CN115391881B - 一种桥塔尾流区吊索风致振动数值预测方法 - Google Patents

一种桥塔尾流区吊索风致振动数值预测方法 Download PDF

Info

Publication number
CN115391881B
CN115391881B CN202210948182.XA CN202210948182A CN115391881B CN 115391881 B CN115391881 B CN 115391881B CN 202210948182 A CN202210948182 A CN 202210948182A CN 115391881 B CN115391881 B CN 115391881B
Authority
CN
China
Prior art keywords
sling
bridge tower
wind
wake
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210948182.XA
Other languages
English (en)
Other versions
CN115391881A (zh
Inventor
陈文礼
黄业伟
李惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210948182.XA priority Critical patent/CN115391881B/zh
Publication of CN115391881A publication Critical patent/CN115391881A/zh
Application granted granted Critical
Publication of CN115391881B publication Critical patent/CN115391881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明提出了一种桥塔尾流区吊索风致振动数值预测方法,属于大型建筑结构风致振动领域,方法是通过一种非线性吊索结构控制方程,结合吊索在桥塔尾流区内所受气动力,通过偏微分方程数值求解,对吊索风振特性进行预测。本发明采用了全新的非线性吊索结构模型,考虑了大变形下吊索形变产生动态张力进而产生的非线性行为;其预测结果准确可靠,幅值、频率、轨迹、模态等均与试验和实桥观测结果吻合较好;本发明具有计算过程占用计算资源少,数值精度高的优点;易于在实际桥梁工程中应用。

Description

一种桥塔尾流区吊索风致振动数值预测方法
技术领域
本发明属于大型建筑结构风致振动领域,具体涉及一种桥塔尾流区吊索风致振动数值预测方法。
背景技术
悬索桥是目前跨越能力最强的缆索承重体系桥梁结构,直接承受竖向荷载的主梁通过吊索悬吊在主缆上,因此吊索是悬索桥重要的结构构件。与斜拉桥斜拉索类似,悬索桥吊索同样具有柔性大和阻尼小的特点。区别在于,斜拉索越靠近跨中,其长度越大;而吊索则是越靠近桥塔则长度越大。悬索桥桥塔附近的吊索长度可达180m以上,因此对风荷载更加敏感,也更容易发生大幅度风致振动。
对大跨度悬索桥现场观察结果表明,桥塔影响区域内的流场特征非常复杂。吊索处于该复杂绕流场内,因此其振动形式也十分复杂。大跨度悬索桥桥塔绕流场内吊索的风致振动具有幅值大、频率低、多阶模态耦合、面内面外耦合等特点。目前,该振动已经成为吊索最突出的动力响应之一。因此,研究桥塔影响区内吊索振动,发展相应的分析及控制方法具有重要的科学意义和工程应用价值。然而,对于该类型的吊索风致振动的研究还较少,无法对吊索风振特性进行有效预测。
发明内容
基于以上不足之处,本发明提出了一种桥塔尾流区吊索风致振动数值预测方法,能够预测三维吊索结构在桥塔尾流区内发生大幅风致振动的情况。
本发明所采用的技术方案如下:一种桥塔尾流区吊索风致振动数值预测方法,步骤如下:
(一)、吊索振动控制方程方法如下:
在三维笛卡尔坐标系中,取z高度处吊索结构微元,在平衡位置(0,0,z)处微元长度dz,吊索在水平面内运动,运动到(u,v,z)处时微元发生形变,长度ds,微元ds两端受张拉力(T+τ),其中T为吊索索力,τ为吊索形变引起的弹性力,满足胡克定律,即:
Figure BDA0003788183140000021
其中E为吊索弹性模量,A为吊索横截面积,γ表示为:
Figure BDA0003788183140000022
结构刚度由张拉力在水平面内的分量提供,则运动微分方程为:
Figure BDA0003788183140000023
其中fx和fy为X方向与Y方向上作用于单位长度吊索的外荷载,c为结构的阻尼系数,由几何关系,微元变形前后满足:
ds2=du2+dv2+dz2 (4)
偏微分算子有:
Figure BDA0003788183140000024
将式(3)第一项展开求偏导,得出:
Figure BDA0003788183140000031
其中:
Figure BDA0003788183140000032
令:
Figure BDA0003788183140000033
对于索力T,由于微元水平面内运动假设,满足:
T=T0+ρg·z   (9)
其中T0为吊索底端荷载力,g为重力加速度,
将式(1)、(7)、(8)与(9)代入(6),对于X方向得出:
Figure BDA0003788183140000034
方程在X与Y方向上具有对称性,同理,对于Y方向得出:
Figure BDA0003788183140000041
由此,得到两个方向上相互耦合的三维吊索运动控制方程。
采用式(10)和(11)作为刚度项的吊索运动方程,方程对于大幅值振动同样具有适用性。非线性偏微分方程求解,需要进行时空离散,将微分方程转化为差分方程进行逼近求解,对于空间差分,采用具有二阶精度的中心差分格式,即:
Figure BDA0003788183140000042
其中l为空间差分中所采用的等分长度,对于总长为L的吊索,等分为N段,则l=L/N,j为节点号,取值范围为1到N+1,k为时间步序号;
时间差分采用显式四阶龙格库塔法,在每个时刻k先进行空间离散,之后进行数值迭代,将式(3)转化成微分方程组形式:
Figure BDA0003788183140000043
对于该初值问题,初始条件为:
y(t0)=y0   (14)
迭代过程为:
Figure BDA0003788183140000051
其中,h为时间步长,K1到K4为中间迭代值:
Figure BDA0003788183140000052
为保证迭代精度,计算每个K值时均更新一次空间离散的差分值;
(二)、桥塔尾流区三维吊索气动力得出方法如下:
根据公路桥梁抗风设计规范,考虑风剖面引起的来流风速随高度变化,有:
Figure BDA0003788183140000053
其中,U10为重现期100年的年平均最大风速数学期望值,a0为地表粗糙度系数,其取值由周边地貌类型确定。由此可确定桥塔不同高度处的来流风速;
桥塔尾流区吊索所受到的脉动风荷载按下列公式进行计算:
wkf(z,t)=μsρairvzf(t)vmean   (18)
其中:wkf(z,t)为结构高度z处脉动风荷载时程;μs为吊索的风荷载体型系数;ρair为空气密度;vzf(t)为高度z处的桥塔尾流区内吊索当前位置处的风速脉动时程;vmean为高度z处的桥塔尾流区内吊索当前位置处的风速平均值;
桥塔尾流区速度脉动由桥塔周期性旋涡脱落引起,其主频满足Strouhal定律,即:
fs(z)=St·U(z)/Dtower   (19)
其中:fs(z)为z高度处的桥塔旋涡脱落频率,也即尾流区风速主频;St为桥塔
Strouhal数,与桥塔截面外形有关;Dtower为桥塔特征尺度,
高度z处的风速时程为:
Figure BDA0003788183140000061
其中,vrms为高度z处的桥塔尾流区内吊索当前位置处的风速脉动值,
对于vmean(u,v,z,t)与vrms(u,v,z,t),通过CFD方法计算桥塔尾流场分布获得;
当上游桥塔的漩涡脱落频率fs与吊索自振频率相一致时,激发尾流区吊索的尾流致振,至此,确定单位长度处吊索荷载f(u,v,z,t):
f(u,v,z,t)=wkf(u,v,z,t)·dcable   (21)
其中dcable为吊索直径;
由上述步骤通过尾流区吊索气动力建模和结构建模,同时对桥塔尾流区吊索的低阶模态振动进行模态分解和偏微分方程数值求解,得到其振动位移、频率、模态的信息。
本发明的另一目的是公开一种计算机设备,包括存储器、处理器及存储在存储器上并能够在处理器上运行的计算机程序,所述处理器处理执行所述计算机程序实现如上所述一种桥塔尾流区吊索风致振动数值预测方法的步骤。
本发明的优点及有益效果:本发明采用了全新的非线性吊索结构模型,考虑了大变形下吊索形变产生动态张力进而产生的非线性行为;预测结果准确可靠,其预测结果中幅值、频率、轨迹、模态等均与试验和实桥观测结果吻合较好。本发明具有预测过程迅速,占用计算资源少,数值精度高的优点。
附图说明
图1是三维吊索模型示意图;
图2是吊索数值预测自由衰减曲线;
图3是塔索相对位置示意图;
图4是桥塔尾流场风速特征量分布图;
图5是四排吊索位移幅值随风速变化曲线图。
具体实施方式
下面根据说明书附图举例对本发明做进一步解释:
实施例1
一、吊索振动控制方程
吊索振动控制方程类似于弦振动方程:
Figure BDA0003788183140000071
其中,a2=T/ρ,T为结构张拉力,ρ为结构线密度,f(x,t)为单位长度外荷载除以ρ。该方程推导过程中采用小变形假设,忽略变形引起的二阶小量;同时认为结构中张力为定值。弦振动方程为线性方程,满足叠加原理,对于常见的柯西问题:
Figure BDA0003788183140000072
方程具有解析解:
Figure BDA0003788183140000073
考虑到对于实际悬索桥吊索,弦振动方程中的简化条件难以满足,因此以下推导实际悬索桥吊索控制方程,推导中采用以下两点基本假设:
1、悬索桥吊索其抗拉刚度起主导作用,因此吊索可视为理想柔性索结构,忽略吊索的抗弯、抗扭、抗剪刚度;
2、对于任一吊索结构微元,忽略其竖直方向运动,即微元体仅发生水平面内的运动,同时认为悬索桥吊索不发生扭转与剪切变形。
如图1所示,在三维笛卡尔坐标系中,取z高度处吊索结构微元,在平衡位置(0,0,z)处微元长度dz,吊索在水平面内运动,运动到(u,v,z)处时微元发生形变,长度ds。微元ds两端受张拉力(T+τ),其中T为吊索索力,τ为吊索形变引起的弹性力,满足胡克定律,即:
Figure BDA0003788183140000081
其中E为吊索弹性模量,A为吊索横截面积,γ表示为:
Figure BDA0003788183140000082
结构刚度由张拉力在水平面内的分量提供,则运动微分方程为:
Figure BDA0003788183140000083
其中fx和fy为X方向与Y方向上作用于单位长度吊索的外荷载,c为结构的阻尼系数。
由几何关系,微元变形前后满足:
ds2=du2+dv2+dz2   (7)
偏微分算子有:
Figure BDA0003788183140000091
将本实施例的式(6)第一项(刚度项)展开求偏导,可写为:
Figure BDA0003788183140000092
其中:
Figure BDA0003788183140000093
令:
Figure BDA0003788183140000094
对于索力T,由于微元水平面内运动假设,满足:
T=T0+ρg·z   (12)
其中T0为吊索底端荷载力,g为重力加速度。
将本实施例的式(4)、(10)、(11)与(12)代入(9),对于X方向得出:
Figure BDA0003788183140000101
方程在X方向与Y方向上具有对称性,同理,对于Y方向得出:
Figure BDA0003788183140000102
由此,可得到两个方向上相互耦合的三维吊索运动控制方程。
采用本实施例的式(13)和(14)作为刚度项的吊索运动方程,考虑了吊索运动发生变形从而产生的动态索力变化,进而吊索结构参数具有较明显的非线性特征,同时,由于未采用小变形假设,方程对于大幅值振动同样具有适用性。
非线性偏微分方程求解,需要进行时空离散,将微分方程转化为差分方程进行逼近求解。对于空间差分,采用具有二阶精度的中心差分格式,即:
Figure BDA0003788183140000103
其中l为空间差分中所采用的等分长度,对于总长为L的吊索,等分为N段,则l=L/N,j为节点号,取值范围为1到N+1,k为时间步序号。
时间差分采用显式四阶龙格库塔法,在每个时刻k先进行空间离散,之后进行数值迭代,将式(6)转化成微分方程组形式:
Figure BDA0003788183140000111
对于该初值问题,初始条件为:
y(t0)=y0   (17)
迭代过程为:
Figure BDA0003788183140000112
其中,h为时间步长,K1到K4为中间迭代值:
Figure BDA0003788183140000113
为保证迭代精度,计算每个K值时均更新一次空间离散的差分值。
二、桥塔尾流区三维吊索气动力
桥塔尾流区速度脉动值大,且具有特定的主频成分,当满足一定风速条件时,吊索发生大幅振动。桥塔与吊索往往高度超过百米,根据《公路桥梁抗风设计规范JTG/T 3360-01 2018》,考虑风剖面引起的来流风速随高度变化,有:
Figure BDA0003788183140000121
其中,U10为重现期100年的年平均最大风速数学期望值,a0为地表粗糙度系数,其取值由周边地貌类型确定。由此可确定桥塔不同高度处的来流风速。
桥塔尾流区吊索所受到的脉动风荷载可按下列公式进行计算:
wkf(z,t)=μsρairvzf(t)vmean   (21)
其中:wkf(z,t)为结构高度z处脉动风荷载时程(N/m2);μs为吊索的风荷载体型系数,取为1.25;ρair为空气密度,标准大气压下取1.225(kg/m3);vzf(t)为高度z处的桥塔尾流区内吊索当前位置处的风速脉动时程(m/s);vmean为高度z处的桥塔尾流区内吊索当前位置处的风速平均值(m/s)。
桥塔尾流区速度脉动主要是由桥塔周期性旋涡脱落引起,其主频满足Strouhal定律,即:
fs(z)=St·U(z)/Dtower   (22)
其中:fs(z)为z高度处的桥塔旋涡脱落频率,也即尾流区风速主频;St为桥塔Strouhal数,与桥塔截面外形有关;Dtower为桥塔特征尺度。据此,高度z处的风速时程可写为:
Figure BDA0003788183140000122
其中,vrms为高度z处的桥塔尾流区内吊索当前位置处的风速脉动值(m/s)。对于vmean(u,v,z,t)与vrms(u,v,z,t),可通过CFD技术计算桥塔尾流场分布获得。
当上游桥塔的漩涡脱落频率fs与吊索自振频率相一致时,激发尾流区吊索的尾流致振。至此,可确定单位长度处吊索荷载f(u,v,z,t):
f(u,v,z,t)=wkf(u,v,z,t)·dcable   (24)
其中dcable为吊索直径;由上述步骤可以对桥塔尾流区吊索风致振动情况进行求解和预测,从而为工程应用提供指导。
实施例2
对于国内某拟建主跨跨径2300米悬索桥,每个吊点有两根吊索组成索股,最长的吊索长度为265米,一阶自振频率约0.34Hz,易受桥塔尾流作用产生大幅风致振动。取45度风偏角(常遇风向)条件下,塔后前四排吊索作为研究对象,其计算参数取值如表1所示。
表1某超大跨径悬索桥塔后前四排吊索参数
Figure BDA0003788183140000131
为了验证三维吊索振动控制方程以及算法稳定性,采用自由振动方法代入前四排吊索参数,赋予吊索结构初始位移,数值计算吊索自由振动情况,吊索中部节点运动时程如图2所示。由图可见,通过输入索长、索力、质量等参数,计算得到的振动时程其动力特性参数包括频率与阻尼比,均与实际结果完全吻合,由此可证明模型与算法的正确性。
桥塔尾流场速度时程通过CFD方法获取,采用RANS模型进行计算,桥塔尺寸、吊索位置、尾流风速监测区域等如图3所示。
CFD计算获得尾流区风速时程,对桥塔尾流场进行风速统计计算,获得顺风向与横风向的vmean(u,v,z,t)与vrms(u,v,z,t)分布,10m/s风速下尾流场结果如图4所示。
对于顺风向平均速度而言,其中心线靠近桥塔范围内存在回流区,平均流速为负值,而越往下游和两侧平均风速越大;对于脉动风速而言,顺风向Y=0两侧存在较大的峰值区域,而横风向在Y=0轴靠近桥塔处存在峰值区域。
对于桥塔尾流区吊索而言,当上游涡脱频率接近于吊索某阶模态频率时,吊索发生最大振幅。对于10米高度基准风速的取值,选取5m/s到50m/s,间隔5m/s。由于高度越高,风速越大,上游桥塔的旋涡脱落过程越快,尾流场中的主频频率越大。经数值模拟确定该尺寸的带切角桥塔截面St数约为0.19。通过计算发现,在基准风速取为20m/s到40m/s时,尾流区主频覆盖第一到四排吊索的一阶模态频率。由此可以预见的是,在较大风速下吊索桥塔尾流致振动主要以一阶振动为主。
采用有限差分方法,利用实施例1的方程(13)和(14)对桥塔尾流区四排吊索进行数值求解,统计不同基准风速下吊索振动最大位移,如图5所示。
结果显示,吊索在共振风速下产生大幅值位移,预测结果准确可靠。

Claims (2)

1.一种桥塔尾流区吊索风致振动数值预测方法,其特征在于,方法步骤如下:步骤一、吊索振动控制方程如下:
在三维笛卡尔坐标系中,取z高度处吊索结构微元,在平衡位置(0,0,z)处微元长度为dz,吊索在水平面内运动,运动到(u,v,z)处时微元发生形变,微元形变后长度为ds,形变后的微元两端受张拉力(T+τ),其中T为吊索索力,τ为吊索形变引起的弹性力,满足胡克定律,即:
Figure FDA0004132740430000011
其中E为吊索弹性模量,A为吊索横截面积,γ表示为:
Figure FDA0004132740430000012
结构刚度由张拉力在水平面内的分量提供,则运动微分方程为:
Figure FDA0004132740430000013
其中fx和fy为X方向与Y方向上作用于单位长度吊索的外荷载,c为结构的阻尼系数,由几何关系,微元变形前后满足:
ds2=du2+dv2+dz2 (4)
偏微分算子有:
Figure FDA0004132740430000014
将式(3)第一项展开求偏导,得出:
Figure FDA0004132740430000015
其中:
Figure FDA0004132740430000021
令:
Figure FDA0004132740430000022
对于索力T,由于微元水平面内运动假设,满足:
T=T0+ρg·z (9)
其中T0为吊索底端荷载力,g为重力加速度,
将式(1)、(7)、(8)与(9)代入(6),对于X方向得出:
Figure FDA0004132740430000023
方程在X与Y方向上具有对称性,同理,对于Y方向得出:
Figure FDA0004132740430000024
由此,得到两个方向上相互耦合的三维吊索运动控制方程;
采用式(10)和(11)作为刚度项的吊索运动方程,方程对于大幅值振动同样具有适用性;
非线性偏微分方程求解,需要进行时空离散,将微分方程转化为差分方程进行逼近求解,对于空间差分,采用具有二阶精度的中心差分格式,即:
Figure FDA0004132740430000031
其中l为空间差分中所采用的等分长度,对于总长为L的吊索,等分为N段,
则l=L/N,j为节点号,取值范围为1到N+1,k为时间步序号,时间差分采用显式四阶龙格库塔法,在每个时刻k先进行空间离散,之后进行数值迭代,将式(3)转化成微分方程组形式:
Figure FDA0004132740430000032
对于初值问题,初始条件为:
y(t0)=y0 (14)
迭代过程为:
Figure FDA0004132740430000033
其中,h为时间步长,K1到K4为中间迭代值:
Figure FDA0004132740430000034
为保证迭代精度,计算每个K值时均更新一次空间离散的差分值;
步骤二、桥塔尾流区三维吊索气动力得出方法如下:
根据公路桥梁抗风设计规范,考虑风剖面引起的来流风速随高度变化,有:
Figure FDA0004132740430000035
其中,U10为重现期100年的年平均最大风速数学期望值,a0为地表粗糙度系数,其取值由周边地貌类型确定,由此确定桥塔不同高度处的来流风速;
桥塔尾流区吊索所受到的脉动风荷载按下列公式进行计算:
wkf(z,t)=μsρairvzf(t)vmean                        (18)
其中:wkf(z,t)为结构高度z处脉动风荷载时程;μs为吊索的风荷载体型系数;ρair为空气密度;vzf(t)为高度z处的桥塔尾流区内吊索当前位置处的风速脉动时程;vmean为高度z处的桥塔尾流区内吊索当前位置处的风速平均值;
桥塔尾流区速度脉动由桥塔周期性旋涡脱落引起,其主频满足Strouhal定律,即:
fs(z)=St·U(z)/Dtower                         (19)
其中:fs(z)为z高度处的桥塔旋涡脱落频率,也即尾流区风速主频;St为桥塔Strouhal数,与桥塔截面外形有关;Dtower为桥塔特征尺度,
高度z处的风速时程为:
Figure FDA0004132740430000041
其中,vrms为高度z处的桥塔尾流区内吊索当前位置处的风速脉动值,对于vmean(u,v,z,t)与vrms(u,v,z,t),通过CFD方法计算桥塔尾流场分布获得;当上游桥塔的漩涡脱落频率fs与吊索自振频率相一致时,激发尾流区吊索的尾流致振,至此,确定单位长度处吊索荷载f(u,v,z,t):
f(u,v,z,t)=wkf(u,v,z,t)·dcable                      (21)
其中dcable为吊索直径;
由上述步骤通过尾流区吊索气动力建模和结构建模,同时对桥塔尾流区吊索的低阶模态振动进行模态分解和偏微分方程数值求解,得到其振动位移、频率、模态的信息。
2.一种计算机设备,包括存储器、处理器及存储在存储器上并能够在处理器上运行的计算机程序,其特征在于,所述处理器处理执行所述计算机程序实现如权利要求1所述一种桥塔尾流区吊索风致振动数值预测方法的步骤。
CN202210948182.XA 2022-08-09 2022-08-09 一种桥塔尾流区吊索风致振动数值预测方法 Active CN115391881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210948182.XA CN115391881B (zh) 2022-08-09 2022-08-09 一种桥塔尾流区吊索风致振动数值预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210948182.XA CN115391881B (zh) 2022-08-09 2022-08-09 一种桥塔尾流区吊索风致振动数值预测方法

Publications (2)

Publication Number Publication Date
CN115391881A CN115391881A (zh) 2022-11-25
CN115391881B true CN115391881B (zh) 2023-04-18

Family

ID=84117975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210948182.XA Active CN115391881B (zh) 2022-08-09 2022-08-09 一种桥塔尾流区吊索风致振动数值预测方法

Country Status (1)

Country Link
CN (1) CN115391881B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155053A (zh) * 2023-08-21 2023-12-01 哈尔滨工业大学 一种基于变频器-直线电机的致动器弱磁场激励系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2650812C1 (ru) * 2017-03-13 2018-04-17 Федеральное государственное бюджетное учреждение науки Институт вычислительных технологий Сибирского отделения Российской академии наук (ИВТ СО РАН) Способ мониторинга технического состояния мостовых сооружений в процессе их эксплуатации (варианты)
CN110110408A (zh) * 2019-04-25 2019-08-09 西南石油大学 刚性圆柱体横流与顺流方向涡激振动耦合响应预测方法
CN111695188A (zh) * 2020-06-21 2020-09-22 西北工业大学 一种地锚式悬索桥动力特性的快速精细分析方法
CN111985138A (zh) * 2020-08-21 2020-11-24 哈尔滨工业大学(威海) 一种柔性结构横流与顺流方向涡激振动耦合响应预测方法
WO2022110938A1 (zh) * 2020-11-27 2022-06-02 中国华能集团清洁能源技术研究院有限公司 一种考虑风电场局地环境因素的尾流计算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953996B (zh) * 2016-06-30 2017-04-19 东南大学 一种基于冲击振动的桥梁检测评估方法与设备
CN109359418B (zh) * 2018-11-09 2022-07-12 深圳大学 一种悬索桥非线性风致响应的预测方法、系统及存储介质
CN109682561B (zh) * 2019-02-19 2020-06-16 大连理工大学 一种自动检测高速铁路桥梁自由振动响应以识别模态的方法
WO2021253169A1 (zh) * 2020-06-15 2021-12-23 大连理工大学 一种吊杆减振的双环形强磁体阵列非线性动力吸振器及设计方法
CN111783201B (zh) * 2020-06-21 2022-07-01 西北工业大学 一种三跨自锚式悬索桥动力特性的快速分析方法
CN112629647B (zh) * 2020-11-24 2022-04-08 同济大学 大跨悬索桥涡振事件的实时识别和监测预警方法
CN112906260A (zh) * 2021-01-25 2021-06-04 湖南大学 一种高墩大跨桥梁施工期风致振动控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2650812C1 (ru) * 2017-03-13 2018-04-17 Федеральное государственное бюджетное учреждение науки Институт вычислительных технологий Сибирского отделения Российской академии наук (ИВТ СО РАН) Способ мониторинга технического состояния мостовых сооружений в процессе их эксплуатации (варианты)
CN110110408A (zh) * 2019-04-25 2019-08-09 西南石油大学 刚性圆柱体横流与顺流方向涡激振动耦合响应预测方法
CN111695188A (zh) * 2020-06-21 2020-09-22 西北工业大学 一种地锚式悬索桥动力特性的快速精细分析方法
CN111985138A (zh) * 2020-08-21 2020-11-24 哈尔滨工业大学(威海) 一种柔性结构横流与顺流方向涡激振动耦合响应预测方法
WO2022110938A1 (zh) * 2020-11-27 2022-06-02 中国华能集团清洁能源技术研究院有限公司 一种考虑风电场局地环境因素的尾流计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
安伟胜 ; .基于CFD的大跨度悬索桥主塔抗风性能分析.北方交通.2018,(07),全文. *
李永乐 ; 唐浩俊 ; 陈宁 ; 廖海黎 ; .桥塔尾流致塔周长吊索涡振性能研究.空气动力学学报.2015,(01),全文. *
肖春云 ; 李寿英 ; 陈政清 ; .悬索桥双吊索尾流弛振的失稳区间研究.中国公路学报.2016,(09),全文. *

Also Published As

Publication number Publication date
CN115391881A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Diana et al. Wind tunnel tests and numerical approach for long span bridges: The Messina bridge
Li et al. The effect of amplitude-dependent damping on wind-induced vibrations of a super tall building
Fu et al. Dynamic analysis of transmission tower-line system subjected to wind and rain loads
Chen et al. Control of wind-induced response of transmission tower-line system by using magnetorheological dampers
CN115391881B (zh) 一种桥塔尾流区吊索风致振动数值预测方法
Salari et al. Innovative mobile TMD system for semi-active vibration control of inclined sagged cables
CN111783199A (zh) 一种多段式索缆结构动力特性的精细化快速求解方法
CN111783200A (zh) 一种大跨度悬索桥阻尼特性的快速分析方法
Gang et al. Aerodynamic admittance influence on buffeting performance of suspension bridge with streamlined deck
Vaz et al. Wind action phenomena associated with large-span bridges
Westin et al. Vortex-induced vibrations of a low-tension cable-sheave system modeled using nonlinear finite elements
CN115017681B (zh) 一种小垂度拉索动力特性的精细化分析方法
Piana et al. Long-span Suspension Bridge Flutter Analysis‎ with Drag Force Effects
Diana et al. Motion effects on the aerodynamic forces for an oscillating tower through wind tunnel tests
Foti et al. A corotational finite element to model galloping vibrations of overhead electrical lines
CN117708939B (zh) 一种大跨度拱桥扣索风致振动激发参数振动理论分析方法
Matsuda et al. Reynolds number effects on the steady and unsteady aerodynamic forces acting on the bridge deck sections of long-span suspension bridge
Rahtika et al. NUMERICAL AND EXPERIMENTAL INVESTIGATION ON THE FLUTTER OF CANTILEVERED PLATES WITH FREE LEADING EDGE IN AXIAL FLOW
Zhao et al. Parametric analysis on buffeting performance of a long-span high-speed railway suspension bridge
Bani Hani Wind Flow Induced Vibrations of Tapered Masts
CN115828684A (zh) 一种非对称斜拉桥主梁大悬臂抗风分析方法
Quintela Suárez Influence of aeroelastic parameters uncertainty into the reliability of long-span bridges against extre me wind loads
Djojodihardjo Introduction and Case Studies in Aeroelasticity of Bridges and Tall Structures
Abbas et al. Framework for a simulation-based aerodynamic shape optimization of bridge decks for different limit state phenomena
Bertagnoli et al. Stay cables vibrations due to rain-wind interaction: a sensitivity study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant