WO2018000561A1 - 一种基于冲击振动的桥梁检测评估方法与设备 - Google Patents

一种基于冲击振动的桥梁检测评估方法与设备 Download PDF

Info

Publication number
WO2018000561A1
WO2018000561A1 PCT/CN2016/096862 CN2016096862W WO2018000561A1 WO 2018000561 A1 WO2018000561 A1 WO 2018000561A1 CN 2016096862 W CN2016096862 W CN 2016096862W WO 2018000561 A1 WO2018000561 A1 WO 2018000561A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact
bridge
block
sub
mode
Prior art date
Application number
PCT/CN2016/096862
Other languages
English (en)
French (fr)
Inventor
张建
夏琪
张博
郭双林
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US15/570,339 priority Critical patent/US10620085B2/en
Publication of WO2018000561A1 publication Critical patent/WO2018000561A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/12Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations
    • G01H1/14Frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration

Definitions

  • the invention relates to the field of bridge detection and evaluation, in particular to a bridge detection and evaluation method and equipment based on impact vibration.
  • the detection method still has defects, that is, in the application, the measurement points (reference points) need to be arranged at the intersection of each test sub-block, thereby causing the measurement points to be inflexible, and the acceleration of two different sub-blocks needs to be acquired at the same reference point. Data, test efficiency needs to be improved.
  • the current methods are mainly based on manual detection of large-loaded vehicles and structural health monitoring based on environmental vibration.
  • both methods have their own defects.
  • Manual detection based on large-loaded vehicles requires large-scale vehicle loading on the bridge deck during load testing. This requires multiple departments to coordinate work and requires a large amount of manpower to be mobilized.
  • the structural health monitoring based on environmental vibration mainly uses external natural conditions such as wind, wave and traffic flow to stimulate the bridge. It does not need excitation equipment and does not affect the normal use of the structure.
  • the present invention provides a method and a device for detecting and evaluating bridges based on impact vibration, and aims to realize low-cost and high-efficiency detection and evaluation of all small and medium-sized bridges in a road network.
  • a bridge vibration detection and evaluation method based on impact vibration including steps of bridge back analysis based on no reference point block impact and bridge analysis based on stepwise impact loading, wherein bridge back analysis based on blockless impact without block
  • the steps are used to quickly identify small and medium-sized bridges with severely insufficient carrying capacity in the road network.
  • the step of analyzing the bridge based on the step-by-step impact loading is used to evaluate the actual carrying capacity of the bridge with better safety conditions through back analysis.
  • the non-reference point block impact test is adopted in the step of back analysis of the bridge based on the non-reference point block impact, specifically: dividing the whole structure of the bridge into several sub-blocks, wherein the impact points of the different sub-blocks and the position of the measuring points are selected from each other Independently, the impact point of each sub-block is impacted point by point, and the time history data of each sub-block impact time and the acceleration time history data of the measuring point are collected.
  • the step of positive analysis based on step-by-step impact loading adopts an overall structural flexibility identification method based on no reference point block impact, specifically: sub-block frequency response function estimation, sub-block modal parameter identification, sub-block mode State mode scaling adjustment, sub-module mode shape direction discrimination, overall structure flexibility matrix calculation.
  • the r-th mode mode of the sub-block S k before and after the modal mode scaling adjustment is Is the scaling factor of the rth mode of the sub-block S 1 , The direction coefficient of the rth mode of the sub-block S k ( or After that, the modal modes of all sub-blocks S 1 , S 2 , . . . , S k , . . . , S n are integrated into the modal mode of the overall structure of the bridge.
  • the formula used is:
  • the r-th mode mode of the overall structure of the bridge determined by the degree of mode modulation of the sub-module S 1 .
  • the overall structural flexibility matrix calculation based on the overall structural flexibility identification method based on no reference point block impact First, calculate the potential energy of the overall structure of the bridge, then take the mode shape coefficient of each sub-block corresponding to the minimum potential energy, and obtain the mode shape of the overall structure of the bridge based on the coefficient, including the mode coefficient of the mode shape of each sub-block.
  • the overall structural potential energy expression of the bridge is:
  • ⁇ p is the overall structural potential of the bridge, Represents the node load vector in any sub-block S k , ⁇ r is the r-th order system pole, versus ⁇ r and The conjugate complex number, m represents the highest order of the calculation.
  • the step-by-step impact loading test is adopted in the step of analyzing the bridge based on the step-by-step impact loading, which includes: the impact loading point is selected at the static load loading point; the maximum impact load at each impact point and the corresponding calculation The static load is equal; the application of the impact load is graded; the acceleration measurement point on the deflection control section is simultaneously used as the displacement measurement point and the displacement sensor is arranged thereon, and the maximum dynamic deflection of each displacement measurement point under the impact load is measured, and the impact is After the loading is completed, the bridge is stabilized, and then the residual deflection of the displacement measuring point is measured.
  • the true static deflection of the displacement measuring point of the bridge under the static load is calculated, and the displacement point is measured.
  • the true bearing deflection and residual deflection combined with crack and foundation displacement are used to evaluate the bearing capacity of the bridge.
  • An integrated equipment for bridge detection and evaluation based on shock vibration including tractor, GPS locator, signal transmission and acquisition system, data analysis system, trailer, vehicle hydraulic impact device, wheel rotary encoder, laser range finder, mobile hydraulic Impact device, wireless acceleration sensor, wireless displacement sensor;
  • the tractor provides power, and a GPS locator, a signal transmission and acquisition system and a data analysis system are installed thereon;
  • the trailer is hung behind the tractor, and is mounted with an onboard hydraulic impact device, a wheel rotary encoder and a laser range finder, and is used for transporting a plurality of mobile hydraulic impact devices and a wireless acceleration sensor and a wireless displacement sensor;
  • the vehicle-mounted hydraulic impact device is fixed at the rear of the trailer, and adopts a wireless control mode for the non-reference point block impact test in the back analysis;
  • the mobile hydraulic impact device adopts a wireless control mode for a step-by-step impact loading test in positive analysis
  • the signal transmitting and collecting system adopts wireless communication with the mobile hydraulic impact device and the vehicle hydraulic impact device respectively.
  • the signal connection is used for transmitting and collecting signals, and the transmitted signal includes a movement instruction and an impact command of the mobile hydraulic impact device, and the collected signals include impact time history data of the vehicle hydraulic impact device, time history data and displacement data of the measurement point acceleration;
  • the data analysis system is connected with the signal transmission and acquisition system, and automatically analyzes the collected data by using an embedded structural flexibility identification algorithm based on the non-reference point block impact and related safety and bearing capacity assessment criteria. Quickly output test and evaluation results;
  • the GPS locator, the wheel rotary encoder, and the laser range finder form a positioning and ranging system of the entire device, wherein the GPS locator is installed on the tractor to guide the entire device to each sub-block of the bridge surface.
  • the wheel rotary encoder is disposed on the wheel of the trailer, the laser range finder is disposed on the trailer, and the wheel rotary encoder and the laser range finder are respectively used to determine the precise position of the measuring point and the impact point in the longitudinal and lateral directions of the bridge deck;
  • the wireless acceleration sensor is configured to acquire acceleration time history data of the acceleration measurement point
  • the wireless displacement sensor is configured to acquire dynamic deflection and residual deflection data of the displacement measurement point.
  • the vehicle-mounted hydraulic impact device includes a signal transmitting and receiving device, a first controller, a first oil pump, a first auxiliary hydraulic cylinder, a sliding shaft, a first master hydraulic cylinder, a first mass, and a first rubber buffer block.
  • the signal transmitting and receiving device is configured to receive the impact command and transmit the impact force time history data;
  • the first controller is coupled to the signal transmitting and receiving device for controlling the switch of the first oil pump a first oil pump coupled to the first master cylinder and the first slave cylinder for powering the first master cylinder and the first slave cylinder;
  • the first master cylinder for lifting the top placed on the top a first mass cylinder disposed on the trailer for lifting the first loading plate disposed in the rectangular opening of the trailer, the rectangular opening of the trailer being disposed at a position directly below the vehicle hydraulic impact device;
  • a loading plate moves up and down along the sliding axis, and a first rubber buffer block is disposed thereon, the first rubber buffer block is used for carrying the impact of the first mass;
  • the sliding shaft provides vertical for the first loading plate Movable shaft; a first tray disposed below the first loading plate, for impact load transmitted to the deck.
  • the mobile hydraulic impact device comprises a signal receiver, a second controller, a second oil pump, a second auxiliary hydraulic cylinder, a second master cylinder, a second mass, a second rubber buffer block, and a second loading plate.
  • a second carrier disk a driving system; wherein the signal receiver is configured to receive the movement and impact command, the second controller is coupled to the signal receiver for controlling the switch and the drive system of the second oil pump; and the second oil pump is respectively and the second a main hydraulic cylinder is coupled to the second secondary hydraulic cylinder for powering the second primary hydraulic cylinder and the second secondary hydraulic cylinder; the second primary hydraulic cylinder is for lifting the second mass placed on the top thereof; the second secondary hydraulic pressure
  • the cylinder is disposed on the bottom frame of the mobile hydraulic impact device for lifting the second loading plate; the second loading plate is provided with a second rubber buffer block, and the second rubber buffer block is for carrying the second mass block
  • the impact of the second carrier is used to transmit the impact load to the deck; the drive system is located at the bottom of the entire
  • the bridge vibration detection-based bridge detection and evaluation method provided by the present invention realizes that a bridge with a serious bearing capacity is quickly detected in the road network in the back analysis stage of the bridge, and the bridge leakage is avoided due to shortage of funds and personnel.
  • the safety hazard brought by inspection and less inspection, and the defects of traditional detection and monitoring methods are compensated in the positive analysis stage of the bridge, and the evaluation of the bearing capacity of the bridge with high efficiency, safety and low cost is realized.
  • the overall structural flexibility identification method based on the non-reference point block impact in the present invention greatly reduces the number of required sensors compared to the conventional flexibility detection method based on the impact vibration of the bridge overall structure, and does not need to be closed in the test.
  • Traffic compared with the overall structure flexibility identification method based on the reference point block impact, the measurement point layout is more flexible, and each measurement point only needs to obtain the acceleration time history data of the sub-block, and the test efficiency is higher.
  • the step-by-step impact loading test in the present invention has no vehicle wheelbase limitation, requires less personnel, is more efficient, and is safer, and is based on environmental vibration, compared with the conventional static load test based on large-loaded vehicles.
  • the structural health monitoring is less costly and easier to operate.
  • the integrated device proposed by the invention integrates the test and analysis functions, has high automation degree, is convenient to manufacture, and can realize bridge detection and evaluation based on impact vibration quickly and efficiently.
  • FIG. 1 is a schematic diagram of a non-reference point block impact test and an overall structure flexibility identification process according to an embodiment of the present invention
  • FIGS. 2a-2c are schematic views of the integrated device according to the embodiment of the present invention; wherein Fig. 2a is a schematic view of the overall device, Fig. 2b is a schematic view of the moving hydraulic impact device, and Fig. 2c is a mobile hydraulic impact device. a schematic diagram of an angle;
  • FIG. 3 is a flowchart of a bridge vibration detection and evaluation according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the division of the bridge sub-block and the selection of the measuring point and the impact point position according to the embodiment of the present invention
  • Figure 5 is a diagram showing the potential energy ranking line in the embodiment of the present invention.
  • FIG. 6 is a comparison diagram of potential energy comparison lines according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of scaling adjustment of a first 6-order mode shape according to an embodiment of the present invention.
  • Figure 8 is a predicted deflection line diagram of the embodiment of the present invention.
  • Figure 2a - Figure 2c 1 - tractor, 2 - GPS locator, 3 - signal transmission and acquisition system, 4 - data analysis system, 5 - trailer, 6 - vehicle hydraulic shock device, 6.1 - signal transmission and receiver , 6.2—first controller, 6.3—first oil pump, 6.4—first auxiliary hydraulic cylinder, 6.5—sliding shaft, 6.6—first main hydraulic cylinder, 6.7—first mass, 6.8—first rubber buffer block, 6.9—First loading plate, 6.10—first carrier plate, 7—wheel rotary encoder, 8-laser range finder, 9—mobile hydraulic impact device, 9.1—signal receiver, 9.2—second controller, 9.3— Second oil pump, 9.4 - second auxiliary hydraulic cylinder, 9.5 - second main hydraulic cylinder, 9.6 - second mass, 9.7 - second rubber buffer block, 9.8 - second loading plate, 9.9 - second carrier plate, 9.10 - drive system, 10 - wireless acceleration sensor, 11 - wireless displacement sensor.
  • the invention mainly adopts the method of impact vibration. Firstly, the bridge back analysis based on the non-reference point block impact is performed on all the small and medium-sized bridges in the road network, and the bridges with serious bearing capacity are quickly detected, and the safety conditions of the passing inspection are compared. A good bridge is analyzed based on the step-by-step impact loading, and it is cost-effective to determine whether its actual carrying capacity meets the requirements, and thus complete bridge testing and evaluation.
  • the present invention comprises four parts in total based on the above process.
  • the present invention proposes a non-reference point block impact test and an overall structural flexibility identification method based on no reference point block impact.
  • the overall structure flexibility identification method includes sub-block frequency response function estimation, sub-block modal parameter identification, sub-block mode shape scaling adjustment, sub-block mode shape direction discrimination, and overall structure flexibility matrix calculation.
  • the cantilever beam with 7 degrees of freedom, including 3 sub-blocks is taken as an example to demonstrate the non-reference point block impact test and the overall structure flexibility identification process.
  • the specific contents include:
  • the overall structure of the bridge is divided into sub-blocks S 1 , sub-blocks S 2 , ⁇ , sub-blocks S k , ⁇ , sub-blocks S n , and the impact points and measurements of each sub-block are arranged.
  • the position of the point, wherein the impact point of the different sub-blocks and the position of the measuring point are selected independently of each other.
  • an impact point in a sub-block is impacted, and the time history data of the impact force and the acceleration time history data of all the measuring points in the sub-block are collected, and after the impact is completed, the impact of other impact points in the same sub-block is performed to complete A sub-block impact test. Repeat the above work to perform the impact test on the remaining sub-blocks in turn, and finally complete the impact test of the full bridge.
  • any sub-block S k is selected . According to the residue matrix of the structure at the same order, it remains unchanged before and after the modal mode scaling adjustment.
  • the mode shape of each sub-block is scaled and adjusted according to the above process, and the overall structure mode vibration after zoom adjustment can be obtained.
  • Type is:
  • the mode shape direction coefficient of each sub-block corresponding to the minimum potential energy is the true value. Based on the true value, the modal shape of each sub-block after scaling adjustment can be completely determined, and then the integrated overall mode modal shape can be obtained through integration.
  • ⁇ p is the potential energy of the overall structure
  • [K] is the stiffness matrix of the structure
  • is the structural node displacement vector
  • ⁇ f ⁇ is the structural node load vector.
  • [F] is the flexibility matrix of the overall structure, and its expression is:
  • the node load vector of the overall structure is:
  • the overall structural potential energy is calculated by the formula (13), and the mode shape direction coefficient of each sub-block corresponding to the potential energy minimum is the true value.
  • the present invention proposes a step-by-step impact loading test for realizing the loading of the bridge.
  • the test mainly includes:
  • the step-by-step impact loading test uses impact loads instead of conventional vehicle static loads.
  • the impact loading point is selected at the static load loading point so that the maximum impact load at each impact loading point is equal to the corresponding calculated static load.
  • the impact loading series is based on the maximum impact load and the loading minimum load increment.
  • the acceleration measuring point on the deflection control section is simultaneously used as the displacement measuring point and the displacement sensor is arranged thereon, and the maximum dynamic deflection of each displacement measuring point under the impact load is measured. After the impact loading is finished, the bridge is stabilized, and then the measuring position is performed. Move the residual deflection of the point.
  • the true static deflection of the displacement measurement point of the bridge under the static load is calculated, and the bridge is carried by the true static deflection and residual deflection of the displacement measurement point combined with the crack and the base displacement.
  • the present invention proposes an integrated device for bridge detection and evaluation based on impact vibration, as shown in Figures 2a-2c.
  • the device integrates test and analysis functions, including tractor 1, GPS locator 2, signal transmission and acquisition system 3, data analysis system 4, trailer 5, vehicle hydraulic impact device 6, wheel rotary encoder 7, laser measurement Distance meter 8, mobile hydraulic impact device 9, wireless acceleration sensor 10, wireless displacement sensor 11;
  • the tractor 1 provides power, and is equipped with a GPS locator 2, a signal transmission and acquisition system 3 and a data analysis system 4;
  • the trailer 5 is hung behind the tractor 1 and is equipped with an onboard hydraulic impact device 6, a wheel rotary encoder 7 and a laser range finder 8, and is used for transporting a plurality of mobile hydraulic impact devices 9 and wireless acceleration sensors 10 and Wireless displacement sensor 11;
  • the vehicle-mounted hydraulic impact device 6 is fixed to the rear of the trailer 5, and adopts a wireless control mode for the non-reference point block impact test in the back analysis;
  • the vehicle hydraulic impact device 6 includes a signal transmitting and receiving device 6.1, the first control 6.2, first oil pump 6.3, first auxiliary hydraulic cylinder 6.4, sliding shaft 6.5, first main hydraulic cylinder 6.6, first mass 6.7, first rubber buffer 6.8, first loading plate 6.9, first carrier disk 6.10
  • the signal transmitting and receiving unit 6.1 is configured to receive the impact command and transmit the impact force time history data;
  • the first controller 6.2 is coupled to the signal transmitting and receiving unit 6.1 for controlling the switch of the first oil pump 6.3;
  • the first oil pump 6.3 Connected to the first master cylinder 6.6 and the first secondary cylinder 6.4, respectively, for powering the first master cylinder 6.6 and the first slave cylinder 6.4;
  • the first master cylinder 6.6 is for lifting the top placed on the top a first mass 6.7;
  • the mobile hydraulic impact device 9 adopts a wireless control mode for a step-by-step impact loading test in positive analysis;
  • the mobile hydraulic impact device 9 includes a signal receiver 9.1, a second controller 9.2, a second oil pump 9.3, and a second auxiliary hydraulic pressure Cylinder 9.4, second master cylinder 9.5, second mass 9.6, second rubber buffer 9.7, second loading plate 9.8, second carrier 9.9, drive system 9.10;
  • signal receiver 9.1 is used to receive movement and The impact command
  • the second controller 9.2 is connected to the signal receiver 9.1 for controlling the switch and drive system 9.10 of the second oil pump 9.3;
  • the second oil pump 9.3 is connected to the second master cylinder 9.5 and the second sub-cylinder 9.4, respectively.
  • the second master cylinder 9.5 is for lifting the second mass 9.6 placed on the top thereof;
  • the second slave cylinder 9.4 is for moving hydraulic shock Above the bottom frame of the device 9, for lifting the second loading plate 9.8; above the second loading plate 9.8 is provided with a second rubber buffer block 9.7 for carrying the impact of the second mass 9.6;
  • the second carrier plate 9.9 is for Pass impact load To deck; 9.10 at the bottom of the entire drive system of the mobile hydraulic impact device 9 for automatic movement of the mobile hydraulic impact device 9.
  • the signal transmitting and collecting system 3 is respectively connected to the mobile hydraulic impact device 9 and the vehicle hydraulic shock device 6 by wireless communication, and is used for transmitting and collecting signals, and the transmitted signals include a movement command and an impact command of the mobile hydraulic impact device, and the collected signals are collected.
  • the signal includes impact time history data of the vehicle hydraulic impact device, time history data and displacement data of the point acceleration;
  • the data analysis system 4 is connected to the signal transmission and acquisition system 3, and utilizes an embedded overall structure flexibility identification algorithm based on no reference point block impact and related safety and load capacity assessment criteria to automate the collected data. Analysis, rapid output testing and evaluation results;
  • the GPS locator 2, the wheel rotary encoder 7, and the laser range finder 8 constitute a positioning and ranging system of the entire device, wherein the GPS locator 2 is mounted on the tractor 1 for guiding the entire device to the bridge.
  • the wireless acceleration sensor 10 is configured to acquire acceleration time history data of an acceleration measurement point
  • the wireless displacement sensor 11 is configured to acquire dynamic deflection and residual deflection data of the displacement measurement point.
  • a set of bridge vibration detection and evaluation process based on impact vibration is formed, as shown in Figure 3.
  • the process includes bridge back analysis based on no reference point block impact and is based on step by step.
  • the impact-loaded bridge is analyzing two major stages, the main steps are as follows:
  • the design load is determined according to the road grade, and then the deflection control section and the control deflection of the bridge are determined. Then, based on the scale of the bridge to be tested and the accuracy of the test, the bridge sub-blocks are reasonably divided, and the impact point and the position of the acceleration measuring point are arranged.
  • the impact point should be selected in the sensitive part of the structure, and the acceleration point should include the impact point and the point on the deflection control section should be included.
  • the acceleration point on the deflection control section also serves as the displacement point.
  • the GPS locator guides the integrated device to the sub-block deck, and uses the wheel rotary encoder and the laser range finder to determine the position of the measuring point and the impact point, and arranges the wireless acceleration sensor on the measuring point. Then, the signal transmission and acquisition system in the integrated device sends an impact command to the vehicle hydraulic impact device to impact the impact point, and the signal transmission and acquisition system collects the impact time history data and the measurement point acceleration time history data. After a little impact is completed, the impact of other impact points in the same sub-block is performed to complete the impact test of one sub-block. In the same way, the remaining sub-blocks are subjected to impact test in turn, and the impact test of the entire bridge is finally completed.
  • Step 3 Identification of overall structural flexibility based on no reference point block impact
  • the frequency response function of each sub-block according to the impact time history data of each sub-block and the acceleration time-history data of the measuring point, and then using the modal parameter identification algorithm to identify the modal parameters of each sub-block, including the mode shape, Frequency, damping ratio, modal scaling factor, system pole. Then, the modal mode scaling adjustment is performed.
  • the potential energy of the overall structure is calculated by the formula (13), wherein the mode shape of each sub-block corresponding to the minimum potential energy The direction coefficient is the true value. Substituting the true value into the formula (6) can obtain the mode shape of the overall structure.
  • the flexibility matrix of the overall structure can be calculated by the formula (9).
  • the flexibility recognition algorithm in this step has been embedded in the data analysis system and does not require manual calculation when used.
  • Step 4 Initial judgment of bridge safety status
  • the deflection of the displacement measuring point on the control section is predicted, and the predicted value of the deflection is compared with the calculated value of the deflection on the displacement measuring point. If the predicted value is greater than the calculated value, that is, the check coefficient ⁇ >1, it means that the actual condition of the bridge is worse than the theoretical situation, and the bearing capacity of the bridge is seriously insufficient. On the contrary, it is considered that the bridge safety condition is better and further actual carrying capacity evaluation is needed.
  • Step 5 Bridge Detection and Checking
  • Step 6 Develop a step-by-step impact loading test plan
  • the impact loading point is selected at the static load loading point and the maximum impact load at each impact loading point is equal to the corresponding calculated dead load.
  • the application of the impact load is graded during the loading test, and the number of impact loading stages is determined by the maximum impact load and the minimum load increment.
  • Step 7 Perform a step-by-step impact loading test
  • the integrated device is driven to the vicinity of the impact loading point, and a wireless displacement sensor is disposed at the displacement measuring point.
  • the signal transmission and acquisition system then issues a movement command to each of the mobile hydraulic impact devices.
  • the signal transmitting and collecting system simultaneously issues an impact command to each mobile hydraulic impact device, and simultaneously collects the displacement measuring point dynamic deflection data sent by the wireless displacement sensor.
  • the impact load is increased step by step, and the maximum dynamic deflection of the displacement measuring point on the control section under the maximum impact load is finally obtained.
  • the bridge is stable, and the residual deflection value of the displacement measuring point sent by the wireless displacement sensor is collected.
  • the crack and the base displacement are also checked.
  • the true static deflection of the displacement measurement point of the bridge under the static load is calculated, and the load test verification coefficient, that is, the ratio of the true static deflection value to the deflection calculation value and the relative residual deflection are calculated. value. If the check coefficient ⁇ is greater than 1; the relative residual deflection value ⁇ exceeds 20%; the crack condition is poor; one of the unstable settlements occurs, and the bearing capacity is determined to be unsatisfactory. Otherwise, according to the check coefficient, the check coefficient is determined again, and the effect effect and the resistance effect are compared based on the check coefficient. When the ratio of the effect effect to the resistance effect is less than 1.05, it is determined that the bearing capacity of the bridge meets the requirements, otherwise the bearing capacity is determined to not meet the requirements.
  • the mid-section of the bridge is determined as the deflection control section, and the control deflection value of the section is 5.6 mm.
  • the entire bridge is then divided into sub-blocks S 1 and sub-blocks S 2 .
  • Sub-block S 1 includes acceleration points 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21 and impact points 11, 14, 20;
  • sub-block S 2 contains acceleration point 1, 2,3,8,9,10,15,16,17 and impact points 10,16,17, of which 10,11,14,16,17,20 act both as an acceleration point and as a point of impact, and due to 4, 11,18 on the deflection control section, so 4,11,18 as both the acceleration point and the displacement point, the division of the bridge sub-block and the location of the point and impact point are shown in Figure 4.
  • the static load points are calculated as 11, 12, 18, 19, and the corresponding calculated static load sizes are 150kN, 50kN, 150kN, 50kN.
  • the GPS locator 2 on the tractor 1 guides the integrated device to the sub-block S 1 bridge surface, and uses the wheel rotary encoder 7 on the trailer 5 and the laser range finder 8 to determine the measurement point and the impact point of the sub-block S 1 , respectively.
  • the precise position of the longitudinal and lateral directions of the bridge deck is provided, and the wireless acceleration sensor 10 is disposed on the measuring point.
  • the impact point 14 is impacted, and the vehicle hydraulic impact device 6 is moved to the impact point 14 position, and then the signal transmission and acquisition system 3 issues an impact command to the vehicle hydraulic impact device 6, and the signal transmission and receiver on the vehicle hydraulic impact device 6 6.1 receives the impact command and transmits the command to the first controller 6.2, the first controller 6.2 controls the first oil pump 6.3 to first power the first secondary hydraulic cylinder 6.4, so that the first carrier disk 6.10 falls along the sliding axis 6.5 Up to the impact point bridge deck, the first master cylinder 6.6 is then powered to cause the first master cylinder 6.6 to drive the first mass 6.7 to a predetermined height, and then the first mass 6.7 is free to fall, hitting the first load
  • the first rubber buffer block 6.8 on the board 6.9 at the same time, the signal transmission and acquisition system 3 acquires the impact time history data transmitted by the signal transmission and receiver 6.1 and the acceleration time history data transmitted by the wireless acceleration sensor 10.
  • the impact was again performed at 20 and 11 points, and the impact test of the sub-block S 1 was completed.
  • the sub-block S 2 is subjected to an impact test in the same manner, and finally the impact test of the entire bridge is completed.
  • the signal transmission and acquisition system 3 introduces the acquired impact time-history data and the measurement-point acceleration time-history data of the sub-block S 1 and the sub-block S 2 into the data analysis system 4.
  • the data analysis system 4 adds window and filtering the data, estimates the frequency response function of each sub-block, and uses the CMIF method to identify the modal parameters of the obtained frequency response function.
  • the first 10 orders of frequency and the corresponding damping ratio of the two sub-blocks identified are listed in Table 1.
  • the frequency and damping ratio of the overall bridge structure obtained by the traditional bridge-based overall structure impact vibration test are also listed in Table 1. Comparison. It can be seen from Table 1 that the frequency of the same-order sub-block is very close to the overall structure, indicating that the parameter identification is relatively accurate.
  • the modal shape scaling adjustment is then performed. Since the number of measurement points in the sub-block S 2 is less than the sub-block S 1 , the scaling level of the sub-block S 1 is taken as a standard.
  • the r-th mode of the sub-block S 2 obtained by the equation (5) after the mode-mode scaling adjustment is:
  • the 5kN node load is applied to each measurement point of the overall structure, namely:
  • the calculated static loads of 150kN, 50kN, 150kN, and 50kN are respectively obtained.
  • the flexibility matrix obtained from the first first order and the first two order modal parameters is also calculated, and the corresponding deflections are predicted respectively, and the three deflection prediction results are
  • the traditional prediction method of the impact vibration test based on the overall structure of the bridge is compared with the predicted value of the deflection obtained under the same calculation load, as shown in Fig. 8. It can be seen that the deflection prediction result and the overall structural impact test are obtained with the increase of the order.
  • the results tend to be consistent, demonstrating that the compliance method in the present invention is accurate.
  • the maximum deflection of the mid-span section is predicted to be 5.4 mm, which is located at the displacement measuring point 11. Since the predicted value is less than the deflection calculation value of 5.5 mm, it is estimated that the actual condition of the bridge is better than the theoretical situation, and the bridge is further evaluated for carrying capacity.
  • the actual defects and material conditions of the bridge are inspected and tested.
  • the contents include: bridge defect condition, geometry, dead load variation, material strength, steel corrosion, concrete chloride ion content, concrete resistivity, concrete carbonation.
  • the bending moment resistance value of the mid-span cross-section is 9795kN ⁇ m, and the bending moment effect value is 10092kN ⁇ m; the shear resistance value at the two ends is 1255kN, and the shear force effect value is 1311kN, due to the load effect and resistance.
  • the ratio of the effect is between 1.0 and 1.2, a step-by-step impact loading test should be performed.
  • the static load loading points 11, 12, 18, 19 are calculated as impact loading points, and the maximum impact load at each impact loading point is equal to the corresponding calculated static load, namely 150 kN, 50 kN, 150 kN, 50 kN, respectively.
  • Impact loading It is divided into 5 levels, of which the loading sizes of 11 and 18 points are 30kN, 60kN, 90kN, 120kN, 150kN, and the loading sizes of 12 and 19 points are 10kN, 20kN, 30kN, 40kN, 50kN.
  • the integrated device travels to the vicinity of the impact loading points 11, 12, 18, 19, and the wireless displacement sensor 11 is disposed on the displacement measuring points 4, 11, 18, and then the four mobile hydraulic impact devices 9 on the trailer 5 are moved to the ground. .
  • the signal transmitting and collecting system 3 then issues a movement command to the four mobile hydraulic impact devices 9, respectively, and the signal receiver 9.1 on the mobile hydraulic impact device 9 receives the movement command and transmits the command to the second controller 9.2, second.
  • the controller 9.2 controls the drive system 9.10 at the lower portion of the mobile hydraulic impact device 9 so that the four mobile hydraulic impact devices 9 respectively reach the designated impact loading point.
  • the signal transmission and acquisition system 3 simultaneously issues an impact command to the four mobile hydraulic impact devices 9, the signal receiver 9.1 receives the impact command, and transmits the command to the second controller 9.2, and the second controller 9.2 controls the second oil pump.
  • the second auxiliary hydraulic cylinder 9.4 is powered to drop the second carrier 9.9 until the impact loading point bridge surface, and then the second main hydraulic cylinder 9.5 is powered, so that the second main hydraulic cylinder 9.5 drives the second mass.
  • 9.6 reaches the predetermined height, and then the second mass 9.6 is free to fall, hitting the second rubber buffer 9.7 on the second loading plate 9.8, and the signal transmitting and collecting system 3 collects the displacement of the displacement measuring point transmitted by the wireless displacement sensor 11. data.
  • the magnitude of the impact load is increased step by step, and finally the maximum dynamic deflection of the displacement measuring point on the control section under the maximum impact load is obtained.
  • the bridge is stable, and the signal transmitting and collecting system 3 collects the residual deflection value of the displacement measuring point sent by the wireless displacement sensor 11.
  • the crack and the base displacement are also checked.
  • the maximum dynamic deflection value at the displacement measuring point 11 is greater than the displacement measuring points 4 and 18.
  • the bridge is calculated to calculate the static load.
  • the true static deflection of the lower displacement measuring point 11 is 5.2 mm, which is less than the calculated 5.5 mm deflection at the displacement measuring point 11 caused by the static load, and the measured maximum displacement of the displacement measuring point is 0.8 mm, and the relative residual deflection The value is less than 20%, and the crack is in good condition and the foundation is stable.
  • the check coefficient is obtained according to the check coefficient, and the cross-center bending moment effect value is calculated to be 9937kN ⁇ m, and the shear force effect value at the support is 1295kN.
  • the ratio of the load effect to the resistance effect is less than 1.05, and finally the bearing capacity of the bridge is determined to meet the requirements.
  • a bridge detection and evaluation method and equipment based on impact vibration completes a complete detection and evaluation of a bridge.

Abstract

一种基于冲击振动的桥梁检测评估方法与设备,其方法包括基于无参考点分块冲击的桥梁反分析的步骤与基于逐级冲击加载的桥梁正分析的步骤,其中基于无参考点分块冲击的桥梁反分析的步骤用于快速排查出公路网中承载能力严重不足的中小型桥梁,基于逐级冲击加载的桥梁正分析的步骤用于评估通过反分析排查的安全状况较好桥梁的实际承载能力。该设备将测试与分析功能融为一体,主要包括车载液压冲击装置(6),移动液压冲击装置(9),信号发送与采集系统(3),数据分析系统(4)等,该设备应用于桥梁的反分析与正分析。该方法实现了公路网中小型桥梁低成本、高效率的检测与评估。

Description

一种基于冲击振动的桥梁检测评估方法与设备 技术领域
本发明涉及桥梁检测与评估领域,特别是涉及一种基于冲击振动的桥梁检测评估方法与设备。
背景技术
近百年来,许多国家都在桥梁建设领域内取得了辉煌的成就。但与此同时桥梁损坏甚至坍塌事故也在世界各地频繁发生。这些事故给人们生命及财产都造成了巨大的损失,并造成了极其恶劣的社会影响,因此对桥梁及时进行检测与评估就显得尤为重要。目前对在用桥梁的检测与评估主要存在两方面的问题。
一方面中小型桥梁在公路网中占有很高比例,这些桥梁由于资金、所在地域等条件限制很难应用传统的方法实现其及时的检测与评估,因而导致很多桥梁出现漏检、少检,这将带来很大的安全隐患。而基于桥梁整体结构冲击振动的检测与评估方法需要同时获得整个桥面上所有测点的加速度反映,因而要在整个桥面布设大量传感器,同时还要封闭交通,成本高、效率低。为解决该难题,“一种基于分块冲击振动测试的中小型桥梁快速检测方法”CN102353509B被提出。通过应用该方法可以排查出公路网中承载能力严重不足的中小型桥梁,为具有针对性的承载能力评估提供了对象。但该检测方法仍存在缺陷,即在应用中需在各测试子块交界处布设测点(参考点),从而导致测点布设不灵活,并且在同一参考点处需要获取两不同子块的加速度数据,测试效率还有待提高。
在桥梁的承载能力评估方面,目前采用的手段主要有基于大型加载车辆的人工检测及基于环境振动的结构健康监测,然而这两种方法都有各自的缺陷。基于大型加载车辆的人工检测在进行荷载试验时需要在桥面进行大型车辆的加载,这就要求多个部门协调工作,需调动大量的人力,此外这种荷载试验还存在一定的安全风险。而基于环境振动的结构健康监测主要利用风、海浪、车流等外界自然条件激励桥梁,无需激励设备,不影响结构的正常使用,其目前已在世界范围内的众多大跨桥梁上获得应用,如美国金门大桥、英国Humber大桥、苏通大桥等。但这种监测方法通常需要在桥上布设大量传感器,采用相对昂贵的监测系统,监测成本高。
发明内容
针对上述现有方法与技术存在的不足,本发明提供了一种基于冲击振动的桥梁检测评估方法与设备,目的在于实现公路网中所有中小型桥梁低成本、高效率的检测与评估。
为实现上述目的,本发明采用的技术方案为:
一种基于冲击振动的桥梁检测评估方法,包括基于无参考点分块冲击的桥梁反分析的步骤与基于逐级冲击加载的桥梁正分析的步骤,其中基于无参考点分块冲击的桥梁反分析的步骤用于快速排查出公路网中承载能力严重不足的中小型桥梁,基于逐级冲击加载的桥梁正分析的步骤用于评估通过反分析排查的安全状况较好桥梁的实际承载能力。
所述基于无参考点分块冲击的桥梁反分析的步骤中采用无参考点分块冲击测试,具体为:将桥梁整体结构分成若干子块,其中不同子块的冲击点与测点位置选取相互独立,之后对每个子块的冲击点进行逐点冲击,同时采集各子块冲击力时程数据与测点的加速度时程数据。
所述基于逐级冲击加载的桥梁正分析的步骤中采用基于无参考点分块冲击的整体结构柔度识别方法,具体为:子块频响函数估计,子块模态参数识别,子块模态振型缩放调整,子块模态振型方向判别,整体结构柔度矩阵计算。
所述的基于无参考点分块冲击的整体结构柔度识别方法中,子块模态振型缩放调整时,以子块S1的模态振型缩放程度为标准进行所有子块模态振型的缩放调整,采用的公式为:
Figure PCTCN2016096862-appb-000001
式中:
Figure PCTCN2016096862-appb-000002
分别为子块Sk在模态振型缩放调整前后的第r阶模态振型,
Figure PCTCN2016096862-appb-000003
为子块Sk在模态振型缩放调整前的第r阶模态振型缩放系数,
Figure PCTCN2016096862-appb-000004
为子块S1的第r阶模态振型缩放系数,
Figure PCTCN2016096862-appb-000005
为子块Sk的第r阶模态振型方向系数(
Figure PCTCN2016096862-appb-000006
Figure PCTCN2016096862-appb-000007
);之后将缩放调整后所有子块S1,S2,···,Sk,···,Sn的模态振型集成为桥梁整体结构模态振型,采用的公式为:
Figure PCTCN2016096862-appb-000008
式中:
Figure PCTCN2016096862-appb-000009
为按子块S1的模态振型缩放程度确定的桥梁整体结构第r阶模态振型。
所述的基于无参考点分块冲击的整体结构柔度识别方法中,整体结构柔度矩阵计算 时,先计算桥梁整体结构势能,然后取其中最小势能对应的各子块的模态振型方向系数,基于该系数得到桥梁整体结构模态振型,其中包含各子块模态振型方向系数的桥梁整体结构势能表达式为:
Figure PCTCN2016096862-appb-000010
式中:Πp为桥梁整体结构势能,
Figure PCTCN2016096862-appb-000011
表示任意子块Sk中的节点荷载向量,λr为第r阶系统极点,
Figure PCTCN2016096862-appb-000012
Figure PCTCN2016096862-appb-000013
分别为λr
Figure PCTCN2016096862-appb-000014
的共轭复数,m表示计算的最高阶数。
所述基于逐级冲击加载的桥梁正分析的步骤中采用逐级冲击加载试验,其包括:冲击加载点选取在计算静载加载点处;令每个冲击点上的最大冲击荷载与对应的计算静载相等;对冲击荷载的施加进行分级;将挠度控制截面上的加速度测点同时作为位移测点并在其上布设位移传感器,测量冲击荷载作用下各位移测点的最大动挠度,在冲击加载结束后,待桥梁稳定,再测量位移测点的残余挠度;根据最大动挠度与静挠度的对应关系,推得桥梁在计算静载作用下位移测点的真实静挠度,通过位移测点的真实静挠度与残余挠度并结合裂缝与基础变位情况进行桥梁承载能力评定。
一种基于冲击振动的桥梁检测评估一体化设备,包括牵引车,GPS定位仪,信号发送与采集系统,数据分析系统,拖车,车载液压冲击装置,车轮旋转编码器,激光测距仪,移动液压冲击装置,无线加速度传感器,无线位移传感器;
其中,所述牵引车提供动力,其上安装有GPS定位仪,信号发送与采集系统及数据分析系统;
所述拖车挂于牵引车后方,其上安装有车载液压冲击装置,车轮旋转编码器与激光测距仪,并且用于运输若干台移动液压冲击装置及无线加速度传感器与无线位移传感器;
所述车载液压冲击装置固定于拖车的后部,采用无线控制方式,用于反分析中的无参考点分块冲击测试;
所述移动液压冲击装置采用无线控制方式,用于正分析中的逐级冲击加载试验;
所述信号发送与采集系统分别与移动液压冲击装置、车载液压冲击装置采用无线通 信连接,用于发送、采集信号,发送的信号包括移动液压冲击装置的移动指令与冲击指令,采集的信号包括车载液压冲击装置的冲击力时程数据,测点加速度时程数据与位移数据;
所述数据分析系统与信号发送与采集系统连接,利用内嵌的基于无参考点分块冲击的整体结构柔度识别算法及相关的安全与承载能力评定准则,对所采集的数据进行自动化分析,快速输出测试与评估结果;
所述GPS定位仪、车轮旋转编码器、激光测距仪组成整个设备的定位与测距系统,其中,所述GPS定位仪安装在牵引车上,用于引导整个设备到达桥面各子块,车轮旋转编码器设置于拖车的车轮上,激光测距仪设置于拖车上,车轮旋转编码器与激光测距仪分别用于确定测点及冲击点在桥面纵向与横向的精确位置;
所述无线加速度传感器用于获取加速度测点的加速度时程数据,无线位移传感器用于获取位移测点的动挠度与残余挠度数据。
进一步的,所述车载液压冲击装置包括信号发送与接收器,第一控制器,第一油泵,第一副液压缸,滑动轴,第一主液压缸,第一质量块,第一橡胶缓冲块,第一加载板,第一承载盘;其中,信号发送与接收器用于接收冲击指令与发送冲击力时程数据;第一控制器与信号发送与接收器连接,用于控制第一油泵的开关;第一油泵分别与第一主液压缸和第一副液压缸连接,用于给第一主液压缸和第一副液压缸提供动力;第一主液压缸用于提升放置于其顶部的第一质量块;第一副液压缸设置于拖车之上,用于提升设置于拖车的矩形开口内的第一加载板,拖车的矩形开口设置于拖车板位于车载液压冲击装置正下方的位置;第一加载板沿滑动轴上下移动,其上设置有第一橡胶缓冲块,第一橡胶缓冲块用于承载第一质量块的冲击;滑动轴为第一加载板提供垂直运动轴;第一承载盘设置于第一加载板的下方,用于将冲击荷载传递至桥面。
进一步的,所述移动液压冲击装置包括信号接收器,第二控制器,第二油泵,第二副液压缸,第二主液压缸,第二质量块,第二橡胶缓冲块,第二加载板,第二承载盘,驱动系统;其中,信号接收器用于接收移动及冲击指令,第二控制器与信号接收器连接,用于控制第二油泵的开关与驱动系统;第二油泵分别与第二主液压缸和第二副液压缸连接,用于给第二主液压缸和第二副液压缸提供动力;第二主液压缸用于提升放置于其顶部的第二质量块;第二副液压缸设置于移动液压冲击装置底部框架之上,用于提升第二加载板;第二加载板之上设置有第二橡胶缓冲块,第二橡胶缓冲块用于承载第二质量块 的冲击;第二承载盘用于将冲击荷载传递至桥面;驱动系统位于整个移动液压冲击装置的底部,用于实现移动液压冲击装置的自动移动。
有益效果:与现有技术相比,本发明具有以下优点:
(1)本发明提供的一种基于冲击振动的桥梁检测评估方法,在桥梁反分析阶段实现了在公路网中快速排查出承载能力严重不足的桥梁,避免了由于资金、人员等不足导致桥梁漏检、少检带来的安全隐患,而在桥梁正分析阶段弥补了传统检测与监测方法的缺陷,实现了高效、安全、低成本的桥梁承载能力评估。
(2)本发明中的基于无参考点分块冲击的整体结构柔度识别方法,较传统的基于桥梁整体结构冲击振动的柔度识别方法大大减少了所需传感器数目,并且测试中不需要封闭交通,而与基于有参考点分块冲击的整体结构柔度识别方法相比其测点布设更加灵活,且每个测点只需获得本子块的加速度时程数据,测试效率更高。
(3)本发明中的逐级冲击加载试验,与传统的基于大型加载车辆的静载试验相比,没有车辆轴距的限制,所需人员少,效率高,更安全,而与基于环境振动的结构健康监测相比成本低,操作简便。
(4)本发明提出的一体化设备将测试与分析功能融为一体,自动化程度高,造作方便,可以快速高效地实现基于冲击振动的桥梁检测评估。
附图说明
图1是本发明具体实施方式中所述的无参考点分块冲击测试与整体结构柔度识别过程示意图;
图2a-图2c是本发明具体实施方式中所述的一体化设备的示意图;其中图2a为整体设备的示意图,图2b为移动液压冲击装置一个角度的示意图,图2c为移动液压冲击装置另一个角度的示意图;
图3是本发明具体实施方式中所述的基于冲击振动的桥梁检测评估流程图;
图4是本发明具体实施方式中所述的桥梁子块划分及测点与冲击点位置选取示意图;
图5是本发明具体实施方式中所述的势能排序折线图;
图6是本发明具体实施方式中所述的势能比较折线图;
图7是本发明具体实施方式中所述的前6阶模态振型缩放调整示意图;
图8是本发明具体实施方式中所述的预测挠度折线图;
图2a-图2c中:1—牵引车,2—GPS定位仪,3—信号发送与采集系统,4—数据分析系统,5—拖车,6—车载液压冲击装置,6.1—信号发送与接收器,6.2—第一控制器,6.3—第一油泵,6.4—第一副液压缸,6.5—滑动轴,6.6—第一主液压缸,6.7—第一质量块,6.8—第一橡胶缓冲块,6.9—第一加载板,6.10—第一承载盘,7—车轮旋转编码器,8—激光测距仪,9—移动液压冲击装置,9.1—信号接收器,9.2—第二控制器,9.3—第二油泵,9.4—第二副液压缸,9.5—第二主液压缸,9.6—第二质量块,9.7—第二橡胶缓冲块,9.8—第二加载板,9.9—第二承载盘,9.10—驱动系统,10—无线加速度传感器,11—无线位移传感器。
具体实施方式
下面结合附图对本发明作更进一步的说明。
本发明主要采用冲击振动的方式,首先对公路网中所有中小型桥梁进行基于无参考点分块冲击的桥梁反分析,快速排查出其中承载能力严重不足的桥梁,再对通过排查的安全状况较好的桥梁进行基于逐级冲击加载的桥梁正分析,经济高效地确定其实际承载能力是否满足要求,进而实现了完整的桥梁检测与评估。基于上述过程本发明共包含四个部分。
一、无参考点分块冲击测试与基于无参考点分块冲击的整体结构柔度识别方法
为实现快速排查出公路网中承载能力严重不足的中小型桥梁,本发明提出了无参考点分块冲击测试与基于无参考点分块冲击的整体结构柔度识别方法。其中的整体结构柔度识别方法包含子块频响函数估计,子块模态参数识别,子块模态振型缩放调整,子块模态振型方向判别,整体结构柔度矩阵计算。图1中以包含3个子块的具有7个自由度的悬臂梁为例,展示了无参考点分块冲击测试与整体结构柔度识别过程,其具体内容包括:
(1)无参考点分块冲击测试
根据桥梁规模及测试精度,将桥梁整体结构分成子块S1,子块S2,···,子块Sk,···,子块Sn,并安排每个子块的冲击点及测点位置,其中不同子块的冲击点与测点位置选取相互独立。之后对一个子块内的一个冲击点进行冲击,同时采集冲击力时程数据与子块中所有测点的加速度时程数据,一点冲击完成后,进行同子块中其他冲击点的冲击从而完成一个子块的冲击测试。重复上述工作对其余子块依次进行冲击测试,最终完成全桥的冲击测试工作。
(2)子块频响函数估计
对每个子块的冲击力时程数据与测点加速度时程数据进行加窗、滤波后,分别估计各子块的频响函数
Figure PCTCN2016096862-appb-000015
(3)子块模态参数识别
根据各子块的频响函数,采用模态参数识别算法(如CMIF法、PolyMAX法等)分别识别各子块的模态参数,对任意子块Sk识别出的参数包括:第r阶模态振型
Figure PCTCN2016096862-appb-000016
与对应的频率
Figure PCTCN2016096862-appb-000017
阻尼比
Figure PCTCN2016096862-appb-000018
模态缩放系数
Figure PCTCN2016096862-appb-000019
系统极点
Figure PCTCN2016096862-appb-000020
其中r=1,2,···,m。
(4)子块模态振型缩放调整
由于在同阶频率下各子块的模态振型缩放比例不同,在融合子块的模态振型时,需采用统一缩放标准对每个子块的模态振型进行缩放调整。首先选取任意子块Sk,根据结构在同阶时的留数矩阵在模态振型缩放调整前后保持不变,得到:
Figure PCTCN2016096862-appb-000021
式中:
Figure PCTCN2016096862-appb-000022
分别为子块Sk在模态振型缩放调整前后的第r阶模态振型,
Figure PCTCN2016096862-appb-000023
分别为子块Sk在模态振型缩放调整前后的第r阶模态振型缩放系数。然后设模态振型缩放调整系数为xk,即:
Figure PCTCN2016096862-appb-000024
令所有子块均以子块S1的缩放水平为标准,即:
Figure PCTCN2016096862-appb-000025
将公式(2)、(3)代入公式(1)可得:
Figure PCTCN2016096862-appb-000026
式中:
Figure PCTCN2016096862-appb-000027
为子块Sk的第r阶模态振型方向系数,
Figure PCTCN2016096862-appb-000028
Figure PCTCN2016096862-appb-000029
将公式(4)代入公式(2)中可得:
Figure PCTCN2016096862-appb-000030
将每个子块的模态振型都按上述过程进行缩放调整,可得缩放调整后的整体结构模态振 型为:
Figure PCTCN2016096862-appb-000031
(5)子块模态振型方向判别
模态振型缩放调整后,模态振型方向系数的正负还无法确定,因而在融合子块的模态振型前还需要判别各子块模态振型的方向。由最小势能原理,可知正确的模态振型方向所对应的位移能使整体结构的势能取得最小值,因此最小势能所对应的各子块的模态振型方向系数即为真实值。基于该真实值便可完全确定缩放调整后各子块的模态振型,之后经过集成便可以获得正确的整体结构模态振型。首先引入整体结构势能表达式:
Figure PCTCN2016096862-appb-000032
式中:Πp为整体结构的势能,[K]为结构的刚度矩阵,{δ}为结构节点位移向量,{f}为结构节点荷载向量。而在结构平衡状态下,结构节点位移的表达式为:
{δ}=[F]{f}            (8)
式中:[F]为整体结构的柔度矩阵,其表达式为:
Figure PCTCN2016096862-appb-000033
式中:
Figure PCTCN2016096862-appb-000034
Figure PCTCN2016096862-appb-000035
的共轭向量,
Figure PCTCN2016096862-appb-000036
Figure PCTCN2016096862-appb-000037
分别为λr
Figure PCTCN2016096862-appb-000038
的共轭复数,m表示计算的最高阶数。将公式(8)、(9)代入公式(7)并整理得:
Figure PCTCN2016096862-appb-000039
由于桥梁结构为小阻尼结构,所识别的模态振型均为实振型,所以
Figure PCTCN2016096862-appb-000040
化简公式(10)得:
Figure PCTCN2016096862-appb-000041
整体结构的节点荷载向量为:
Figure PCTCN2016096862-appb-000042
式中:
Figure PCTCN2016096862-appb-000043
表示任意子块Sk中的节点荷载向量。将公式(6)与公式(12)代入公式(11)并展开得:
Figure PCTCN2016096862-appb-000044
通过公式(13)计算整体结构势能,该势能最小值所对应的各子块的模态振型方向系数即为真实值。
(6)整体结构柔度矩阵计算
得到各子块的模态振型方向系数后,将其代入公式(6)便可获得整体结构的模态振型,从而实现了各子块模态振型的融合,再由公式(9)便可计算得出整体结构的柔度矩阵。通过该矩阵可以预测桥梁挠度,之后将挠度预测值与理论计算值进行比较即可实现桥梁安全排查。
二、逐级冲击加载试验
对于通过反分析排查的安全状况较好的桥梁,需要对其进行进一步的实际承载能力评估。在承载能力评估中需要对桥梁施加荷载,本发明提出了逐级冲击加载试验,用来实现桥梁的加载。该试验主要包括:
(1)最大冲击荷载选取
逐级冲击加载试验采用冲击荷载代替传统的车辆静载。冲击加载点选取在计算静载加载点处,令每个冲击加载点上的最大冲击荷载与对应的计算静载相等。
(2)冲击荷载分级
为获取冲击荷载与其产生挠度的关系曲线以及防止结构意外损伤,对冲击荷载的施加进行分级。冲击加载级数根据最大冲击荷载与加载最小荷载增量而定。
(3)挠度测量
将挠度控制截面上的加速度测点同时作为位移测点并在其上布设位移传感器,测量冲击荷载作用下各位移测点的最大动挠度,在冲击加载结束后,待桥梁稳定,再测量位 移测点的残余挠度。
(4)结果分析
根据最大动挠度与静挠度的对应关系,推得桥梁在计算静载作用下位移测点的真实静挠度,通过位移测点的真实静挠度与残余挠度并结合裂缝与基础变位情况进行桥梁承载能力评定。
三、基于冲击振动的桥梁检测评估一体化设备
为实现对桥梁的反分析与正分析,本发明提出了一种基于冲击振动的桥梁检测评估一体化设备,如图2a-图2c所示。该设备将测试与分析功能融为一体,包括牵引车1,GPS定位仪2,信号发送与采集系统3,数据分析系统4,拖车5,车载液压冲击装置6,车轮旋转编码器7,激光测距仪8,移动液压冲击装置9,无线加速度传感器10,无线位移传感器11;
其中,所述牵引车1提供动力,其上安装有GPS定位仪2,信号发送与采集系统3及数据分析系统4;
所述拖车5挂于牵引车1后方,其上安装有车载液压冲击装置6,车轮旋转编码器7与激光测距仪8,并且用于运输若干台移动液压冲击装置9及无线加速度传感器10与无线位移传感器11;
所述车载液压冲击装置6固定于拖车5的后部,采用无线控制方式,用于反分析中的无参考点分块冲击测试;车载液压冲击装置6包括信号发送与接收器6.1,第一控制器6.2,第一油泵6.3,第一副液压缸6.4,滑动轴6.5,第一主液压缸6.6,第一质量块6.7,第一橡胶缓冲块6.8,第一加载板6.9,第一承载盘6.10;其中,信号发送与接收器6.1用于接收冲击指令与发送冲击力时程数据;第一控制器6.2与信号发送与接收器6.1连接,用于控制第一油泵6.3的开关;第一油泵6.3分别与第一主液压缸6.6和第一副液压缸6.4连接,用于给第一主液压缸6.6和第一副液压缸6.4提供动力;第一主液压缸6.6用于提升放置于其顶部的第一质量块6.7;第一副液压缸6.4设置于拖车5之上,用于提升设置于拖车5的矩形开口内的第一加载板6.9,拖车5的矩形开口设置于拖车板位于车载液压冲击装置6正下方的位置;第一加载板6.9沿滑动轴6.5上下移动,其上设置有第一橡胶缓冲块6.8,用于承载第一质量块6.7的冲击;滑动轴6.5为第一加载板6.9提供垂直运动轴;第一承载盘6.10设置于第一加载板6.9的下方,用于将冲击荷载传递至桥面。
所述移动液压冲击装置9采用无线控制方式,用于正分析中的逐级冲击加载试验;移动液压冲击装置9包括信号接收器9.1,第二控制器9.2,第二油泵9.3,第二副液压缸9.4,第二主液压缸9.5,第二质量块9.6,第二橡胶缓冲块9.7,第二加载板9.8,第二承载盘9.9,驱动系统9.10;其中,信号接收器9.1用于接收移动及冲击指令,第二控制器9.2与信号接收器9.1连接,用于控制第二油泵9.3的开关与驱动系统9.10;第二油泵9.3分别与第二主液压缸9.5和第二副液压缸9.4连接,用于给第二主液压缸9.5和第二副液压缸9.4提供动力;第二主液压缸9.5用于提升放置于其顶部的第二质量块9.6;第二副液压缸9.4设置于移动液压冲击装置9底部框架之上,用于提升第二加载板9.8;第二加载板9.8之上设置有第二橡胶缓冲块9.7,用于承载第二质量块9.6的冲击;第二承载盘9.9用于将冲击荷载传递至桥面;驱动系统9.10位于整个移动液压冲击装置9的底部,用于实现移动液压冲击装置9的自动移动。
所述信号发送与采集系统3分别与移动液压冲击装置9、车载液压冲击装置6采用无线通信连接,用于发送、采集信号,发送的信号包括移动液压冲击装置的移动指令与冲击指令,采集的信号包括车载液压冲击装置的冲击力时程数据,测点加速度时程数据与位移数据;
所述数据分析系统4与信号发送与采集系统3连接,利用内嵌的基于无参考点分块冲击的整体结构柔度识别算法及相关的安全与承载能力评定准则,对所采集的数据进行自动化分析,快速输出测试与评估结果;
所述GPS定位仪2、车轮旋转编码器7、激光测距仪8组成整个设备的定位与测距系统,其中,所述GPS定位仪2安装在牵引车1上,用于引导整个设备到达桥面各子块,车轮旋转编码器7设置于拖车5的车轮上,激光测距仪8设置于拖车5上,车轮旋转编码器7与激光测距仪8分别用于确定测点及冲击点在桥面纵向与横向的精确位置;
所述无线加速度传感器10用于获取加速度测点的加速度时程数据,无线位移传感器11用于获取位移测点的动挠度与残余挠度数据。
四、基于冲击振动的桥梁检测评估流程
结合以上发明内容一、二、三与相关评估方法形成了一套基于冲击振动的桥梁检测评估流程,如图3所示,该流程包含基于无参考点分块冲击的桥梁反分析与基于逐级冲击加载的桥梁正分析两大阶段,其主要步骤如下:
步骤一:计算准备
首先根据公路等级确定设计荷载,进而确定桥梁挠度控制截面与控制挠度的大小。再由待测桥梁规模以及测试精度,合理划分桥梁子块,并安排冲击点及加速度测点位置。其中冲击点应选择在结构反映较敏感处,而加速度测点应包含冲击点且需包含挠度控制截面上的点,这些挠度控制截面上的加速度测点同时作为位移测点。之后确定计算静载作用点及大小,计算静载作用点需在测点中选取并且宜选择在控制截面挠度影响线的峰值附近,其大小应保证计算加载后控制截面上的挠度计算值满足试验效率要求。
步骤二:无参考点分块冲击测试
GPS定位仪引导一体化设备行驶至子块桥面,利用车轮旋转编码器与激光测距仪确定测点及冲击点位置,并在测点上布设无线加速度传感器。之后一体化设备中的信号发送与采集系统向车载液压冲击装置发出冲击指令对冲击点进行冲击,同时信号发送与采集系统采集冲击力时程数据与测点加速度时程数据。一点冲击完成后,进行同子块中其他冲击点的冲击从而完成一个子块的冲击测试。按相同的方式对其余子块依次进行冲击测试,最终完成整个桥梁的冲击测试工作。
步骤三:基于无参考点分块冲击的整体结构柔度识别
根据每个子块的冲击力时程数据与测点加速度时程数据估计各子块的频响函数,再采用模态参数识别算法分别识别各子块的模态参数,其中包括模态振型、频率、阻尼比、模态缩放系数、系统极点。之后进行模态振型缩放调整,为判断各子块模态振型方向系数的正负,通过公式(13)计算整体结构的势能,其中势能最小值所对应的各子块的模态振型方向系数即为真实值。将该真实值代入公式(6)即可获得整体结构的模态振型。再通过公式(9)便可计算得到整体结构的柔度矩阵。本步骤中的柔度识别算法已内嵌到数据分析系统之中,使用时不需要进行人工计算。
步骤四:桥梁安全状况初判
根据计算静载与桥梁整体结构的柔度矩阵预测控制截面上位移测点的挠度,并将该挠度预测值与位移测点上的挠度计算值进行比较。若预测值大于计算值,即校验系数ζ>1,代表桥梁实际状况较理论状况要差,桥梁承载能力严重不足,反之,则认为桥梁安全状况较好需进行进一步的实际承载能力评估。
步骤五:桥梁检测与检算
对安全状况较好的桥梁,需进一步考虑桥梁实际缺损、材质状况等因素对其承载能力造成的影响。因此需要对桥梁相关指标进行检查与检测。然后通过考虑上述指标比较 作用效应与抗力效应,从而进行检算评定。当作用效应与抗力效应的比值小于1时,判定承载能力满足要求,若比值大于1.2时,则判定承载能力不满足要求,若该比值介于1.0至1.2之间时,则应进行逐级冲击加载试验。
步骤六:制定逐级冲击加载试验方案
冲击加载点选取在计算静载加载点处,并令每个冲击加载点上的最大冲击荷载与对应的计算静载相等。在加载试验中需对冲击荷载的施加进行分级,冲击加载级数根据最大冲击荷载与加载最小荷载增量而定。
步骤七:进行逐级冲击加载试验
将一体化设备行驶至冲击加载点附近,并在位移测点布设无线位移传感器。之后信号发送与采集系统分别对各移动液压冲击装置发出移动指令。当各移动液压冲击装置都到达冲击加载点位置后,信号发送与采集系统同时向各台移动液压冲击装置发出冲击指令,同时采集无线位移传感器发送的位移测点动挠度数据。一次加载结束后,逐级提高冲击荷载的大小,最终获得最大冲击荷载作用下控制截面上位移测点的最大动挠度。冲击加载结束后,待桥梁稳定,采集无线位移传感器发送的位移测点残余挠度值。在逐级冲击加载试验中还要检查裂缝与基础变位情况。
步骤八:桥梁承载能力评定
根据最大动挠度与静挠度的对应关系,推得桥梁在计算静载作用下位移测点的真实静挠度,再计算荷载试验校验系数即真实静挠度值与挠度计算值的比值及相对残余挠度值。如果出现校验系数ζ大于1;相对残余挠度值η超过20%;裂缝情况不良;基础发生不稳定沉降中的一条,则判定承载能力不满足要求。否则根据校验系数,再次确定检算系数,并基于该检算系数比较作用效应与抗力效应。当作用效应与抗力效应的比值小于1.05时,判定桥梁承载能力满足要求,否则判定承载能力不满足要求。
实施例
下面通过具体实施例对本发明作进一步说明,但不应以此限制本发明的保护范围。
以一座单跨简支梁桥为例,如图4所示,其跨径为15.52m,整个桥面宽6.5m,为双向两车道,车道两侧留有1.07m宽的人行道,桥面板下简支梁间距为2.18m。根据本发明对该桥进行检测与承载能力评估,并与传统的基于桥梁整体结构冲击振动测试的结果进行比较,其步骤如下:
(1)计算准备
根据设计荷载确定桥梁跨中截面为挠度控制截面,该截面的控制挠度值为5.6mm。然后将整个桥梁划分为子块S1与子块S2。子块S1包含加速度测点4,5,6,7,11,12,13,14,18,19,20,21与冲击点11,14,20;子块S2包含加速度测点1,2,3,8,9,10,15,16,17与冲击点10,16,17,其中10,11,14,16,17,20既作为加速度测点又作为冲击点,而由于4,11,18在挠度控制截面上,所以4,11,18既作为加速度测点又作为位移测点,桥梁子块的划分方式及测点与冲击点位置如图4所示。根据跨中截面挠度影响线选取计算静载加载点为11,12,18,19,其对应的计算静载大小分别为150kN,50kN,150kN,50kN。计算静载引起的跨中截面最大挠度计算值为5.5mm,位于位移测点11处,其荷载效率满足要求。
(2)无参考点分块冲击测试
牵引车1上的GPS定位仪2引导一体化设备行驶至子块S1桥面,利用拖车5上的车轮旋转编码器7与激光测距仪8分别确定子块S1的测点及冲击点在桥面纵向与横向的精确位置,并在测点上布设无线加速度传感器10。先对冲击点14进行冲击,将车载液压冲击装置6移到冲击点14位置,然后信号发送与采集系统3对车载液压冲击装置6发出冲击指令,车载液压冲击装置6上的信号发送与接收器6.1接收到冲击指令,并将该指令传递到第一控制器6.2,第一控制器6.2控制第一油泵6.3先给第一副液压缸6.4提供动力,使第一承载盘6.10沿滑动轴6.5下落直至冲击点桥面,之后再给第一主液压缸6.6提供动力,使第一主液压缸6.6带动第一质量块6.7到达预定高度,然后令第一质量块6.7自由下落,撞击到第一加载板6.9上的第一橡胶缓冲块6.8,同时信号发送与采集系统3采集信号发送与接收器6.1发送的冲击力时程数据与无线加速度传感器10发送的加速度时程数据。14点冲击结束后,再对20,11点分别进行冲击,进而完成子块S1的冲击测试。按相同方式对子块S2进行冲击测试,最终完成整个桥梁的冲击测试工作。
(3)基于无参考点分块冲击的整体结构柔度识别
信号发送与采集系统3将采集到的子块S1、子块S2的冲击力时程数据与测点加速度时程数据导入数据分析系统4之中。数据分析系统4对数据进行加窗、滤波,估计各子块的频响函数,并采用CMIF法对得到的频响函数作模态参数识别。识别出的两个子块前10阶频率与相应的阻尼比已列在表1中,同时由传统的基于桥梁整体结构冲击振动测试得到的桥梁整体结构的频率与阻尼比也列在表1中作为比较。从表1中可以看到同阶时子块与整体结构的频率十分接近,说明参数识别比较准确。
表1 前10阶频率与阻尼比的识别值
Figure PCTCN2016096862-appb-000045
之后进行模态振型缩放调整。由于子块S2中的测点数少于子块S1,所以以子块S1的缩放水平为标准。由公式(5)得子块S2在模态振型缩放调整后的第r阶模态振型为:
Figure PCTCN2016096862-appb-000046
将上式代入公式(6)可得缩放调整后的整体结构模态振型为:
Figure PCTCN2016096862-appb-000047
为确定
Figure PCTCN2016096862-appb-000048
的正负,在整体结构每个测点上均作用5kN的节点荷载,即:
Figure PCTCN2016096862-appb-000049
又由公式(13)可得:
Figure PCTCN2016096862-appb-000050
将节点荷载代入上式,计算整体结构势能。由于取10阶模态振型,所以势能值共有210=1024种大小,该值已按从小到大的顺序表示在图5中。其中最小势能对应的子块S2的模态振型方向系数即为真实值。由该真实值即可确定子块S2在模态振型缩放调整后的第r阶模态振型。根据缩放调整后的模态振型逐阶计算整体结构势能并与由传统的基 于桥梁整体结构冲击振动测试方法计算得到的势能值在图6中进行比较。在图6中可以看出当模态阶数为6时,势能已经收敛。图7中列出了子块S2前6阶模态振型的缩放调整情况。引入按前6阶计算的整体结构柔度矩阵如下:
Figure PCTCN2016096862-appb-000051
按上式计算可得[F]。
(4)桥梁安全状况初判
在点11,12,18,19上分别作用150kN,50kN,150kN,50kN的计算静载,通过上述柔度矩阵,即可得到各测点的挠度预测值。为了进一步展示本发明中挠度预测的准确度,还计算了由前1阶,前2阶模态参数得到的柔度矩阵,并分别预测了其对应的挠度,将这三个挠度预测结果与由传统的基于桥梁整体结构冲击振动测试方法在相同计算荷载作用下得到的挠度预测值进行比较,如图8所示,从中可以看出随着阶数的增加挠度预测结果与整体结构冲击测试得到的结果趋于一致,证明本发明中的柔度识别方法是准确的。取前6阶计算得出的挠度作为预测值,在跨中截面最大挠度预测值为5.4mm,位于位移测点11处。由于该预测值小于挠度计算值5.5mm,估计桥梁实际状况好于理论状况,对桥梁进行进一步的承载能力评估。
(5)桥梁检测与检算
对桥梁的实际缺损、材质状况等情况进行检查与检测,其内容主要包括:桥梁缺损状况、几何形态、恒载变异状况、材质强度、钢筋腐蚀情况、混凝土氯离子含量、混凝土电阻率、混凝土碳化状况、钢筋保护层厚度、结构自振频率、基础与地基状况、实际运营荷载状况等。由上述检查与检测结果得到了各指标的评定标度,进而得到承载能力检算系数、承载能力恶化系数、混凝土结构截面折减系数、钢筋截面折减系数、活载影响修正系数。考虑上述系数后跨中截面弯矩抗力值为9795kN·m,弯矩效应值为10092kN·m;两端支座处剪力抗力值为1255kN,剪力效应值为1311kN,由于荷载作用效应与抗力效应的比值在1.0至1.2之间时,则应进行逐级冲击加载试验。
(6)制定逐级冲击加载试验方案
以计算静载加载点11,12,18,19作为冲击加载点,且每个冲击加载点上的最大冲击荷载与对应的计算静载相等,即分别为150kN,50kN,150kN,50kN。冲击加载共 分为5级,其中11与18点加载大小依次为30kN,60kN,90kN,120kN,150kN,12与19点加载大小依次为10kN,20kN,30kN,40kN,50kN。
(7)进行逐级冲击加载试验
一体化设备行驶至冲击加载点11,12,18,19附近,并在位移测点4,11,18上布设无线位移传感器11,再将拖车5上的4台移动液压冲击装置9移至地面。之后信号发送与采集系统3分别对4台移动液压冲击装置9发出移动指令,移动液压冲击装置9上的信号接收器9.1接收到移动指令,并将该指令传递到第二控制器9.2,第二控制器9.2控制移动液压冲击装置9下部的驱动系统9.10,使4台移动液压冲击装置9分别到达指定冲击加载点。然后信号发送与采集系统3同时对4台移动液压冲击装置9发出冲击指令,信号接收器9.1接收到冲击指令,并将该指令传递到第二控制器9.2,第二控制器9.2控制第二油泵9.3先给第二副液压缸9.4提供动力,使第二承载盘9.9下落直至冲击加载点桥面,之后再给第二主液压缸9.5提供动力,使第二主液压缸9.5带动第二质量块9.6到达预定高度,然后令第二质量块9.6自由下落,撞击到第二加载板9.8上的第二橡胶缓冲块9.7,同时信号发送与采集系统3采集无线位移传感器11发送的位移测点动挠度数据。之后逐级提高冲击荷载的大小,最终获得最大冲击荷载作用下控制截面上位移测点的最大动挠度。冲击加载结束后,待桥梁稳定,信号发送与采集系统3再采集无线位移传感器11发送的位移测点残余挠度值。在逐级冲击加载试验中还要检查裂缝与基础变位情况。
(8)桥梁承载能力评定
在4个冲击加载点都施加最大冲击荷载时,位移测点11上的最大动挠度值大于位移测点4与18,根据最大动挠度与静挠度的对应关系,推得桥梁在计算静载作用下位移测点11的真实静挠度为5.2mm,该值小于计算静载引起的位移测点11处的挠度计算值5.5mm,而测得的位移测点最大残余挠度为0.8mm,相对残余挠度值小于20%,并且裂缝情况良好,基础稳定。然后根据校验系数获得检算系数,并由该检算系数计算跨中弯矩效应值为9937kN·m,支座处剪力效应值为1295kN。此时荷载作用效应与抗力效应的比值小于1.05,最终判定该桥梁承载能力满足要求。
综上,根据本发明提出的一种基于冲击振动的桥梁检测评估方法与设备完成了一座桥梁完整的检测与评估。

Claims (9)

  1. 一种基于冲击振动的桥梁检测评估方法,其特征在于:包括基于无参考点分块冲击的桥梁反分析的步骤与基于逐级冲击加载的桥梁正分析的步骤,其中基于无参考点分块冲击的桥梁反分析的步骤用于快速排查出公路网中承载能力严重不足的中小型桥梁,基于逐级冲击加载的桥梁正分析的步骤用于评估通过反分析排查的安全状况较好桥梁的实际承载能力。
  2. 根据权利要求1所述的基于冲击振动的桥梁检测评估方法,其特征在于:所述基于无参考点分块冲击的桥梁反分析的步骤中采用无参考点分块冲击测试,具体为:将桥梁整体结构分成若干子块,其中不同子块的冲击点与测点位置选取相互独立,之后对每个子块的冲击点进行逐点冲击,同时采集各子块冲击力时程数据与测点的加速度时程数据。
  3. 根据权利要求1所述的基于冲击振动的桥梁检测评估方法,其特征在于:所述基于逐级冲击加载的桥梁反分析的步骤中采用基于无参考点分块冲击的整体结构柔度识别方法,具体为:子块频响函数估计,子块模态参数识别,子块模态振型缩放调整,子块模态振型方向判别,整体结构柔度矩阵计算。
  4. 根据权利要求3所述的基于冲击振动的桥梁检测评估方法,其特征在于:所述的基于无参考点分块冲击的整体结构柔度识别方法中,在子块模态振型缩放调整时,以子块S1的模态振型缩放程度为标准进行所有子块模态振型的缩放调整,采用的公式为:
    Figure PCTCN2016096862-appb-100001
    式中:
    Figure PCTCN2016096862-appb-100002
    分别为子块Sk在模态振型缩放调整前后的第r阶模态振型,
    Figure PCTCN2016096862-appb-100003
    为子块Sk在模态振型缩放调整前的第r阶模态振型缩放系数,
    Figure PCTCN2016096862-appb-100004
    为子块S1的第r阶模态振型缩放系数,
    Figure PCTCN2016096862-appb-100005
    为子块Sk的第r阶模态振型方向系数(
    Figure PCTCN2016096862-appb-100006
    Figure PCTCN2016096862-appb-100007
    );之后将缩放调整后所有子块S1,S2,···,Sk,···,Sn的模态振型集成为桥梁整体结构模态型,采用的公式为:
    Figure PCTCN2016096862-appb-100008
    式中:
    Figure PCTCN2016096862-appb-100009
    为按子块S1的模态振型缩放程度确定的桥梁整体结构第r阶模态振型。
  5. 根据权利要求3所述的基于冲击振动的桥梁检测评估方法,其特征在于:所述的基于无参考点分块冲击的整体结构柔度识别方法中,在整体结构柔度矩阵计算时,先计算桥梁整体结构势能,然后取其中最小势能对应的各子块的模态振型方向系数,基于该系数得到桥梁整体结构模态振型,其中包含各子块模态振型方向系数的桥梁整体结构势能表达式为:
    Figure PCTCN2016096862-appb-100010
    式中:Πp为桥梁整体结构势能,
    Figure PCTCN2016096862-appb-100011
    表示任意子块Sk中的节点荷载向量,λr为第r阶系统极点,
    Figure PCTCN2016096862-appb-100012
    Figure PCTCN2016096862-appb-100013
    分别为λr
    Figure PCTCN2016096862-appb-100014
    的共轭复数,m表示计算的最高阶数。
  6. 根据权利要求1所述的基于冲击振动的桥梁检测评估方法,其特征在于:所述基于逐级冲击加载的桥梁正分析的步骤中采用逐级冲击加载试验,其包括:冲击加载点选取在计算静载加载点处;令每个冲击点上的最大冲击荷载与对应的计算静载相等;对冲击荷载的施加进行分级;将挠度控制截面上的加速度测点同时作为位移测点并在其上布设位移传感器,测量冲击荷载作用下各位移测点的最大动挠度,在冲击加载结束后,待桥梁稳定,再测量位移测点的残余挠度;根据最大动挠度与静挠度的对应关系,推得桥梁在计算静载作用下位移测点的真实静挠度,通过位移测点的真实静挠度与残余挠度并结合裂缝与基础变位情况进行桥梁承载能力评定。
  7. 一种基于冲击振动的桥梁检测评估一体化设备,其特征在于:包括牵引车(1),GPS定位仪(2),信号发送与采集系统(3),数据分析系统(4),拖车(5),车载液压冲击装置(6),车轮旋转编码器(7),激光测距仪(8),移动液压冲击装置(9),无线加速度传感器(10),无线位移传感器(11);
    其中,所述牵引车(1)提供动力,其上安装有GPS定位仪(2),信号发送与采集系统(3)及数据分析系统(4);
    所述拖车(5)挂于牵引车(1)后方,其上安装有车载液压冲击装置(6),车轮旋转编码器(7)与激光测距仪(8),并且用于运输若干台移动液压冲击装置(9)及无 线加速度传感器(10)与无线位移传感器(11);
    所述车载液压冲击装置(6)固定于拖车(5)的后部,采用无线控制方式,用于反分析中的无参考点分块冲击测试;
    所述移动液压冲击装置(9)采用无线控制方式,用于正分析中的逐级冲击加载试验;
    所述信号发送与采集系统(3)分别与移动液压冲击装置(9)、车载液压冲击装置(6)采用无线通信连接,用于发送、采集信号,发送的信号包括移动液压冲击装置的移动指令与冲击指令,采集的信号包括车载液压冲击装置的冲击力时程数据,测点加速度时程数据与位移数据;
    所述数据分析系统(4)与信号发送与采集系统(3)连接,利用内嵌的基于无参考点分块冲击的整体结构柔度识别算法及相关的安全与承载能力评定准则,对所采集的数据进行自动化分析,快速输出测试与评估结果;
    所述GPS定位仪(2)、车轮旋转编码器(7)、激光测距仪(8)组成整个设备的定位与测距系统,其中,所述GPS定位仪(2)安装在牵引车(1)上,用于引导整个设备到达桥面各子块,车轮旋转编码器(7)设置于拖车(5)的车轮上,激光测距仪(8)设置于拖车(5)上,车轮旋转编码器(7)与激光测距仪(8)分别用于确定测点及冲击点在桥面纵向与横向的精确位置;
    所述无线加速度传感器(10)用于获取加速度测点的加速度时程数据,无线位移传感器(11)用于获取位移测点的动挠度与残余挠度数据。
  8. 根据权利要求7所述的基于冲击振动的桥梁检测评估一体化设备,其特征在于:所述车载液压冲击装置(6)包括信号发送与接收器(6.1),第一控制器(6.2),第一油泵(6.3),第一副液压缸(6.4),滑动轴(6.5),第一主液压缸(6.6),第一质量块(6.7),第一橡胶缓冲块(6.8),第一加载板(6.9),第一承载盘(6.10);其中,信号发送与接收器(6.1)用于接收冲击指令与发送冲击力时程数据;第一控制器(6.2)与信号发送与接收器(6.1)连接,用于控制第一油泵(6.3)的开关;第一油泵(6.3)分别与第一主液压缸(6.6)和第一副液压缸(6.4)连接,用于给第一主液压缸(6.6)和第一副液压缸(6.4)提供动力;第一主液压缸(6.6)用于提升放置于其顶部的第一质量块(6.7);第一副液压缸(6.4)设置于拖车(5)之上,用于提升设置于拖车(5)的矩形开口内的第一加载板(6.9),拖车(5)的矩形开口设置于拖车板位于车载液压冲击装置(6)正下方的位置;第一加载板(6.9)沿滑动轴(6.5)上下移动,其上设置有第一橡胶缓冲 块(6.8),第一橡胶缓冲块(6.8)用于承载第一质量块(6.7)的冲击;滑动轴(6.5)为第一加载板(6.9)提供垂直运动轴;第一承载盘(6.10)设置于第一加载板(6.9)的下方,用于将冲击荷载传递至桥面。
  9. 根据权利要求7所述的基于冲击振动的桥梁检测评估一体化设备,其特征在于:所述移动液压冲击装置(9)包括信号接收器(9.1),第二控制器(9.2),第二油泵(9.3),第二副液压缸(9.4),第二主液压缸(9.5),第二质量块(9.6),第二橡胶缓冲块(9.7),第二加载板(9.8),第二承载盘(9.9),驱动系统(9.10);其中,信号接收器(9.1)用于接收移动及冲击指令,第二控制器(9.2)与信号接收器(9.1)连接,用于控制第二油泵(9.3)的开关与驱动系统(9.10);第二油泵(9.3)分别与第二主液压缸(9.5)和第二副液压缸(9.4)连接,用于给第二主液压缸(9.5)和第二副液压缸(9.4)提供动力;第二主液压缸(9.5)用于提升放置于其顶部的第二质量块(9.6);第二副液压缸(9.4)设置于移动液压冲击装置(9)底部框架之上,用于提升第二加载板(9.8);第二加载板(9.8)之上设置有第二橡胶缓冲块(9.7),第二橡胶缓冲块(9.7)用于承载第二质量块(9.6)的冲击;第二承载盘(9.9)用于将冲击荷载传递至桥面;驱动系统(9.10)位于整个移动液压冲击装置(9)的底部,用于实现移动液压冲击装置(9)的自动移动。
PCT/CN2016/096862 2016-06-30 2016-08-26 一种基于冲击振动的桥梁检测评估方法与设备 WO2018000561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/570,339 US10620085B2 (en) 2016-06-30 2016-08-26 Bridge inspection and evaluation method based on impact vibration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610510192.X 2016-06-30
CN201610510192.XA CN105953996B (zh) 2016-06-30 2016-06-30 一种基于冲击振动的桥梁检测评估方法与设备

Publications (1)

Publication Number Publication Date
WO2018000561A1 true WO2018000561A1 (zh) 2018-01-04

Family

ID=56902917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096862 WO2018000561A1 (zh) 2016-06-30 2016-08-26 一种基于冲击振动的桥梁检测评估方法与设备

Country Status (3)

Country Link
US (1) US10620085B2 (zh)
CN (1) CN105953996B (zh)
WO (1) WO2018000561A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740280A (zh) * 2019-01-14 2019-05-10 江西集银科技有限公司 一种桥梁挂篮参数计算与仿真方法
CN109933936A (zh) * 2019-03-22 2019-06-25 安徽省交通控股集团有限公司 一种空心板梁桥铰缝横向传力能力的快速评定方法
CN110567745A (zh) * 2019-09-16 2019-12-13 中国铁道科学研究院集团有限公司铁道建筑研究所 一种桥梁水下桥墩检测评估系统
CN110619150A (zh) * 2019-08-15 2019-12-27 广州大学 一种兼顾模态耦合效应的荷载分析方法、装置及存储介质
CN111428303A (zh) * 2020-03-27 2020-07-17 扬州大学 一种空心板梁桥铰缝协同工作系数计算方法
CN111553003A (zh) * 2020-04-03 2020-08-18 中交第二航务工程局有限公司 基于数据驱动的可视化大跨斜拉桥拉索评估方法
CN111931367A (zh) * 2020-07-31 2020-11-13 中国地质大学(北京) 反演约束的点负载条件下前陆盆地沉降过程的正演模拟方法
CN112487687A (zh) * 2020-12-07 2021-03-12 山西省交通科技研发有限公司 基于分布式云计算的大件运输桥梁安全快速评估系统
DE102019215821A1 (de) * 2019-10-15 2021-04-15 Robert Bosch Gmbh Verfahren zur Schwingungsanalyse eines mit Kraftfahrzeugen befahrbaren Bauwerks
CN112784336A (zh) * 2020-12-31 2021-05-11 杭州鲁尔物联科技有限公司 一种基于深度学习lstm网络的桥梁静态位移预测技术
CN113310649A (zh) * 2021-05-27 2021-08-27 山东建筑大学 一种预测中小桥梁模态挠度的测试方法
RU2767944C1 (ru) * 2021-09-06 2022-03-22 Акционерное общество "Спецремпроект" Способ вибрационного контроля технического состояния мостовых конструкций
CN114808689A (zh) * 2022-05-19 2022-07-29 大连理工大学 一种提取桥梁模态参数的检测车
CN115440010A (zh) * 2022-08-12 2022-12-06 无锡小淞交通科技发展有限公司 基于物联网的桥梁远程监测预警装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693759B1 (ko) * 2016-11-29 2017-01-09 한국건설기술연구원 로드셀이 구비된 신축이음장치를 이용한 교량 안전진단 장치 및 그 방법
CN107016186B (zh) * 2017-04-01 2021-03-23 司靓 一种面向危害性冲撞击事件的智能辨识与评估方法
US11551092B2 (en) * 2017-09-13 2023-01-10 Southern Methodist University Bridge impact detection and classification systems and methods
CN108458847B (zh) * 2018-01-03 2019-11-12 东南大学 一种桥梁人致冲击荷载光学测量方法及其快速测试系统
CN109084949B (zh) * 2018-08-06 2020-04-07 大连理工大学 一种用于桥梁检测的冲击落锤自动反弹爬升装置
CN109299539A (zh) * 2018-09-25 2019-02-01 北京工业大学 一种利用曲线转角指标评估悬臂梁刚度薄弱环节的方法
CN109992815B (zh) * 2018-12-24 2023-06-20 中铁大桥(南京)桥隧诊治有限公司 一种基于关联性雨流计数的支座累计位移计算方法
CN109781863B (zh) * 2019-01-16 2021-07-23 东南大学 基于快速振动测试的结构腐蚀二阶段探测方法及其系统
CN109813511B (zh) * 2019-01-31 2020-12-29 东南大学 基于移动车辆的桥梁快速测试与参数识别方法
CN110514215B (zh) * 2019-08-12 2022-12-23 贵州省质安交通工程监控检测中心有限责任公司 一种基于桥梁结构受力分析的大件运输路径规划方法
CN110688786A (zh) * 2019-08-21 2020-01-14 西南交通大学 基于车-轨-桥耦合振动模型的行车安全制定方法和装置
CN111089695B (zh) * 2019-12-27 2022-10-25 上海文倍测控科技有限公司 一种自动化模态测试方法
JP2021147819A (ja) 2020-03-18 2021-09-27 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP7375637B2 (ja) 2020-03-18 2023-11-08 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP7400566B2 (ja) 2020-03-18 2023-12-19 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP7396139B2 (ja) * 2020-03-18 2023-12-12 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP2021148537A (ja) 2020-03-18 2021-09-27 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
CN111562122B (zh) * 2020-05-07 2022-05-06 中铁武汉大桥工程咨询监理有限公司 一种桥梁结构设计用模型力学模拟检测装置及其检测方法
CN111695176A (zh) * 2020-05-11 2020-09-22 中设设计集团股份有限公司 大跨径斜拉桥拉索状况评定方法及装置
CN111696103B (zh) * 2020-06-19 2023-05-12 交通运输部公路科学研究所 单跨简支梁桥在不中断交通条件下的恒载线形测绘方法
CN111723428A (zh) * 2020-06-24 2020-09-29 云南省公路科学技术研究院 基于位移影响线分配的连续刚构桥成桥预拱度设置方法
CN112067116B (zh) * 2020-07-13 2022-08-19 东南大学 一种具有抗噪性的中小桥梁冲击振动测试与分析方法
CN111829738B (zh) * 2020-07-20 2022-09-06 唐堂 一种基于冲击荷载的桥梁承载力轻量化评定方法
CN112729740B (zh) * 2020-12-19 2023-07-14 新疆天宇工程检测有限公司 一种公路桥梁承载能力检测系统
CN112818444B (zh) * 2021-01-15 2022-12-30 中铁二院工程集团有限责任公司 基于运营行车安全的铁路混凝土桥梁线形实时控制方法
CN113076843B (zh) * 2021-03-26 2022-09-20 重庆交通大学 基于图像检测的桥面荷载估算方法
CN113239481B (zh) * 2021-04-22 2022-03-08 中国铁路设计集团有限公司 一种32米高铁标准简支梁的动挠度监测方法
CN113127981A (zh) * 2021-05-06 2021-07-16 大连理工大学 一种考虑形位公差的薄壁筒壳结构折减因子预测方法
CN113358311B (zh) * 2021-06-03 2022-09-30 哈尔滨工业大学 基于有限测点和振动模态的板/梁结构横向位移确定方法
CN113418721B (zh) * 2021-06-24 2024-01-12 农业农村部南京农业机械化研究所 一种便于调试的农机试验机架
CN113627060A (zh) * 2021-08-09 2021-11-09 苏交科集团股份有限公司 一种基于实测挠度影响线的公路梁式桥承载能力评定方法
CN113834618A (zh) * 2021-09-18 2021-12-24 浙江华东测绘与工程安全技术有限公司 一种风力发电塔动态挠度测量方法及装置
CN114036974A (zh) * 2021-10-15 2022-02-11 东南大学 一种基于健康监测数据的桥梁冲刷动力识别方法
CN113884258B (zh) * 2021-11-18 2023-04-18 郑州大学 一种考虑温度对桥梁刚度影响的检验系数修正方法
CN114964667B (zh) * 2022-04-11 2023-04-14 郑州大学 一种用于识别拱桥吊杆损伤的应变影响线方法
CN114964673B (zh) * 2022-04-12 2023-02-14 大连理工大学 一种针对频谱泄漏误差的结构频响函数修正方法
CN114459657B (zh) * 2022-04-14 2022-07-01 西南交通大学 冲击荷载自动化识别方法、电子设备和存储介质
CN114997009B (zh) * 2022-05-30 2024-03-22 山东高速集团有限公司 一种基于机器视觉和模型修正的桥梁承载力快速评估方法
CN115391881B (zh) * 2022-08-09 2023-04-18 哈尔滨工业大学 一种桥塔尾流区吊索风致振动数值预测方法
CN115876412B (zh) * 2022-12-15 2023-08-29 广西北投交通养护科技集团有限公司 基于应变米的装配式梁桥健康状态评估方法
CN116754166B (zh) * 2023-05-11 2023-12-19 中国人民解放军军事科学院系统工程研究院 组合式头颈及躯干冲击标定测试装置与方法
CN116698318B (zh) * 2023-07-20 2023-12-26 山东高速集团有限公司创新研究院 一种基于加速度监测数据的桥梁裂缝识别方法
CN116659780B (zh) * 2023-08-01 2023-10-13 山东蒙山路桥有限公司 一种路桥施工用桥梁梁板荷载测试装置
CN117191305B (zh) * 2023-11-06 2024-02-02 临沂市公路事业发展中心兰陵县中心 一种公路桥梁的状态评估方法及系统
CN117420035B (zh) * 2023-12-19 2024-04-12 江苏广亚建设集团有限公司 一种桥梁承载能力测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804563A (zh) * 2005-10-14 2006-07-19 北京交通大学 测量桥梁下部结构自振频率的冲击振动法
US20100242609A1 (en) * 2009-03-26 2010-09-30 Wei-Feng Lee Bridge monitoring and safety evaluation method using a vibration technique
CN102353509A (zh) * 2011-10-11 2012-02-15 东南大学 一种基于分块冲击振动测试的中小型桥梁快速检测方法
CN103411743A (zh) * 2013-07-04 2013-11-27 东南大学 利用可移动设备对桥梁进行移动式冲击振动的测试方法
CN104406757A (zh) * 2014-11-17 2015-03-11 东南大学 适用于中小桥梁快速安全诊断的一体化装置
CN104713740A (zh) * 2015-03-17 2015-06-17 天津市市政工程研究院 一种基于移动荷载试验的桥梁承载能力快速评定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2194978C2 (ru) * 2000-10-30 2002-12-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Квант" Способ контроля технического состояния пролетных строений
CN101266190A (zh) * 2008-04-25 2008-09-17 天津市市政工程设计研究院 正常交通流下斜拉桥模态参数测定装置及方法
CN101587007A (zh) * 2009-06-19 2009-11-25 同济大学 识别柔性桥梁结构动力参数的惟输出小波基分析方法
CN102087677A (zh) * 2010-12-24 2011-06-08 东南大学 一种弹性地基梁的求解和m值反分析方法
CN103076277A (zh) * 2012-12-28 2013-05-01 清华大学 敲击扫描式桥梁损伤检测的敲击载荷施加装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804563A (zh) * 2005-10-14 2006-07-19 北京交通大学 测量桥梁下部结构自振频率的冲击振动法
US20100242609A1 (en) * 2009-03-26 2010-09-30 Wei-Feng Lee Bridge monitoring and safety evaluation method using a vibration technique
CN102353509A (zh) * 2011-10-11 2012-02-15 东南大学 一种基于分块冲击振动测试的中小型桥梁快速检测方法
CN103411743A (zh) * 2013-07-04 2013-11-27 东南大学 利用可移动设备对桥梁进行移动式冲击振动的测试方法
CN104406757A (zh) * 2014-11-17 2015-03-11 东南大学 适用于中小桥梁快速安全诊断的一体化装置
CN104713740A (zh) * 2015-03-17 2015-06-17 天津市市政工程研究院 一种基于移动荷载试验的桥梁承载能力快速评定方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740280A (zh) * 2019-01-14 2019-05-10 江西集银科技有限公司 一种桥梁挂篮参数计算与仿真方法
CN109933936A (zh) * 2019-03-22 2019-06-25 安徽省交通控股集团有限公司 一种空心板梁桥铰缝横向传力能力的快速评定方法
CN110619150A (zh) * 2019-08-15 2019-12-27 广州大学 一种兼顾模态耦合效应的荷载分析方法、装置及存储介质
CN110619150B (zh) * 2019-08-15 2023-03-28 广州大学 一种兼顾模态耦合效应的荷载分析方法、装置及存储介质
CN110567745A (zh) * 2019-09-16 2019-12-13 中国铁道科学研究院集团有限公司铁道建筑研究所 一种桥梁水下桥墩检测评估系统
DE102019215821A1 (de) * 2019-10-15 2021-04-15 Robert Bosch Gmbh Verfahren zur Schwingungsanalyse eines mit Kraftfahrzeugen befahrbaren Bauwerks
CN111428303A (zh) * 2020-03-27 2020-07-17 扬州大学 一种空心板梁桥铰缝协同工作系数计算方法
CN111428303B (zh) * 2020-03-27 2024-03-08 扬州大学 一种空心板梁桥铰缝协同工作系数计算方法
CN111553003B (zh) * 2020-04-03 2023-01-31 中交第二航务工程局有限公司 基于数据驱动的可视化大跨斜拉桥拉索评估方法
CN111553003A (zh) * 2020-04-03 2020-08-18 中交第二航务工程局有限公司 基于数据驱动的可视化大跨斜拉桥拉索评估方法
CN111931367A (zh) * 2020-07-31 2020-11-13 中国地质大学(北京) 反演约束的点负载条件下前陆盆地沉降过程的正演模拟方法
CN112487687A (zh) * 2020-12-07 2021-03-12 山西省交通科技研发有限公司 基于分布式云计算的大件运输桥梁安全快速评估系统
CN112487687B (zh) * 2020-12-07 2023-03-31 山西省智慧交通研究院有限公司 基于分布式云计算的大件运输桥梁安全快速评估系统
CN112784336A (zh) * 2020-12-31 2021-05-11 杭州鲁尔物联科技有限公司 一种基于深度学习lstm网络的桥梁静态位移预测技术
CN113310649A (zh) * 2021-05-27 2021-08-27 山东建筑大学 一种预测中小桥梁模态挠度的测试方法
CN113310649B (zh) * 2021-05-27 2024-04-02 山东高速集团有限公司 一种预测中小桥梁模态挠度的测试方法
RU2767944C1 (ru) * 2021-09-06 2022-03-22 Акционерное общество "Спецремпроект" Способ вибрационного контроля технического состояния мостовых конструкций
CN114808689A (zh) * 2022-05-19 2022-07-29 大连理工大学 一种提取桥梁模态参数的检测车
CN115440010A (zh) * 2022-08-12 2022-12-06 无锡小淞交通科技发展有限公司 基于物联网的桥梁远程监测预警装置

Also Published As

Publication number Publication date
US20180224352A1 (en) 2018-08-09
US10620085B2 (en) 2020-04-14
CN105953996A (zh) 2016-09-21
CN105953996B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2018000561A1 (zh) 一种基于冲击振动的桥梁检测评估方法与设备
CN105937199B (zh) 轮毂式道面自主检测智能装置
CN101620054B (zh) 路面结构及桥面铺装粘结界面抗剪特性的测试装置
CN103048102B (zh) 一种梁式桥的状态评估方法
CN105951569B (zh) 履带式道面自主检测机器人系统及检测方法
CN106049243B (zh) 道面自主检测智能装置
CN103134726A (zh) 沥青路面碾压分析仪
CN206157570U (zh) 带检测系统的轻型碳纤维爬索机器人
CN104866676A (zh) 一种基于两阶段多尺度模型修正的结合梁斜拉桥传感器布设方法
CN105527165B (zh) 一种沥青路面裂缝荷载响应相对位移测试方法及测试装置
CN110057514A (zh) 一种用于桥梁损伤识别试验的车桥耦合系统模型及方法
CN203083886U (zh) 沥青路面碾压分析仪
CN112378507B (zh) 一种基于运动补偿的计算机视觉结构振动监测方法
CN107490334A (zh) 装配式板梁铰缝损伤评价方法
CN111400793A (zh) 高架桥梁可移动式智能化快速监测及承载能力评估算法
CN106758719A (zh) 一种双轮驱动道面修复机器人系统和道面修复方法
CN107014543A (zh) 一种斜拉桥索力测试方法
JP2013147834A (ja) 橋梁の亀裂監視方法及び亀裂監視システム
CN104142135B (zh) 基于无线倾角传感器的隧道水平位移的监测方法及装置
CN112945969B (zh) 基于机器视觉测量的空心板梁桥铰缝损伤识别方法及系统
CN103630448A (zh) 一种路面结构层间界面抗剪强度测试设备及其方法
CN205934677U (zh) 一种履带式道面自主检测机器人
CN205426670U (zh) 一种沥青路面裂缝荷载响应相对位移测试仪
CN109212523B (zh) 一种雷达无损检测路面质量的方法和设备
Uddin Pavement Performance Measures Using Android-Based Smart Phone Application

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15570339

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906958

Country of ref document: EP

Kind code of ref document: A1