a)から第2の配線導体形成工程(d)までを順次行い、第1の絶縁樹脂層の片側のみに、剥型層、極薄銅箔、第1の配線導体及び第2の配線導体が設けられた回路形成用支持基板を作製し、第2の配線導体(図1Fにおける第2の配線導体10)上に開口部Aを有するソルダーレジスト層13を形成した(図6A参照)。次いで、開口部Aにニッケル層14と金めっき層15とを積層形成した(図6B参照)。さらに、金めっき層15上に半田ボールを搭載して約260℃にてリフローを行い、半田ボール16が形成された多層プリント配線板を作製した(図6C参照)。
実施例2の半導体素子実装基板30の形成においては、リフロー時に膨れ等の異常個所は認められず、ベアチップ17の位置合せ等も良好に行うことができた。
実施例2の基板形成工程(a)において、比較例2における回路形成用支持基板12(図4A参照)を用いた以外は実施例2と同様にして、比較例3の半導体素子実装基板を作製した。剥型層を有さない回路形成用支持基板12を用いた比較例3ではリフロー時に銅箔と極薄銅箔の間で剥がれが生じ、基板(70mm×240mmのサイズ)において15mmの銅箔の膨れが2か所発生していた。このため、ベアチップ17の位置合せの際、位置ずれが生じてしまい、製品不良となってしまった。
また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
2 第1の絶縁樹脂層
3 剥型層
4 極薄銅箔
6 第1の配線導体
7 第2の絶縁樹脂層
8 金属層
9 めっき銅
10 第2の配線導体
11 キャリア銅
13 ソルダーレジスト層
14 ニッケル層
15 金めっき層
16 半田ボール
17 ベアチップ
18 モールド樹脂
20 半導体素子搭載用パッケージ基板
30 半導体素子実装基板
Claims (15)
- 第1の絶縁樹脂層と、ケイ素化合物を少なくとも含む剥型層と、厚さが1μm~5μmである極薄銅箔と、をこの順で含む回路形成用支持基板を形成する基板形成工程(a)と、
前記回路形成用支持基板の前記極薄銅箔上に、パターン電解銅めっきによって第1の配線導体を形成する第1の配線導体形成工程(b)と、
前記第1の配線導体と接するように第2の絶縁樹脂層を配置し、前記第2の絶縁樹脂層を加熱加圧して積層する積層工程(c)と、
前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきによって接続させて第2の配線導体を形成する第2の配線導体形成工程(d)と、
前記第1の配線導体及び前記第2の配線導体が形成された回路形成用支持基板から、前記第1の絶縁樹脂層を剥離する剥離工程(e)と、
前記剥型層及び/又は前記極薄銅箔を除去する除去工程(f)と、
を含む半導体素子搭載用パッケージ基板の製造方法。 - 前記第1の配線導体形成工程(b)は、
前記極薄銅箔上にめっき用レジストをラミネートする工程(b-1)と、
フォトリソグラフィーによって前記めっき用レジストに配線回路パターンを形成する工程(b-2)と、
前記配線回路パターンが形成された前記極薄銅箔上に、パターン電解銅めっきにより前記第1の配線導体を形成する工程(b-3)と、
前記めっき用レジストを除去する工程(b-4)と、
を含む請求項1に記載の半導体素子搭載用パッケージ基板の製造方法。 - 前記積層工程(c)は、
前記第1の配線導体表面に粗化処理を施す工程(c-1)と、
前記第2の絶縁樹脂層を、前記粗化処理を施した前記第1の配線導体と接するように配置し、前記第2の絶縁樹脂層上に金属層をさらに配置し、加熱加圧して、前記第2の絶縁樹脂層と前記金属層とを積層する工程(c-2)と、
を含む請求項1又は2に記載の半導体素子搭載用パッケージ基板の製造方法。 - 前記第2の配線導体形成工程(d)は、
前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成する工程(d-1)と、
前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきにより接続させる工程(d-2)と、
前記第2の配線導体をサブトラクティブ工法又はセミアディティブ工法にて形成する工程(d-3)と、
を含む請求項1~3のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。 - 前記第2の配線導体形成工程(d)において、前記第1の配線導体及び前記第2の配線導体が形成された回路形成用支持基板に対し、更に、前記積層工程(c)及び前記第2の配線導体形成工程(d)を繰り返し行い、ビルドアップ構造を有する半導体素子搭載用パッケージ基板を製造する請求項1~4のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記第1の絶縁樹脂層の厚さが、0.02mm~2.0mmである請求項1~5のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記第2の配線導体形成工程(d)において、前記非貫通孔をレーザーによって形成する請求項1~6のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記剥離工程(e)において、前記第1の絶縁樹脂層を物理的に剥離する請求項1~7のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記除去工程(f)において、前記剥型層及び/又は前記極薄銅箔を硫酸系又は過酸化水素系エッチング液を用いて除去する請求項1~8のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記基板形成工程(a)において、厚さが1μm~20μmの銅箔上に前記剥型層が形成された剥型層付銅箔を、前記剥型層と前記第1の絶縁樹脂層とが接するように前記第1の絶縁樹脂層上に配置し、その後前記剥型層付銅箔の前記銅箔部分にエッチング処理を施して前記極薄銅箔とする工程(a-1)を含む請求項1~9のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記剥型層が、シリコーン化合物以外の前記ケイ素化合物を含む請求項1~10のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 前記第1の絶縁樹脂層上に前記剥型層が直接積層された請求項1~11のいずれか一項に記載の半導体素子搭載用パッケージ基板の製造方法。
- 第1の絶縁樹脂層と、ケイ素化合物を少なくとも含む剥型層と、厚さが1μm~5μmである極薄銅箔と、をこの順で含む回路形成用支持基板を形成する基板形成工程(a)と、前記回路形成用支持基板の前記極薄銅箔上に、パターン電解銅めっきによって第1の配線導体を形成する第1の配線導体形成工程(b)と、前記第1の配線導体と接するように第2の絶縁樹脂層を配置し、前記第2の絶縁樹脂層を加熱加圧して積層する積層工程(c)と、前記第2の絶縁樹脂層に、前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔の内壁を電解銅めっき及び/又は無電解銅めっきによって接続させて第2の配線導体を形成する第2の配線導体形成工程(d)と、前記第2の配線導体上に半導体素子を搭載する半導体素子搭載工程(g)と、前記第2の配線導体上に前記半導体素子が搭載された回路形成用支持基板から、前記第1の絶縁樹脂層を剥離する剥離工程(e)と、前記剥型層及び/又は前記極薄銅箔を除去する除去工程(f)と、を含む半導体素子実装基板の製造方法。
- 前記半導体素子搭載工程(g)において、接合材を介して前記第2の配線導体上に前記半導体素子を搭載する請求項13に記載の半導体素子実装基板の製造方法。
- 前記第1の絶縁樹脂層上に前記剥型層が直接積層された請求項13又は14に記載の半導体素子実装基板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187033288A KR102394519B1 (ko) | 2016-07-01 | 2017-06-23 | 반도체 소자 탑재용 패키지 기판의 제조 방법 및 반도체 소자 실장 기판의 제조 방법 |
EP17820060.6A EP3480843B1 (en) | 2016-07-01 | 2017-06-23 | Method for manufacturing package substrate for carrying semiconductor element, and method for manufacturing semiconductor element-mounted substrate |
CN201780040347.0A CN109417055A (zh) | 2016-07-01 | 2017-06-23 | 半导体元件搭载用封装体基板的制造方法和半导体元件安装基板的制造方法 |
JP2018525137A JP7044997B2 (ja) | 2016-07-01 | 2017-06-23 | 半導体素子搭載用パッケージ基板の製造方法及び半導体素子実装基板の製造方法 |
US16/314,568 US10727081B2 (en) | 2016-07-01 | 2017-06-23 | Method for manufacturing package substrate for mounting a semiconductor device, and method for manufacturing semiconductor device mounting substrate |
CN202311281435.3A CN117241501A (zh) | 2016-07-01 | 2017-06-23 | 半导体元件搭载用封装体基板的制造方法和半导体元件安装基板的制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-131702 | 2016-07-01 | ||
JP2016131702 | 2016-07-01 | ||
JP2017-005949 | 2017-01-17 | ||
JP2017005949 | 2017-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003703A1 true WO2018003703A1 (ja) | 2018-01-04 |
Family
ID=60785360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023237 WO2018003703A1 (ja) | 2016-07-01 | 2017-06-23 | 半導体素子搭載用パッケージ基板の製造方法及び半導体素子実装基板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10727081B2 (ja) |
EP (1) | EP3480843B1 (ja) |
JP (1) | JP7044997B2 (ja) |
KR (1) | KR102394519B1 (ja) |
CN (2) | CN117241501A (ja) |
TW (1) | TWI718316B (ja) |
WO (1) | WO2018003703A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121652A1 (ja) * | 2018-12-14 | 2020-06-18 | 三菱瓦斯化学株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
WO2020121651A1 (ja) * | 2018-12-14 | 2020-06-18 | 三菱瓦斯化学株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545455B2 (en) | 2019-05-28 | 2023-01-03 | Apple Inc. | Semiconductor packaging substrate fine pitch metal bump and reinforcement structures |
CN112538148B (zh) * | 2019-09-20 | 2022-03-08 | 万华化学集团股份有限公司 | 一种硅溴协同反应型阻燃剂及其制备方法、热塑性聚氨酯弹性体及其制备方法 |
CN111491459B (zh) * | 2020-04-09 | 2022-06-21 | 江苏普诺威电子股份有限公司 | 基于半加成法的细密线路基板的制作方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005101137A (ja) * | 2003-09-24 | 2005-04-14 | Hitachi Chem Co Ltd | 回路形成用支持基板と、半導体素子搭載用パッケージ基板及びその製造方法 |
JP2009032918A (ja) * | 2007-07-27 | 2009-02-12 | Shinko Electric Ind Co Ltd | 配線基板及びその製造方法と電子部品装置及びその製造方法 |
WO2014054812A1 (ja) * | 2012-10-04 | 2014-04-10 | Jx日鉱日石金属株式会社 | キャリア付金属箔 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022332A (ja) * | 1998-06-30 | 2000-01-21 | Toagosei Co Ltd | 多層プリント配線板の製造方法 |
MY144574A (en) * | 1998-09-14 | 2011-10-14 | Ibiden Co Ltd | Printed circuit board and method for its production |
US20050158574A1 (en) * | 2003-11-11 | 2005-07-21 | Furukawa Circuit Foil Co., Ltd. | Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier |
US8238114B2 (en) * | 2007-09-20 | 2012-08-07 | Ibiden Co., Ltd. | Printed wiring board and method for manufacturing same |
JP5896200B2 (ja) | 2010-09-29 | 2016-03-30 | 日立化成株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
JP6054080B2 (ja) | 2012-07-20 | 2016-12-27 | 新光電気工業株式会社 | 支持体及びその製造方法、配線基板の製造方法、電子部品装置の製造方法、配線構造体 |
JP2015204379A (ja) * | 2014-04-14 | 2015-11-16 | イビデン株式会社 | プリント配線板 |
KR102070047B1 (ko) * | 2015-07-23 | 2020-01-29 | 미쓰이금속광업주식회사 | 수지 부착 구리박, 동장 적층판 및 프린트 배선판 |
JP2018009242A (ja) * | 2016-06-21 | 2018-01-18 | Jx金属株式会社 | 離型層付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
-
2017
- 2017-06-23 CN CN202311281435.3A patent/CN117241501A/zh active Pending
- 2017-06-23 WO PCT/JP2017/023237 patent/WO2018003703A1/ja unknown
- 2017-06-23 CN CN201780040347.0A patent/CN109417055A/zh active Pending
- 2017-06-23 JP JP2018525137A patent/JP7044997B2/ja active Active
- 2017-06-23 US US16/314,568 patent/US10727081B2/en active Active
- 2017-06-23 EP EP17820060.6A patent/EP3480843B1/en active Active
- 2017-06-23 KR KR1020187033288A patent/KR102394519B1/ko active IP Right Grant
- 2017-06-29 TW TW106121688A patent/TWI718316B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005101137A (ja) * | 2003-09-24 | 2005-04-14 | Hitachi Chem Co Ltd | 回路形成用支持基板と、半導体素子搭載用パッケージ基板及びその製造方法 |
JP2009032918A (ja) * | 2007-07-27 | 2009-02-12 | Shinko Electric Ind Co Ltd | 配線基板及びその製造方法と電子部品装置及びその製造方法 |
WO2014054812A1 (ja) * | 2012-10-04 | 2014-04-10 | Jx日鉱日石金属株式会社 | キャリア付金属箔 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3480843A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121652A1 (ja) * | 2018-12-14 | 2020-06-18 | 三菱瓦斯化学株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
WO2020121651A1 (ja) * | 2018-12-14 | 2020-06-18 | 三菱瓦斯化学株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
JPWO2020121652A1 (ja) * | 2018-12-14 | 2021-10-21 | 三菱瓦斯化学株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
JPWO2020121651A1 (ja) * | 2018-12-14 | 2021-10-21 | 三菱瓦斯化学株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
US11990349B2 (en) | 2018-12-14 | 2024-05-21 | Mitsubishi Gas Chemical Company, Inc. | Method for producing package substrate for loading semiconductor device |
US12119277B2 (en) | 2018-12-14 | 2024-10-15 | Mitsubishi Gas Chemical Company, Inc. | Method for producing package substrate for mounting semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
EP3480843A4 (en) | 2019-06-19 |
KR102394519B1 (ko) | 2022-05-04 |
CN109417055A (zh) | 2019-03-01 |
TWI718316B (zh) | 2021-02-11 |
TW201806110A (zh) | 2018-02-16 |
KR20190024879A (ko) | 2019-03-08 |
CN117241501A (zh) | 2023-12-15 |
US10727081B2 (en) | 2020-07-28 |
EP3480843A1 (en) | 2019-05-08 |
JPWO2018003703A1 (ja) | 2019-05-16 |
US20190148169A1 (en) | 2019-05-16 |
EP3480843B1 (en) | 2021-05-05 |
JP7044997B2 (ja) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4273895B2 (ja) | 半導体素子搭載用パッケージ基板の製造方法 | |
WO2018003703A1 (ja) | 半導体素子搭載用パッケージ基板の製造方法及び半導体素子実装基板の製造方法 | |
JP7172597B2 (ja) | 支持基板、支持基板付積層体及び半導体素子搭載用パッケージ基板の製造方法 | |
JP5413693B2 (ja) | 回路形成用支持基板、及び半導体素子搭載用パッケージ基板の製造方法 | |
JP5029911B2 (ja) | 回路形成用支持基板と、半導体素子搭載用パッケージ基板及び基板の製造方法 | |
US12119277B2 (en) | Method for producing package substrate for mounting semiconductor device | |
JP7145403B2 (ja) | 支持体及びそれを用いた半導体素子実装基板の製造方法 | |
US11990349B2 (en) | Method for producing package substrate for loading semiconductor device | |
TW202239288A (zh) | 基板及配線基板之製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187033288 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17820060 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018525137 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017820060 Country of ref document: EP Effective date: 20190201 |