WO2018003677A1 - プロピレンオキサイドの製造方法 - Google Patents

プロピレンオキサイドの製造方法 Download PDF

Info

Publication number
WO2018003677A1
WO2018003677A1 PCT/JP2017/023133 JP2017023133W WO2018003677A1 WO 2018003677 A1 WO2018003677 A1 WO 2018003677A1 JP 2017023133 W JP2017023133 W JP 2017023133W WO 2018003677 A1 WO2018003677 A1 WO 2018003677A1
Authority
WO
WIPO (PCT)
Prior art keywords
cumene
mixture containing
cymene
propylene oxide
weight
Prior art date
Application number
PCT/JP2017/023133
Other languages
English (en)
French (fr)
Inventor
慎二郎 石原
橋本 康弘
哲生 鈴木
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020197000907A priority Critical patent/KR102271104B1/ko
Priority to MYPI2018003019A priority patent/MY189254A/en
Priority to SG11201811675RA priority patent/SG11201811675RA/en
Priority to PL17820034T priority patent/PL3480189T3/pl
Priority to JP2018525128A priority patent/JP6748205B2/ja
Priority to MX2018016025A priority patent/MX2018016025A/es
Priority to EP17820034.1A priority patent/EP3480189B1/en
Priority to CN201780039903.2A priority patent/CN109415331B/zh
Publication of WO2018003677A1 publication Critical patent/WO2018003677A1/ja
Priority to SA518400754A priority patent/SA518400754B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing propylene oxide.
  • An oxidation step for obtaining cumene hydroperoxide by oxidizing cumene, an epoxidation step for obtaining propylene oxide and cumyl alcohol by reacting cumene hydroperoxide obtained by the oxidation step and propylene, and epoxidation Patent Document 1 describes a method for producing propylene oxide, which includes a hydrogenation step of obtaining cumene by hydrogenating cumyl alcohol obtained in the step, and recycling the cumene as a raw material for the oxidation step to the oxidation step.
  • cumyl alcohol refers to 2-phenyl-2-propanol.
  • the present invention has been made to solve the above-described problems, and in a method for producing propylene oxide by recycling cumene used as a raw material, an oxidation reaction rate of cumene in an oxidation step, and cumene in an epoxidation step. It is to provide a method for producing propylene oxide more efficiently by improving the conversion rate of hydroperoxide.
  • a method for producing propylene oxide comprising the following steps 1) to 5): 1) Oxidation step: Contacting a mixture containing cumene and cymene with a gas containing oxygen, cumene hydroperoxide is contained by reacting cumene in the mixture with oxygen in the gas.
  • Epoxidation step in the presence of a catalyst, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is brought into contact with propylene, and cumene hydroperoxide in the reaction mixture is contacted Step of obtaining a reaction mixture containing propylene oxide and cumyl alcohol by reacting propylene with propylene 3) Separation step: The reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step The propylene oxide-containing mixture from 4) Cumene conversion step: step of converting cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step to cumene to obtain a reaction mixture containing cumene 5) cumene Recovery step: The above reaction mixture containing cumene obtained in the cumene conversion step is distilled, whereby a recovery mixture containing cumene and cymene having a cymene concentration of 100 ppm to less than 10,000 ppm by weight (the cymene concentration is In the oxidation step
  • a method comprising the above-mentioned recovered mixture containing cumene and cymene obtained in the cumene recovery step.
  • the cumene conversion step dehydrates cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene,
  • In the step of obtaining a reaction mixture containing cumene by bringing the mixture containing ⁇ -methylstyrene into contact with hydrogen in the presence of a catalyst and reacting ⁇ -methylstyrene and hydrogen in the mixture with each other.
  • the method for producing propylene oxide according to ⁇ 1>.
  • the cumene conversion step brings the residual mixture containing cumyl alcohol obtained in the separation step into contact with hydrogen, thereby reacting cumyl alcohol and hydrogen in the residual mixture.
  • the method for producing propylene oxide according to ⁇ 1> which is a step of obtaining a reaction mixture containing cumene by causing the reaction to occur.
  • ⁇ 4> In the cumene recovery step, 0.025% by weight or more of cymene contained in the reaction mixture containing cumene obtained in the cumene conversion step (the cymene weight ratio is the cumene obtained in the cumene conversion step).
  • the concentration of cymene in the reaction mixture containing cumene hydroperoxide is not less than 100 ppm by weight and less than 10,000 ppm by weight (the reaction mixture containing cumene hydroperoxide).
  • Propylene oxide purification step A step of obtaining purified propylene oxide by distilling the mixture containing the propylene oxide separated in the separation step.
  • the oxidation reaction rate of cumene in the oxidation step and the conversion rate of cumene hydroperoxide in the epoxidation step are improved, and propylene is more efficiently produced. Oxides can be produced.
  • the present invention is a method for producing propylene oxide comprising the following steps 1) to 5): 1) Oxidation step: Contacting a mixture containing cumene and cymene with a gas containing oxygen, cumene hydroperoxide is contained by reacting cumene in the mixture with oxygen in the gas.
  • Epoxidation step in the presence of a catalyst, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is brought into contact with propylene, and cumene hydroperoxide in the reaction mixture is contacted And a step of obtaining a reaction mixture containing propylene oxide and cumyl alcohol by reacting with propylene 3) Separation step: the above reaction containing propylene oxide and cumyl alcohol obtained in the above epoxidation step Separating the mixture containing propylene oxide from the mixture, cumyl alcohol Step of obtaining residual mixture containing 4) Cumene conversion step Step of converting cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step to cumene to obtain a reaction mixture containing cumene 5) Cumene Recovery step: The above reaction mixture containing cumene obtained in the cumene conversion step is distilled, whereby a recovery mixture containing cumene and cymene having a cymene concentration of 100 ppm to less than 10,000 ppm
  • cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step is dehydrated in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene. Then, in the presence of a catalyst, the mixture containing ⁇ -methylstyrene is brought into contact with hydrogen to react the ⁇ -methylstyrene and hydrogen in the mixture to obtain a reaction mixture containing cumene. It is a process.
  • the cumene conversion step in the presence of a catalyst, the residual mixture containing the cumyl alcohol obtained in the separation step is brought into contact with hydrogen, and the cumyl alcohol in the residual mixture is contacted. This is a step of obtaining a reaction mixture containing cumene by reacting with hydrogen.
  • cymene is generated as a by-product. It has been found that cymene is an accumulating component in the system, and the concentration increases with time if recycling is continued, and that propylene oxide can be efficiently produced by controlling the cymene concentration to a predetermined concentration.
  • Cymen is a general term for o-cymene, m-cymene and p-cymene, and the cymene concentration is the total concentration of o-cymene, m-cymene and p-cymene. Cymene concentration can be measured using gas chromatography.
  • Oxidation step The oxidation step according to the present invention is performed by bringing a mixture containing cumene and cymene into contact with a gas containing oxygen and reacting cumene in the mixture with oxygen in the gas. And a step of obtaining a reaction mixture containing cumene hydroperoxide.
  • the concentration of cymene in the mixture containing cumene and cymene used in the oxidation step is preferably 100 ppm by weight or more, more preferably 110 ppm by weight, in order to avoid excessive energy required for distillation in the cumene recovery step. Or more, more preferably 120 ppm by weight or more, and particularly preferably 130 ppm by weight or more.
  • the concentration of cymene in the mixture containing cumene and cymene to be subjected to the oxidation step is It is preferably less than 10,000 ppm by weight, more preferably 5000 ppm by weight or less, still more preferably 3000 ppm by weight or less, and particularly preferably 1000 ppm by weight or less.
  • the cymene concentration is calculated on the basis of the weight of the mixture containing cumene and cymene used in the oxidation step.
  • At least part of the mixture containing cumene and cymene in the oxidation step is cumene in which the cymene concentration obtained in the following 5) cumene recovery step is 100 ppm by weight or more and less than 10,000 ppm by weight. And a recovered mixture containing cymene.
  • 50% by weight or more per 100% by weight of the mixture containing cumene and cymene used in the oxidation step has a cymene concentration obtained in the cumene recovery step of 100 ppm to less than 10,000 ppm by weight.
  • the mixture is a collection mixture containing cumene and cymene, and 75% by weight or more is a collection mixture containing cumene and cymene having a cymene concentration of 100 ppm by weight or more and less than 10,000 ppm by weight in the cumene collection step.
  • 90% by weight or more is more preferably a recovery mixture containing cumene and cymene having a cymene concentration of 100 ppm by weight or more and less than 10,000 ppm by weight obtained in the cumene recovery step.
  • Examples of the gas containing oxygen used in the oxidation step include oxygen, air, oxygen-enriched air, and the like.
  • the content of cumene hydroperoxide in the reaction mixture containing cumene hydroperoxide is preferably 5 to 80% by weight, more preferably 5 to 60% by weight per 100% by weight of the reaction mixture. More preferably, it is ⁇ 40% by weight.
  • cumene is oxidized by oxygen to produce cumene hydroperoxide.
  • the oxidation may be performed in the presence of an aqueous alkaline solution.
  • the alkaline aqueous solution may be any aqueous solution that exhibits alkalinity, and a fresh alkaline aqueous solution, an aqueous solution recovered from an oxidation step, an aqueous solution prepared by mixing a fresh alkaline aqueous solution with an aqueous solution recovered from an oxidation step, or the like is used.
  • the fresh alkaline aqueous solution examples include alkali metal compounds such as NaOH and KOH, alkaline earth metal compounds such as Mg (OH) 2 and Ca (OH) 2 , and alkali metals such as Na 2 CO 3 and NaHCO 3.
  • An aqueous solution prepared by dissolving carbonate or ammonia and (NH 4 ) 2 CO 3 , alkali metal ammonium carbonate or the like in water is used.
  • Recovery of the aqueous solution from the oxidation step can be performed by separating the liquid phase generated in the oxidation step into an oil phase and an aqueous phase, and recovering the aqueous phase.
  • the oxidation reaction temperature is usually 50 to 200 ° C, preferably 60 to 180 ° C, more preferably 70 to 150 ° C.
  • the reaction pressure is usually between atmospheric pressure and 5000 kPa-G, preferably 10 to 2000 kPa-G, more preferably 20 to 1000 kPa-G.
  • cumene hydroperoxide In the reaction mixture containing cumene hydroperoxide, cumene, cumyl alcohol, acetophenone, ethylbenzene, cymene and the like are included as components other than cumene hydroperoxide.
  • Epoxidation step comprises a reaction mixture containing cumene hydroperoxide obtained in the oxidation step in the presence of a catalyst and propylene, and cumene hydroperoxide in the reaction mixture. Is a step of obtaining a reaction mixture containing propylene oxide and cumyl alcohol by reacting with propylene.
  • the reaction of producing cumene hydroperoxide and propylene to produce propylene oxide may be referred to as “epoxidation reaction”.
  • the epoxidation step is preferably performed using a solid catalyst as the above catalyst (hereinafter sometimes referred to as “epoxidation catalyst”) from the viewpoint of producing propylene oxide in a high yield. More preferably, it is carried out in the presence of a catalyst consisting of a product.
  • a catalyst comprising titanium-containing silicon oxide contains titanium chemically bonded to silicon oxide, for example, a titanium compound supported on a silica carrier, or a titanium compound converted into silicon oxide by a coprecipitation method or a sol-gel method. Or a zeolite compound containing titanium.
  • Preferred examples of the catalyst comprising titanium-containing silicon oxide include catalysts described in Japanese Patent No. 3731384 and Japanese Patent No.
  • the reaction mixture containing cumene hydroperoxide obtained in the oxidation process used as a raw material for the epoxidation process may be a diluted or concentrated purified product or a non-purified product.
  • the epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with a catalyst.
  • the epoxidation reaction can be carried out in a liquid phase using a solvent.
  • the solvent used in the epoxidation reaction must be liquid under the temperature and pressure during the epoxidation reaction and be substantially inert to the reaction raw materials and products.
  • the solvent used in the epoxidation reaction may be a substance present in the reaction mixture containing cumene hydroperoxide obtained in the oxidation step. For example, when the reaction mixture obtained in the oxidation step contains cumene. Can use the cumene as a solvent for the epoxidation reaction.
  • Useful solvents other than cumene include monocyclic aromatic compounds (eg, benzene, toluene, chlorobenzene, orthodichlorobenzene) and alkanes (eg, octane, decane, dodecane).
  • monocyclic aromatic compounds eg, benzene, toluene, chlorobenzene, orthodichlorobenzene
  • alkanes eg, octane, decane, dodecane
  • the epoxidation reaction temperature is usually 0 to 200 ° C, preferably 25 to 200 ° C, more preferably 50 to 150 ° C.
  • the epoxidation reaction pressure is adjusted so that the reaction mixture can be kept in a liquid state, and is usually 100 to 10000 kPa-G, preferably 500 to 8000 kPa-G.
  • the epoxidation reaction can be advantageously carried out in the form of a slurry or a fixed bed. For large scale industrial operations, it is preferred to use a fixed bed.
  • the epoxidation reaction can be carried out by a batch method, a semi-continuous method, a continuous method or the like.
  • the content of propylene oxide per 100% by weight of the reaction mixture in the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step is preferably 1 to 31% by weight. More preferably, it is 1 to 16% by weight.
  • the cumyl alcohol content per 100% by weight of the reaction mixture is preferably 5 to 80% by weight, more preferably 5 to 60% by weight, and particularly preferably 5 to 40% by weight. preferable.
  • the molar ratio of propylene to cumene hydroperoxide to be subjected to the epoxidation reaction is usually 2/1 to 50/1, preferably 3/1 to 30/1, more preferably 4/1. ⁇ 15/1.
  • the concentration of cymene in the reaction mixture is not less than 100 ppm by weight because the energy required for distillation in the cumene recovery step does not become excessive. More preferably, it is 110 weight ppm or more, More preferably, it is 120 weight ppm or more, Most preferably, it is 130 weight ppm or more.
  • the concentration of cymene in the reaction mixture containing cumene hydroperoxide to be subjected to the epoxidation step is preferably less than 10,000 ppm by weight, more preferably 5000.
  • concentration is calculated on the basis of the weight of the reaction mixture containing the cumene hydroperoxide used for an epoxidation process.
  • unreacted propylene may be collected, and a step of recycling the propylene to the epoxidation step as a raw material for the epoxidation step may be further performed.
  • the separation step according to the present invention comprises separating the mixture containing propylene oxide from the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step, and containing the cumyl alcohol. This is a step of obtaining a residual mixture.
  • distillation As a method for separating the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step into a mixture containing propylene oxide and a residual mixture containing cumyl alcohol, distillation can be mentioned.
  • the pressure is usually 100 to 5000 kPa-G, preferably 100 to 3000 kPa-G, and the column top temperature is usually ⁇ 50 to 150 ° C., preferably ⁇ 40 to 130 ° C.
  • the method of using a distillation column is mentioned, You may use the method of distilling using a some distillation column.
  • the content of propylene oxide in the separated mixture containing propylene oxide is usually 99% by weight or more per 100% by weight of the mixture.
  • the content of cumyl alcohol in the residual mixture containing cumyl alcohol is preferably 5 to 80% by weight, more preferably 5 to 60% by weight per 100% by weight of the residual mixture, Particularly preferred is 5 to 40% by weight.
  • the method for producing propylene oxide of the present invention includes a propylene oxide purification step.
  • the propylene oxide purification step according to the present invention is a step of obtaining purified propylene oxide by distilling a mixture containing the propylene oxide separated in the separation step.
  • the mixture containing propylene oxide obtained in the separation step usually contains water, hydrocarbons, and oxygen-containing compounds as impurities.
  • the hydrocarbon include hydrocarbons having 3 to 7 carbon atoms.
  • the oxygen-containing compound include methanol, acetaldehyde, acetone, propionaldehyde, methyl formate and the like.
  • distillation techniques may be appropriately combined. From the viewpoint of efficiently removing water, hydrocarbons and oxygen-containing compounds, hydrocarbons having 7 to 10 carbon atoms are used as the extractant. It is preferable to purify by combining extractive distillation and other distillation.
  • hydrocarbon having 7 to 10 carbon atoms as the extractant examples include linear saturated hydrocarbons such as n-heptane, n-octane, n-nonane and n-decane, 2,2-dimethylpentane, 2,3- Examples thereof include branched saturated hydrocarbons such as dimethylpentane, 2,2-dimethylhexane, and 2,3-dimethylhexane. These extractants can be used either alone or as a mixture of these compounds.
  • the type and operating conditions of the extractive distillation column and other distillation columns, the amount of extractant used, etc. can be appropriately determined according to the required product quality.
  • the cumene conversion step according to the present invention is a step of converting cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step to cumene to obtain a reaction mixture containing cumene. is there.
  • cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step is dehydrated in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene.
  • the mixture containing ⁇ -methylstyrene is brought into contact with hydrogen to react the ⁇ -methylstyrene and hydrogen in the mixture to obtain a reaction mixture containing cumene. It is a process.
  • the step of dehydrating cumyl alcohol in the residual mixture obtained in the separation step in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene is referred to as a “dehydration step”, and in the presence of the catalyst,
  • the step of obtaining a reaction mixture containing cumene by bringing the mixture containing ⁇ -methylstyrene into contact with hydrogen and reacting the ⁇ -methylstyrene and hydrogen in the mixture with each other is referred to as a “hydrogenation step”.
  • the cumene conversion step according to the present invention comprises contacting the residual mixture containing cumyl alcohol obtained in the separation step with hydrogen in the presence of a catalyst, and This is a step of obtaining a reaction mixture containing cumene by reacting cumyl alcohol with hydrogen.
  • the cumene conversion step may be referred to as a “hydrocracking step”.
  • the cumene conversion process includes a dehydration process and a hydrogenation process
  • the dehydration step is a step of dehydrating cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene.
  • Catalysts used in the dehydration step include acids such as sulfuric acid, phosphoric acid, p-toluenesulfonic acid, activated alumina, titania, zirconia, silica alumina, Mention may be made of metal oxides such as zeolite. From the viewpoint of improving reaction efficiency, the reaction is preferably performed in the presence of a solid catalyst, and activated alumina is more preferably used.
  • the dehydration reaction in the dehydration step is usually performed by bringing cumyl alcohol into contact with a dehydration catalyst.
  • cumyl alcohol may be contacted with the dehydration catalyst in the presence of hydrogen.
  • the dehydration reaction can be performed in a liquid phase using a solvent.
  • the solvent must be substantially inert to the reaction raw materials and products.
  • the solvent may be a substance present in the residual mixture containing the cumyl alcohol used. For example, when the residual mixture containing cumyl alcohol contains cumene, this cumene can be used as a solvent and no other solvent can be used.
  • the dehydration reaction temperature is usually 50 to 450 ° C, preferably 150 to 300 ° C.
  • the dehydration reaction pressure is usually 10 to 10000 kPa-G, preferably 500 to 4000 kPa-G, more preferably 1000 to 2000 kPa-G.
  • a mixture containing ⁇ -methylstyrene obtained in the dehydration step is brought into contact with hydrogen in the presence of a catalyst, and ⁇ -methylstyrene and hydrogen in the mixture are reacted to contain cumene. To obtain a reaction mixture.
  • Examples of the catalyst used in the hydrogenation step include a catalyst containing a metal of Group 10 or Group 11 of the Periodic Table. Specifically, A catalyst containing nickel, a catalyst containing palladium, a catalyst containing platinum, and a catalyst containing copper can be given. From the viewpoint of suppression of the nuclear hydrogenation reaction of the aromatic ring and high yield, a catalyst containing nickel, a catalyst containing palladium or a catalyst containing copper is preferable.
  • Nickel, nickel / alumina, nickel / silica and nickel / carbon are preferred as the catalyst containing nickel, palladium / alumina, palladium / silica and palladium / carbon are preferred as the catalyst containing palladium, and copper as the catalyst containing copper.
  • Raney copper, copper / chromium, copper / zinc, copper / chromium / zinc, copper / silica, and copper / alumina are preferred. These catalysts can be used alone or in combination.
  • the hydrogenation reaction in the hydrogenation step is carried out by bringing ⁇ -methylstyrene and hydrogen into contact with the hydrogenation catalyst.
  • a hydrogenation reaction is performed following the dehydration reaction.
  • a part of the water generated in the dehydration reaction may be separated by oil-water separation or the like, or ⁇ -methylstyrene without separation.
  • it may be brought into contact with a hydrogenation catalyst.
  • the amount of hydrogen required for the hydrogenation reaction may be equimolar with ⁇ -methylstyrene, but usually the raw material contains components other than ⁇ -methylstyrene that consume hydrogen, so excess hydrogen Is needed.
  • the molar ratio of hydrogen / ⁇ -methylstyrene is usually adjusted to 1/1 to 20/1, preferably 1/1 to 10/1. More preferably, it is 1/1 to 3/1.
  • the excess hydrogen remaining after the hydrogenation reaction can be recycled after being separated from the reaction solution.
  • the hydrogenation reaction can be carried out in the liquid phase using a solvent or in the gas phase.
  • the solvent must be substantially inert to the reaction raw materials and products.
  • the solvent may be a substance present in the mixture containing ⁇ -methylstyrene. For example, when the mixture containing ⁇ -methylstyrene contains cumene, this cumene can be used as a solvent and no other solvent can be used.
  • the hydrogenation reaction temperature is usually 0 to 500 ° C, preferably 30 to 400 ° C, more preferably 50 to 300 ° C.
  • the hydrogenation reaction pressure is usually 100 to 10000 kPa-G, preferably 500 to 4000 kPa-G, more preferably 1000 to 2000 kPa-G.
  • the dehydration reaction and hydrogenation reaction can be advantageously performed in the form of a slurry or a fixed bed. For large scale industrial operations, it is preferred to use a fixed bed. Further, the dehydration reaction and the hydrogenation reaction can be carried out by a reaction mode such as a batch method, a semi-continuous method, or a continuous method. Separate reactors may be used for the dehydration reaction and the hydrogenation reaction, or a single reactor may be used.
  • the continuous reactor includes an adiabatic reactor and an isothermal reactor, and the isothermal reactor is preferably an adiabatic reactor because equipment for removing heat is required.
  • the hydrocracking step in the presence of a catalyst, the residual mixture containing cumyl alcohol obtained in the separation step is brought into contact with hydrogen, and the cumyl alcohol and hydrogen in the residual mixture are reacted to react with cumene.
  • a step of obtaining a reaction mixture containing The hydrocracking reaction is carried out by bringing the residual mixture containing cumyl alcohol and hydrogen into contact with the catalyst.
  • hydrocracking catalyst examples include a catalyst containing a metal of Group 10 or Group 11 or Group 12 of the Periodic Table, Specific examples include a catalyst containing cobalt, a catalyst containing nickel, a catalyst containing palladium, a catalyst containing copper, and a catalyst containing zinc. From the viewpoint of suppressing the production of by-products, a catalyst containing nickel, a catalyst containing palladium, or a catalyst containing copper is preferable.
  • the catalyst containing nickel include nickel, nickel / alumina, nickel / silica, and nickel / carbon.
  • Examples of the catalyst containing palladium include palladium / alumina, palladium / silica, palladium / carbon, and the like. Includes copper, Raney copper, copper / chromium, copper / zinc, copper / chromium / zinc, copper / silica, copper / alumina, and the like.
  • the hydrogenolysis reaction can be carried out in the liquid phase using a solvent or in the gas phase.
  • the solvent must be substantially inert to the reaction raw materials and products.
  • the solvent may be a substance present in the residual mixture containing cumyl alcohol used. For example, when the residual mixture containing cumyl alcohol contains cumene, this cumene can be used as a solvent and no other solvent can be used.
  • the amount of hydrogen required for the hydrocracking reaction may be equimolar with that of cumyl alcohol. However, since the raw materials usually contain components other than cumyl alcohol that consume hydrogen, excess hydrogen is present. Needed. Further, since the reaction proceeds more rapidly as the partial pressure of hydrogen is increased, the hydrogen / cumyl alcohol molar ratio is usually adjusted to 1/1 to 20/1, preferably 1/1 to 10/1. More preferably, it is 1/1 to 3/1. The excess hydrogen remaining after the hydrocracking reaction can be recycled after being separated from the reaction solution.
  • the hydrocracking reaction temperature is usually 0 to 500 ° C, preferably 50 to 450 ° C, more preferably 150 to 300 ° C.
  • the hydrocracking reaction pressure is usually 100 to 10,000 kPa-G, preferably 500 to 4000 kPa-G, more preferably 1000 to 2000 kPa-G.
  • the hydrocracking reaction can be advantageously carried out in the form of a slurry or fixed bed. For large scale industrial operations, it is preferred to use a fixed bed.
  • the hydrocracking reaction can be carried out by a reaction mode such as a batch method, a semi-continuous method, or a continuous method.
  • the content of cumene in the reaction mixture containing cumene is usually 90% by weight or more per 100% by weight of the reaction mixture containing cumene.
  • Cumene recovery process In the cumene recovery step according to the present invention, the reaction mixture containing cumene obtained in the cumene conversion step is distilled, whereby a recovery mixture containing cumene and cymene having a cymene concentration of 100 ppm to less than 10,000 ppm by weight ( The cymene concentration is calculated based on the weight of the recovered mixture containing the cumene and cymene obtained in the cumene recovery step.
  • the concentration of cymene in the collection mixture containing cumene and cymene obtained in the cumene recovery step is 100 ppm by weight or more, preferably 110 ppm by weight or more, so that energy required for distillation is not excessive in the cumene recovery step. More preferably, it is 120 weight ppm or more, More preferably, it is 130 weight ppm or more.
  • the concentration of cymene in the mixture containing cumene and cymene obtained in the cumene recovery process is to produce cumene hydroperoxide more efficiently in the oxidation process, and more efficiently to produce propylene oxide in the epoxidation process.
  • cymene concentration is calculated on the basis of the weight of the recovered mixture containing cumene and cymene obtained in the cumene recovery step.
  • the cumene recovery step as a method of obtaining a recovery mixture containing cumene and cymene having a cymene concentration of 100 ppm by weight or more and less than 10,000 ppm by weight, when the reaction mixture containing cumene obtained in the cumene conversion step is distilled,
  • separating at least one part cymene is mentioned.
  • a method of removing 0.025% by weight or more of cymene from the reaction mixture containing cumene obtained in the cumene conversion step is more preferable, and more preferably, the reaction mixture containing cumene obtained in the cumene conversion step is reduced by 0.00%.
  • a method of removing 04% by weight or more of cymene is mentioned, and a method of removing 0.2% by weight or more of cymene from the reaction mixture containing cumene obtained in the cumene conversion step is more preferred.
  • the said cymene weight ratio is calculated on the basis of the weight of the cymene contained in the reaction mixture containing the said cumene obtained at the said cumene conversion process.
  • the conditions for distilling the reaction mixture containing cumene obtained in the cumene conversion step are usually operated within the range of 10 to 100 theoretical plates, pressure of ⁇ 100 kPa-G to 10,000 kPa-G, and temperature of 0 to 500 ° C. .
  • the number of theoretical plates is 10 to 95
  • the pressure is ⁇ 100 kPa-G to 5000 kPa-G
  • the temperature is in the range of 0 to 400 ° C.
  • the number of theoretical plates is 10 to 90
  • the pressure is ⁇ 100 kPa-G to 3000 kPa-G
  • the temperature is in the range of 0 to 300 ° C.
  • cymene concentration in each example was measured by the following method using a gas chromatograph (GC).
  • GC equipment Shimadzu GC2014
  • Column DB-WAX (30 m, 0.25 mm ⁇ , 0.25 ⁇ m)
  • Column temperature After holding at 50 ° C. for 10 minutes, the temperature is raised to 220 ° C. at a rate of 4 ° C./minute, and then held at 220 ° C. for 48 minutes.
  • Carrier gas Helium pressure: 83.7 kPa Total flow rate: 104.0 mL / min
  • Split ratio Split injection / 100: 1
  • Cymen concentration analysis method (1) Calibration curve creation [solution preparation] In a 30 mL glass container, 1 g of p-cymene and 19 g of cumene were weighed and mixed well to obtain a standard mother liquor.
  • a 20 mL glass container 2 g of the sample mother liquor was collected, and 0.1 g of n-tetradecane was added thereto as an internal standard substance to prepare a standard solution 1.
  • a 20 mL glass container 1 g of a sample mother liquor and 4 g of cumene were collected, and 0.1 g of n-tetradecane was added thereto to prepare a standard solution 2.
  • 0.2 g of a sample mother liquor and 1.8 g of cumene were collected, and 0.1 g of n-tetradecane was added thereto to prepare a standard solution 3.
  • Example 1 According to the method described in this specification, an oxidation step, an epoxidation step, a separation step, and a cumene conversion step were performed.
  • a mixture containing cumene and cymene was brought into contact with air, and the cumene in the mixture was reacted with oxygen in the air to obtain a reaction mixture containing cumene hydroperoxide.
  • the reaction mixture containing the cumene hydroperoxide obtained in the oxidation step is contacted with propylene, and cumene hydroperoxide in the reaction mixture is contacted.
  • propylene By reacting with propylene, a reaction mixture containing propylene oxide and cumyl alcohol was obtained.
  • the separation step the mixture containing propylene oxide was separated from the reaction mixture containing the propylene oxide and cumyl alcohol obtained in the epoxidation step to obtain a residual mixture containing the cumyl alcohol.
  • cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step is dehydrated in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene, The mixture containing ⁇ -methylstyrene was brought into contact with hydrogen in the presence of hydrogen, and ⁇ -methylstyrene and hydrogen in the mixture were reacted to obtain a reaction mixture containing cumene.
  • the concentration of cymene in the reaction mixture containing cumene and cymene after the cumene conversion step increased by 2 ppm by weight.
  • Cumene recovery step 2% by weight of the reaction mixture containing cumene and cymene after the cumene conversion step (the cymene weight ratio is contained in the reaction mixture containing cumene obtained in the cumene conversion step)
  • the recovered mixture containing cumene and cymene is obtained by distillation under conditions that are removed (calculated based on the weight of cymene).
  • the recovery mixture containing cumene and cymene obtained in the cumene recovery step is used so that it becomes 99% by weight of the mixture containing cumene and cymene used in the oxidation reaction in the oxidation step, so that the concentration of cymene becomes steady.
  • the oxidation process, the epoxidation process, the separation process, the cumene conversion process, and the cumene recovery process are carried out.
  • the concentration of cymene in the recovery mixture containing cumene and cymene obtained in the cumene recovery step at the steady state is 100 ppm by weight with respect to the recovery mixture containing cumene and cymene.
  • Example 2 According to the method described in this specification, an oxidation step, an epoxidation step, a separation step, and a cumene conversion step were performed.
  • a mixture containing cumene and cymene was brought into contact with air, and the cumene in the mixture was reacted with oxygen in the gas to obtain a reaction mixture containing cumene hydroperoxide.
  • the reaction mixture containing the cumene hydroperoxide obtained in the oxidation step is brought into contact with propylene, and cumene hydroperoxide in the reaction mixture is contacted.
  • a reaction mixture containing propylene oxide and cumyl alcohol was obtained.
  • the separation step the mixture containing propylene oxide was separated from the reaction mixture containing the propylene oxide and cumyl alcohol obtained in the epoxidation step to obtain a residual mixture containing the cumyl alcohol.
  • cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step is dehydrated in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene,
  • the mixture containing ⁇ -methylstyrene was brought into contact with hydrogen in the presence of hydrogen, and ⁇ -methylstyrene and hydrogen in the mixture were reacted to obtain a reaction mixture containing cumene.
  • concentration of cymene in the reaction mixture containing cumene and cymene after the cumene conversion step increased by 2 ppm by weight.
  • Cumene recovery step 1% by weight of the reaction mixture containing cumene and cymene after the cumene conversion step (the cymene weight ratio is contained in the reaction mixture containing cumene obtained in the cumene conversion step)
  • the recovered mixture containing cumene and cymene was obtained by distillation under conditions that were removed (calculated based on the weight of cymene).
  • the recovery mixture containing cumene and cymene obtained in the cumene recovery step is used so that it becomes 99% by weight of the mixture containing cumene and cymene used in the oxidation reaction in the oxidation step, so that the concentration of cymene becomes steady.
  • the oxidation process, the epoxidation process, the separation process, the cumene conversion process, and the cumene recovery process were performed.
  • the concentration of cymene in the recovery mixture containing cumene and cymene obtained in the cumene recovery step at the steady state was 200 ppm by weight with respect to the recovery mixture containing cumene and cymene.
  • Example 3 The reaction mixture containing cumene and cymene after the cumene conversion step is carried out in the same manner as in Example 1 except that distillation is carried out under the condition that 0.2% by weight of the contained cymene is removed.
  • the concentration of cymene in the recovery mixture containing cumene and cymene obtained in the cumene recovery step at a steady state is 1000 ppm by weight with respect to the recovery mixture containing cumene and cymene.
  • Example 4 The reaction mixture containing cumene and cymene after the cumene conversion step is carried out in the same manner as in Example 1 except that the reaction mixture is distilled under the condition that 0.04% by weight of the contained cymene is removed.
  • the concentration of cymene in the recovery mixture containing cumene and cymene obtained in the cumene recovery step at steady state is 5000 ppm by weight with respect to the recovery mixture containing cumene and cymene.
  • Example 5 ⁇ Oxidation process> The oxidation reaction was performed under the following conditions.
  • the recovered mixture containing cumene and cymene obtained in Example 2 and cumene were mixed to prepare a mixture A.
  • the cymene concentration calculated based on the weight of the mixture A was 100 ppm by weight.
  • the following experiment was conducted using a continuous flow reactor using a 1 L glass autoclave as a reaction kettle.
  • reaction mixture containing cumene hydroperoxide was obtained by supplying and allowing continuous flow reaction at a pressure of 0.6 MPa-G so that the amount of liquid in the kettle was constant while extracting liquid and gas.
  • the reaction temperature in a steady state of the reaction is 112.5 ° C.
  • the cumene hydroperoxide concentration in the reaction mixture containing cumene hydroperoxide is 16 with respect to the reaction mixture containing cumene hydroperoxide. It was 1% by weight.
  • the recovered mixture containing cumene and cymene obtained in Example 2 was mixed with cymene, and mixture B was prepared so that the cymene concentration calculated based on the weight of the obtained mixture was 1000 ppm by weight.
  • the mixture A was changed to the mixture B, and the reaction temperature was adjusted so that the cumene hydroperoxide concentration in the reaction mixture in the state in which the reaction was stabilized became the same level as in Example 5.
  • An oxidation reaction was performed.
  • the reaction temperature was 114.5 ° C.
  • the cumene hydroperoxide concentration in the reaction mixture containing cumene hydroperoxide was 15.3% by weight with respect to the reaction mixture containing cumene hydroperoxide. It was.
  • the epoxidation reaction was carried out in the same manner as in Example 5 except that the reaction mixture containing cumene hydroperoxide obtained in the oxidation step was used. As a result, the conversion rate of cumene hydroperoxide was 92%.
  • Example 7 ⁇ Oxidation process> The recovered mixture containing cumene and cymene obtained in Example 2 was mixed with cymene, and mixture C was prepared so that the cymene concentration calculated based on the weight of the obtained mixture was 5000 ppm by weight.
  • the mixture A was changed to the mixture C, and the reaction temperature was adjusted so that the cumene hydroperoxide concentration in the reaction mixture in the state in which the reaction was stabilized became the same level as in Example 5.
  • An oxidation reaction was performed. As a result, the reaction temperature was 116 ° C., and the cumene hydroperoxide concentration in the reaction mixture containing cumene hydroperoxide was 15.7 wt% with respect to the reaction mixture containing cumene hydroperoxide.
  • the reaction temperature was 116.3 ° C.
  • the cumene hydroperoxide concentration in the reaction mixture containing cumene hydroperoxide was 15.5 wt% with respect to the reaction mixture containing cumene hydroperoxide. .
  • Example 5 Example 6, Example 7 and Comparative Example 2 are cases where the concentration of cymene in the mixture containing cumene and cymene is different in the oxidation step, and the reaction is in a steady state.
  • the oxidation reaction temperature when the cumene hydroperoxide concentration in the reaction mixture is adjusted so as to be almost the same is shown. From the results of the above Example 5, Example 6, Example 7 and Comparative Example 2, it is possible to lower the reaction temperature when obtaining the same concentration of cumene hydroperoxide with the same residence time in the Example. It can be seen that the oxidation reaction rate is faster.
  • the oxidation reaction rate of cumene in the oxidation step, and the conversion rate of cumene hydroperoxide in the epoxidation step are improved.
  • the present invention can be used for industrial production of propylene oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

より効率的にプロピレンオキサイドを製造する方法、具体的には、1)酸化工程、2)エポキシ化工程、3)分離工程、4)クメン変換工程、および5)クメン回収工程を含むプロピレンオキサイドの製造方法であって、上記酸化工程に供するクメンとシメンとを含有する混合物の少なくとも一部が、上記クメン回収工程で得たクメンとシメンとを含有する回収混合物であることを特徴とするプロピレンオキサイドの製造方法を提供する。ここで、クメン回収工程は、上記クメン変換工程で得たクメンを含有する反応混合物を蒸留に供することにより、シメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物(該シメン濃度は、クメン回収工程で得られる該クメンとシメンとを含有する回収混合物の重量基準で計算される)を得る工程である。

Description

プロピレンオキサイドの製造方法
 本発明はプロピレンオキサイドの製造方法に関する。
 クメンを酸化することによりクメンハイドロパーオキサイドを得る酸化工程と、該酸化工程により得たクメンハイドロパーオキサイドとプロピレンとを反応させることにより、プロピレンオキサイドおよびクミルアルコールを得るエポキシ化工程と、エポキシ化工程で得たクミルアルコールを水素化することによりクメンを得、該クメンを酸化工程の原料として酸化工程にリサイクルする水素化工程とを含むプロピレンオキサイドの製造方法が特許文献1に記されている。なお、本明細書において、クミルアルコールとは2-フェニル-2-プロパノールを指す。
特開2005-97212号公報(2005年4月14日公開)
 上記製造方法において、エネルギー効率および反応効率を含む製造工程全体の効率を向上させることが求められている。
 本発明は、上記の課題を解決するためになされたものであって、原料として用いるクメンをリサイクルしてプロピレンオキサイドを製造する方法において、酸化工程におけるクメンの酸化反応速度、およびエポキシ化工程におけるクメンハイドロパーオキサイドの転化率を向上させ、より効率的にプロピレンオキサイドを製造する方法を提供することである。
 上記の課題を解決するために、本発明は以下のものを提供する。
<1> 下記の1)~5)の工程を含むプロピレンオキサイドの製造方法であって、
 1)酸化工程:クメンとシメンとを含有する混合物と、酸素を含有するガスとを接触させ、上記混合物中のクメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程
 2)エポキシ化工程:触媒の存在下、上記酸化工程で得たクメンハイドロパーオキサイドを含有する上記反応混合物と、プロピレンとを接触させ、上記反応混合物中のクメンハイドロパーオキサイドと、プロピレンとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程
 3)分離工程:上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する上記反応混合物からプロピレンオキサイドを含有する混合物を分離し、クミルアルコールを含有する残留混合物を得る工程
 4)クメン変換工程:上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールをクメンに変換し、クメンを含有する反応混合物を得る工程
 5)クメン回収工程:上記クメン変換工程で得たクメンを含有する上記反応混合物を蒸留することにより、シメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物(該シメン濃度は、クメン回収工程で得られるクメンとシメンとを含有する該回収混合物の重量を基準として計算される)を得る工程
 上記酸化工程において、クメンとシメンとを含有する上記混合物の少なくとも一部が、上記クメン回収工程で得たクメンとシメンとを含有する上記回収混合物であることを特徴とする方法。
<2> 前記クメン変換工程が、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水してα-メチルスチレンを含有する混合物を得、次いで、触媒の存在下、α-メチルスチレンを含有する上記混合物と水素とを接触させて、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である<1>に記載のプロピレンオキサイドの製造方法。
<3> 前記クメン変換工程が、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物と水素とを接触させて、上記残留混合物中のクミルアルコールと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である<1>に記載のプロピレンオキサイドの製造方法。
<4> 上記クメン回収工程において、上記クメン変換工程で得たクメンを含有する上記反応混合物に含有されるシメンの0.025重量%以上(該シメン重量割合は、上記クメン変換工程で得たクメンを含有する上記反応混合物に含有されるシメンの重量を基準として計算される)を除去する条件で蒸留することを特徴とする<1>~<3>のいずれかに記載のプロピレンオキサイドの製造方法。
<5> 上記エポキシ化工程において、クメンハイドロパーオキサイドを含有する上記反応混合物中のシメン濃度が100重量ppm以上10000重量ppm未満である(該シメン濃度は、クメンハイドロパーオキサイドを含有する該反応混合物の重量を基準として計算される)ことを特徴とする<1>~<4>のいずれかに記載のプロピレンオキサイドの製造方法。
<6> 上記エポキシ化工程において、上記触媒が固体触媒であることを特徴とする<1>~<5>のいずれかに記載のプロピレンオキサイドの製造方法。
<7> 上記エポキシ化工程において、上記触媒がチタン含有ケイ素酸化物からなることを特徴とする<1>~<6>のいずれかに記載のプロピレンオキサイドの製造方法。
<8> 下記の工程を更に含むことを特徴とする<1>~<7>のいずれかに記載のプロピレンオキサイドの製造方法。
プロピレンオキサイド精製工程:上記分離工程で分離されたプロピレンオキサイドを含有する上記混合物を蒸留することにより、精製されたプロピレンオキサイドを得る工程
 本発明により、原料として用いるクメンをリサイクルしてプロピレンオキサイドを製造する方法において、酸化工程におけるクメンの酸化反応速度、およびエポキシ化工程におけるクメンハイドロパーオキサイドの転化率を向上させ、より効率的にプロピレンオキサイドを製造することができる。
 〔プロピレンオキサイドの製造方法〕
 本発明は、下記の1)~5)の工程を含むプロピレンオキサイドの製造方法であって、
 1)酸化工程:クメンとシメンとを含有する混合物と、酸素を含有するガスとを接触させ、上記混合物中のクメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程
 2)エポキシ化工程:触媒の存在下、上記酸化工程で得たクメンハイドロパーオキサイドを含有する上記反応混合物と、プロピレンとを接触させ、上記反応混合物中のクメンハイドロパーオキサイドと、プロピレンとを反応にさせることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程
 3)分離工程:上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する上記反応混合物からプロピレンオキサイドを含有する混合物を分離し、クミルアルコールを含有する残留混合物を得る工程
 4)クメン変換工程
  上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールをクメンに変換し、クメンを含有する反応混合物を得る工程
 5)クメン回収工程:上記クメン変換工程で得たクメンを含有する上記反応混合物を蒸留することにより、シメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物(該シメン濃度は、クメン回収工程で得られるクメンとシメンとを含有する該回収混合物の重量を基準として計算される)を得る工程
上記酸化工程において、クメンとシメンとを含有する上記混合物の少なくとも一部が、上記クメン回収工程で得たクメンとシメンとを含有する上記回収混合物であることを特徴とする方法を提供する。
 一つの態様において、前記クメン変換工程は、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水してα-メチルスチレンを含有する混合物を得、次いで、触媒の存在下、α-メチルスチレンを含有する上記混合物と水素とを接触させて、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である。
 他の1つの態様において、前記クメン変換工程は、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物と水素とを接触させて、上記残留混合物中のクミルアルコールと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である。
 原料として用いるクメンをリサイクルしてプロピレンオキサイドを製造する方法においては、副生物としてシメンが生成する。シメンは系内蓄積成分であり、リサイクルを続ければ濃度が経時的に増加すること、および該シメン濃度を所定の濃度に制御することによりプロピレンオキサイドを効率的に製造できることを見出した。なお、シメンはo-シメン、m-シメン、p-シメンの総称であり、シメン濃度とはo-シメン、m-シメン、p-シメンの合計の濃度である。シメン濃度は、ガスクロマトグラフィーを用いて測定することができる。
 以下、各工程の詳細について説明する。
1)酸化工程
 本発明に係る酸化工程は、クメンとシメンとを含有する混合物と、酸素を含有するガスとを接触させ、上記混合物中のクメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程である。
 酸化工程に用いるクメンとシメンとを含有する混合物中のシメン濃度は、クメン回収工程において、蒸留に要するエネルギーが過大とならないために、100重量ppm以上であることが好ましく、より好ましくは110重量ppm以上であり、更に好ましくは120重量ppm以上であり、特に好ましくは130重量ppm以上である。酸化工程に供するクメンとシメンとを含有する混合物中のシメン濃度は、酸化工程においてより効率的にクメンハイドロパーオキサイドを製造し、更にエポキシ化工程においてより効率的にプロピレンオキサイドを製造するために、10000重量ppm未満であることが好ましく、より好ましくは5000重量ppm以下であり、更に好ましくは3000重量ppm以下であり、特に好ましくは1000重量ppm以下である。なお、上記シメン濃度は、酸化工程に用いるクメンとシメンとを含有する混合物の重量を基準として計算される。
 後述する通り、本発明においては、酸化工程におけるクメンとシメンとを含有する混合物の少なくとも一部が、下記の5)クメン回収工程で得たシメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物である。
 後述する通り、本発明においては、酸化工程に用いるクメンとシメンとを含有する混合物100重量%あたり、50重量%以上が、クメン回収工程で得たシメン濃度が100重量ppm以上10000重量ppm未満のクメンとシメンとを含有する回収混合物であることがより好ましく、75重量%以上が、クメン回収工程で得たシメン濃度が100重量ppm以上10000重量ppm未満のクメンとシメンとを含有する回収混合物であることが更に好ましく、90重量%以上が、クメン回収工程で得たシメン濃度が100重量ppm以上10000重量ppm未満のクメンとシメンとを含有する回収混合物であることが更に好ましい。
 酸化工程に用いる酸素を含有するガスとしては、酸素、空気、酸素濃縮空気等が挙げられる。
 クメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイドの含量は、反応混合物100重量%あたり、5~80重量%であることが好ましく、5~60重量%であることがより好ましく、5~40重量%であることが更に好ましい。
 酸化工程において、クメンは酸素によって酸化され、クメンハイドロパーオキサイドを生成する。酸化はアルカリ水溶液の存在下で行ってもよい。アルカリ水溶液は、アルカリ性を示す水溶液ならばいかなるものでもよく、フレッシュアルカリ水溶液、酸化工程から回収された水溶液または酸化工程から回収された水溶液にフレッシュアルカリ水溶液を混合して調製した水溶液等が用いられる。フレッシュアルカリ水溶液としては、NaOH、KOHのようなアルカリ金属化合物や、Mg(OH)、Ca(OH)のようなアルカリ土類金属化合物、またはNaCO、NaHCOのようなアルカリ金属炭酸塩、またはアンモニアおよび(NHCO、またはアルカリ金属炭酸アンモニウム塩等を水に溶解させて調製した水溶液が用いられる。酸化工程からの水溶液の回収は、酸化工程で生じた液相を油相と水相に分離し、該水相を回収することにより行うことができる。酸化反応温度は通常50~200℃であり、60~180℃が好ましく、70~150℃がより好ましい。反応圧力は通常大気圧から5000kPa-Gの間であり、10~2000kPa-Gが好ましく、20~1000kPa-Gがより好ましい。
 クメンハイドロパーオキサイドを含有する反応混合物中には、クメンハイドロパーオキサイド以外の含有成分として、クメン、クミルアルコール、アセトフェノン、エチルベンゼンおよびシメン等が含まれる。
2)エポキシ化工程
 本発明に係るエポキシ化工程は、触媒の存在下、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物と、プロピレンとを接触させ、上記反応混合物中のクメンハイドロパーオキサイドと、プロピレンとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程である。本明細書において、クメンハイドロパーオキサイドとプロピレンとを反応させプロピレンオキサイドを生成する反応を「エポキシ化反応」と記載することがある。
 エポキシ化工程は、プロピレンオキサイドを高収率で生成させる観点から、上記触媒(以下、「エポキシ化触媒」と記載することがある。)として固体触媒を用いて行うことが好ましく、チタン含有ケイ素酸化物からなる触媒の存在下に実施することがより好ましい。チタン含有ケイ素酸化物からなる触媒はケイ素酸化物と化学的に結合したチタンを含有しており、例えば、チタン化合物をシリカ担体に担持したもの、共沈法やゾルゲル法でチタン化合物をケイ素酸化物と複合したもの、あるいはチタンを含むゼオライト化合物などを挙げることができる。好ましいチタン含有ケイ素酸化物からなる触媒としては、特許3731384号公報や特許3797107号公報等に記載された触媒、US2005014960やUS2007260074等に記載された触媒、US5783167号公報等に記載されたTi-MCM-41、特開平7-300312等に記載のTi-MCM-48、Nature 368(1994)p321、CN101348472B、CN101307039B、CN101279960B、CN102311363B、CN102872847B、CN103030611B等に記載されたTi-HMS、Chemistry of Material 14 2002 p1657等に記載されたTi-SBA-15、TS-1、TS-2、Chemistry Letters 2000 p774等に記載されたTi-MWWおよびその前駆体(例えば公開特許公報2003‐32745号)を挙げることができる。
 本発明において、エポキシ化工程の原料物質として使用される酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物は、希薄または濃厚な精製物または非精製物であってもよい。
 エポキシ化反応は、プロピレンとクメンハイドロパーオキサイドとを触媒に接触させることにより行われる。エポキシ化反応は、溶媒を用いて液相中で実施できる。エポキシ化反応に用いる溶媒は、エポキシ化反応時の温度および圧力のもとで液体であり、かつ反応原料および生成物に対して実質的に不活性なものでなければならない。エポキシ化反応に用いる溶媒は、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物中に存在する物質であってもよく、例えば、酸化工程で得た前記反応混合物がクメンを含有する場合には、そのクメンをエポキシ化反応用の溶媒とすることができる。クメン以外の有用な溶媒としては、単環式芳香族化合物(例えば、ベンゼン、トルエン、クロロベンゼン、オルトジクロロベンゼン)およびアルカン(例えば、オクタン、デカン、ドデカン)などが挙げられる。
 エポキシ化反応温度は通常0~200℃であるが、25~200℃が好ましく、50~150℃がより好ましい。エポキシ化反応圧力は、反応混合物を液体の状態に保つことができるように調整され、通常100~10000kPa-Gであり、好ましくは500~8000kPa-Gである。
 エポキシ化反応は、スラリーまたは固定床の形式で有利に実施できる。大規模な工業的操作の場合には、固定床を用いるのが好ましい。また、エポキシ化反応は、回分法、半連続法、連続法等によって実施できる。
 エポキシ化工程で得られるプロピレンオキサイドとクミルアルコールとを含有する反応混合物中の該反応混合物100重量%あたりのプロピレンオキサイドの含量は1~31重量%であることが好ましく、1~23重量%であることがより好ましく、1~16重量%であることが特に好ましい。また、該反応混合物100重量%あたりのクミルアルコールの含量は、5~80重量%であることが好ましく、5~60重量%であることがより好ましく、5~40重量%であることが特に好ましい。
 エポキシ化工程において、エポキシ化反応に供するプロピレンのクメンハイドロパーオキサイドに対するモル比は、通常2/1~50/1であり、好ましくは3/1~30/1であり、より好ましくは4/1~15/1である。
 エポキシ化工程に用いるクメンハイドロパーオキサイドを含有する反応混合物がシメンを含有する場合に、該反応混合物中のシメン濃度は、クメン回収工程において蒸留に要するエネルギーが過大とならないために、100重量ppm以上であることが好ましく、より好ましくは110重量ppm以上であり、更に好ましくは120重量ppm以上であり、特に好ましくは130重量ppm以上である。エポキシ化工程に供するクメンハイドロパーオキサイドを含有する反応混合物中のシメン濃度は、エポキシ化工程においてより効率的にプロピレンオキサイドを製造するために、10000重量ppm未満であることが好ましく、より好ましくは5000重量ppm以下であり、更に好ましくは3000重量ppm以下であり、特に好ましくは1000重量ppm以下である。なお、上記シメン濃度は、エポキシ化工程に用いるクメンハイドロパーオキサイドを含有する反応混合物の重量を基準として計算される。
 また、エポキシ化工程の後、未反応のプロピレンを回収して、該プロピレンをエポキシ化工程の原料としてエポキシ化工程へリサイクルする工程を更に行ってもよい。
3)分離工程
 本発明に係る分離工程は、上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する反応混合物から該プロピレンオキサイドを含有する混合物を分離し、該クミルアルコールを含有する残留混合物を得る工程である。
 エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する反応混合物から、プロピレンオキサイドを含有する混合物とクミルアルコールを含有する残留混合物とに分離する方法としては、蒸留を挙げることができる。蒸留の条件としては、圧力は通常100~5000kPa-G、好ましくは100~3000kPa-G、塔頂温度は通常-50~150℃であり、好ましくは-40~130℃である。また、蒸留方法としては、蒸留塔を用いる方法が挙げられ、複数の蒸留塔を用いて蒸留する方法を用いてもよい。
 分離された該プロピレンオキサイドを含有する混合物中のプロピレンオキサイドの含量は、該混合物100重量%あたり、通常99重量%以上である。
 一方、クミルアルコールを含有する残留混合物中のクミルアルコールの含量は、該残留混合物100重量%あたり、5~80重量%であることが好ましく、5~60重量%であることがより好ましく、5~40重量%であることが特に好ましい。
 クミルアルコールを含有する残留混合物中には、クミルアルコール以外の含有成分として、クメン、アセトフェノン、エチルベンゼン、フェノールおよびシメン等が含まれる。
 プロピレンオキサイド精製工程
 一実施形態では、本発明のプロピレンオキサイドの製造方法はプロピレンオキサイド精製工程を含んでいる。本発明に係るプロピレンオキサイド精製工程は、分離工程で分離されたプロピレンオキサイドを含有する混合物を蒸留することにより、精製されたプロピレンオキサイドを得る工程である。
 分離工程で得たプロピレンオキサイドを含有する混合物には、通常、不純物として、水、炭化水素、酸素含有化合物が含まれている。炭化水素としては炭素数3~7の炭化水素を例示することができる。酸素含有化合物としてはメタノール、アセトアルデヒド、アセトン、プロピオンアルデヒド、ギ酸メチル等を例示することができる。
 これらの不純物を除去する方法として、公知の蒸留技術を適宜組み合わせてよいが、水、炭化水素及び酸素含有化合物を効率的に除去する観点から、炭素数7~10の炭化水素を抽剤とする抽出蒸留とその他の蒸留を組み合わせて精製することが好ましい。
 抽剤である炭素数7~10の炭化水素としては、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等の直鎖状飽和炭化水素、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,2-ジメチルヘキサン、2,3-ジメチルヘキサン等の枝分かれ状飽和炭化水素を例示することができる。なお、これらの抽剤は、単一でもこれら化合物の混合物でもどちらでも使用できる。
 抽出蒸留塔およびその他の蒸留塔の型式と運転条件、抽剤の使用量等は要求される製品の品質により適宜決定することができる。
4)クメン変換工程
 本発明に係るクメン変換工程は、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールをクメンに変換し、クメンを含有する反応混合物を得る工程である。
 一つの態様において、前記クメン変換工程は、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水してα-メチルスチレンを含有する混合物を得、次いで、触媒の存在下、α-メチルスチレンを含有する上記混合物と水素とを接触させて、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である。本態様において、触媒の存在下、分離工程で得た残留混合物中のクミルアルコールを脱水し、α-メチルスチレンを含有する混合物を得る工程を「脱水工程」と記載し、触媒の存在下、α-メチルスチレンを含有する混合物と水素とを接触させ、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程を「水添工程」と記載することがある。
 また、別の一つの態様において、本発明に係るクメン変換工程は、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物と、水素とを接触させ、上記残留混合物中のクミルアルコールと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である。該クメン変換工程を「水素化分解工程」と記載することがある。
 クメン変換工程が脱水工程と水添工程とからなる場合について以下に説明する。
 脱水工程は、触媒の存在下、分離工程で得たクミルアルコールを含有する残留混合物中のクミルアルコールを脱水し、α-メチルスチレンを含有する混合物を得る工程である。
 脱水工程において使用される触媒(以下、「脱水触媒」と記載することがある。)としては、硫酸、リン酸、p-トルエンスルホン酸等の酸や、活性アルミナ、チタニア、ジルコニア、シリカアルミナ、ゼオライト等の金属酸化物を挙げることができる。反応効率を向上させる観点から、固体触媒存在下で行うことが好ましく、活性アルミナを用いることがより好ましい。
 脱水工程における脱水反応は通常、クミルアルコールを脱水触媒に接触させることにより行われる。一実施形態においては脱水反応に引き続いて水添工程において水添反応を行なうため、水素の存在下、クミルアルコールを脱水触媒に接触させてもよい。脱水反応は溶媒を用いて液相中で実施できる。溶媒は、反応原料および生成物に対して実質的に不活性なものでなければならない。溶媒は、使用されるクミルアルコールを含有する残留混合物中に存在する物質であってもよい。例えば、クミルアルコールを含有する残留混合物が、クメンを含有する場合には、このクメンを溶媒とし、他の溶媒を用いないことができる。脱水反応温度は通常50~450℃であるが、150~300℃が好ましい。脱水反応圧力は通常10~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。
 水添工程は、触媒の存在下、脱水工程で得たα-メチルスチレンを含有する混合物と水素とを接触させ、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である。
 水添工程において使用される触媒(以下、「水添触媒」と記載することがある。)としては、周期律表10族または11族の金属を含む触媒を挙げることができ、具体的にはニッケルを含む触媒、パラジウムを含む触媒、白金を含む触媒、銅を含む触媒を挙げることができる。芳香環の核水添反応の抑制、高収率の観点からニッケルを含む触媒、パラジウムを含む触媒または銅を含む触媒が好ましい。ニッケルを含む触媒としてはニッケル、ニッケル・アルミナ、ニッケル・シリカ、ニッケル・カーボンが好ましく、パラジウムを含む触媒としては、パラジウム・アルミナ、パラジウム・シリカ、パラジウム・カーボンが好ましく、銅を含む触媒としては銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナが好ましい。これらの触媒は単一でも用いることができるし、複数のものを用いることもできる。
 水添工程における水添反応は、α-メチルスチレンと水素とを水添触媒に接触させることにより行われる。一実施形態においては脱水反応に引き続いて水添反応を行なうが、この態様では、脱水反応において発生した水の一部を油水分離等によって分離してもよいし、分離せずにα-メチルスチレンとともに水添触媒に接触させてもよい。水添反応に必要な水素の量はα-メチルスチレンと等モルであればよいが、通常、原料中には水素を消費するα-メチルスチレン以外の成分も含まれているため、過剰の水素が必要とされる。また水素の分圧を上げるほど反応はより速やかに進むことから、通常、水素/α-メチルスチレンのモル比は1/1~20/1に調整され、好ましくは1/1~10/1であり、より好ましくは1/1~3/1である。水添反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用することもできる。水添反応は、溶媒を用いて液相中で、または気相中で実施できる。溶媒は、反応原料および生成物に対して実質的に不活性なものでなければならない。溶媒は、α-メチルスチレンを含有する混合物中に存在する物質であってもよい。例えば、α-メチルスチレンを含有する混合物がクメンを含有する場合には、このクメンを溶媒とし、他に溶媒を用いないことができる。水添反応温度は通常0~500℃であるが、30~400℃が好ましく、50~300℃がより好ましい。水添反応圧力は通常100~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。
 脱水反応および水添反応は、スラリーまたは固定床の形式で有利に実施できる。大規模な工業的操作の場合には、固定床を用いるのが好ましい。また、脱水反応および水添反応は、回分法、半連続法、連続法等の反応形態によって実施できる。脱水反応と水添反応には別々の反応器を用いてもよいし、単一の反応器を用いてもよい。連続法の反応器には、断熱反応器及び等温反応器があるが、等温反応器は除熱をするための設備が必要となるため、断熱反応器が好ましい。
 水素化分解工程は、触媒の存在下、分離工程で得たクミルアルコールを含有する残留混合物と、水素とを接触させ、上記残留混合物中のクミルアルコールと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である。 水素化分解反応は、クミルアルコールを含有する残留混合物と水素とを触媒に接触させることにより行われる。水素化分解工程において使用される触媒(以下、「水素化分解触媒」と記載することがある。)としては周期律表10族または11族または12族の金属を含む触媒を挙げることができ、具体的にはコバルトを含む触媒、ニッケルを含む触媒、パラジウムを含む触媒、銅を含む触媒、亜鉛を含む触媒を挙げることができる。副生成物の生成を抑制する観点からニッケルを含む触媒、パラジウムを含む触媒または銅を含む触媒が好ましい。ニッケルを含む触媒としてはニッケル、ニッケル・アルミナ、ニッケル・シリカ、ニッケル・カーボンが挙げられ、パラジウムを含む触媒としてはパラジウム・アルミナ、パラジウム・シリカ、パラジウム・カーボン等が挙げられ、銅を含む触媒としては銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナ等が挙げられる。水素化分解反応は、溶媒を用いて液相中で、または気相中で実施できる。溶媒は、反応原料および生成物に対して実質的に不活性なものでなければならない。 溶媒は使用されるクミルアルコールを含有する残留混合物中に存在する物質であってもよい。例えばクミルアルコールを含有する残留混合物がクメンを含有する場合には、このクメンを溶媒とし、他に溶媒を用いないことができる。水素化分解反応に必要な水素の量はクミルアルコールと等モルであればよいが、通常、原料中には水素を消費するクミルアルコール以外の成分も含まれているため、過剰の水素が必要とされる。また水素の分圧を上げるほど反応はより速やかに進むことから、通常、水素/クミルアルコールモル比は1/1~20/1に調整され、好ましくは1/1~10/1であり、より好ましくは1/1~3/1である。水素化分解反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用することもできる。水素化分解反応温度は通常0~500℃であるが、50~450℃が好ましく、150~300℃がより好ましい。水素化分解反応圧力は通常100~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。水素化分解反応は、スラリーまたは固定床の形式で有利に実施できる。大規模な工業的操作の場合には、固定床を用いるのが好ましい。また、水素化分解反応は、回分法、半連続法、連続法等の反応形態によって実施できる。
 クメンを含有する反応混合物中のクメンの含量は、クメンを含有する該反応混合物100重量%あたり、通常90重量%以上である。
5)クメン回収工程:
 本発明に係るクメン回収工程は、クメン変換工程で得たクメンを含有する反応混合物を蒸留することにより、シメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物(該シメン濃度は、クメン回収工程で得られる該クメンとシメンとを含有する回収混合物の重量を基準として計算される)を得る工程である。
 クメン回収工程において得られるクメンとシメンとを含有する回収混合物中のシメン濃度は、クメン回収工程において、蒸留に要するエネルギーが過大とならないために、100重量ppm以上であり、好ましくは110重量ppm以上であり、より好ましくは120重量ppm以上であり、更に好ましくは130重量ppm以上である。クメン回収工程において得られるクメンとシメンとを含有する混合物中のシメン濃度は、酸化工程においてより効率的にクメンハイドロパーオキサイドを製造し、更にエポキシ化工程においてより効率的にプロピレンオキサイドを製造するために、10000重量ppm未満であり、好ましくは5000重量ppm以下であり、より好ましくは3000重量ppm以下であり、更に好ましくは1000重量ppm以下である。なお、上記シメン濃度は、クメン回収工程で得られる該クメンとシメンとを含有する回収混合物の重量を基準として計算される。
 クメン回収工程においてシメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物を得る方法としては、クメン変換工程で得たクメンを含有する反応混合物を蒸留する際に、少なくとも一部のシメンを分離する方法が挙げられる。好ましくは、クメン変換工程で得たクメンを含有する反応混合物から0.025重量%以上のシメンを除く方法が挙げられ、より好ましくは、クメン変換工程で得たクメンを含有する反応混合物から0.04重量%以上のシメンを除く方法が挙げられ、更に好ましくは、クメン変換工程で得たクメンを含有する反応混合物から0.2重量%以上のシメンを除く方法が挙げられる。なお、上記シメン重量割合は、上記クメン変換工程で得た上記クメンを含有する反応混合物に含有されるシメンの重量を基準として計算される。
 クメン変換工程で得たクメンを含有する反応混合物を蒸留する条件としては、通常、理論段数10~100段、圧力-100kPa-G~10000kPa-G、温度0~500℃の範囲内で操作される。好ましくは理論段数10~95段、圧力-100kPa-G~5000kPa-G、温度0~400℃の範囲内であり、より好ましくは理論段数10~90段、圧力-100kPa-G~3000kPa-G、温度0~300℃の範囲内である。
 以下、実施例により本発明を更に詳細に説明する。
 各実施例のシメン濃度はガスクロマトグラフ(GC)を用いて以下の方法により測定した。
[GC測定条件]
GC装置:島津GC2014
カラム:DB-WAX(30m、0.25mmφ 、0.25μm)
カラム温度:
50℃で10分間保持した後、4℃/分の速度で220℃まで昇温し、次に220℃で48分間保持する。
気化室温度/検出器温度:220℃/230℃
検出器:水素炎イオン化検出器
キャリアガス:ヘリウム
圧力:83.7kPa
全流量:104.0mL/分
カラム流量:1.00mL/分
パージ流量:3.0mL/分
線速度25.4cm/秒
注入方式/スプリッ卜比:スプリッ卜注入/100:1
注入量:1.0μL
シメン濃度 分析方法
(1)検量線作成
[溶液調製]
 30mLガラス容器に、p-シメン1gおよびクメン19gを秤量した後によく混合し、標品母液を得た。
 20mLガラス容器に、標品母液2gを採取し、そこに内部標準物質としてn-テトラデカン0.1gを添加し、標準溶液1を作製した。
 20mLガラス容器に、標品母液1gおよびクメン4gを採取し、そこにn-テトラデカン0.1gを添加し、標準溶液2を作製した。
 20mLガラス容器に、標品母液0.2gおよびクメン1.8gを採取し、そこにn-テトラデカン0.1gを添加し、標準溶液3を作製した。
 20mLガラス容器に、標品母液0.02gおよびクメン1.98gを採取し、そこにn-テトラデカン0.1gを添加し、標準溶液4を作製した。
[GC測定]
標準溶液1、2、3および4を前項のGC測定条件で測定し、縦軸を標品重量と内部標準物質の重量比、横軸を標品と内部標準物質のGC面積比とした検量線を作成し、該検量線の傾きfを求めた。
(2)シメン濃度の含有量測定
[試料溶液調製]
20mLガラス容器に試料2g、n-テトラデカン0.1gを秤量した。
[GC測定]
試料溶液を前項のGC測定条件で測定し、試料中のシメン濃度を下式に従って求めた。
Ws:試料の重量(g)
Wis:n-テトラデカン(内部標準物質)の重量(g)
As:シメンのピーク面積カウン卜数
Ais:n-テトラデカン(内部標準物質)のピーク面積カウン卜数
f:シメン検量線の傾き
(シメン濃度(%))=f×(As/Ais)×(Wis/Ws)×100
 〔実施例1〕
 本明細書記載の方法に従って、酸化工程、エポキシ化工程、分離工程およびクメン変換工程を実施した。
 酸化工程において、クメンとシメンを含有する混合物と空気とを接触させ、上記混合物中のクメンと、上記空気中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得た。次に、エポキシ化工程において、チタン含有ケイ素酸化物触媒存在下、上記酸化工程で得た上記クメンハイドロパーオキサイドを含有する反応混合物と、プロピレンとを接触させ、上記反応混合物中のクメンハイドロパーオキサイドと、プロピレンとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得た。次に分離工程において、上記エポキシ化工程で得た上記プロピレンオキサイドとクミルアルコールとを含有する反応混合物から該プロピレンオキサイドを含有する混合物を分離し、該クミルアルコールを含有する残留混合物を得た。次いで、クメン変換工程において、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水し、α-メチルスチレンを含有する混合物を得、次いで、触媒の存在下、α-メチルスチレンを含有する該混合物と水素とを接触させ、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得た。その結果、酸化工程で使用したクメンとシメンを含有する混合物と比較して、クメン変換工程後のクメンとシメンを含有する反応混合物中のシメン濃度は2重量ppm増加した。
 次に、下記の条件でクメン回収工程を行う。
クメン回収工程:クメン変換工程後のクメンとシメンを含有する反応混合物を、含有するシメンの内2重量%(該シメン重量割合は、上記クメン変換工程で得た上記クメンを含有する反応混合物に含有されるシメンの重量を基準として計算される)が除去される条件で蒸留することにより、クメンとシメンとを含有する回収混合物を得る。
 クメン回収工程にて得られるクメンとシメンとを含有する回収混合物を、酸化工程における酸化反応に用いるクメンとシメンとを含有する混合物の99重量%となるように用いて、シメン濃度が定常になるまで酸化工程、エポキシ化工程、分離工程、クメン変換工程、クメン回収工程を実施する。定常時にクメン回収工程で得るクメンとシメンとを含有する回収混合物中のシメン濃度はクメンとシメンとを含有する回収混合物に対し100重量ppmである。
 〔実施例2〕
 本明細書記載の方法に従って、酸化工程、エポキシ化工程、分離工程およびクメン変換工程を実施した。
 酸化工程においてクメンとシメンを含有する混合物と空気とを接触させ、上記混合物中のクメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得た。次に、エポキシ化工程においてチタン含有ケイ素酸化物触媒存在下、上記酸化工程で得た上記クメンハイドロパーオキサイドを含有する反応混合物と、プロピレンとを接触させ、上記反応混合物中のクメンハイドロパーオキサイドと、プロピレンとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得た。次に分離工程において、上記エポキシ化工程で得た上記プロピレンオキサイドとクミルアルコールとを含有する反応混合物から該プロピレンオキサイドを含有する混合物を分離し、該クミルアルコールを含有する残留混合物を得た。次いで、クメン変換工程において、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水し、α-メチルスチレンを含有する混合物を得、次いで、触媒の存在下、α-メチルスチレンを含有する該混合物と水素とを接触させ、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得た。その結果、酸化工程で使用したクメンとシメンを含有する混合物と比較して、クメン変換工程後のクメンとシメンを含有する反応混合物中のシメン濃度は2重量ppm増加した。
 次に、下記の条件でクメン回収工程を行った。
クメン回収工程:クメン変換工程後のクメンとシメンを含有する反応混合物を、含有するシメンの内1重量%(該シメン重量割合は、上記クメン変換工程で得た上記クメンを含有する反応混合物に含有されるシメンの重量を基準として計算される)が除去される条件で蒸留することにより、クメンとシメンとを含有する回収混合物を得た。
 クメン回収工程にて得られるクメンとシメンとを含有する回収混合物を、酸化工程における酸化反応に用いるクメンとシメンとを含有する混合物の99重量%となるように用いて、シメン濃度が定常になるまで酸化工程、エポキシ化工程、分離工程、クメン変換工程、クメン回収工程を実施した。定常時にクメン回収工程で得るクメンとシメンとを含有する回収混合物中のシメン濃度はクメンとシメンとを含有する回収混合物に対し200重量ppmであった。
 〔実施例3〕
 クメン変換工程後のクメンとシメンを含有する反応混合物を、含有するシメンの内0.2重量%が除去される条件で蒸留する以外は実施例1と同様に実施する。定常時にクメン回収工程で得るクメンとシメンとを含有する回収混合物中のシメン濃度はクメンとシメンとを含有する回収混合物に対し1000重量ppmである。
 〔実施例4〕
 クメン変換工程後のクメンとシメンを含有する反応混合物を、含有するシメンの内0.04重量%が除去される条件で蒸留する以外は実施例1と同様に実施する。定常時にクメン回収工程で得るクメンとシメンとを含有する回収混合物中のシメン濃度はクメンとシメンとを含有する回収混合物に対し5000重量ppmである。
 〔比較例1〕
 クメン変換工程後のクメンとシメンを含有する反応混合物を、含有するシメンの内0.02重量%が除去される条件で蒸留する以外は実施例1と同様に実施する。定常時にクメン回収工程で得るクメンとシメンとを含有する回収混合物中のシメン濃度はクメンとシメンとを含有する回収混合物に対し10000重量ppmである。
 〔実施例5〕
 <酸化工程>
 下記の条件で酸化反応を行った。
 実施例2で得たクメンとシメンとを含有する回収混合物とクメンとを混合し、混合物Aを作製した。該混合物Aの重量を基準として計算されたシメン濃度は100重量ppmであった。
 1Lガラス製オートクレーブを反応釜とした連続流通反応装置を用い、以下の実験を行った。混合物A513gおよびpH=9に調整した炭酸ナトリウム水溶液12gを入れた反応釜に、混合物Aを126g/時間、pH=9に調整した炭酸ナトリウム水溶液を5.3g/時間および空気を270NmL/分でそれぞれ供給し、液およびガスを抜き出しながら釜内の液量が一定となるように圧力0.6MPa-Gで連続流通反応させ、クメンハイドロパーオキサイドを含有する反応混合物を得た。反応が定常化した状態での反応温度は112.5℃であり、クメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイド濃度はクメンハイドロパーオキサイドを含有する該反応混合物に対して16.1重量%であった。
 <エポキシ化工程>
 次に下記の条件でエポキシ化反応を行った。
 上記酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物60gおよびプロピレン33gを、特許3797107号公報の方法で製造したチタン含有ケイ素酸化物触媒0.5g存在下で100℃、1.8MPa-Gの条件で1.5時間反応させ、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得た。クメンハイドロパーオキサイドの転化率は94%であった。
 〔実施例6〕
 <酸化工程>
 下記の条件で酸化反応を行った。
 実施例2で得たクメンとシメンとを含有する回収混合物とシメンとを混合し、得られる混合物の重量を基準として計算されたシメン濃度が1000重量ppmとなるように、混合物Bを作製した。
 混合物Aを混合物Bに換え、反応が定常化した状態での反応混合物中のクメンハイドロパーオキサイド濃度が実施例5と同程度となるように反応温度を調整したこと以外は実施例5と同様に酸化反応を実施した。その結果、反応温度は114.5℃であり、クメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイド濃度はクメンハイドロパーオキサイドを含有する該反応混合物に対して15.3重量%であった。
 <エポキシ化工程>
 次に下記の条件でエポキシ化反応を行った。
 上記酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を使用する以外は実施例5と同様にエポキシ化反応を実施した。その結果、クメンハイドロパーオキサイドの転化率は92%であった。
 〔実施例7〕
 <酸化工程>
 実施例2で得たクメンとシメンとを含有する回収混合物とシメンとを混合し、得られる混合物の重量を基準として計算されたシメン濃度が5000重量ppmとなるように、混合物Cを作製した。
 混合物Aを混合物Cに換え、反応が定常化した状態での反応混合物中のクメンハイドロパーオキサイド濃度が実施例5と同程度となるように反応温度を調整したこと以外は実施例5と同様に酸化反応を実施した。その結果、反応温度は116℃であり、クメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイド濃度はクメンハイドロパーオキサイドを含有する反応混合物に対して15.7重量%であった。
 <エポキシ化工程>
 次に上記酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を使用する以外は実施例5と同様にエポキシ化反応を実施した。その結果、クメンハイドロパーオキサイドの転化率は91%であった。
 〔比較例2〕
 <酸化工程>
 実施例2で得たクメンとシメンとを含有する回収混合物とシメンとを混合し、得られる混合物の重量を基準として計算されたシメン濃度が10000重量ppmとなるように、混合物Dを作製した。
 混合物Aを混合物Dに換え、反応が定常化した状態での反応混合物中のクメンハイドロパーオキサイド濃度が実施例5と同程度となるように反応温度を調整したこと以外は実施例5と同様に酸化反応を実施した。その結果、反応温度は116.3℃であり、クメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイド濃度はクメンハイドロパーオキサイドを含有する反応混合物に対して15.5重量%であった。
 <エポキシ化工程>
 次に上記酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を使用する以外は実施例5と同様にエポキシ化反応を実施した。その結果、クメンハイドロパーオキサイドの転化率は87%であった。
 上記実施例5、実施例6、実施例7および比較例2は、酸化工程において、クメンとシメンとを含有する混合物中のシメン濃度が異なっている場合であって、反応が定常化した状態での反応混合物中のクメンハイドロパーオキサイド濃度がいずれも同程度となるように調整した場合の酸化反応温度を示している。上記実施例5、実施例6、実施例7および比較例2の結果から、実施例の方が同等の滞留時間で同等の濃度のクメンハイドロパーオキサイドを得るときの反応温度をより低くすることができており、酸化反応速度がより速いことがわかる。
 以上説明したとおり、本発明により、原料として用いるクメンをリサイクルしてプロピレンオキサイドを製造する方法において、酸化工程におけるクメンの酸化反応速度、およびエポキシ化工程におけるクメンハイドロパーオキサイドの転化率を向上させ、より効率的にプロピレンオキサイドを製造することができるという優れた特徴を有するプロピレンオキサイドの製造方法を提供する。
 本発明は、プロピレンオキサイドの工業的製造に利用することができる。

Claims (8)

  1.  下記の1)~5)の工程を含むプロピレンオキサイドの製造方法であって、
     1)酸化工程: クメンとシメンとを含有する混合物と、酸素を含有するガスとを接触させ、上記混合物中のクメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程
     2)エポキシ化工程: 触媒の存在下、上記酸化工程で得たクメンハイドロパーオキサイドを含有する上記反応混合物と、プロピレンとを接触させ、上記反応混合物中のクメンハイドロパーオキサイドと、プロピレンとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程
     3)分離工程: 上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する上記反応混合物からプロピレンオキサイドを含有する混合物を分離し、クミルアルコールを含有する残留混合物を得る工程
     4)クメン変換工程: 上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールをクメンに変換し、クメンを含有する反応混合物を得る工程
     5)クメン回収工程: 上記クメン変換工程で得たクメンを含有する上記反応混合物を蒸留することにより、シメン濃度が100重量ppm以上10000重量ppm未満であるクメンとシメンとを含有する回収混合物(該シメン濃度は、クメン回収工程で得られるクメンとシメンとを含有する該回収混合物の重量を基準として計算される)を得る工程
     上記酸化工程において、クメンとシメンとを含有する上記混合物の少なくとも一部が、上記クメン回収工程で得たクメンとシメンとを含有する上記回収混合物であることを特徴とする方法。
  2.  前記クメン変換工程が、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水してα-メチルスチレンを含有する混合物を得、次いで、触媒の存在下、α-メチルスチレンを含有する上記混合物と水素とを接触させて、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である請求項1に記載のプロピレンオキサイドの製造方法。
  3.  前記クメン変換工程が、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物と水素とを接触させて、上記残留混合物中のクミルアルコールと水素とを反応させることにより、クメンを含有する反応混合物を得る工程である請求項1に記載のプロピレンオキサイドの製造方法。
  4.  上記クメン回収工程において、上記クメン変換工程で得たクメンを含有する上記反応混合物に含有されるシメンの0.025重量%以上(該シメン重量割合は、上記クメン変換工程で得たクメンを含有する上記反応混合物に含有されるシメンの重量を基準として計算される)を除去する条件で蒸留することを特徴とする請求項1~3のいずれか一項に記載のプロピレンオキサイドの製造方法。
  5.  上記エポキシ化工程において、クメンハイドロパーオキサイドを含有する上記反応混合物中のシメン濃度が100重量ppm以上10000重量ppm未満である(該シメン濃度は、クメンハイドロパーオキサイドを含有する該反応混合物の重量を基準として計算される)ことを特徴とする請求項1~4のいずれか一項に記載のプロピレンオキサイドの製造方法。
  6.  上記エポキシ化工程において、上記触媒が固体触媒であることを特徴とする請求項1~5のいずれか一項に記載のプロピレンオキサイドの製造方法。
  7.  上記エポキシ化工程において、上記触媒がチタン含有ケイ素酸化物からなることを特徴とする請求項1~6のいずれか一項に記載のプロピレンオキサイドの製造方法。
  8.  下記の工程を更に含むことを特徴とする請求項1~7のいずれか一項に記載のプロピレンオキサイドの製造方法。
     プロピレンオキサイド精製工程:上記分離工程で分離されたプロピレンオキサイドを含有する上記混合物を蒸留することにより、精製されたプロピレンオキサイドを得る工程
PCT/JP2017/023133 2016-06-30 2017-06-23 プロピレンオキサイドの製造方法 WO2018003677A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020197000907A KR102271104B1 (ko) 2016-06-30 2017-06-23 프로필렌옥사이드의 제조 방법
MYPI2018003019A MY189254A (en) 2016-06-30 2017-06-23 Method for producing propylene oxide
SG11201811675RA SG11201811675RA (en) 2016-06-30 2017-06-23 Method for producing propylene oxide
PL17820034T PL3480189T3 (pl) 2016-06-30 2017-06-23 Sposób wytwarzania tlenku propylenu
JP2018525128A JP6748205B2 (ja) 2016-06-30 2017-06-23 プロピレンオキサイドの製造方法
MX2018016025A MX2018016025A (es) 2016-06-30 2017-06-23 Metodo para produccion de oxido de propileno.
EP17820034.1A EP3480189B1 (en) 2016-06-30 2017-06-23 Method for producing propylene oxide
CN201780039903.2A CN109415331B (zh) 2016-06-30 2017-06-23 环氧丙烷的制造方法
SA518400754A SA518400754B1 (ar) 2016-06-30 2018-12-26 طريقة لإنتاج أكسيد البروبيلين

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-130588 2016-06-30
JP2016130588 2016-06-30
JP2016253298 2016-12-27
JP2016-253298 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018003677A1 true WO2018003677A1 (ja) 2018-01-04

Family

ID=60787242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023133 WO2018003677A1 (ja) 2016-06-30 2017-06-23 プロピレンオキサイドの製造方法

Country Status (11)

Country Link
EP (1) EP3480189B1 (ja)
JP (1) JP6748205B2 (ja)
KR (1) KR102271104B1 (ja)
CN (1) CN109415331B (ja)
HU (1) HUE058077T2 (ja)
MX (1) MX2018016025A (ja)
MY (1) MY189254A (ja)
PL (1) PL3480189T3 (ja)
SA (1) SA518400754B1 (ja)
SG (1) SG11201811675RA (ja)
WO (1) WO2018003677A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202128A1 (ja) * 2021-03-24 2022-09-29 住友化学株式会社 クメンハイドロパーオキサイドの製造設備及び製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436726B (zh) * 2020-10-16 2024-06-28 中国石油化工股份有限公司 一种异丙苯的制备方法及其所得异丙苯和过氧化异丙苯的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089378A (ja) * 2003-09-18 2005-04-07 Sumitomo Chemical Co Ltd 有機過酸化物の製造方法
JP2005089411A (ja) * 2003-09-19 2005-04-07 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005120076A (ja) * 2003-09-25 2005-05-12 Sumitomo Chemical Co Ltd クメンの製造方法およびその製造方法を含むプロピレンオキサイドの製造方法
JP2011201821A (ja) * 2010-03-26 2011-10-13 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097212A (ja) 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
ES2759938T3 (es) * 2012-06-27 2020-05-12 Badger Licensing Llc Procedimiento de producción de cumeno

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089378A (ja) * 2003-09-18 2005-04-07 Sumitomo Chemical Co Ltd 有機過酸化物の製造方法
JP2005089411A (ja) * 2003-09-19 2005-04-07 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005120076A (ja) * 2003-09-25 2005-05-12 Sumitomo Chemical Co Ltd クメンの製造方法およびその製造方法を含むプロピレンオキサイドの製造方法
JP2011201821A (ja) * 2010-03-26 2011-10-13 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480189A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202128A1 (ja) * 2021-03-24 2022-09-29 住友化学株式会社 クメンハイドロパーオキサイドの製造設備及び製造方法

Also Published As

Publication number Publication date
CN109415331B (zh) 2022-07-12
HUE058077T2 (hu) 2022-07-28
CN109415331A (zh) 2019-03-01
EP3480189A4 (en) 2019-11-20
MX2018016025A (es) 2019-05-13
PL3480189T3 (pl) 2022-03-07
JPWO2018003677A1 (ja) 2019-04-18
MY189254A (en) 2022-01-31
JP6748205B2 (ja) 2020-08-26
SA518400754B1 (ar) 2021-11-18
EP3480189B1 (en) 2021-11-24
KR20190024960A (ko) 2019-03-08
KR102271104B1 (ko) 2021-06-29
SG11201811675RA (en) 2019-01-30
EP3480189A1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
US9102641B2 (en) Method for producing propylene oxide
EP1266894B1 (en) Process for producing propylene oxide
JP6748205B2 (ja) プロピレンオキサイドの製造方法
KR101108422B1 (ko) 프로필렌옥시드의 정제 방법
JP4400120B2 (ja) クメンの製造方法
KR102407301B1 (ko) 프로필렌옥사이드의 제조 방법
JP2003238546A (ja) プロピレンオキサイドの回収方法
JP2009007294A (ja) プロピレンオキサイドの製造方法
JP2009167130A (ja) プロピレンオキサイドの製造方法
WO2005030742A1 (ja) プロピレンオキサイドの製造方法
JP2005097175A (ja) プロピレンオキサイドの製造方法
JP2005097183A (ja) プロピレンオキサイドの製造方法
JP2005097174A (ja) プロピレンオキサイドの製造方法
JP2005314269A (ja) ジヒドロキシベンゼンとジイソプロペニルベンゼンの併産方法
JP2005089411A (ja) プロピレンオキサイドの製造方法
JP2005097210A (ja) クメンの製造方法
JP2005097182A (ja) プロピレンオキサイドの製造方法
JP2004292336A (ja) クメンの製造方法
JP2005097212A (ja) プロピレンオキサイドの製造方法
JP2005089410A (ja) プロピレンオキサイドの製造方法
JP2005097211A (ja) プロピレンオキサイドの製造方法
JP2005097187A (ja) プロピレンオキサイドの製造方法
JP2005097181A (ja) プロピレンオキサイドの製造方法
JP2005097180A (ja) プロピレンオキサイドの製造方法
JP2005097214A (ja) プロピレンオキサイドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000907

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017820034

Country of ref document: EP

Effective date: 20190130