WO2017221894A1 - 投射材及びその投射材を用いた金属製品の表面処理方法 - Google Patents

投射材及びその投射材を用いた金属製品の表面処理方法 Download PDF

Info

Publication number
WO2017221894A1
WO2017221894A1 PCT/JP2017/022539 JP2017022539W WO2017221894A1 WO 2017221894 A1 WO2017221894 A1 WO 2017221894A1 JP 2017022539 W JP2017022539 W JP 2017022539W WO 2017221894 A1 WO2017221894 A1 WO 2017221894A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection material
metal product
particle diameter
group
projection
Prior art date
Application number
PCT/JP2017/022539
Other languages
English (en)
French (fr)
Inventor
直也 田沼
後藤 賢
隼人 谷口
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2018524086A priority Critical patent/JP6841280B2/ja
Priority to KR1020197001360A priority patent/KR20190020043A/ko
Priority to CN201780037835.6A priority patent/CN109311140B/zh
Priority to BR112018073913A priority patent/BR112018073913A2/pt
Publication of WO2017221894A1 publication Critical patent/WO2017221894A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/06Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts

Definitions

  • the present disclosure relates to a cast iron projection material used in a step of removing oxide scale attached to the surface of a metal product manufactured by hot forging and the like, and a surface treatment method using the projection material.
  • the dimensions are adjusted as necessary, and then the final product is completed through finishing processing according to the target metal product.
  • a process of providing a large number of small depressions (dimples) for holding lubricating oil on the surface is performed. Therefore, in the step of removing the scale, if the metal surface can be roughened and an appropriate dimple can be formed, it contributes to cost reduction.
  • projectiles and blasting methods that have the ability to remove scale and form appropriate dimples on the surface of metal products.
  • the projection material capable of efficiently removing the scale, roughening the surface, or removing defects existing in the surface layer portion, and A surface treatment method using the projection material is provided.
  • One aspect of the present disclosure is a cast steel projection material used for removing a scale formed on a surface of a metal product by blasting.
  • This projection material includes a first group and a second group of projection materials.
  • the first group is a projection material group in which the particle diameter d1 belongs to the first particle diameter section d1max ⁇ d1> d1min, and has the maximum frequency P1 in the first particle diameter section.
  • the second group is a projection material group in which the particle diameter d2 belongs to the second particle diameter section d2max ⁇ d2> d2min, and has the maximum frequency P2 in the second particle diameter section.
  • the particle size frequency distribution of the projection material composed of the first group and the second group is substantially continuous.
  • the first group of projection materials mainly contributes to efficient removal of scales
  • the second group of projection materials removes scales by blasting and roughening the surface of the metal product, or This contributes to the removal of defects present in the surface layer of metal products.
  • the projection material of the present disclosure by adjusting the particle size distribution of the projection material so that both the first group of projection materials and the second group of projection materials exist, the respective advantages are maintained and the blast is insufficient. Complement processing capacity. That is, the scale can be efficiently removed from the metal product on which the scale is formed, the surface can be roughened, and defects present in the surface layer portion of the metal product can be sufficiently removed.
  • d1max may be 1.000 mm or 1.180 mm. In this case, it is possible to effectively roughen the surface of the metal product or remove defects present in the surface layer portion of the metal product.
  • the metal product may be a hot forged product
  • the projection material may have a Vickers hardness of HV300 to HV600.
  • the projection material has a sufficient hardness with respect to the blast treatment target, and when the projection material is HV600 or less, the projection material has sufficient toughness. Therefore, by using a projection material having a Vickers hardness of HV300 to HV600, it is possible to have both sufficient hardness and toughness, and even if the metal product is a hot forged product, the surface treatment can be sufficiently performed. .
  • the metal product is a sliding part
  • the maximum frequency P1 has a particle diameter section 1.180 mm ⁇ d1> 1.000 mm
  • the maximum frequency P2 has a particle diameter section 1.700 mm ⁇ d2> 1.400 mm. May be present.
  • d1max may be 1.000 mm or 1.180 mm
  • the metal product may be a hot forged product, and the projection material may have a Vickers hardness of HV300 to HV600.
  • the metal product is a sliding part, and the maximum frequency P1 is present in the particle diameter section 1.000 mm ⁇ d1> 0.850 mm, and the maximum frequency P2 is present in the particle diameter section 1.180 mm ⁇ d2> 1.000 mm. Good.
  • d1max may be 1.000 mm or 1.180 mm
  • the metal product may be a hot forged product, and the projection material may have a Vickers hardness of HV300 to HV600.
  • the metal product is a sliding component, and the maximum frequency P1 is present in a particle diameter section 1.000 mm ⁇ d1> 0.850 mm, and the maximum frequency P2 is present in a particle diameter section 1.700 mm ⁇ d2> 1.400 mm. Good.
  • the entire projection material may be formed with a convex curved surface.
  • dimples having an infinite number of curved surfaces can be formed.
  • the contact area of the projection material is uniform and wide, the plastic deformation of the metal product can be performed efficiently, and the defects present in the surface layer portion of the metal product can be efficiently removed.
  • Another aspect of the present disclosure is a metal product surface treatment method using the above-described projection material, the projection material loading step of loading an unused projection material into the blasting device, and the operation of the blasting device.
  • the scale of the surface of the metal product is removed and the surface of the metal product is roughened, or Defects present in the surface layer portion on the surface of the metal product can be efficiently removed.
  • the particle size distribution of the projection material after the operating mix forming step may be 0.250 mm to 1.700 mm and have maximum frequencies P1 and P2. In this case, both removal of the scale and roughening with the projection material of the particle size distribution group having the maximum frequency P1 or removal of defects existing in the surface layer portion can be achieved for a long time.
  • the maximum frequencies P1 and P2 may satisfy P2 ⁇ P1.
  • the particle size distribution of the projection material after the operating mix formation step is the same as that of the unused projection material, and the frequency V between the maximum frequencies P1 and P2 is the maximum without changing the positions of the maximum frequencies P1 and P2. You may increase relatively with respect to frequency P1 and P2. When comprised in this way, the particle size distribution between maximum frequency becomes broad, maintaining the effect of the projection material of the 1st group, and the effect of the projection material of the 2nd group. For this reason, since the magnitude
  • the metal product is a sliding part formed by hot forging.
  • the surface treatment process removes the scale of the surface of the sliding part, and JIS-B0601: 2000 (JIS: Japan Industrial).
  • the ten-point average roughness Rz defined by Standards) may be 50 ⁇ m to 60 ⁇ m. In this case, in the surface treatment process of the sliding component, it can be adjusted to a suitable surface roughness in post-processing or the like.
  • a projection material capable of efficiently removing the scale and roughening the surface or removing defects existing in the surface layer portion and the projection material are used.
  • a surface treatment method is provided.
  • the projection material according to the present disclosure is a cast iron (cast steel) projection material that can be used to remove scale from the surface of a metal product by blasting.
  • the hardness of the projection material can be appropriately selected according to the metal product to be scale-removed.
  • This embodiment demonstrates the projection material which can be used for the surface treatment of the metal product manufactured (molded) by hot forging, such as a gear, a cylinder, and a sliding component.
  • the projectile is a spherical shot made of an iron-based material (cast iron) selected from the range of Vickers hardness HV300 to HV600.
  • an iron-based material for example, C: 0.8% to 1.2% by weight, Mn: 0.35% to 1.20%, Si: 0.40% to 1.50 %, P ⁇ 0.05%, S ⁇ 0.05%, the balance containing Fe and inevitable impurities, tempered martensite structure and / or bainite structure, quenched martensite structure or similar Particles having a texture can be employed.
  • Such particles can be prepared by a known method such as a water atomizing method.
  • the projection material has sufficient hardness for the blast treatment target at HV300 or higher, and the projection material has sufficient toughness at HV600 or lower.
  • the projection material of this indication has sufficient hardness and toughness, it can be used for the blast process of the surface of a hot forging product.
  • the Vickers hardness HV is based on Japanese Industrial Standard JIS Z 2244 (2009).
  • Fig. 1 schematically shows the particle size distribution of the projection material.
  • the horizontal axis is the particle size, and the vertical axis is the weight fraction.
  • the projection material is a projection material group belonging to the first particle diameter section d1max ⁇ d1> d1min (particle diameter d1) that mainly contributes to removal of scale, and the first group having the maximum frequency P1 in the particle diameter section.
  • a projection material group belonging to the second particle diameter section d2max ⁇ d2> d2min (particle diameter d2) which mainly contributes to the roughening of the surface of the metal product or the removal of defects existing on the surface layer portion of the metal product.
  • a second group having a maximum frequency P2 in the particle diameter section is a projection material group belonging to the first particle diameter section d1max ⁇ d1> d1min (particle diameter d1) that mainly contributes to removal of scale, and the first group having the maximum frequency P1 in the particle diameter section.
  • the particle diameter frequency distribution of the projection material comprised by the 1st group and the 2nd group is substantially continuous.
  • the frequency between the maximum frequencies P1 and P2 is assumed to be V (V1, V2,).
  • particles having a particle diameter interval d1max ⁇ d> d1min passed through a standard sieve having a nominal opening d1max of JIS Z8801 (2006) and captured by a standard sieve having a nominal opening d1min (passed). Not) Indicates particles. For example, “particles with a particle diameter section of 1.700 mm ⁇ d> 1.400 mm” pass a standard sieve with a nominal aperture of 1.700 mm in JIS Z8801 (2006) and a standard with a nominal aperture of 1.400 mm. Shows particles trapped (not passed) through a sieve.
  • the particle diameter on the horizontal axis shows the lower limit of the particle diameter section as a representative value.
  • the particle diameter is expressed as 1.400 mm, “a particle having a particle diameter section of 1.700 mm ⁇ d> 1.400 mm” is indicated.
  • FIG. 2A is a graph showing the relationship between the particle diameter and the projection density when the coverage reaches 100%.
  • the horizontal axis is the particle diameter
  • the vertical axis is the projection density.
  • the projection density was evaluated by using an impeller-type blasting device and causing the projection material to collide with the workpiece 1 and the workpiece 2 on a SUJ2 (high carbon chromium bearing steel) target having a projection speed of 73 m / s and a hardness of HV200.
  • the projected work was photographed with a microscope and the coverage was evaluated by comparison with a standard photograph.
  • FIG. 2 is a graph of the number of projection materials per kg with respect to the particle diameter of the projection material.
  • the horizontal axis is the particle diameter
  • the vertical axis is the number of projection materials per unit mass. It can be seen that when the particle diameter of the projection material is 1.000 mm or less, the number of projection materials per unit mass is increased. Therefore, in order to efficiently remove the scale, the particle diameter can be set to 1.000 mm or less.
  • a projection material having a particle size of 0.500 mm or less is easily removed by a separator or a dust collector in a blasting process described later, leading to a reduction in the lifetime of the projection material. For this reason, the particle diameter may exceed 0.600 mm.
  • FIG. 3 is a graph showing the relationship between the particle size of a single particle size projection material and the collision energy.
  • the horizontal axis is the particle diameter, and the vertical axis is the collision energy per grain.
  • a particle diameter can be 1.000 mm or more.
  • the particle diameter of 1.200 mm or more can be used for removal of defects existing in the surface layer portion of the metal product, for example, microcrack sealing treatment.
  • FIG. 4 is a graph showing the relationship between the particle diameter of the projection material and the lifetime value.
  • the horizontal axis is the particle diameter, and the vertical axis is the lifetime value.
  • the life test of the projection material conforms to the 100% Replacement Method specified in SAE J445 (SAE: Society of Automotive Engineers), uses an Irvine life tester, the projection speed is 60 m / s, the target hardness is HRC65 (HRC: Rockwell) ) And the cut-off value was measured with a sieve mesh under one screen. The blasting material crushed at every fixed number of collisions was removed by sieving, the weight of the remaining blasting material was measured, and the test was performed until the remaining blasting material was 30% or less of the first. The value obtained by integrating the life curve indicating the relationship between the number of collisions obtained by this test and the weight ratio of the residual projection material was defined as the life value.
  • the life tends to be shorter as the particle size of the projection material is larger.
  • the life value of the projection material is often required to be 1000 cycles or more.
  • the 2nd group projection material can be 1.700 mm or less.
  • damage to the blasting apparatus, for example, wear of parts increases. For this reason, it is not necessary to increase the particle size more than necessary.
  • the second group of projection materials can sufficiently roughen the surface of the metal product or remove defects present on the surface layer of the metal product, but the number of particles per unit weight is small. Therefore, it leads to a decrease in the coverage (actual dent area of the projection material per certain area).
  • the respective advantages are maintained and the blast is insufficient.
  • Complement processing capacity That is, the scale can be efficiently removed from the metal product on which the scale is formed, the surface can be roughened, and defects present in the surface layer portion of the metal product can be sufficiently removed.
  • the particle diameter frequency distribution of the projection material comprised by the 1st group and the 2nd group is substantially continuous. Thereby, since the size of the dents by the surface treatment has a continuous distribution, the coverage can be increased and the surface treatment can be performed efficiently.
  • the ratio of the first group of projection materials is adjusted so that the maximum frequencies P1 and P2 satisfy P2 ⁇ P1. Good.
  • the maximum frequency P1 exists in the particle diameter section 1.000 mm ⁇ d1> 0.850 mm
  • the maximum frequency P2 exists in the particle diameter section 1.700 mm ⁇ d2> 1.400 mm.
  • a projectile can be used.
  • a projection material in which the maximum frequency P1 exists in the particle diameter section 1.180 mm ⁇ d1> 1.000 mm and the maximum frequency P2 exists in the particle diameter section 1.700 mm ⁇ d2> 1.400 mm may be used.
  • the maximum frequency P1 is present in the particle diameter section 1.000 mm ⁇ d1> 0.850 mm, and the maximum frequency P2 is present in the particle diameter section 1.180 mm ⁇ d2> 1.000 mm.
  • a projectile can be used.
  • the particle size distribution of the projection material can be appropriately changed according to the properties (shape, material, scale state, etc.) of the metal product as the workpiece and the purpose of the surface treatment.
  • d1max may be 1.000 mm or 1.180 mm
  • having the maximum frequency P1 and P2 and having a substantially continuous particle size distribution effectively removes the scale from the scaled metal product, The surface can be roughened, and defects present in the surface layer portion of the metal product can be sufficiently removed.
  • the projectile is classified using sieving sieves specified in JIS Z 8801 (2006) using a known method such as a water atomizing method, and mixed and adjusted so as to obtain a desired particle size distribution. Can be produced.
  • a known centrifugal blast apparatus as described in Patent Document 1 can be used. Note that the blasting method of the present disclosure is not limited to the method using the blasting apparatus.
  • the blast device includes a hopper that stores and supplies a fixed amount of the projection material, an impeller unit that projects the projection material, a circulation device that circulates the projection material, a separator that separates the projection material from sand and scale, and a dust collector. .
  • the projection material is thrown into the impeller unit from the hopper, and the projection material thrown into the impeller unit is accelerated in the impeller unit and projected onto a metal product arranged in the projection chamber. Thereby, the blasting of the metal product is performed.
  • the projected blast material is collected by the circulation device together with the scale removed from the metal product by the blasting process, and sent to the separator.
  • the projection material is dropped into an apron, and sand, scales and pulverized fine projection material are selected by the air flow generated by the dust collector, and they are discharged out of the dust collector and the apparatus.
  • the projection material effective for the blasting process is again supplied to the impeller unit and recycled.
  • the amount of projection material in the apparatus decreases by the amount discharged to the outside of the apparatus, it is necessary to replenish the amount of projection material corresponding to the amount of decrease (projection material loading step of loading unused projection material into the blast device). .
  • the decrease in the blast material is detected by the load current value of the impeller unit, and a new blast material is automatically or manually supplied to the hopper.
  • the particle size distribution of the in-device projection material is stabilized at a constant particle size distribution different from the particle size distribution of the unused projection material (A)
  • This state of stable particle size distribution is called operating mix.
  • the projection material is projected onto the metal product with a blasting device to remove the scale on the surface of the metal product, and the surface of the metal product is roughened or a defect present on the surface of the metal product surface. Is removed (surface treatment step). It is important that the projection material is managed so that the particle size distribution of the projection material in the apparatus after forming the operating mix can be efficiently blasted.
  • the particle size distribution in the blasting apparatus after the operating mix formation process is broad (for example, 0.250 mm to 1.700 mm) without using a special apparatus or method, and the maximum It is possible to have frequencies P1 and P2. And compared with an unused projection material, the position (particle diameter) of maximum frequency P1 and P2 does not change, but frequency V between maximum frequency P1 and P2 increases relatively with respect to maximum frequency P1 and P2. A characteristic distribution can be obtained. According to this, the particle size distribution between the maximum frequencies becomes broad while maintaining the effect of the first group of projection materials and the effect of the second group of projection materials. Since the size of the dents by the projection material has a continuous distribution, the coverage can be increased and the surface treatment can be performed efficiently.
  • P2 may satisfy P2 ⁇ P1.
  • the entire projection material may be formed of a convex curved surface.
  • the surface treatment process is performed using a projection material that is entirely formed with a convex curved surface, for example, dimples having an infinite number of curved surfaces on the surface can be formed. For this reason, the dimple for holding lubricating oil on the surface can be formed without losing the slidability of the metal product. Further, since the contact area of the projection material is uniform and wide, the plastic deformation of the metal product can be performed efficiently, and the defects present in the surface layer portion of the metal product can be efficiently removed.
  • the whole is formed of a convex curved surface refers to a shape having no corners. In addition to spherical particles, for example, particles having a shape obtained by chamfering and rounding corners of cylindrical particles are also included.
  • the form of the projection material is not limited to shots, and grit, cut wires, and the like can also be used.
  • the projection material and the surface treatment method of the present disclosure can be applied to the surface treatment of a material for forming a scale and a metal product of a manufacturing method other than a hot forged product made of steel.
  • it can be applied to scale removal of a rolled steel sheet.
  • the scale is efficiently removed from the metal product on which the scale is formed, and the surface is roughened or formed on the surface layer portion. Existing defects can be removed. In particular, it can be used for surface treatment of a hot forged product by appropriately setting the hardness and particle size distribution of the projection material.
  • the scale was removed using the projection material of the present disclosure, and the surface roughness after the surface treatment was evaluated.
  • the work piece used in this test is SUJ, the shape is cylindrical (inner ring of tapered roller bearing), and the projection test equipment used for the test is shot blast SNTX-I type (Shinto Kogyo Co., Ltd.)
  • the projection speed was 73 m / s.
  • the projection density was the projection density when reaching 100% coverage.
  • the projection density was 150 kg / m 2 to 300 kg / m 2 .
  • the evaluation item was surface roughness, and the ten-point average roughness Rz ( ⁇ m) defined in JIS-B0601: 2000 was adopted as the measurement method.
  • the projecting material was a steel shot having a hardness of HV450, and a projecting material in which the particle diameter at the maximum frequencies P1 and P2 and the ratio between the maximum frequency P1 and the maximum frequency P2 was changed was prepared and used for the test.
  • the projection material was thrown into the projection test apparatus, and continuous operation and replenishment were repeated to form an operating mix, and then the projection test was performed.
  • the particle size distribution of the projection material used for the test is shown below.
  • the particle diameter of the first group maximum frequency P1 is 0.710 mm (particle diameter section 0.850 mm ⁇ d1> 0.710 mm), 0.850 mm (particle diameter section 1.000 mm ⁇ d1> 0.850 mm), Three levels of 1.000 mm (particle diameter section 1.180 mm ⁇ d1> 1.000 mm)
  • the particle diameter at which the second group maximum frequency P2 is 1.400 mm (particle diameter section 1.700 mm ⁇ d2> 1.400 mm) ), 1.180 mm (particle diameter section 1.400 mm ⁇ d2> 1.180 mm), 1.000 mm (particle diameter section 1.180 mm ⁇ d2> 1.000 mm)
  • Table 1 shows the surface roughness measurement results under each condition.
  • the surface roughness can be adjusted by selecting an appropriate particle size corresponding to the maximum frequencies P1 and P2.
  • the surface roughness Rz suitable for post-processing can be adjusted to about 50 ⁇ m to 60 ⁇ m.
  • FIG. 5 is an explanatory diagram schematically showing the particle size distribution after the operating mix forming step of the projection material of the present disclosure in comparison with the particle size distribution before the operating mix forming step.
  • the particle diameter of the maximum frequency P1 is 0.850 mm
  • the particle diameter of the maximum frequency P2 is 1.400 mm.
  • “Initial” is the particle size distribution before the operating mix forming step
  • “Operating mix” is the particle size distribution after the operating mix forming step.
  • the difference between the maximum frequencies P1, P2 and the frequency V1 after the operating mix formation step is smaller than the difference between the initial maximum frequencies P1, P2 and the frequency V1.
  • the difference between the maximum frequencies P1, P2 and the frequency V2 after the operating mix formation step is smaller than the difference between the initial maximum frequencies P1, P2 and the frequency V1.
  • the frequency V (V1, V2) between the maximum frequencies P1 and P2 increases relative to the maximum frequencies P1 and P2 without changing the positions of the maximum frequencies P1 and P2. It was confirmed that Referring to Table 1, by using this projection material, the surface roughness can be adjusted to about Rz 54.13 ⁇ m.
  • FIG. 6 is a particle size distribution before forming an operating mix of the projection material of the example.
  • the horizontal axis is the particle size, and the vertical axis is the weight fraction.
  • the first group has a particle diameter of 1.000 mm, and the second group has a particle diameter of 1.400 mm.
  • n is the test number, and the average is the average value of the test results indicated by the test number.
  • FIG. 7 is a particle size distribution after forming the operating mix of the projection material of FIG.
  • the position (particle diameter) of the maximum frequencies P1 and P2 does not change, and the frequency V between the maximum frequencies P1 and P2 becomes a characteristic distribution that increases relative to the maximum frequencies P1 and P2. It was confirmed.
  • the maximum frequency P2 in the average after the formation of the operating mix The maximum frequency P1 is 18:23, which satisfies P2 ⁇ P1.
  • FIG. 8 is a particle size distribution before forming an operating mix of the projection material of the example.
  • the horizontal axis is the particle size, and the vertical axis is the weight fraction.
  • the first group has a particle diameter of 0.850 mm, and the second group has a particle diameter of 1.000 mm.
  • n is the test number, and the average is the average value of the test results indicated by the test number.
  • FIG. 9 is a particle size distribution after forming the operating mix of the projection material of FIG.
  • the position (particle diameter) of the maximum frequencies P1 and P2 does not change, and the frequency V between the maximum frequencies P1 and P2 becomes a characteristic distribution that increases relative to the maximum frequencies P1 and P2. It was confirmed.
  • the maximum frequency P2 in the average after the formation of the operating mix The maximum frequency P1 is 23:24, which satisfies P2 ⁇ P1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Coating With Molten Metal (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

金属製品の表面に形成されたスケールをブラスト処理により除去するために用いる鋳鋼製の投射材において、粒子径d1が第1粒子径区間d1max≧d1>d1minに属する投射材群であって、第1粒子径区間内に最大頻度P1を有する第1群と、粒子径d2が第2粒子径区間d2max≧d2>d2minに属する投射材群であって、第2粒子径区間内に最大頻度P2を有する第2群と、を備え、第1群と第2群とは、d1max=d2minの関係を充足し、第1群と第2群とで構成される投射材の粒子径頻度分布は、実質的に連続している。

Description

投射材及びその投射材を用いた金属製品の表面処理方法
 本開示は、熱間鍛造などにより製造された金属製品の表面に付着した酸化スケールを除去する工程で用いる鋳鉄製の投射材及び当該投射材を用いた表面処理方法に関する。
 従来、金属製品の表面に酸化物からなるスケールが付着した場合(例えば、鍛造などの加工)、そのスケールを除去するブラスト処理を行うために、硬質粒子からなる投射材を金属製品表面に投射するショットブラスト処理が行われている(例えば、特許文献1)。
特開2001-121205号公報
 多くの金属製品は、スケールを除去した後に、必要に応じて寸法の調整を行い、その後、対象とする金属製品に合わせた仕上げ加工を経て最終製品が完成する。例えば、軸受などの摺動部品を製造する場合、表面に潤滑油を保持するための小さな窪み(ディンプル)を多数設ける加工を行う。そのため、スケールを除去する工程において、金属表面を粗面化して適切なディンプルが形成することができればコストダウンに貢献する。しかし、スケールを除去し、かつ金属製品の表面に適切なディンプルを形成する能力を有する投射材及びブラスト加工法は存在しない。
 また、摺動部品に限らず、仕上げ加工においては、金属製品を治具に把持する必要がある。このため、金属製品の表面は把持力を増大させることができる程度に粗面化されていることが必要である。金属製品の表面を粗面化するためには、比較的大径の投射材を用いる必要がある。しかし、投射材の寸法を大きくするとカバレージ(一定面積当たりにおける投射材の実打痕面積)が低下する。よって、スケールを除去する効率が低下してしまう。更に、金属製品の表層部に存在する欠陥の除去、例えば、マイクロクラックの封孔、をスケール除去と同時に行うことも要請されている。
 つまり、スケール除去と粗面化、または表層部に存在する欠陥の除去を一度の処理で効率的に行うことに対する要請がある。しかし、それを可能にする投射材及び表面処理方法は存在しない。
 そこで、本開示では、スケールが形成された金属製品に対して、効率的にスケールを除去するとともに、表面を粗面化、または、表層部に存在する欠陥の除去を行うことができる投射材及びその投射材を用いた表面処理方法を提供する。
 本開示の一側面は、金属製品の表面に形成されたスケールをブラスト処理により除去するために用いる鋳鋼製の投射材である。この投射材は、第1群と第2群の投射材群を備える。第1群は、粒子径d1が第1粒子径区間d1max≧d1>d1minに属する投射材群であって、第1粒子径区間内に最大頻度P1を有する。第2群は、粒子径d2が第2粒子径区間d2max≧d2>d2minに属する投射材群であって、第2粒子径区間内に最大頻度P2を有する。第1群と第2群とは、d1max=d2minの関係を充足する。第1群と第2群とで構成される投射材の粒子径頻度分布は、実質的に連続している。
 第1群の投射材は、主にスケールの除去を効率的に行うことに寄与し、第2群の投射材は、スケールをブラスト処理により除去するとともに、金属製品の表面の粗面化、または、金属製品の表層部に存在する欠陥の除去に寄与する。本開示の投射材では、投射材の粒子径分布を第1群の投射材と第2群の投射材との両方が存在するように調整することにより、それぞれの利点を維持し、不足するブラスト処理能力を補完することができる。つまり、スケールが形成された金属製品に対して、効率的にスケールを除去するとともに、表面を粗面化、金属製品の表層部に存在する欠陥の除去を十分に行うことができる。
 一実施形態においては、d1min=0.710mm及びd2max=1.700mmであり、d1maxが1.000mm又は1.180mmであってもよい。この場合、金属製品の表面の粗面化、または、金属製品の表層部に存在する欠陥の除去を有効に行うことができる。
 一実施形態においては、金属製品は熱間鍛造品であって、投射材はビッカース硬度がHV300~HV600であってもよい。投射材は、HV300以上ではブラスト処理対象に対して十分な硬度であり、HV600以下では投射材が十分な靱性を有する。このため、ビッカース硬度がHV300~HV600である投射材とすることで、十分な硬度と靱性とを併せ持つことができ、金属製品が熱間鍛造品であっても十分に表面処理をすることができる。
 一実施形態においては、金属製品は摺動部品であって、最大頻度P1が粒子径区間1.180mm≧d1>1.000mm、前記最大頻度P2が粒子径区間1.700mm≧d2>1.400mmに存在してもよい。
 一実施形態において、d1min=0.600mm及びd2max=1.180mmであり、d1maxが1.000mm又は1.180mmであってもよい。この場合、金属製品は熱間鍛造品であって、投射材はビッカース硬度がHV300~HV600であってもよい。さらに、金属製品は摺動部品であって、最大頻度P1が粒子径区間1.000mm≧d1>0.850mm、最大頻度P2が粒子径区間1.180mm≧d2>1.000mmに存在してもよい。
 一実施形態において、d1min=0.600mm及びd2max=1.180mmであり、d1maxが1.000mm又は1.180mmであってもよい。この場合、金属製品は熱間鍛造品であって、投射材はビッカース硬度がHV300~HV600であってもよい。さらに、金属製品は摺動部品であって、最大頻度P1が粒子径区間1.000mm≧d1>0.850mm、最大頻度P2が粒子径区間1.700mm≧d2>1.400mmに存在してもよい。
 一実施形態において、投射材は全体が凸曲面で形成されていてもよい。この場合、例えば表面に無数の曲面を有するディンプルを形成することができる。また、投射材の接触面積が均一且つ広くなるので、金属製品の塑性変形が効率良く行われ、金属製品の表層部に存在する欠陥の除去を効率良く行うことができる。
 本開示の他の側面は、上記の投射材を用いた金属製品の表面処理方法であって、未使用の投射材を前記ブラスト装置に装填する投射材装填工程と、ブラスト装置の操業により投射材の粒子径分布を一定の粒子径分布が安定するオペレーティングミックスを形成するオペレーティングミックス形成工程と、投射材をブラスト装置により金属製品に投射して金属製品の表面のスケールを除去するとともに、金属製品の表面の粗面化、または、金属製品の表面の表層部に存在する欠陥の除去を行う表面処理工程と、を備える。
 この開示によれば、上記の投射材を用いて、オペレーティングミックス形成工程においてオペレーティングミックスを形成した状態で、金属製品の表面のスケールを除去するとともに、金属製品の表面の粗面化、または、前記金属製品表面の表層部に存在する欠陥の除去を効率的に行うことができる。
 一実施形態において、オペレーティングミックス形成工程後の投射材の粒子径分布は、0.250mm~1.700mmであり、且つ最大頻度P1及びP2を有してもよい。この場合、スケールの除去と、最大頻度P1を有する粒度分布群の投射材による粗面化または表層部に存在する欠陥の除去と、を長時間にわたり両立することができる。
 一実施形態において、最大頻度P1及びP2が、P2≦P1を充足してもよい。
 一実施形態では、オペレーティングミックス形成工程後の投射材の粒子径分布が、未使用の投射材と比べ、最大頻度P1及びP2の位置は変わらずに、最大頻度P1及びP2間の頻度Vが最大頻度P1及びP2に対して相対的に増大してもよい。このように構成した場合、第1群の投射材の効果及び第2群の投射材の効果を維持しつつ、最大頻度間の粒子径分布がブロードになる。このため、投射材による打痕の大きさが連続的な分布を有するので、カバレージを増大させることができ、表面処理を効率的に行うことができる。なお、「最大頻度P1及びP2間の頻度Vが最大頻度P1及びP2に対して相対的に増大する」とは、最大頻度P1と頻度Vとの差、及び、最大頻度P2と頻度Vとの差、の少なくとも一方が小さくなることを指す。
 一実施形態では、前記金属製品は熱間鍛造により成型された摺動部品であり、前記表面処理工程により当該摺動部品の表面のスケールを除去するとともに、JIS-B0601:2000(JIS:Japanese Industrial Standards)にて規定される十点平均粗さRzを50μm~60μmにしてもよい。この場合、摺動部品の表面処理工程では、後加工などにおいて好適な表面粗さに調整することができる。
 スケールが形成された金属製品に対して、効率的にスケールを除去するとともに、表面を粗面化、または、表層部に存在する欠陥の除去を行うことができる投射材及びその投射材を用いた表面処理方法が提供される。
本開示の投射材の粒子径分布を模式的に示す説明図である。 (A)は、カバレージが100%に到達したときの投射密度を示す説明図である。(B)は、投射材の粒子径に対する1kgあたりの投射材の数を示す説明図である。 投射材の粒子径と衝突エネルギーとの関係を示す説明図である。 投射材の粒子径と投射材の寿命値との関係を示す説明図である。 実施例の投射材のオペレーティングミックス形成工程後の粒子径分布を、オペレーティングミックス形成工程前の粒子径分布と比較して模式的に示す説明図である。 実施例の投射材のオペレーティングミックス形成工程前の粒子径分布である。 図6の投射材のオペレーティングミックス形成工程後の粒子径分布である。 実施例の投射材のオペレーティングミックス形成工程前の粒子径分布である。 図8の投射材のオペレーティングミックス形成工程後の粒子径分布である。
 本開示に係る投射材は、ブラスト処理により金属製品の表面からスケールを除去するために用いることができる鋳鉄製(鋳鋼製)の投射材である。ここで、投射材の硬度はスケール除去の対象となる金属製品に応じて適宜選択することができる。本実施形態では、ギアやシリンダ、摺動部品などの熱間鍛造により製造(成型)される金属製品の表面処理に用いることができる投射材について説明する。
 投射材は、ビッカース硬度HV300~HV600の範囲から選択された鉄系材料(鋳鉄)からなる球状のショットである。ここで、このような鉄系材料として、例えば、重量%でC:0.8%~1.2%、Mn:0.35%~1.20%、Si:0.40%~1.50%、P≦0.05%、S≦0.05%、残部Fe及び不可避不純物を含む成分系であって、焼き戻しマルテンサイト組織および/またはベイナイト組織、または焼き入れマルテンサイト組織若しくはそれらに類する組織を有する粒子を採用することができる。このような粒子は例えば水アトマイズ法等の公知の方法で作製することができる。ここで、投射材は、HV300以上ではブラスト処理対象に対して十分な硬度であり、HV600以下では投射材が十分な靱性を有する。このように本開示の投射材は、十分な硬度と靱性とを併せ持つため、熱間鍛造品の表面のブラスト処理に用いることができる。ここで、ビッカース硬度HVは日本工業規格JIS Z 2244(2009)に基づくものである。
 図1に投射材の粒子径分布を模式的に示す。横軸は粒子径、縦軸は重量分率である。投射材は、主にスケールの除去に寄与する第1粒子径区間d1max≧d1>d1min(粒子径d1)に属する投射材群であって、当該粒子径区間内に最大頻度P1を有する第1群と、主に金属製品の表面の粗面化、または、金属製品の表層部に存在する欠陥の除去に寄与する第2粒子径区間d2max≧d2>d2min(粒子径d2)に属する投射材群であって、当該粒子径区間内に最大頻度P2を有する第2群と、を備えている。ここで、第1群と第2群とは、d1max=d2minの関係を充足する。また、第1群と第2群とで構成される投射材の粒子径頻度分布は、実質的に連続している。以下では、最大頻度P1及びP2間の頻度をV(V1,V2,…)とする。
 ここで、「粒子径区間d1max≧d>d1minの粒子」とは、JIS Z8801(2006)に規程の公称目開きd1maxの標準ふるいを通過し、公称目開きd1minの標準ふるいで捕獲された(通過しない)粒子を示す。例えば、「粒子径区間1.700mm≧d>1.400mmの粒子」とは、JIS Z8801(2006)に規程の公称目開き1.700mmの標準ふるいを通過し、公称目開き1.400mmの標準ふるいで捕獲された(通過しない)粒子を示す。また、粒子径区間の下限値以下の小径の粒子を最大5%程度含むことを許容するものとする。なお、各図において、横軸の粒子径は、粒子径区間の下限値を代表値として示している。例えば、粒子径1.400mmと表記した場合には、「粒子径区間1.700mm≧d>1.400mmの粒子」を示す。
 第1群の投射材は、スケールの除去を効率的に行うために、より少ない投射量でカバレージを増大させることが必要である。図2の(A)は、カバレージが100%に到達したときの粒子径と投射密度との関係を示すグラフである。横軸が粒子径、縦軸が投射密度である。投射密度の評価は、インペラー式ブラスト装置を用い、投射速度73m/sで硬さHV200のSUJ2(高炭素クロム軸受鋼鋼材)製ターゲットに投射材をワーク1及びワーク2に衝突させて行った。投射後のワークはマイクロスコープで外観撮影を行い、標準写真との比較によりカバレージの評価を行った。
 粒子径が小さい程、小さい投射密度でカバレージが100%に到達する傾向が認められた。これは、粒子径が小さい程、単位質量あたりの投射材の数が多いので、投射材が金属製品に接触する機会が多いためである。図2の(B)は、投射材の粒子径に対する1kgあたりの投射材の数のグラフである。横軸が粒子径、縦軸が単位質量あたりの投射材数である。投射材の粒子径が1.000mm以下となると、単位質量あたりの投射材の数が上昇していることが判る。従って、スケール除去を効率的に行うために、粒子径は1.000mm以下とすることができる。また、粒子径が0.500mm以下の投射材は、後述するブラスト処理において、セパレーター、集塵機で除去されやすく、投射材寿命の低下につながる。このため、粒子径は0.600mmを超えるとしてもよい。
 第2群の投射材は、スケールをブラスト処理により除去するとともに、主に金属製品の表面の粗面化、または、金属製品の表層部に存在する欠陥を除去するために、十分な衝突エネルギーを有することが必要である。図3は、単一粒径の投射材の粒子径と衝突エネルギーとの関係を示すグラフである。横軸が粒子径、縦軸が一粒あたりの衝突エネルギーである。ここで、衝突エネルギーは、投射材重量M、速度Vにおいて、1/2×M×V2(M=ρ×4/3×πr)から算出した。なお、ρ=7.5g/cm、V=70m/sである。熱間鍛造品の表面の粗面化には、少なくとも0.01J/個の衝突エネルギーが必要である。このため、粒子径は1.000mm以上とすることができる。また、金属製品の表層部に存在する欠陥の除去、例えば、マイクロクラックの封孔処理には、1.200mm以上の粒子径とすることができる。
 次に、投射材の寿命から適切な粒子径を検討した。図4は、投射材の粒子径と寿命値との関係を示すグラフである。横軸が粒子径、縦軸が寿命値である。投射材の寿命試験は、SAE J445(SAE:Society of Automotive Engineers)に規定の100%Replacement Methodに準拠し、アーヴィン式ライフテスターを用い、投射速度60m/s、ターゲット硬さHRC65(HRC:Rockwell hardness)とし、カットオフ値はone screen下の篩目で測定実施した。一定衝突回数毎に破砕した投射材を篩別除去するとともに、残留した投射材の重量を測定し、残留した投射材が最初の30%以下となるまで試験を行った。この試験により得た衝突回数と残留投射材の重量割合の関係を示す寿命曲線を積分して求められる数値を寿命値とした。
 投射材の粒子径が大きい程、寿命が短くなる傾向となった。投射材の寿命値は1000サイクル以上が要求されることが多い。このため、第2群の投射材は、1.700mm以下とすることができる。また、粒子径が大きい投射材を用いると、ブラスト装置の損傷、例えば、部品の摩耗などが大きくなる。このため、必要以上に粒子径を大きくしなくてもよい。
 第1群の投射材のみでは、カバレージを向上させることができるので効率的なスケール除去を行うことができるが、金属製品の表面の粗面化、または、金属製品の表層部に存在する欠陥の除去を十分に行うことができない。
 一方、第2群の投射材のみでは、金属製品の表面の粗面化、または、金属製品の表層部に存在する欠陥の除去を十分に行うことができるが、単位重量あたりの粒子数が少なくなるため、カバレージ(一定面積当たりにおける投射材の実打痕面積)の低下に繋がる。
 本開示の投射材では、投射材の粒子径分布を第1群の投射材と第2群の投射材との両方が存在するように調整することにより、それぞれの利点を維持し、不足するブラスト処理能力を補完することができる。つまり、スケールが形成された金属製品に対して、効率的にスケールを除去するとともに、表面を粗面化、金属製品の表層部に存在する欠陥の除去を十分に行うことができる。ここで、第1群と第2群とは、d1max=d2minの関係を充足してもよい。また、第1群と第2群とで構成される投射材の粒子径頻度分布は、実質的に連続している。これにより、表面処理による打痕の大きさが連続的な分布を有するため、カバレージを増大させることができ、表面処理を効率的に行うことができる。この効果を奏するために、d1max=d2minを1.000mmとしてもよく、1.180mmとしてもよい。
 ここで、粗面化、または表層部に存在する欠陥の除去を有効に行うために、第1群の投射材の比率を調整して、最大頻度P1及びP2がP2≦P1を充足してもよい。
 金属製品は摺動部品である場合には、最大頻度P1が粒子径区間1.000mm≧d1>0.850mm、最大頻度P2が粒子径区間1.700mm≧d2>1.400mmに存在するような投射材を用いることができる。あるいは、最大頻度P1が粒子径区間1.180mm≧d1>1.000mm、最大頻度P2が粒子径区間1.700mm≧d2>1.400mmに存在するような投射材を用いてもよい。また、表面粗さを小さくしたい場合には、最大頻度P1が粒子径区間1.000mm≧d1>0.850mm、最大頻度P2が粒子径区間1.180mm≧d2>1.000mmに存在するような投射材を用いることができる。
 投射材の粒度分布は、ワークである金属製品の性状(形状、材質、スケールの状態、等)及び表面処理の目的に合わせて適宜変更することができる。例えば、d1min=0.710mm及びd2max=1.700mmとし、d1maxが1.000mm又は1.180mmとしてもよい。あるいは、d1min=0.600mm及びd2max=1.180mmとし、d1max=d2minを1.000mm又は1.180mmとしてもよい。あるいは、d1min=0.600mm及びd2max=1.700mmとし、d1max=d2minを1.000mm又は1.180mmとしてもよい。いずれの場合においても、最大頻度P1及びP2を有し、且つ実質的に連続している粒度分布を有することで、スケールが形成された金属製品に対して、効率的にスケールを除去するとともに、表面を粗面化、金属製品の表層部に存在する欠陥の除去を十分に行うことができる。
 投射材は、水アトマイズ法等の公知の方法により作製した粒子をJIS Z 8801(2006)に規定の篩目の篩を用いて分級し、所望の粒子径分布となるように混合、調整して作製することができる。
 次に、上記の投射材を使用して、ブラスト処理によりスケール除去及び粗面化または封孔処理を行う表面処理方法について説明する。
 本開示の投射材を用いて金属製品の表面処理を行うには、例えば、特許文献1に記載のような公知の遠心型ブラスト装置を用いることができる。なお、本開示のブラスト処理方法は当該ブラスト装置を用いた方法に限定されるものではない。
 ブラスト装置は、投射材の貯留及び定量供給を行うホッパー、投射材を投射するインペラーユニット、投射材を循環させる循環装置、投射材と砂やスケールとを分離するセパレーター及び集塵装置を備えている。
 投射材は、ホッパーからインペラーユニットに投入され、インペラーユニットに投入された投射材は、インペラーユニット内で加速されて投射室内に配置された金属製品へと投射される。これにより、金属製品のブラスト処理を行なう。
 投射された投射材は、ブラスト処理により金属製品から除去されたスケールとともに循環装置により回収され、セパレーターに送られる。
 セパレーターでは投射材をエプロン状に落下させ、集塵機により生じる気流により砂、スケール及び粉砕された微細な投射材を選別し、それらを集塵機及び装置外へ排出する。ブラスト処理に有効な投射材は再度、インペラーユニットに供給され、循環使用される。
 装置外へ排出された量だけ装置内投射材量が減少するので、減少量に対応した量の投射材を補給する必要がある(未使用の投射材をブラスト装置に装填する投射材装填工程)。投射材の減少はインペラーユニットの負荷電流値により検知され、新たな投射材がホッパーに自動的にもしくは手動に補給される。
 上記投射、微粉の装置外排出、補給を繰り返し行う一連の操作の結果、装置内投射材の粒子径分布は、未使用の投射材の粒子径分布とは異なる一定の粒子径分布で安定する(ブラスト装置の操業により投射材の粒子径分布を一定の粒子径分布が安定するオペレーティングミックスを形成するオペレーティングミックス形成工程)。この安定した粒子径分布の状態をオペレーティングミックスという。オペレーティングミックス形成工程後、投射材をブラスト装置により金属製品に投射して金属製品の表面のスケールを除去するとともに、金属製品の表面の粗面化、または、金属製品表面の表層部に存在する欠陥の除去が行われる(表面処理工程)。投射材は、オペレーティングミックス形成後の装置内投射材の粒子径分布を効率的なブラスト処理が行えるように管理することが重要である。
 本開示の投射材を用いると、特別な装置、方法によることなく、オペレーティングミックス形成工程後におけるブラスト装置内の粒子径分布を、ブロードに(例えば、0.250mm~1.700mm)し、且つ最大頻度P1及びP2を有するようにすることができる。そして、未使用の投射材と比べ、最大頻度P1及びP2の位置(粒子径)は変わらずに、最大頻度P1及びP2間の頻度Vが最大頻度P1及びP2に対して相対的に増大するという特徴的な分布にすることができる。これによれば、第1群の投射材の効果及び第2群の投射材の効果を維持しつつ、最大頻度間の粒子径分布がブロードになる。投射材による打痕の大きさが連続的な分布を有するので、カバレージを増大させることができ、表面処理を効率的に行うことができる。
 さらに、効率的なスケール除去を行いつつ、粗面化、または表層部に存在する欠陥の除去を有効に行うためには、オペレーティングミックス形成工程後におけるブラスト装置内の粒子径分布において、最大頻度P1及びP2がP2≦P1を充足するようにしてもよい。
 投射材は、その全体が凸曲面で形成されてもよい。全体が凸曲面で形成された投射材を用いて表面処理工程を行った場合、例えば表面に無数の曲面を有するディンプルを形成することができる。このため、金属製品の摺動性を失うことなく表面に潤滑油を保持するためのディンプルを形成することができる。また、投射材の接触面積が均一且つ広くなるので、金属製品の塑性変形が効率良く行われ、金属製品の表層部に存在する欠陥の除去を効率良く行うことができる。なお、「全体が凸曲面で形成されている」とは、角部を有しない形状を指す。球状の粒子だけでなく、例えば円柱形状の粒子の角部を面取りして丸めた形状の粒子も含まれる。
(変更例)
 投射材の形態はショットに限定されるものではなく、グリット、カットワイヤなどを用いることもできる。
 本開示の投射材及び表面処理方法は、鋼材からなる熱間鍛造品以外でも、スケールが形成される材料、製造方法の金属製品の表面処理に適用することができる。例えば、圧延鋼板のスケール除去等に適用することができる。
(実施形態の効果)
 本開示の投射材及びその投射材を用いた表面処理方法によれば、スケールが形成された金属製品に対して、効率的にスケールを除去するとともに、表面を粗面化、または、表層部に存在する欠陥の除去を行うことができる。特に、投射材の硬度、粒子径分布を適切に設定することにより、熱間鍛造品の表面処理に用いることができる。
 以下、本開示の効果を確認するために行った実施例について説明する。
 本開示の投射材を用いたスケール除去を行い、表面処理後の表面粗さを評価した。本試験に使用した被加工物は、材質をSUJとし、形状は円筒(円すいころ軸受の内輪)、試験に使用した投射試験装置は、ショットブラストSNTX-I型(新東工業株式会社)であり、投射速度73m/sにて実施した。投射密度は100%カバレージ到達時の投射密度とした。投射密度は、150kg/m~300kg/mとした。また、評価項目は表面粗さであり、測定方法として、JIS-B0601:2000にて規定される十点平均粗さRz(μm)を採用した。
 投射材は、硬度HV450のスチールショットであって、最大頻度P1及びP2における粒子径及び最大頻度P1と最大頻度P2との比率を変えた投射材を用意し、試験に供した。試験は、投射材を投射試験装置に投入し、連続運転及び補給を繰り返してオペレーティングミックスを形成したのち投射試験を行った。
 試験に用いた投射材の粒子径分布を下記に示す。
(1)第1群
最大頻度P1となる粒子径が0.710mm(粒子径区間0.850mm≧d1>0.710mm)、0.850mm(粒子径区間1.000mm≧d1>0.850mm)、1.000mm(粒子径区間1.180mm≧d1>1.000mm)の3水準
(2)第2群
最大頻度P2となる粒子径が1.400mm(粒子径区間1.700mm≧d2>1.400mm)、1.180mm(粒子径区間1.400mm≧d2>1.180mm)、1.000mm(粒子径区間1.180mm≧d2>1.000mm)の3水準
 各条件における表面粗さ測定結果を表1に示す。このように、最大頻度P1及びP2に対応する適当な粒子径を選定することにより表面粗さを調整することができる。例えば、熱間鍛造により製造された摺動部品の表面処理工程では、後加工などにおいて好適な表面粗さRz50μm~60μm程度に調整することができる。
Figure JPOXMLDOC01-appb-T000001
 以下、上記の粒子径分布をグラフで示す。図5は、本開示の投射材のオペレーティングミックス形成工程後の粒子径分布を、オペレーティングミックス形成工程前の粒子径分布と比較して模式的に示す説明図である。第1群は最大頻度P1の粒子径が0.850mm、第2群は最大頻度P2の粒子径が1.400mmである。「イニシャル」は、オペレーティングミックス形成工程前の粒子径分布であり、「オペレーティングミックス」は、オペレーティングミックス形成工程後の粒子径分布である。オペレーティングミックス形成工程後の最大頻度P1,P2と頻度V1との差分は、イニシャルの最大頻度P1,P2と頻度V1との差分よりも小さい。また、オペレーティングミックス形成工程後の最大頻度P1,P2と頻度V2との差分は、イニシャルの最大頻度P1,P2と頻度V1との差分よりも小さい。このように、最大頻度P1及びP2の位置は変わらずに、最大頻度P1及びP2間の頻度V(V1,V2)が最大頻度P1及びP2に対して相対的に増大するという特徴的な分布になることが確認された。表1を参照すると、この投射材を用いることで表面粗さRz54.13μm程度に調整することができる。
 図6は、実施例の投射材のオペレーティングミックス形成前の粒子径分布である。横軸は粒子径、縦軸は重量分率である。第1群が粒子径1.000mm、第2群の粒子径が1.400mmである。nは試験番号であり、平均は試験番号で示す試験結果の平均値である。図7は、図6の投射材のオペレーティングミックス形成後の粒子径分布である。このように、最大頻度P1及びP2の位置(粒子径)は変わらずに、最大頻度P1及びP2間の頻度Vが最大頻度P1及びP2に対して相対的に増大するという特徴的な分布になることが確認された。オペレーティングミックスの形成後の平均における最大頻度P2:最大頻度P1は18:23であり、P2≦P1を充足する。
 図8は、実施例の投射材のオペレーティングミックス形成前の粒子径分布である。横軸は粒子径、縦軸は重量分率である。第1群が粒子径0.850mm、第2群の粒子径が1.000mmである。nは試験番号であり、平均は試験番号で示す試験結果の平均値である。図9は、図8の投射材のオペレーティングミックス形成後の粒子径分布である。このように、最大頻度P1及びP2の位置(粒子径)は変わらずに、最大頻度P1及びP2間の頻度Vが最大頻度P1及びP2に対して相対的に増大するという特徴的な分布になることが確認された。オペレーティングミックスの形成後の平均における最大頻度P2:最大頻度P1は23:24であり、P2≦P1を充足する。

Claims (12)

  1.  金属製品の表面に形成されたスケールをブラスト処理により除去するために用いる鋳鋼製の投射材において、
     粒子径d1が第1粒子径区間d1max≧d1>d1minに属する投射材群であって、前記第1粒子径区間内に最大頻度P1を有する第1群と、
     粒子径d2が第2粒子径区間d2max≧d2>d2minに属する投射材群であって、前記第2粒子径区間内に最大頻度P2を有する第2群と、を備え、
     前記第1群と前記第2群とは、d1max=d2minの関係を充足し、
     前記第1群と前記第2群とで構成される投射材の粒子径頻度分布は、実質的に連続している、投射材。
  2.  d1min=0.710mm及びd2max=1.700mmであり、d1maxが1.000mm又は1.180mmである、請求項1に記載の投射材。
  3.  前記金属製品は熱間鍛造品であって、
     前記投射材はビッカース硬度がHV300~HV600である、請求項1又は2に記載の投射材。
  4.  前記金属製品は摺動部品であって、
     前記最大頻度P1が粒子径区間1.180mm≧d1>1.000mm、前記最大頻度P2が粒子径区間1.700mm≧d2>1.400mmに存在する、請求項3に記載の投射材。
  5.  d1min=0.600mm及びd2max=1.180mmであり、d1maxが1.000mm又は1.180mmである請求項1に記載の投射材。
  6.  d1min=0.600mm及びd2max=1.700mmであり、d1maxが1.000mm又は1.180mmである、請求項1に記載の投射材。
  7.  前記投射材は全体が凸曲面で形成されている請求項1~6の何れか一項に記載の投射材。
  8.  請求項1~7の何れか一項に記載の前記投射材を用いた金属製品の表面処理方法であって、
     未使用の投射材をブラスト装置に装填する投射材装填工程と、
     前記ブラスト装置の操業により投射材の粒子径分布を一定の粒子径分布が安定するオペレーティングミックスを形成するオペレーティングミックス形成工程と、
     前記投射材を前記ブラスト装置により前記金属製品に投射して前記金属製品の表面のスケールを除去するとともに、前記金属製品の表面の粗面化、または、前記金属製品の表面の表層部に存在する欠陥の除去を行う表面処理工程と、
    を備える、金属製品の表面処理方法。
  9.  前記オペレーティングミックス形成工程後の前記投射材の粒子径分布は、0.250mm~1.700mmであり、且つ最大頻度P1及びP2を有する、請求項8に記載の金属製品の表面処理方法。
  10.  前記最大頻度P1及びP2が、P2≦P1を充足する、請求項9に記載の金属製品の表面処理方法。
  11.  前記オペレーティングミックス形成工程後の前記投射材の粒子径分布が、
     未使用の投射材と比べ、
     前記最大頻度P1及びP2の位置は変わらずに、前記最大頻度P1及びP2間の頻度Vが前記最大頻度P1及びP2に対して相対的に増大する、請求項8~10の何れか一項に記載の金属製品の表面処理方法。
  12.  前記金属製品は熱間鍛造により成型された摺動部品であり、前記表面処理工程により前記摺動部品の表面のスケールを除去するとともに、JIS-B0601:2000にて規定される十点平均粗さRzを50μm~60μmにする、請求項8~11の何れか一項に記載の金属製品の表面処理方法。
PCT/JP2017/022539 2016-06-23 2017-06-19 投射材及びその投射材を用いた金属製品の表面処理方法 WO2017221894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018524086A JP6841280B2 (ja) 2016-06-23 2017-06-19 投射材及びその投射材を用いた熱間鍛造品の表面処理方法
KR1020197001360A KR20190020043A (ko) 2016-06-23 2017-06-19 투사재 및 그 투사재를 이용한 금속 제품의 표면 처리 방법
CN201780037835.6A CN109311140B (zh) 2016-06-23 2017-06-19 投射材料及使用了该投射材料的金属制品的表面处理方法
BR112018073913A BR112018073913A2 (pt) 2016-06-23 2017-06-19 material granulado e processo para tratamento de superfície de produto de metal usando o dito materi-al granulado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016124135 2016-06-23
JP2016-124135 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017221894A1 true WO2017221894A1 (ja) 2017-12-28

Family

ID=60784522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022539 WO2017221894A1 (ja) 2016-06-23 2017-06-19 投射材及びその投射材を用いた金属製品の表面処理方法

Country Status (6)

Country Link
JP (1) JP6841280B2 (ja)
KR (1) KR20190020043A (ja)
CN (1) CN109311140B (ja)
BR (1) BR112018073913A2 (ja)
TW (1) TW201805119A (ja)
WO (1) WO2017221894A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146530A1 (ja) * 2018-01-25 2019-08-01 新東工業株式会社 投射材及びブラスト処理方法
WO2019146529A1 (ja) * 2018-01-25 2019-08-01 新東工業株式会社 投射材及びブラスト処理方法
JP2022034600A (ja) * 2020-08-19 2022-03-04 サムテック株式会社 鍛造部材の製造方法
EP4056315A1 (en) * 2021-03-08 2022-09-14 Sintokogio, Ltd. Surface treatment method
JP7397318B2 (ja) 2020-04-23 2023-12-13 日本製鉄株式会社 鋼板の製造方法、鋼管の製造方法、鋼板製造装置及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235014A (ja) * 1987-03-20 1988-09-30 Sumitomo Metal Ind Ltd スケ−ル押込み疵防止方法
JP2000052248A (ja) * 1998-08-07 2000-02-22 Komatsu Ltd ショットピーニング方法およびその装置並びに得られる機械部品
JP2001353661A (ja) * 2000-06-15 2001-12-25 Sinto Brator Co Ltd ブラスト処理用投射材
JP2003342555A (ja) * 2002-05-30 2003-12-03 Ikk Shotto Kk 混合金属系粒状物
JP2005262349A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 表面テクスチャー付金属板の製造装置及び製造方法
WO2016143414A1 (ja) * 2015-03-12 2016-09-15 新東工業株式会社 鋳物の研掃方法
WO2016143413A1 (ja) * 2015-03-12 2016-09-15 新東工業株式会社 投射材
WO2016174897A1 (ja) * 2015-04-30 2016-11-03 新東工業株式会社 スケール除去方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978137B2 (ja) * 1997-09-01 1999-11-15 プラストロン株式会社 金属表面処理方法およびその処理を施した金属材
JP2001121205A (ja) 1999-10-25 2001-05-08 Nippon Steel Corp 鋼材のスケール除去方法
JP2005066704A (ja) * 2003-08-22 2005-03-17 Pioneer Electronic Corp プラズマディスプレイパネルの隔壁形成用研磨材およびプラズマディスプレイパネルの製造方法
JP4699264B2 (ja) * 2006-04-03 2011-06-08 三菱重工業株式会社 金属部材の製造方法及び構造部材
ZA200901557B (en) * 2006-09-11 2010-06-30 Enbio Ltd Method of doping surfaces
CN1943992B (zh) * 2006-09-29 2010-05-12 连云港倍特金属磨料有限公司 一种锌合金喷丸
CN103243325A (zh) * 2012-02-06 2013-08-14 浙江伟星实业发展股份有限公司 一种金属制品的表面处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235014A (ja) * 1987-03-20 1988-09-30 Sumitomo Metal Ind Ltd スケ−ル押込み疵防止方法
JP2000052248A (ja) * 1998-08-07 2000-02-22 Komatsu Ltd ショットピーニング方法およびその装置並びに得られる機械部品
JP2001353661A (ja) * 2000-06-15 2001-12-25 Sinto Brator Co Ltd ブラスト処理用投射材
JP2003342555A (ja) * 2002-05-30 2003-12-03 Ikk Shotto Kk 混合金属系粒状物
JP2005262349A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 表面テクスチャー付金属板の製造装置及び製造方法
WO2016143414A1 (ja) * 2015-03-12 2016-09-15 新東工業株式会社 鋳物の研掃方法
WO2016143413A1 (ja) * 2015-03-12 2016-09-15 新東工業株式会社 投射材
WO2016174897A1 (ja) * 2015-04-30 2016-11-03 新東工業株式会社 スケール除去方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115496B2 (ja) 2018-01-25 2022-08-09 新東工業株式会社 ブラスト処理方法
TWI795518B (zh) * 2018-01-25 2023-03-11 日商新東工業股份有限公司 噴射處理方法
WO2019146530A1 (ja) * 2018-01-25 2019-08-01 新東工業株式会社 投射材及びブラスト処理方法
JPWO2019146529A1 (ja) * 2018-01-25 2021-01-07 新東工業株式会社 投射材及びブラスト処理方法
WO2019146529A1 (ja) * 2018-01-25 2019-08-01 新東工業株式会社 投射材及びブラスト処理方法
TWI795517B (zh) * 2018-01-25 2023-03-11 日商新東工業股份有限公司 噴射處理方法
CN111615439B (zh) * 2018-01-25 2022-07-12 新东工业株式会社 投射材料以及喷砂处理方法
US11478897B2 (en) 2018-01-25 2022-10-25 Sintokogio, Ltd. Blasting processing method using shot media
CN111615439A (zh) * 2018-01-25 2020-09-01 新东工业株式会社 投射材料以及喷砂处理方法
JPWO2019146530A1 (ja) * 2018-01-25 2021-01-07 新東工業株式会社 投射材及びブラスト処理方法
JP7115495B2 (ja) 2018-01-25 2022-08-09 新東工業株式会社 ブラスト処理方法
US11511393B2 (en) 2018-01-25 2022-11-29 Sintokogio, Ltd. Projection material and blasting method
JP7397318B2 (ja) 2020-04-23 2023-12-13 日本製鉄株式会社 鋼板の製造方法、鋼管の製造方法、鋼板製造装置及びプログラム
JP2022034600A (ja) * 2020-08-19 2022-03-04 サムテック株式会社 鍛造部材の製造方法
JP7310076B2 (ja) 2020-08-19 2023-07-19 サムテック株式会社 鍛造部材の製造方法
EP4056315A1 (en) * 2021-03-08 2022-09-14 Sintokogio, Ltd. Surface treatment method
US11780055B2 (en) 2021-03-08 2023-10-10 Sintokogio, Ltd. Surface treatment method

Also Published As

Publication number Publication date
JPWO2017221894A1 (ja) 2019-04-11
CN109311140A (zh) 2019-02-05
JP6841280B2 (ja) 2021-03-10
BR112018073913A2 (pt) 2019-02-26
KR20190020043A (ko) 2019-02-27
CN109311140B (zh) 2021-08-10
TW201805119A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2017221894A1 (ja) 投射材及びその投射材を用いた金属製品の表面処理方法
KR102460924B1 (ko) 주물의 블라스트-클리닝 방법
JP6512286B2 (ja) スケール除去方法
US11478897B2 (en) Blasting processing method using shot media
KR100420127B1 (ko) 블라스트처리용 투사재 및 이를 사용하는 블라스트가공방법
KR102460923B1 (ko) 투사재
WO2017130476A1 (ja) 鋳鋼製投射材
JP5705553B2 (ja) 投射材の寿命に優れたショットピーニング方法
US11511393B2 (en) Projection material and blasting method
JP2009226535A (ja) 亜鉛合金ショット
US20210069864A1 (en) Shot used for blast processing
GB1598613A (en) Size-graded steel abrasive material produced from scarfer spittings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524086

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815362

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018073913

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001360

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018073913

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181122

122 Ep: pct application non-entry in european phase

Ref document number: 17815362

Country of ref document: EP

Kind code of ref document: A1