WO2018000730A1 - 一种含六价铬废渣的资源循环再利用的处理方法 - Google Patents
一种含六价铬废渣的资源循环再利用的处理方法 Download PDFInfo
- Publication number
- WO2018000730A1 WO2018000730A1 PCT/CN2016/108757 CN2016108757W WO2018000730A1 WO 2018000730 A1 WO2018000730 A1 WO 2018000730A1 CN 2016108757 W CN2016108757 W CN 2016108757W WO 2018000730 A1 WO2018000730 A1 WO 2018000730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chromium
- hexavalent chromium
- recycling
- residue
- treatment
- Prior art date
Links
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004064 recycling Methods 0.000 title claims abstract description 26
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000011651 chromium Substances 0.000 claims abstract description 55
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 46
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000243 solution Substances 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims abstract description 16
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 14
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000006228 supernatant Substances 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 5
- 239000011259 mixed solution Substances 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims abstract description 3
- 239000002699 waste material Substances 0.000 claims description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 238000001784 detoxification Methods 0.000 abstract description 12
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000004140 cleaning Methods 0.000 abstract description 2
- 239000002893 slag Substances 0.000 description 29
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 15
- 239000002245 particle Substances 0.000 description 8
- 235000011132 calcium sulphate Nutrition 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000001175 calcium sulphate Substances 0.000 description 5
- 238000002386 leaching Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010335 hydrothermal treatment Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 4
- 229960002218 sodium chlorite Drugs 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000010170 biological method Methods 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000002910 solid waste Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 150000001844 chromium Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- ZODDGFAZWTZOSI-UHFFFAOYSA-N nitric acid;sulfuric acid Chemical compound O[N+]([O-])=O.OS(O)(=O)=O ZODDGFAZWTZOSI-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- PXLIDIMHPNPGMH-UHFFFAOYSA-N sodium chromate Chemical compound [Na+].[Na+].[O-][Cr]([O-])(=O)=O PXLIDIMHPNPGMH-UHFFFAOYSA-N 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/30—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
- A62D3/36—Detoxification by using acid or alkaline reagents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/80—Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G37/00—Compounds of chromium
- C01G37/02—Oxides or hydrates thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/32—Obtaining chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention belongs to the field of cleaning treatment of chromium slag and recycling of resources, and particularly relates to a treatment method for recycling and recycling of resources containing hexavalent chromium waste residue.
- the chromium salt production and application industry produces a large amount of hexavalent chromium residue in the production process.
- a large amount of hexavalent chromium will be slowly released into the environment, which not only causes serious pollution to the surrounding environment, but also wastes a lot of metal chromium resources.
- the core idea is to reduce or fix hexavalent chromium after storage or landfill, mainly including wet detoxification, dry detoxification and biological methods.
- Wet detoxification is to transfer hexavalent chromium in the chromium residue to the aqueous phase by alkali or acid leaching, and then reduce the hexavalent chromium to trivalent chromium by adding a reducing agent to achieve detoxification; but the trivalent chromium after reduction with the environment The change will be oxidized to hexavalent chromium, which cannot be completely detoxified, and the treated waste is difficult to be applied and requires a large amount of land for stacking.
- Dry detoxification is carried out in a high-temperature reducing atmosphere, reducing hexavalent chromium to trivalent chromium and solid-sealing in the sintered ore to achieve detoxification purposes, but the method requires a higher detoxification temperature (generally above 800 degrees) And the flue gas generated by calcination will cause secondary pollution, and it is necessary to increase the de-dusting and dust removal equipment, so that the cost increases.
- Biological methods are receiving more and more attention because of their non-pollution and low cost. However, biological methods also have some shortcomings, such as long startup time, slow processing speed, and large organic matter consumption.
- the ideal method is to extract and reuse the chromium in the chromium slag into the industry, reduce the emission of chromium from the source, turn waste into treasure, and turn harm into profit, and harvest resources while reducing pollution.
- the Chinese patent "a method for recovering hexavalent chromium resources from chromium slag" leaches water-soluble and acid-soluble hexavalent chromium at room temperature with sulfuric acid or hydrochloric acid, and then collects the leached chromium resources through reduction and precipitation.
- the recovery rate of chromium in the chromium slag can reach 60%-80%, some hexavalent chromium remains in the slag after treatment, and the detoxification of the chromium slag is not thorough, and the slag is difficult to comprehensively utilize after treatment, and there are still environmental hazards.
- the object of the present invention is to provide a treatment method for recycling and recycling of resources containing hexavalent chromium waste slag in view of the deficiencies of the existing hexavalent chromium waste residue treatment technology.
- the method has the advantages of simple process, small investment, quick effect and thorough detoxification, and can fully extract hexavalent chromium, effectively treat chromium pollution without causing secondary pollution.
- the chromium extracted by this method can be reused in production, such as paint, pigment, papermaking, etc., to realize turning waste into treasure.
- the filter residue obtained by the method can be used in the rubber, plastic, fertilizer, paint, textile, paper and other industries.
- a method for recycling resources of hexavalent chromium waste slag the steps are as follows:
- the mineralizer is sodium chlorate, sodium perchlorate and hydrochloric acid
- step 3 using a hydrothermal method or direct heat treatment of the mixture obtained in step 2);
- the solid-liquid mass ratio is 1:0.5 to 1:10 (w/w).
- the concentration of the sodium chlorate in the mixture in the step 2) is 0.1 mol/L to 1 mol/L.
- the concentration of the sodium perchlorate in the mixture in the step 2) is 0.1 mol/L to 1 mol/L.
- the pH of the mixture in the step 2) is 0.5 to 5.
- the temperature of the hydrothermal method or the direct heating of the step 3) is controlled at 30 ° C ⁇ 250 ° C.
- the holding time in step 3) is 2 to 12 hours.
- the standing time of the step 4) is 0.5 to 48 hours.
- the step of recovering the chromium in the step 6) comprises: adding a reducing agent to the chromium-containing solution, reducing the hexavalent chromium in the solution to trivalent chromium, and adding a precipitating agent NaOH to produce a Cr(OH) 3 precipitate, and finally The Cr(OH) 3 precipitate is calcined to Cr 2 O 3 .
- a method for recycling resources of hexavalent chromium waste slag the steps are as follows:
- the solid residue ratio of waste slag containing hexavalent chromium and water is 1:0.5 ⁇ After mixing 1:10 (w/w), add sodium chlorate, sodium perchlorate, and hydrochloric acid to adjust the pH to 0.5 to 5.
- the set temperature is 30 ° C ⁇ 250 ° C, and the holding time is 2 ⁇ 12 hours.
- the separated supernatant liquid and the water for washing the filter residue can be reused in production or subjected to chromium recovery treatment.
- the invention provides a recycling and recycling method containing hexavalent chromium waste residue as follows:
- the raw slag mainly contains fine calcium sulfate dihydrate particles, and adsorbs sodium chloride, sodium chromate and the like.
- the mineralizer is added to the present invention, the hexavalent chromium in the chromium residue under acidic conditions is more easily dissolved into the aqueous phase, and the calcium sulfate is recrystallized and regenerated in the mineralizer solution, and the solid particles are solid. The growth and specific surface area are reduced, and hexavalent chromium is desorbed and separated from the surface of the particles.
- the obtained detoxified filter residue is mainly composed of calcium sulfate dihydrate.
- the solid slag and the chromium-containing supernatant are not immediately separated, but the treated reaction system is naturally cooled and aged for a while. Natural cooling is because if the cooling rate is too fast by quenching, the stable calcium sulfate hemihydrate under high temperature will be quickly converted into stable calcium sulfate dihydrate under low temperature conditions, which will cause the slurry to harden and agglomerate, giving the treatment process belt It is difficult. Controlling the aging time can regulate the growth degree of calcium sulphate grains in the waste residue.
- the particle size When the particle size is large, the adsorption capacity of calcium sulphate to hexavalent chromium can be reduced, and the washing and separation of hexavalent chromium is simpler, and the elution water consumption is less. .
- the particle size of calcium sulphate in the slag is increased, and the slag traits are also changed: the adsorption on the surface of the granule is reduced, and the chromate ion is more easily desorbed and dissolved. In water; at the same time, the specific gravity of the particles increases, and solid-liquid separation is easy.
- the detoxification slag is in accordance with national standards (HJ/T 299-2007 solid waste leaching toxicity method sulfuric acid nitric acid method) for chromium leaching test, leaching hexavalent chromium content ⁇ 3mg / L, total chromium content ⁇ 9 mg / L, lower than national standards (HJ / T 301-2007) Limitations of general industrial solid waste.
- the ions in the treated hexavalent chromium-containing supernatant are mainly sodium ions, chloride ions, chlorate and chromate ions, which are beneficial for recycling to the production section.
- the present invention has the following advantages and technical effects:
- the invention solves the problems that the hexavalent chromium residue leaching treatment is difficult, the cost is high, the chromium recovery is difficult, and the supernatant liquid after the waste residue treatment is treated and reused in industrial production or made into a chromium salt product.
- the leached hexavalent chromium content of the treated residue is lower than the national standard (HJ/T 301-2007) General industrial solid waste residue, and high purity, can be used in rubber, plastics, fertilizer, paint, textile, paper and other industries.
- the method has the advantages of simple process, low cost, quick effect, large processing capacity and thorough detoxification, and may realize full slag utilization, and has high social and economic benefits.
- chromium-containing solution into production, or collecting it in a wastewater treatment station for reduction, recovery, purification treatment, adding a reducing agent (such as sodium sulfide, sodium hydrogen sulfite) and a precipitant (NaOH) to dissolve the solution
- a reducing agent such as sodium sulfide, sodium hydrogen sulfite
- NaOH precipitant
- the valence chromium is reduced to trivalent chromium and a Cr(OH) 3 precipitate is formed.
- the water can reach the national drainage standard. Water can be recycled in the system throughout the process.
- the final products are mainly slag containing calcium sulphate and chrome mud mainly containing Cr(OH) 3 .
- Calcium sulphate can be used as raw materials in rubber, plastics, fertilizer, pesticide, paint, textile, paper and other industries.
- the chromium mud can be calcined into Cr 2 O 3 to achieve chromium recovery.
- the original chromium residue of the present embodiment leached a hexavalent chromium concentration of 265 mg/L, and the leached hexavalent chromium concentration after the treatment was 1.31 mg/L.
- the original chromium residue of this example has a hexavalent chromium concentration of 252 mg/L, and the leached hexavalent chromium concentration after treatment is 0.92 mg/L.
- the original chromium residue of this example leached a hexavalent chromium concentration of 269 mg/L, and the leached hexavalent chromium concentration after the treatment was 0.72 mg/L.
- the original chromium residue of this example has a hexavalent chromium concentration of 274 mg/L, and the leached hexavalent chromium concentration after treatment is 0.86 mg/L.
- the original chromium residue of this example has a hexavalent chromium concentration of 278 mg/L, and the leached hexavalent chromium concentration after treatment is 0.91 mg/L.
- the shorter the standing time after hydrothermal treatment or heat treatment the smaller the particle size of the treated slag, and the stronger the ability to re-adsorb hexavalent chromium, so more water is needed for washing, and recycling is more difficult.
- the longer the standing time is, the slag particle size after treatment will be larger, the washing water is less, and the recovery slag is more convenient, but the standing time is too long, and the color of the waste residue after the treatment will be yellowish, which affects the treatment effect of the waste residue.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
一种含六价铬废渣的资源循环再利用的处理方法,属于铬渣的清洁处理及资源的循环再利用领域。该方法的具体步骤为:1)向含六价铬的废渣中加入水,混合均匀;2)向步骤1)所得溶液中加入矿化剂,充分搅拌,得混合液;所述矿化剂为氯酸钠、高氯酸钠和盐酸;3)采用水热法或直接加热处理混合液;4)加热处理后,使固液混合物自然冷却至室温,静置;5)将固体渣与含铬上清液分离,并将滤渣用水洗涤再干燥;6)将含铬溶液回收并返回工段中,或者进行回收铬处理。工艺简单、成本低、见效快、处理量大、解毒彻底,可以实现全渣利用,具有较高的社会效益和经济效益。
Description
技术领域
本发明属于铬渣的清洁处理及资源的循环再利用领域,具体涉及 一种含六价铬废渣的资源循环再利用的处理方法。
背景技术
铬盐生产及应用行业在生产过程中会产生大量的含六价铬废渣。在含铬废渣的转运和储存过程中,若长时间受到风化和雨水浸泡,大量六价铬会缓慢释放到环境当中,不仅对周边环境造成严重污染,而且也浪费了大量的金属铬资源。
目前针对含六价铬废渣的处理方法,核心思路还是将六价铬还原固定后堆存或填埋,主要包括湿法解毒、干法解毒和生物法。湿法解毒是通过碱或酸浸出将铬渣中的六价铬转移至水相,然后加入还原剂将六价铬还原为三价铬,以达到解毒作用;但是还原后的三价铬随环境的变化又会氧化成六价铬,不能彻底解毒,并且处理后的废渣难以得到应用还需占用大量的土地进行堆放。干法解毒是在高温还原性气氛下焙烧,将六价铬还原成三价铬并固封于烧结矿中以达到解毒的目的,但是该方法需要较高的解毒温度(一般在800度以上),而且锻烧产生的烟气将造成二次污染,需要增加除烟除尘设备,使得成本上升。生物法因其无污染、成本低等优点受到越来越多的关注,但生物法也存在一些缺点,如启动时间长、处理速度慢、有机物耗量大等。
上述这些方法都只是将六价铬还原并固定,铬仍然排放在环境中,不仅铬资源得不到回收和利用,而且存在“返黄”等二次污染。因此,较理想的方法是将铬渣中的铬提取并回用到工业中,从源头上减少铬的排放,变废为宝、化害为利,在减少污染的同时收获资源。
中国专利“一种从铬渣中回收六价铬资源的方法”(CN102191390A)采用常温下硫酸或盐酸浸出水溶性和酸溶性的六价铬,然后经过还原和沉淀收集浸出的铬资源。虽然该方法铬渣中铬的回收率可以达到60%-80%,但是处理后渣中仍残留部分六价铬,铬渣解毒不彻底,处理后渣难以综合利用,而且仍存在环境隐患。中国专利“循环再利用处理铬渣及废水工艺”(CN102699006A),在常温条件下先用酸将铬渣几乎完全溶解,然后分别加入不同的沉淀剂,将溶液中的混合离子沉淀和分离。这种方法需要消耗大量的酸和沉淀剂等化学试剂,而且工艺流程繁杂,处理成本较高。
发明内容
本发明的目的是针对现有含六价铬废渣处理技术的不足,提供一种含六价铬废渣的资源循环再利用的处理方法。该方法工艺简单、投资小、见效快、解毒彻底,可以充分提取六价铬、有效治理铬污染又不造成二次污染。采用该方法提取的铬,可以重新回用到生产中,如涂料、颜料、造纸等,实现变废为宝。采用该方法得到的滤渣可用于橡胶、塑料、肥料、油漆、纺织、造纸等行业。
本发明的目的通过以下技术方案实现。
一种含六价铬废渣的资源循环再利用的处理方法,步骤如下:
1)向含六价铬的废渣中加入水,混合均匀;
2)向步骤1)所得溶液中加入矿化剂,充分搅拌,得混合液;所述矿化剂为氯酸钠、高氯酸钠和盐酸;
3)采用水热法或直接加热处理步骤2)所得混合液;
4)将步骤3)所得固液混合物自然冷却至室温,静置;
5)将固体渣与含铬上清液分离,并将滤渣用水洗涤再干燥;
6)将含铬溶液回收并返回工段中,或者进行回收铬处理。
进一步地,步骤1)所述含六价铬的废渣中加入水后固液质量比为1:0.5 ~ 1:10(w/w)。
进一步地,步骤2)所述氯酸钠在混合液中的浓度为0.1 mol/L ~ 1 mol/L。
进一步地,步骤2)所述高氯酸钠在混合液中的浓度为0.1 mol/L ~ 1 mol/L。
进一步地,步骤2)所述混合液的pH为0.5 ~ 5。
进一步地,步骤3)所述水热法或直接加热的温度均控制在30℃ ~ 250℃。
进一步地,步骤3)中保温时间为2 ~ 12小时 。
进一步地,步骤4)所述静置的时间为0.5 ~ 48小时。
进一步地,步骤6)所述回收铬处理具体步骤为:向含铬溶液中加入还原剂,将溶液中六价铬还原为三价铬,再加入沉淀剂NaOH生产Cr(OH)3沉淀,最后把Cr(OH)3沉淀煅烧成Cr2O3。
一种含六价铬废渣的资源循环再利用的处理方法,步骤如下:
(1)将含六价铬的废渣和水按固液比1:0.5 ~
1:10(w/w)混合均匀后,加入氯酸钠、高氯酸钠、盐酸,调节pH到0.5 ~ 5。
(2)充分搅拌,使废渣和溶液充分混合。
(3)设定温度为30℃ ~ 250℃,保温时间为2 ~ 12小时。
(4)停止加热,让其自然冷却,静置时间为0.5 ~ 48小时。
(5)水热处理或者加热处理结束后,废渣固体沉淀在底部,上层清液含浓度较高的六价铬。
(6)将固体渣与含铬上清液过滤分离,并将固体渣渣进行洗涤、脱水和干燥。
(7)分离出的上层清液和洗涤滤渣的水可回用到生产中或者进行回收铬处理。
本发明提供一种含六价铬废渣的循环再利用处理方法原理如下:
原渣中主要含有细小的二水硫酸钙颗粒,吸附有氯化钠、铬酸钠等。本发明加入矿化剂在进行水热处理或加热处理时,酸性条件下的铬渣中的六价铬更容易溶解到水相中,而硫酸钙在矿化剂溶液中重新结晶再生长,固体颗粒长大、比表面积减小,实现六价铬从颗粒表面脱附并分离。
原渣在经过上述方法处理之后,得到的脱毒滤渣,其主要成分为二水硫酸钙。加热处理后,先不立即分离固体渣和含铬上清液,而是让处理后的反应体系自然冷却,并陈化一段时间。自然冷却是因为若通过骤冷,冷却速度太快,高温条件下稳定的半水硫酸钙会迅速转变成低温条件下稳定的二水硫酸钙,从而造成浆体硬化和结块,给处理工艺带来困难。控制陈化时间可以调控废渣中硫酸钙晶粒生长程度,颗粒尺寸较大时,可以减小硫酸钙对六价铬的吸附能力,使洗涤分离六价铬时更加简单,洗脱用水量更少。
经水热法或加热法处理、陈化处理过后,废渣中硫酸钙粒径有所增大,废渣性状也随之改变:颗粒表面吸附作用减小,铬酸根离子也更容易脱附并溶于水中;同时颗粒比重增大,固液分离容易。经上述方法处理后,脱毒渣按国家标准(HJ/T
299-2007固体废物浸出毒性方法硫酸硝酸法)进行铬浸出测试,浸出六价铬含量<3mg/L,总铬含量<9 mg/L,低于国家标准(HJ/T
301-2007)一般工业固体废渣的限制。处理后的含六价铬上清液中的离子主要是钠离子、氯离子、氯酸根和铬酸根离子,有利于回收利用到生产工段。
与现有技术相比,本发明具有如下优点与技术效果:
本发明解决了含六价铬废渣浸出处理难、成本高、铬回收难等问题,而且废渣处理后的上层清液经过处理后回用到工业生产中或制成铬盐产品。处理后的滤渣浸出六价铬的含量低于国家标准(HJ/T
301-2007)一般工业固体废渣的限制,而且纯度高,可用于橡胶、塑料、肥料、油漆、纺织、造纸等行业。本方法工艺简单、成本低、见效快、处理量大、解毒彻底,可能实现全渣利用,具有较高的社会效益和经济效益。
具体实施方式
以下结合实施例对本发明作进一步地说明,但本发明的实施方式不限于此。
实施例1
1)取0.5
吨含六价铬的废渣放入水热釜中,再加入水使固液比为1:1(w/w),充分搅拌,加入氯酸钠、高氯酸钠、盐酸,并调节体系中氯酸钠的浓度为0.5
mol/L,高氯酸钠的浓度为1 mol/L,pH=0.5,设定温度为100℃,保温2 h。
2)2h后,停止加热,自然缓慢冷却至室温,静置24 h。
3)静置结束后,倒出上层含六价铬的溶液。对水热处理静置后的渣进行离心洗涤脱水,将滤渣干燥,得白色或白色偏黄固体。
4)将含铬溶液回用到生产中,或者汇集于废水处理站,进行还原、回收、净化处理,加入还原剂(如硫化钠、亚硫酸氢钠)和沉淀剂(NaOH),将溶液六价铬还原为三价铬,并生成Cr(OH)3沉淀,经处理后水可以达到国家排水标准。整个过程中,水在系统中可以循环利用。
5)最后产物分别是主要含硫酸钙的渣和主要含Cr(OH)3的铬泥,硫酸钙渣可以作为原料用于橡胶、塑料、肥料、农药、油漆、纺织、造纸等行业。铬泥可以煅烧成Cr2O3,实现铬的回收。
本实施例的原始铬渣浸出六价铬浓度为265 mg/L,处理后浸出六价铬浓度为1.31mg/L。
实施例2
取1吨含六价铬废渣放入水热釜中,再加入水使固液比为1:2(w/w),充分搅拌,加入氯酸钠、高氯酸钠、盐酸,并调节体系中氯酸钠的浓度为1
mol/L,高氯酸钠的浓度为0.5 mol/L,加入盐酸至pH=5,充分搅拌,关闭水热釜,设定温度为140℃,保温5 h,停止加热后静置48
h。其他工艺过程与实施例1相同。
本实施例的原始铬渣浸出六价铬浓度为252 mg/L,处理后浸出六价铬浓度为0.92 mg/L。
实施例3
取1吨含六价铬废渣放入水热釜中,再加入水使固液比为1:5(w/w),充分搅拌,加入氯酸钠、高氯酸钠、盐酸,并调节体系中氯酸钠的浓度为1
mol/L,高氯酸钠的浓度为1 mol/L,加入盐酸至pH=0.5,充分搅拌,关闭水热釜,设定温度为30℃,保温12 h,停止加热后静置0.5
h。其他工艺过程与实施例1相同。
本实施例的原始铬渣浸出六价铬浓度为269 mg/L,处理后浸出六价铬浓度为0.72 mg/L。
实施例4
取1.5吨含六价铬废渣放入水热釜中,再加入水使固液比为1:10(w/w),充分搅拌,加入氯酸钠、高氯酸钠、盐酸,并调节体系中氯酸钠的浓度为0.5
mol/L,高氯酸钠的浓度为0.1 mol/L,pH=4,充分搅拌,关闭水热釜,设定温度为240℃,保温2 h,停止加热后静置24
h。其他工艺过程与实施例1相同。
本实施例的原始铬渣浸出六价铬浓度为274 mg/L,处理后浸出六价铬浓度为0.86 mg/L。
实施例5
取2吨含六价铬废渣放入水热釜中,再加入水使固液比为1:0.5(w/w),充分搅拌,加入氯酸钠、高氯酸钠、盐酸,并调节体系中氯酸钠的浓度为0.1
mol/L,高氯酸钠的浓度为0.5 mol/L,pH=2,充分搅拌,关闭水热釜,设定温度为80℃,保温12 h,停止加热后静置24
h。其他工艺过程与实施例1相同。
本实施例的原始铬渣浸出六价铬浓度为278 mg/L,处理后浸出六价铬浓度为0.91mg/L。
水热处理或加热处理后静置时间越短,处理后的渣的颗粒就越小,重新吸附六价铬的能力越强,故洗涤需要用的水更多,回收会更难。反之,静置时间越长,处理后的渣颗粒度会更大,洗涤用水更少,回收渣更方便,但静置时间过长,所得处理后废渣颜色会偏黄,影响废渣处理效果。
同理,根据权利要求限定的保护范围和本说明书给出的技术解决方案,还能给出多个实施案例,都属于本发明保护范围。
Claims (9)
- 一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤如下:1)向含六价铬的废渣中加入水,混合均匀;2)向步骤1)所得溶液中加入矿化剂,充分搅拌,得混合液;所述矿化剂为氯酸钠、高氯酸钠和盐酸;3)采用水热法或直接加热处理步骤2)所得混合液;4)将步骤3)所得固液混合物自然冷却至室温,静置;5)将固体渣与含铬上清液分离,并将滤渣用水洗涤再干燥;6)将含铬溶液回收并返回工段中,或者进行回收铬处理。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤1)所述含六价铬的废渣中加入水后固液比w/w为1:0.5 ~ 1:10。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤2)所述氯酸钠在混合液中的浓度为0.1 mol/L ~ 1 mol/L。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤2)所述高氯酸钠在混合液中的浓度为0.1 mol/L ~ 1 mol/L。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤2)所述混合液的pH为0.5 ~ 5。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤3)所述水热法或直接加热的温度均控制在30℃ ~ 250℃。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤3)中保温时间为2 ~ 12小时。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤4)所述静置的时间为0.5 ~ 48小时。
- 根据权利要求1所述的一种含六价铬废渣的资源循环再利用的处理方法,其特征在于,步骤6)所述回收铬处理具体步骤为:向含铬溶液中加入还原剂,将溶液中六价铬还原为三价铬,再加入沉淀剂NaOH生产Cr(OH)3沉淀,最后把Cr(OH)3沉淀煅烧成Cr2O3。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/074,104 US10569315B2 (en) | 2016-06-30 | 2016-12-07 | Treatment method for resource recycling of hexavalent chromium-containing residues |
EP16907119.8A EP3395456B1 (en) | 2016-06-30 | 2016-12-07 | Treatment method for resource recycling of hexavalent chromium-containing residues |
ZA2018/07180A ZA201807180B (en) | 2016-06-30 | 2018-10-26 | Treatment method for resource recycling of hexavalent chromium-containing residues |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610502468.X | 2016-06-30 | ||
CN201610502468.XA CN106048239B (zh) | 2016-06-30 | 2016-06-30 | 一种含六价铬废渣的资源循环再利用的处理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018000730A1 true WO2018000730A1 (zh) | 2018-01-04 |
Family
ID=57201290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/108757 WO2018000730A1 (zh) | 2016-06-30 | 2016-12-07 | 一种含六价铬废渣的资源循环再利用的处理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10569315B2 (zh) |
EP (1) | EP3395456B1 (zh) |
CN (1) | CN106048239B (zh) |
WO (1) | WO2018000730A1 (zh) |
ZA (1) | ZA201807180B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106048239B (zh) * | 2016-06-30 | 2018-07-20 | 华南理工大学 | 一种含六价铬废渣的资源循环再利用的处理方法 |
CN108330274B (zh) * | 2018-01-30 | 2019-11-15 | 华南理工大学 | 一种氯化焙烧联合水热矿化处理铬渣的方法 |
CN109280777A (zh) * | 2018-11-29 | 2019-01-29 | 华南理工大学 | 一种氯化焙烧法选择性回收电镀污泥中重金属的方法 |
CN110343875A (zh) * | 2019-08-19 | 2019-10-18 | 辛集市理联化工有限公司 | 一种含铬废弃物的综合利用工艺 |
CN111558595A (zh) * | 2019-12-12 | 2020-08-21 | 内蒙古兰太实业股份有限公司 | 一种氯酸钠含铬盐泥的处理工艺 |
CN113337722A (zh) * | 2021-06-07 | 2021-09-03 | 湖北大瀛复合材料有限公司 | 一种金属合金丝冶炼废渣回收处理设备 |
CN114835288B (zh) * | 2022-04-18 | 2023-05-09 | 佛山市三水凤铝铝业有限公司 | 一种含铬废液的处理方法 |
CN116002750B (zh) * | 2022-12-28 | 2024-04-23 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种熔盐氯化渣浸出回收TiO2的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB522561A (en) * | 1937-09-23 | 1940-06-20 | Marvin J Udy | Improvements in or relating to materials for use in the production of chromium and alloys containing chromium |
CN101116767A (zh) * | 2007-07-03 | 2008-02-06 | 重庆长江环保建设有限公司 | 铬毒零排放及资源完全利用新方法 |
CN101209873A (zh) * | 2006-12-27 | 2008-07-02 | 中国科学院福建物质结构研究所 | 含六价铬废渣的铬分离回收法 |
CN105016387A (zh) * | 2015-07-20 | 2015-11-04 | 中国科学院过程工程研究所 | 一种铬盐泥的处理方法 |
CN106048239A (zh) * | 2016-06-30 | 2016-10-26 | 华南理工大学 | 一种含六价铬废渣的资源循环再利用的处理方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1516774A (en) * | 1975-10-10 | 1978-07-05 | Anvar | Process for preparing chromium dioxide |
US5093089A (en) * | 1990-07-16 | 1992-03-03 | Chemetics International Company Ltd. | Process for the separation of sulphate |
US6254312B1 (en) * | 1998-06-18 | 2001-07-03 | Rmt, Inc. | Stabilization of arsenic-contaminated materials |
US7220394B2 (en) * | 2002-10-30 | 2007-05-22 | Council Of Scientific And Industrial Research | Process for simultaneous recovery of chromium and iron from chromite ore processing residue |
KR100720153B1 (ko) * | 2005-08-29 | 2007-05-18 | 한국화학연구원 | 크롬 함유 폐액에서 6가 크롬의 회수 방법 |
CN102191390A (zh) * | 2010-03-09 | 2011-09-21 | 刘杰 | 一种从铬渣中回收六价铬资源的方法 |
CN104609683B (zh) * | 2014-12-12 | 2016-10-05 | 浙江工商大学 | 一种铬鞣污泥中重金属铬的再生方法 |
-
2016
- 2016-06-30 CN CN201610502468.XA patent/CN106048239B/zh active Active
- 2016-12-07 WO PCT/CN2016/108757 patent/WO2018000730A1/zh active Application Filing
- 2016-12-07 EP EP16907119.8A patent/EP3395456B1/en active Active
- 2016-12-07 US US16/074,104 patent/US10569315B2/en active Active
-
2018
- 2018-10-26 ZA ZA2018/07180A patent/ZA201807180B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB522561A (en) * | 1937-09-23 | 1940-06-20 | Marvin J Udy | Improvements in or relating to materials for use in the production of chromium and alloys containing chromium |
CN101209873A (zh) * | 2006-12-27 | 2008-07-02 | 中国科学院福建物质结构研究所 | 含六价铬废渣的铬分离回收法 |
CN101116767A (zh) * | 2007-07-03 | 2008-02-06 | 重庆长江环保建设有限公司 | 铬毒零排放及资源完全利用新方法 |
CN105016387A (zh) * | 2015-07-20 | 2015-11-04 | 中国科学院过程工程研究所 | 一种铬盐泥的处理方法 |
CN106048239A (zh) * | 2016-06-30 | 2016-10-26 | 华南理工大学 | 一种含六价铬废渣的资源循环再利用的处理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20190284661A1 (en) | 2019-09-19 |
EP3395456A1 (en) | 2018-10-31 |
CN106048239B (zh) | 2018-07-20 |
EP3395456B1 (en) | 2020-07-15 |
US10569315B2 (en) | 2020-02-25 |
ZA201807180B (en) | 2019-07-31 |
EP3395456A4 (en) | 2019-09-04 |
CN106048239A (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018000730A1 (zh) | 一种含六价铬废渣的资源循环再利用的处理方法 | |
WO2018001090A1 (zh) | 一种含六价铬废渣提取回收铬的脱毒处理方法 | |
CN101209873B (zh) | 含六价铬废渣的铬分离回收法 | |
CN206359427U (zh) | 垃圾飞灰水洗预处理及水泥窑协同资源化处置系统 | |
US11028000B2 (en) | Method for preparing eridite rod-shaped particles for water treatment by utilizing wastewater | |
US5053144A (en) | Method for the multistage, waste-free processing of red mud to recover basic materials of chemical industry | |
CN106011482B (zh) | 一种铬渣的铬资源回收和脱毒处理方法 | |
CN109078962A (zh) | 一种含砷酸性废水与赤泥和电石渣的联合处理方法 | |
CN106987721A (zh) | 一种含重金属污泥的无废利用方法 | |
CN113401938B (zh) | 基于硫铁钛联产法的二氧化钛制造方法及系统 | |
CN110304703A (zh) | 一种用铝灰生产聚氯化铝净水剂的制备方法 | |
CN111715178A (zh) | 一种铜冶炼废渣基的吸附材料及其制备方法 | |
WO2017162013A1 (zh) | 一种离子阻控吸附剂制备与应用方法 | |
CN100357176C (zh) | 从含金属盐的废硫酸中回收硫酸的方法 | |
CN112429758A (zh) | 利用电石渣固定co2并制备碳酸钙的方法 | |
CN109517996B (zh) | 一种助剂强化酸浸法提取硫酸烧渣中铁的工艺 | |
CZ291224B6 (cs) | Způsob výroby oxidu titaničitého | |
CN111484081A (zh) | 利用电解锰浸出渣制备碳酸锰、硫酸铵及干粉建筑涂料的方法 | |
CN113753985B (zh) | 利用赤泥制备水处理剂的方法 | |
CN102795701A (zh) | 硫酸法制取钛白粉的酸性废水治理的方法 | |
CN114249514B (zh) | 一种制革含铬污泥无害化资源化利用方法及装置 | |
CN106927651B (zh) | 一种含重金属工业污泥的处理方法 | |
CN108675380A (zh) | 一种印染废水净化剂的制备方法 | |
CN104030369B (zh) | 一种利用含镍废水插层生产镍铝类水滑石的方法 | |
CN105693051A (zh) | 制革污泥固化/稳定化药剂及其治理污染方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2016907119 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016907119 Country of ref document: EP Effective date: 20180726 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |