WO2017221761A1 - Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法 - Google Patents

Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法 Download PDF

Info

Publication number
WO2017221761A1
WO2017221761A1 PCT/JP2017/021711 JP2017021711W WO2017221761A1 WO 2017221761 A1 WO2017221761 A1 WO 2017221761A1 JP 2017021711 W JP2017021711 W JP 2017021711W WO 2017221761 A1 WO2017221761 A1 WO 2017221761A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous support
producing
separation membrane
silicalite
membrane
Prior art date
Application number
PCT/JP2017/021711
Other languages
English (en)
French (fr)
Inventor
矢野 和宏
正也 板倉
健太郎 篠矢
怜史 今坂
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to EP17815230.2A priority Critical patent/EP3473332A4/en
Priority to CN201780032720.8A priority patent/CN109195693A/zh
Priority to US16/312,096 priority patent/US11110403B2/en
Publication of WO2017221761A1 publication Critical patent/WO2017221761A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/24Use of template or surface directing agents [SDA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Definitions

  • the present invention relates to a method for producing a dense separation membrane for separating and purifying a synthesis gas system such as a hydrocarbon compound in the petrochemical field.
  • NaOH sodium hydroxide
  • the alkalinity of the reaction solution has led to corrosion and deterioration of equipment used in the synthesis process. Since the alkali metal component must be removed after the synthesis, it is necessary to repeat the washing, which increases the cost for equipment and process time.
  • Non-patent document 2 describes that in the conventional silicalite film, the surface layer pore diameter of the porous base material (made of stainless steel) is 2 ⁇ m, whereas the seed crystal particle diameter is optimally 12 ⁇ m.
  • the thickness of the dense layer at this time is as large as 198 to 223 ⁇ m, and it becomes resistance when an object to be separated passes through the dense layer, so that the processing efficiency (permeability) as a filter is improved. It is a cause of lowering. T.
  • the present invention provides a method for producing a separation membrane provided with a silicalite membrane that does not use NaOH, which causes high cost for equipment and process time, and a method for producing a separation membrane provided with a dense silicalite membrane. Is an issue.
  • the present invention provides a method for producing a separation membrane having an MFI type zeolite crystal structure on a porous support.
  • 1st aspect of this invention is a manufacturing method of the separation membrane provided with the porous support body and the silicalite membrane which has the MFI type
  • a second aspect of the present invention is a method for manufacturing a separation membrane, wherein the organic template used in the first aspect includes a hydroxyl group.
  • a third aspect of the present invention is a method for producing a separation membrane, wherein the organic template containing a hydroxyl group used in the second aspect is TPAOH (Tetra-n-propylammonium hydroxide).
  • a fourth aspect of the present invention is a method for producing the separation membrane according to any one of the first aspect, the second aspect, or the third aspect, wherein the average particle diameter d seed of the seed crystal and the porous support There is a relationship of the following formula 1 between the surface layer portion average pore diameter d support and the separation membrane manufacturing method.
  • the average particle size of the silicalite seed crystal may be measured using a cumulant method, and the average pore size of the surface layer portion of the porous support may be measured according to JISK3832.
  • a method for producing the separation membrane according to any one of the first to fourth aspects, wherein the porous support is made of a ceramic material, and the inside of the porous support is silica.
  • the average pore diameter of the porous support decreases toward the surface layer portion of the porous support on which the light membrane is formed.
  • the separation membrane manufacturing method according to the fifth aspect wherein one end or both ends in the longitudinal direction of the porous support are made of a dense ceramic material. It is a manufacturing method of a film
  • the present invention provides a method for producing a separation membrane that does not use NaOH in hydrothermal synthesis, which causes high cost for equipment and process time, and a method for producing a separation membrane comprising a dense silicalite membrane.
  • FIG. 2 is an electron microscopic image of the surface of the silicalite film obtained in Example 1.
  • FIG. 2 is an electron microscopic image of a cross section of a silicalite film obtained in Example 1.
  • FIG. 2 is an X-ray diffraction pattern of the silicalite film obtained in Example 1.
  • FIG. 2 is an electron microscopic image of a silicalite seed crystal used in Example 1.
  • FIG. 2 is an X-ray diffraction pattern of silicalite seed crystal used in Example 1.
  • FIG. 3 is a measurement result of nitrogen gas permeance measured in Example 2.
  • FIG. It is the measurement system figure used for the measurement of Example 2.
  • the separation membrane of the present invention has a silicalite membrane formed on the surface of a porous support.
  • the skeleton of the silicalite film crystal is substantially free of aluminum and is entirely composed of silicon and oxygen.
  • the MFI type as a zeolite species is a zeolite species having a 10-membered ring structure, and is represented by, for example, silicalite-1.
  • MFI is a code that classifies the zeolites defined by the International Zeolite Association (IZA) according to the structure.
  • a method for producing a separation membrane includes a step of producing a seed crystal, a step of attaching the seed crystal to a porous support made of a material such as stainless steel or alumina, and a membrane synthesis raw material composition for synthesizing a silicalite membrane. And a step of hydrothermal synthesis by immersing the porous support to which the seed crystal is attached in the membrane synthesis raw material composition.
  • the zeolite seed crystal can be synthesized, for example, by the following method.
  • Tetra-n-propylammonium hydroxide (TPAOH) and tetraethyl orthosilicate (TEOS (Tetra ethyl orthosilicate)) were added to an aqueous solution of sodium hydroxide (NaOH), and the molar composition of the mixed solution was ( 20-30) SiO 2 : (0.05-0.15) Na 2 O: (4-5) TPAOH: (900-1200) H 2 O: (90-110) EtOH mixed solution is prepared
  • a mixed solution is prepared so as to be 25SiO 2 : 0.1Na 2 O: 4.4TPAOH: 1098H 2 O: 100 EtOH.
  • the porous support to which the seed crystal is attached is not limited as long as it can be crystallized as a thin film of zeolite on the support, and is a porous support formed of alumina, silica, zirconia, titania, stainless steel, or the like. Good.
  • the shape of the porous support is not particularly limited, and various shapes such as a tubular shape, a flat plate shape, a honeycomb shape, a hollow fiber shape, and a pellet shape can be used.
  • the size of the porous support is not particularly limited, but is practically about 2 to 200 cm in length, 0.5 to 2 cm in inner diameter, and about 0.5 to 4 mm in thickness.
  • the porous support is preferably surface-treated by a method such as washing with water or ultrasonic washing before attaching the seed crystal.
  • the support surface may be cleaned by ultrasonic cleaning with water for 1 to 10 minutes.
  • the surface may be polished with a sandpaper or a grinder.
  • the seed crystal is attached to the porous support by immersing the porous support in the suspension containing the seed crystal prepared in ⁇ Step of producing seed crystal> and then drying at 60 ° C. for 12 hours. Do.
  • the seed crystal may be attached to the porous support by a method of applying the suspension to the surface of the porous support with a brush or the like.
  • the lower limit of the organic template parts by for SiO 2 1 part by weight of film synthetic raw material composition is preferably at least 0.05 parts by weight, more preferably at least 0.07 parts by weight, even more preferably at least 0.09 parts by weight.
  • the upper limit of the organic template part by mass with respect to 1 part by mass of SiO 2 in the film synthesis raw material composition is preferably 0.15 part by mass or less, more preferably 0.13 part by mass or less, and still more preferably 0.11 part by mass or less.
  • the lower limit of H 2 O parts by mass with respect to SiO 2 1 part by weight of film synthetic raw material composition is preferably at least 50 parts by weight, more preferably at least 60 parts by weight, even more preferably at least 70 parts by weight.
  • the upper limit of the H 2 O mass parts with respect to SiO 2 1 part by weight of film synthetic raw material composition is preferably from 120 parts by mass or less, more preferably 110 parts by mass or less, still more preferably 100 parts by mass or less.
  • the hydrothermal synthesis time may be prolonged or a dense silicalite film layer may not be formed.
  • ⁇ Step of hydrothermal synthesis by immersing the porous support to which the seed crystal is attached in the membrane synthesis raw material composition> After stirring the membrane synthesis raw material composition prepared in ⁇ Membrane synthesis raw material composition> at room temperature for 30 minutes to 4 hours, the membrane synthesis raw material composition and the zeolite seed crystals are placed in a heat-resistant pressure-resistant container such as an autoclave.
  • the attached porous support is loaded, and after the container is sealed, hydrothermal synthesis is performed at a temperature of 130 ° C. to 180 ° C. for 12 hours to 36 hours. When the temperature is less than 130 ° C. or more than 180 ° C., or when the synthesis time is less than 12 hours or more than 36 hours, a dense silicalite film layer may not be formed, or the hydrothermal synthesis time may be long.
  • porous support after hydrothermal synthesis was dried at 60 ° C. for 12 hours, and then baked at 400 ° C. for 48 hours to remove the organic template, and a dense silicalite separation membrane covered the porous support surface. A separation membrane is completed.
  • the obtained silicalite separation membrane is substantially free of aluminum, has a crystal structure of MFI type, has high water resistance and high chemical resistance, and has high processing efficiency.
  • NaOH as a mineralizer is not used, so there is little influence of causing deterioration of the equipment due to the membrane synthesis raw material composition, and in order to remove NaOH after hydrothermal synthesis, a cleaning process, etc. Less labor is required and manufacturing costs can be reduced.
  • hydrothermal synthesis is possible without using NaOH as a mineralizer is that the OH group in the organic template is considered to function as a mineralizer, and also functions as a mineralizer. Any organic template having an OH group may be used.
  • organic template is not particularly limited, a quaternary alkyl ammonium hydroxide having 10 or more carbon atoms is preferable, and TPAOH is particularly preferable.
  • TPAOH tripropyl ethylammonium
  • TPEAOH tripropyl ethylammonium
  • a seed crystal that is a precursor for forming a silicalite separation membrane penetrates into the inside of the porous support.
  • the relationship between the pore size and the average particle size of the seed crystal is important.
  • the particle diameter of the seed crystal In order for the seed crystal to enter the inside of the porous support, the particle diameter of the seed crystal must be smaller than the pore diameter of the surface layer of the porous support.
  • the seed crystal penetrates deep into the pores of the porous support, and crystallizes in the subsequent hydrothermal synthesis step.
  • the grown silicalite crystal may not be able to cover the surface of the porous support and a dense layer may not be formed.
  • the present inventors have determined that the average particle diameter of the seed crystal and the average of the surface layer of the porous support are It has been discovered that a dense silicalite film is formed when the pore diameter satisfies the following formula 1.
  • the average particle diameter of d seed seed crystal, d suppport is pore diameter of the surface layer of the porous support.
  • the silicalite film produced by hydrothermal synthesis is immersed in a porous support having a seed crystal having the relationship of Formula 1 attached thereto, and hydrothermal synthesis is dense. do not need.
  • the resulting separation membrane is characterized by high processing efficiency and high permeability and separation performance.
  • the porous support is made of ceramic, and the porous support has a smaller average pore diameter from the inside of the porous support toward the surface layer portion of the porous support on which the silicalite film is formed. It is preferable to use a body.
  • a raw material containing alumina as a main component and SiO 2 as a sintering aid is formed into a layer and sintered to form a first porous support.
  • the porous support of the first layer is immersed and boiled in an alkaline solution to elute SiO 2 and expand the pore diameter of the porous support of the first layer.
  • an intermediate layer is provided on the surface layer portion of the first porous support.
  • the intermediate layer is formed by forming a ceramic raw material mainly composed of alumina, which does not contain a sintering aid, into a layer on an alkali-treated first porous support and sintering the formed body. It is done.
  • the porous support has this structure, the silicalite membrane permeating fluid easily passes through the porous support, the passage resistance is lowered, the processing efficiency is increased, and the performance as a filter material is improved.
  • the porous support is made of a ceramic material
  • the porous support in order to connect a plurality of separation membranes in which a silicalite membrane is formed on the porous support in series, one end or both ends in the longitudinal direction of the porous support
  • the part is preferably made of a dense ceramic material. This is because the end portions are dense so that the strength required for the connection can be maintained and the connection becomes easy.
  • porous support There are various methods for forming one end or both ends in the longitudinal direction of the porous support with a dense ceramic material.
  • a porous support can be produced by the following method.
  • a porous support that does not have a dense body at the end made of alumina as a main component and a member that becomes an end containing 50 wt% or more of alumina as a main component has a dense body at this end.
  • the essential components are SiO 2 : 17 to 48 wt%, Al 2 O 3 : 2 to 8 wt%, BaO: 24 to 60 wt%, ZnO: 0.5 to 5 wt%
  • at least one of La 2 O 3 , CaO and SrO the essential component is 80 to 84.5 wt% of the total weight
  • at least one of La 2 O 3 , CaO and SrO is
  • One end or both ends in the longitudinal direction are made of a dense ceramic material by fixing with a bonding agent made of a ceramic oxide having a weight of 11.7 to 15.8 wt%. It is produced the porous support.
  • this bonding agent Since the melting temperature of this bonding agent is higher than the heat resistance limit of zeolite of about 600 ° C., even if silicalite is hydrothermally synthesized on the porous support, the components of the bonding agent move to the silicalite film and the silicalite It does not degrade the performance of the membrane.
  • TPAOH Tetra-n-propylammonium hydroxide
  • TEOS Tetraethyl orthosilicate
  • the mixed solution was stirred at room temperature for 24 hours, and then heated and synthesized at 100 ° C. with further stirring.
  • the powder obtained after synthesis was washed several times with distilled water, and solid-liquid separation was performed by centrifugation.
  • the solid obtained after separation was dried at 100 ° C. for 24 hours and then calcined at 500 ° C. for 8 hours to produce seed crystals.
  • the SEM photograph of the obtained seed crystal is shown in FIG. 4, and the XRD spectrum of the seed crystal is shown in FIG.
  • the average grain size of the seed crystal is about 0.4 ⁇ m, the variation is small, and the shape is a well-formed sphere.
  • the XRD spectrum of FIG. 5 it can be seen that the seed crystal is silicalite having an MFI type crystal structure.
  • an alumina porous tube (outer diameter 16 mm ⁇ , inner diameter 12 mm ⁇ ) was prepared as a porous support.
  • the effective area on which the silicalite film is formed was 10.1 cm 2 .
  • the alumina porous tube was immersed in the suspension containing the silicalite seed crystal at room temperature for 24 hours, and then dried at 60 ° C. for 12 hours to adhere the silicalite seed crystal to the outer surface of the alumina porous tube.
  • the film synthesis raw material composition used for hydrothermal synthesis contains colloidal silica, TPAOH, and distilled water, and was prepared so that the molar composition thereof was 1SiO 2 : 0.10 TPAOH: 80H 2 O.
  • the autoclave After stirring the obtained membrane synthesis raw material composition at room temperature for 1 hour, the autoclave was charged with the membrane synthesis raw material composition and an alumina porous tube having silicalite seed crystals attached to the outer surface, and after sealing, the temperature was 140 ° C. The hydrothermal synthesis reaction was performed for 24 hours. After the reaction, the alumina porous tube was taken out from the autoclave and washed several times with distilled water.
  • the alumina porous tube after completion of the hydrothermal synthesis reaction was dried at 60 ° C. for 12 hours, and further fired at 400 ° C. for 48 hours to produce a separation membrane in which the silicalite dense layer covered the alumina porous tube.
  • FIG. 1 shows a surface SEM photograph of the obtained silicalite film
  • FIG. 2 shows a cross-sectional SEM photograph thereof.
  • the XRD spectrum of the obtained silicalite film crystal is shown in FIG. According to the SEM photographs of FIGS. 1 and 2, it can be seen that the surface of the crystal layer is a dense layer without voids, and a dense layer is formed even in a cross section. According to the XRD spectrum of FIG. 3, it can be seen that the silicalite has an MFI type crystal structure.
  • Example 2 Evaluation of denseness when the average pore diameter of the surface layer portion of the porous support relative to the average seed crystal grain diameter is changed]
  • the average particle size of the silicalite seed crystal was measured using a particle measuring device (trade name, FPAR-1000) manufactured by Otsuka Electronics Co., Ltd.
  • the data analysis method was performed according to the MARQUARD method by the method of obtaining the cumulant average particle size of this measuring instrument.
  • Adjustment of the pore diameter of the alumina porous support was performed by changing the average particle diameter of the granulated alumina raw material and changing the firing temperature and time.
  • the average pore diameter of the surface layer was adjusted from about 0.4 ⁇ m to 1.3 ⁇ m so that the interval was 0.2 ⁇ m to 0.3 ⁇ m.
  • the measurement of the average pore diameter of the surface layer portion of the porous support was performed according to JISK3832.
  • the evaluation of the denseness of the silicalite film was performed using a pore diameter measurement method based on permeation of non-condensable gas based on the blocking effect of capillary condensation. The principle of this method will be described.
  • non-condensable gases that do not condense even when they enter the capillary
  • condensable gases that condense and change into liquid when entering the capillary
  • nitrogen gas permeance also referred to as “permeance”
  • permeance when nitrogen gas alone is passed through a separation membrane with the surface layer average pore diameter of the porous support changed.
  • the permeability of nitrogen gas when a mixed gas of nitrogen gas and normal hexane gas is passed through the separation membrane is measured.
  • the horizontal axis represents the surface layer average pore diameter (unit: ⁇ m) of the porous support
  • the vertical axis represents the permeability of nitrogen gas (unit: mol / (m 2 ⁇ s ⁇ Pa)).
  • Data when nitrogen gas alone is flowed is indicated by a circle
  • data when a mixed gas of nitrogen gas and normal hexane gas is flowed is indicated by a triangle.
  • Approximate curves for the data with circles and triangles are shown by solid lines. The denser the film, the greater the distance between the two solid lines.
  • the surface layer part average pore diameter of the porous support is 0.6 ⁇ m to 1.3 ⁇ m, and the ratio of the surface layer part average pore diameter of the porous support to the average particle diameter of the seed crystal is 1.5. It was ⁇ 3.25.
  • FIG. 7 is a measurement system diagram used for the measurement of transmittance in Example 2, and schematically shows a schematic configuration of a main body portion of the measurement apparatus. The outline of this measurement system will be described below.
  • One single silicalite separation membrane element (6) to (10) is attached to each single membrane module (1) to (5), and the connection of each single membrane module (1) to (5) It connected so that the gas of the non-permeation
  • valves (11) to (15) are attached to the respective single-tube membrane modules, and gas permeation from the silicalite separation membrane elements (6) to (10) is controlled by opening and closing the valves. It can be measured individually. It should be noted that the number of single tube membrane modules to be connected may be two or more, that the gas on the non-permeate side of the membrane is connected so that it flows in series, and that a valve is individually provided on the permeate side of the membrane. It is characterized by being attached. Moreover, the temperature of all the single-pipe membrane modules was adjusted with the thermostat (16).
  • Dry gas supply (17) was performed by a gas cylinder or a compressor with a dehumidifier, and the supply pressure was adjusted by a regulator (18).
  • the supply gas pressure, the membrane permeation side pressure, and the membrane non-permeation side pressure were measured by pressure gauges (23) to (25).
  • the gas pressure difference through the membrane was adjusted by the back pressure valves (26) and (27), and the permeate gas flow rate was measured by the flow meter (28).
  • the vapor concentration of the non-permeating gas in the membrane of the connected single tube membrane module was measured in real time with a vapor concentration meter (29) such as a dew point meter.
  • the exhaust gas (30) (31) was released into the atmosphere as it was because the exhaust gas (30) was nitrogen gas. However, since the exhaust gas (31) was normal hexane gas, it was introduced and collected in a separate cylinder (not shown).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

装置設備および工程時間に対するコス卜高の原因となるNaOH等を用いないシリカライト膜を備える分離膜の製造方法を提供する。 分離膜の製造方法は、多孔質支持体と、同支持体上に形成されたMFI型ゼオライト結晶構造を有するシリカライト膜とを備えた分離膜の製造方法であって、種結晶を製造するステップと、種結晶を多孔質支持体上に付着させるステップと、SiOと有機テンプレートとHOを含む膜合成原料組成物を製造するステップと、種結晶が付着した多孔質支持体を上記膜合成原料組成物に浸漬して水熱合成を行うステップを含み、膜合成原料組成物の組成比は、SiO:有機テンプレート:HO=1:(0.05~0.15):(50~120)であることを特徴とする。

Description

MFI型ゼオライト(シリカライト)を用いた分離膜の製造方法
 本発明は、石油化学分野において炭化水素化合物等の合成ガス系を分離精製するための緻密性分離膜の製造方法に関する。
 従来、シリカライトを水熱合成する際に鉱化剤として水酸化ナトリウム(NaOH)を添加しており、反応液のアルカリ性が強くなることから合成工程に用いる装置等の腐食?劣化をもたらすと共に、合成後にこのアルカリ金属成分を除去しなければならないために洗浄を繰り返すことが必要となり、装置設備および工程時間に対するコス卜が大きくなる。(例えば、非特許文献1~3參照)。
 さらに、シリカライト分離膜製造のための種結晶粒子径に対する多孔質基材の表面層細孔径の比率が適切でないと処理効率が高い膜とならない。従来のシリカライト膜では、多孔質基材(ステンレススチール製)の表層部細孔径が2μmであるのに対して、種結晶粒子径は12μmであるのが最適であると非特許文献2に記載されているが、この際の緻密層の厚みは198~223μmと非常に大きくなっており、緻密層を被分離物が通過する際の抵抗となるため、フィルターとしての処理効率(透過性)を低下させる原因となっている。
T. Sano et al., Journal of Membrane Science 107(1995)193-196 H. Negishi et al., Desalination 144(2002)47-52 Y. Hasegawa et al., Journal of Membrane Science 80(2006)397-405
 本発明は、装置設備および工程時間に対するコス卜高の原因となるNaOHを用いないシリカライト膜を備える分離膜の製造方法を提供し、緻密シリカライト膜を備える分離膜の製造方法を提供することを課題とする。
 本発明は、上記課題を解決すべく、多孔質支持体上にMFI型ゼオライト結晶構造を有する分離膜の製造方法を提供する。
 本発明の第1の態様は、多孔質支持体と、同支持体上に形成されたMFI型ゼオライト結晶構造を有するシリカライト膜とを備えた分離膜の製造方法であって、種結晶を製造するステップと、種結晶を多孔質支持体上に付着させるステップと、SiOと有機テンプレートとHOを含む膜合成原料組成物を製造するステップと、種結晶が付着した多孔質支持体を膜合成原料組成物に浸漬してシリカライト膜の水熱合成を行うステップとを含み、膜合成原料組成物の組成比は、SiO:有機テンプレート:HO=1:(0.05~0.15):(50~120)であることを特徴とする分離膜の製造方法である。
 本発明の第2の態様は、第1の態様で用いられた有機テンプレートが水酸基を含むものであることを特徴とする分離膜の製造方法である。
 本発明の第3の態様は、第2の態様で用いられた水酸基を含む有機テンプレートがTPAOH(Tetra-n-propylammonium hydroxide)であることを特徴とする分離膜の製造方法である。
 本発明の第4の態様は、第1の態様、第2の態様または第3の態様のいずれか1の分離膜の製造方法であって、種結晶の平均粒径dseedと多孔質支持体の表層部平均細孔径dsupportとの間に下記式1の関係があることを特徴とする分離膜の製造方法である。
[式1]
Figure JPOXMLDOC01-appb-I000002
 シリカライト種結晶の平均粒径の測定はキュムラント法を用いて行ってもよく、多孔質支持体の表層部平均細孔径の測定は、JISK3832に準じて行ってもよい。
 本発明の第5の態様は、第1の態様~第4の態様のいずれか1の分離膜の製造方法であって、多孔質支持体がセラミック材料からなり、多孔質支持体の内部からシリカライト膜が形成されている当該多孔質支持体の表層部に向けて、多孔質支持体の平均細孔径が小さくなることを特徴とする分離膜の製造方法である。
 本発明の第6の態様は、第5の態様の分離膜の製造方法であって、多孔質支持体の長手方向の一端部または両端部が緻密質のセラミック材からなることを特徴とする分離膜の製造方法である。
 本発明は、装置設備および工程時間に対するコス卜高の原因となるNaOHを水熱合成において用いない分離膜の製造方法および緻密なシリカライト膜を備える分離膜の製造方法を提供する。
実施例1で得られたシリカライト膜表面の電子顕微鏡像である。 実施例1で得られたシリカライト膜断面の電子顕微鏡像である。 実施例1で得られたシリカライト膜のX線回折パターンである。 実施例1で用いられたシリカライト種結晶の電子顕微鏡像である。 実施例1で用いられたシリカライト種結晶X線回折パターンである。 実施例2で計測された窒素ガスのパーミエンスの測定結果である。 実施例2の計測に用いられた計測システム図である。
 つぎに、本発明の実施の形態を説明するが、本発明はこれらに限定されるものではない。
 本発明の分離膜は、多孔質支持体表面にシリカライト膜が形成されてなるものである。シリカライト膜結晶の骨格は、実質的にアルミニウムを含まず、全てがケイ素および酸素で構成されている。ここで、ゼオライト種としてのMFI型は、構造として10員環を持ったゼオライト種であり、例えばシリカライト-1に代表される。
 なお、「MFI」とは、国際ゼオライト学会(International Zeolite Association、IZA)が定めたゼオライトを構造により分類したコードである。
 分離膜の製造方法は、種結晶を製造するステップ、この種結晶をステンレスやアルミナ等の材料で作られた多孔質支持体に付着させるステップ、シリカライト膜合成のための膜合成原料組成物を製造するステップおよび種結晶が付着した多孔質支持体を膜合成原料組成物に浸漬して水熱合成をするステップを含んでいる。
 <種結晶を製造するステップ>
 ゼオライト種結晶は、例えば以下の方法によって合成することができる。
 水酸化テトラ-n-プロピルアンモニウム(TPAOH(Tetra-n-propyl ammonium hydroxide)とオルトケイ酸テトラエチル(TEOS(Tetra ethyl orthosilicate))を水酸化ナトリウム(NaOH)水溶液に加えて、混合溶液のモル組成が(20~30)SiO: (0.05~0.15)NaO:(4~5)TPAOH:(900~1200)HO:(90~110)EtOHになるように混合溶液を調製する。好ましくは、25SiO:0.1NaO:4.4TPAOH:1098HO:100EtOHになるように混合溶液を調製する。
 この混合溶液を室温で24時間撹拌した後に100℃でさらに撹拌しながら加熱合成反応を行う。合成後に得られた粉体を蒸留水で数回洗浄し、遠心分離によって固液分離を行う。分離後に得られた固体を100℃で24時間乾燥した後、500℃で8時間焼成して種結晶を製造する。
 <種結晶を多孔質支持体に付着させるステップ>
 種結晶を付着させる多孔質支持体は、支持体上にゼオライトを薄膜として結晶化できるものであれば良く、アルミナ、シリカ、ジルコニア、チタニア、ステンレススチールなどで形成された多孔質支持体であってよい。
 多孔質支持体の形状は特に限定されず、管状、平板状、ハニカム状、中空糸状、ペレット状等、種々の形状のものを使用できる。例えば管状の場合、多孔質支持体の大きさは特に限定されないが、実用的には長さ2~200cm程度、内径0.5~2cm、厚さ0.5~4mm程度である。    
 多孔質支持体は、種結晶を付着させる前に水洗い、超音波洗浄などの方法で表面処理することが好ましい。例えば、水による1~10分の超音波洗浄により、支持体表面の洗浄を行えば良い。表面平滑性を改善するために、紙やすりやグラインダーなどにより、その表面を研磨しても良い。
 種結晶を多孔質支持体に付着させる方法は、<種結晶を製造するステップ>で作った種結晶を含む懸濁液に多孔質支持体を浸漬した後、60℃で12時間乾燥させることにより行う。勿論、種結晶を多孔質支持体に付着させる方法はこれ以外にも懸濁液を刷毛等で多孔質支持体表面に塗布する方法等で行っても良い。
 <膜合成原料組成物を製造するステップ>
 反応液としてはコロイダルシリカ、有機テンプレートおよび蒸留水を用いて、膜合成原料組成物のモル組成が1SiO:(0.05~0.15)有機テンプレート:(50~120)HOになるように調製を行う。
 膜合成原料組成物のSiO1質量部に対する有機テンプレート質量部の下限は、0.05質量部以上が好ましく、0.07質量部以上がより好ましく、0.09質量部以上がさらにより好ましい。
 膜合成原料組成物のSiO1質量部に対する有機テンプレート質量部の上限は、0.15質量部以下が好ましく、0.13質量部以下がより好ましく、0.11質量部以下がさらにより好ましい。
 膜合成原料組成物のSiO1質量部に対するHO質量部の下限は、50質量部以上が好ましく、60質量部以上がより好ましく、70質量部以上がさらにより好ましい。
 膜合成原料組成物のSiO1質量部に対するHO質量部の上限は、120質量部以下が好ましく、110質量部以下がより好ましく、100質量部以下がさらにより好ましい。
 膜合成原料組成物のSiO1質量部に対する有機テンプレート質量部が0.05未満若しくは0.15質量部を超える場合または同組成物のSiO1質量部に対するHO質量部が50質量部未満若しくは120質量部を超える場合は、水熱合成時間が長くなる場合や緻密なシリカライト膜層が形成されないことがある。
 <種結晶が付着した多孔質支持体を膜合成原料組成物に浸漬して水熱合成するステップ>
 <膜合成原料組成物を製造するステップ>で作られた膜合成原料組成物を室温で30分~4時間撹拌した後、オートクレーブなどの耐熱耐圧容器中に膜合成原料組成物とゼオライト種結晶を付着させた多孔質支持体とを装填し、容器密閉後温度130℃~180℃で時間12時間~36時間水熱合成をする。温度130℃未満若しくは180℃超の場合または合成時間が12時間未満若しくは36時間超の場合は緻密なシリカライト膜層が形成されなかったり、水熱合成時間が長くなることがある。
 水熱合成後の多孔質支持体を60℃で12時間乾燥し、その後400℃で48時間焼成することによって有機テンプレートを除去して、緻密なシリカライト分離膜が多孔質支持体表面を被覆した分離膜が完成する。
 得られたシリカライト分離膜は実質的にアルミニウムを含まず、結晶構造がMFI型であり、高耐水性、高耐薬品性を有し、高い処理効率を有する。
 以上の製造方法においては、鉱化剤としてのNaOHが用いられていないので、膜合成原料組成物による装置設備の劣化を引き起こす影響が少なく、水熱合成後のNaOHを除去するため洗浄工程等の手間も少なくて済み、製造コストの低減を図ることができる。
 鉱化剤としてのNaOHを用いなくても水熱合成が可能となったのは、有機テンプレート中のOH基が、鉱化剤としての機能を果たしていると考えられ、鉱化剤の機能を兼ねる有機テンプレートとしてはOH基を有するものであればよい。
 有機テンプレートは、特に限定されるものではないが、炭素数が10以上の4級アルキルアンモニウム水酸化物が好ましく、TPAOHが特に好ましい。他の例としてはトリプロピル・エチルアンモニウム(TPEAOH)が挙げられる。
 シリカライト分離膜形成の前駆体となる種結晶が多孔質支持体の内部に侵入して、水熱合成による結晶成長により緻密な層を形成するためには、多孔質支持体の表層部平均細孔径と種結晶の平均粒径との関係が重要となる。
 種結晶が多孔質支持体の内部に侵入するためには、種結晶の粒径は多孔質支持体の表面層の細孔径よりも小さくなければならない。
 一方、種結晶の平均粒径が多孔質支持体の表層部平均細孔径よりもあまりに小さくなりすぎると、種結晶が多孔質支持体の細孔の奥深く入り込んで、後段の水熱合成ステップで結晶成長したシリカライト結晶が多孔質支持体の表面を覆うことができなくなって緻密層が形成できなくなることがある。
 本発明者等は、種結晶の平均粒径と多孔質支持体の表層部平均細孔径をパラメータとして数多くの実験を繰り返し行った結果、種結晶の平均粒径と多孔質支持体の表層部平均細孔径が、下記式1を満足する関係にあるときに緻密なシリカライト膜が形成されることを発見した。ここで、dseedは種結晶の平均粒径であり、dsuppportは多孔質支持体の表面層の細孔径である。
[式1]
Figure JPOXMLDOC01-appb-I000003
 この式1の関係を有する種結晶が付着した多孔質支持体を膜合成原料組成物に浸漬し、水熱合成によって作られたシリカライト膜は緻密であり、緻密であるので過大な膜厚を必要としない。その結果得られた分離膜は、処理効率が高く、高い透過性と分離性能を有していることを特徴としている。     
 多孔質支持体はセラミック製であり、多孔質支持体の内部からシリカライト膜が形成されている多孔質支持体の表層部に向けて、多孔質支持体の平均細孔径が小さくなる多孔質支持体を用いることが好ましい。
 これは、シリカライト膜を透過した分子は多孔質支持体の細孔に入り、多孔質支持体内の細孔を通過して多孔質支持体の外部へ排出されるが、排出される側に向かっては細孔径が大きくなればなるほど通過の際の抵抗を減ずることができるからである。
 多孔質支持体の表層部に向けて、多孔質支持体の平均細孔径を小さくする方法には種々の方法がある。その一例として多孔質支持体表面に中間層を設ける方法とアルカリ処理を行う方法を組み合わせることで、多孔質支持体の内部からシリカライト膜が形成されている多孔質支持体の表層部に向けて、多孔質支持体の平均細孔径が小さくなる多孔質支持体を製作することができる。
 例えば、アルミナを主成分とし焼結助剤としてSiOを含む原料を層状に成形、焼結して第1層目の多孔質支持体を作成する。この第1層目の多孔質支持体をアルカリ溶液に浸漬・煮沸してSiOを溶出し、第1層目の多孔質支持体の細孔径を拡大する。アルカリ処理後、第1層目の多孔質支持体の表層部に中間層を設ける。中間層は、焼結助剤を含まないアルミナを主成分とするセラミック原料をアルカリ処理された第1層目の多孔質支持体上に層状に成形し、この成形体を焼結することによって設けられる。焼結後、さらにアルカリ処理を行って、焼結時に第1層目の多孔質支持体から中間層に移動したSiOを溶出し、第1層目の多孔質支持体と中間層を含めた多孔質支持体において、表層部に向けて平均細孔径を小さくすることができる。
 多孔質支持体がこの構造を有することによって、シリカライト膜透過流体が多孔質支持体を透過しやすくなり、通過抵抗が下がって処理効率が上がり、フィルター材としての性能が向上する。
 さらに、多孔質支持体がセラミック材料からなるとき、多孔質支持体上にシリカライト膜が形成された複数の分離膜を直列に連結するには、多孔質支持体の長手方向の一端部または両端部が緻密質のセラミック材からなることが好ましい。端部が緻密質であることによって、連結する際に必要とされる強度が保持でき、連結が容易となるからである。
 多孔質支持体の長手方向の一端部または両端部を緻密質のセラミック材で構成する方法には種々の方法がある。その一例として以下のような方法でこのような多孔質支持体を製造することができる。
 主成分としてアルミナで構成される端部に緻密体を有さない多孔質支持体と、主成分としてアルミナ50wt%以上を含有した端部となる部材とを、この端部に緻密体を有さない多孔質支持体の長手方向の一端または両端において、必須成分としてSiO:17~48wt%、Al:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa、CaOおよびSrOのうち少なくとも1つを含み、必須成分が全体重量の80~84.5wt%であり、La、CaOおよびSrOのうちの少なくとも1つが全体重量の11.7~15.8wt%であるセラミックの酸化物からなる接合剤によって固着することによって、長手方向の一端部または両端部が緻密質のセラミック材からなる多孔質支持体を製造される。
 この接合剤の溶融温度はゼオライトの耐熱限界である約600℃よりも高いため、シリカライトを多孔質支持体上に水熱合成しても接合剤の成分がシリカライト膜に移動してシリカライト膜の性能を劣化させることはない。
 [実施例1:シリカライト分離膜の製造]
 水酸化テトラ-n-プロピルアンモニウム(TPAOH(Tetra-n-propyl ammonium hydroxide)とオルトケイ酸テトラエチル(TEOS(Tetra ethyl orthosilicate))をNaOH水溶液に加えて、混合溶液のモル組成が25SiO:0.1NaO:4.4TPAOH:1098HO:100EtOHになるように混合溶液を調製した。
 この混合溶液を室温で24時間撹拌した後に100℃でさらに撹拌しながら加熱合成をした。合成後に得られた粉体を蒸留水で数回洗浄し、遠心分離によって固液分離を行った。分離後に得られた固体を100℃で24時間乾燥した後、500℃で8時間焼成し種結晶を製造した。
 得られた種結晶のSEM写真を図4に示し、種結晶のXRDスペクトルを図5に示す。図4のSEM写真によれば、種結晶の平均粒径は約0.4μmで、ばらつきは小さく、その形状は整った球状をなしている。図5のXRDスペクトルによれば、種結晶はMFI型結晶構造を有するシリカライトであることがわかる。
 次に、多孔質支持体として、アルミナ多孔質管(外径16mmφ、内径12mmφ)を準備した。シリカライト膜が形成される有効面積は10.1cmであった。
 シリカライト種結晶を含有した懸濁液にアルミナ多孔質管を室温で24時間浸漬し、その後60℃で12時間乾燥させて、シリカライト種結晶をアルミナ多孔質管の外表面に付着させた。
 水熱合成に用いる膜合成原料組成物は、コロイダルシリカ、TPAOHおよび蒸留水を含み、これらのモル組成が1SiO:0.10TPAOH:80HOになるように調製された。
 得られた膜合成原料組成物を室温で1時間撹拌した後、オートクレーブに膜合成原料組成物とシリカライト種結晶が外表面に付着したアルミナ多孔質管とを装填し、密封後温度140℃で24時間水熱合成反応を行った。反応後、該アルミナ多孔質管をオートクレーブから取り出して数回蒸留水で洗浄した。
 その後、水熱合成反応を終えたアルミナ多孔質管を60℃で12時間乾燥させ、さらに400℃で48時間焼成することによってシリカライト緻密層がアルミナ多孔質管を被覆した分離膜を製造した。
 得られたシリカライト膜の表面SEM写真を図1に示し、その断面SEM写真を図2に示す。
 得られたシリカライト膜の結晶のXRDスペクトルを図3に示す。図1および図2のSEM写真によれば、結晶層の表面は空隙のない緻密な層となっており、断面においても緻密な層が形成されていることがわかる。図3のXRDスペクトルによれば、MFI型結晶構造を有するシリカライトであることがわかる。
 [実施例2:種結晶平均粒径に対する多孔質支持体の表層部平均細孔径を変化させたときの緻密性の評価]
 シリカライト種結晶の平均粒径の測定を大塚電子株式会社製の粒子測定器(商品名、FPAR-1000)を用いて行った。この測定器のキュムラント平均粒子径を求める方法で、データ解析法はMARQUARDT法に従って行った。
 アルミナ製多孔質支持体の細孔径の調節は、造粒されたアルミナ原料の平均粒子径を変化させ、焼成温度・時間を変化させて行った。表層部平均細孔径は、約0.4μmから1.3μmまで、0.2μm~0.3μm間隔となるように調節した。
 多孔質支持体の表層部平均細孔径の測定は、JISK3832に準じて行った。
 シリカライト膜の緻密性の評価は、毛管凝縮のブロッキング効果に基づく非凝縮性ガスの透過による細孔径測定法を用いて行った。この方法の原理を説明する。
 ガスには窒素ガスのように毛細管内に入っても凝縮しない非凝縮性ガスと、ノルマルヘキサンガスのように毛細管内に入ると凝縮して液体に変化する凝縮性ガスがある。パラメータとして多孔質支持体の表層部平均細孔径を変化させた分離膜に窒素ガス単体を通過させたときの窒素ガスのパーミエンス(Permeance、「透過度」ともいう)を測定する。さらに、窒素ガスとノルマルヘキサンガスの混合ガスを同分離膜に通過させたときの窒素ガスの透過度を測定する。
 シリカライト膜が緻密なときは、ノルマルヘキサンガスがシリカライト膜細孔内で凝縮しシリカライト膜細孔を塞いでしまうので窒素ガスの透過度は大きく減少するはずである。
 図6にその結果を示す。横軸は多孔質支持体の表層部平均細孔径(単位:μm)で、縦軸に窒素ガスの透過度(単位:mol/(m・s・Pa))を示す。窒素ガス単体を流した時のデータを丸印で示し、窒素ガスとノルマルヘキサンガスの混合ガスを流した時のデータを三角印で示している。丸印と三角印のデータの近似曲線をそれぞれ実線で示している。緻密な膜であればあるほどこの2つの実線の間隔が大きくなる。
 間隔が大きい区間は、多孔質支持体の表層部平均細孔径が0.6μm~1.3μmであり、種結晶の平均粒径に対する多孔質支持体の表層部平均細孔径の比率は1.5~3.25となった。
 図7は、実施例2の透過度の計測に用いられた計測システム図であり、測定装置の本体部分の概略構成を模式的に示すものである。以下、この計測システムの概略を説明する。
 単管膜モジュール(1)~(5)内にシリカライト分離膜エレメント(6)~(10)がそれぞれ一本ずつ取り付けられ、各単管膜モジュール(1)~(5)の接続は膜の非透過側のガスが直列で流れるように連結した。
 一方、膜の透過側ではバルブ(11)~(15)がそれぞれの単管膜モジュールにとり付けられており、各シリカライト分離膜エレメント(6)~(10)からのガス透過をバルブの開閉により個別に測定することが可能となっている。なお、連結させる単管膜モジュールの数は2つ以上であればよく、膜の非透過側のガスが直列で流れるように連結されていること、および膜の透過側には個別にバルブがとり付けられていることを特徴としている。また、全ての単管膜モジュールの温度は恒温槽(16)によって調節した。
 乾燥ガス供給(17)はガスボンベまたは除湿器付きのコンプレッサーにて行ない、レギュレーター(18)によって供給圧力を調整した。
 流量コントローラー(19)(20)とバブラー(21)によって所定の相対圧P/Ps(P:分圧、Ps:飽和蒸気圧で圧力計およびバブラーの温度より算出)の蒸気を供給するシステムとなっているが、本試験では、分離膜エレメントに乾燥ガス(P/Ps=0)を供給するので、バブラーの蒸気が混入しないようにバルブ(22)を閉めた状態で測定をした。
 また単位圧力差当たりのガスの透過量を算出するため、供給ガス圧力、膜透過側圧力、膜非透過側圧力を圧力ゲージ(23)~(25)によって測定した。膜を介したガスの圧力差は、背圧弁(26)(27)にて調整し、透過ガス流量は流量計(28)にて測定した。また、連結された単管膜モジュールの膜の非透過ガスの蒸気濃度を、露点計などの蒸気濃度計(29)にてリアルタイムで測定した。
 排気ガス(30)(31)については、排気ガス(30)は窒素ガスなのでそのまま大気放出させたが、排気ガス(31)はノルマルヘキサンガスなので、別ボンベ(図示せず)に導入回収した。

Claims (6)

  1.  多孔質支持体と、同支持体上に形成されたMFI型ゼオライト結晶構造を有するシリカライト膜とを備えた分離膜の製造方法であって、
     種結晶を製造するステップと、
     上記種結晶を上記多孔質支持体上に付着させるステップと、
     SiOと有機テンプレートとHOを含む膜合成原料組成物を製造するステップと、
     上記種結晶が付着した上記多孔質支持体を上記膜合成原料組成物に浸漬して水熱合成を行うステップを含み、
     上記膜合成原料組成物の組成比は、SiO:有機テンプレート:HO=1:(0.05~0.15):(50~120)であることを特徴とする分離膜の製造方法。
  2.  請求項1に記載の分離膜の製造方法であって、上記有機テンプレートが水酸基を含むものであることを特徴とする分離膜の製造方法。
  3.  請求項2に記載の分離膜の製造方法であって、水酸基を含む上記有機テンプレートがTPAOH(Tetra-n-propylammonium hydroxide)であることを特徴とする分離膜の製造方法。
  4.  請求項1、請求項2または請求項3のいずれか1項に記載の分離膜の製造方法であって、
     上記種結晶の平均粒径dseedと上記多孔質支持体の表層部平均細孔径dsupportとの間に下記式(1)の関係があることを特徴とする分離膜の製造方法。
    [式1]
    Figure JPOXMLDOC01-appb-I000001
  5.  請求項1~請求項4のいずれか1項に記載の分離膜の製造方法であって、
    上記多孔質支持体がセラミック材料からなり、当該多孔質支持体の内部から上記シリカライト膜が形成されている当該多孔質支持体の表層部に向けて、当該多孔質支持体の平均細孔径が小さくなることを特徴とする分離膜の製造方法。
  6.  請求項5に記載の分離膜の製造方法であって、
     上記多孔質支持体の長手方向の一端部または両端部が緻密質のセラミック材からなることを特徴とする分離膜の製造方法。
     
PCT/JP2017/021711 2016-06-21 2017-06-13 Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法 WO2017221761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17815230.2A EP3473332A4 (en) 2016-06-21 2017-06-13 PROCESS FOR PRODUCING A SEPARATION MEMBRANE USING MFI-TYPE ZEOLITE (SILICALITE)
CN201780032720.8A CN109195693A (zh) 2016-06-21 2017-06-13 使用了mfi型沸石(纯硅沸石)的分离膜的制造方法
US16/312,096 US11110403B2 (en) 2016-06-21 2017-06-13 Method for producing separation membrane using MFI-type zeolite (silicalite)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-122597 2016-06-21
JP2016122597A JP6757606B2 (ja) 2016-06-21 2016-06-21 Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法

Publications (1)

Publication Number Publication Date
WO2017221761A1 true WO2017221761A1 (ja) 2017-12-28

Family

ID=60784746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021711 WO2017221761A1 (ja) 2016-06-21 2017-06-13 Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法

Country Status (5)

Country Link
US (1) US11110403B2 (ja)
EP (1) EP3473332A4 (ja)
JP (1) JP6757606B2 (ja)
CN (1) CN109195693A (ja)
WO (1) WO2017221761A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131184A (ja) * 2019-02-26 2020-08-31 東ソー株式会社 ゼオライト膜付多孔質支持体、その製造方法、及びそれを用いた窒素の分離方法
CN112619447A (zh) * 2019-10-08 2021-04-09 中国石油化工股份有限公司 一种mfi分子筛膜的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757606B2 (ja) * 2016-06-21 2020-09-23 日立造船株式会社 Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法
CN110523296B (zh) * 2019-08-28 2021-12-21 四川林奥科技有限公司 一种应用于反渗透水处理的管式沸石膜的制备方法
US20230338904A1 (en) * 2020-05-12 2023-10-26 Agency For Science, Technology And Research Ceramic membrane technology for molecule-range separation
WO2023210791A1 (ja) * 2022-04-28 2023-11-02 三菱ケミカル株式会社 シリカライト、組成物、液状封止剤、樹脂複合材、封止材、封止材の製造方法、及び電子デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507909A (ja) * 1996-03-14 2000-06-27 エクソン ケミカル パテンツ インコーポレイテッド モレキュラーシーブフィルムの調製方法
JP2002249313A (ja) * 2000-12-19 2002-09-06 Toray Ind Inc ゼオライト結晶のコーティング方法、ゼオライト結晶がコーティングされた基材、ゼオライト膜の製造方法、ゼオライト膜、および分離方法
US20050014371A1 (en) * 2003-03-06 2005-01-20 Michael Tsapatsis Crystalline membranes
JP2016098205A (ja) * 2014-11-25 2016-05-30 学校法人早稲田大学 パラキシレンの製造方法
JP2016515921A (ja) * 2013-03-14 2016-06-02 ヨーナス・ヘドルンド 多孔性基板上にゼオライトおよび/またはゼオライト様結晶の結晶膜を製造するための方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028841B2 (ja) 1990-09-28 2000-04-04 株式会社東芝 Pwm発生回路
US5716527A (en) * 1994-07-08 1998-02-10 Exxon Research & Engineering Company Zeolite membrane with a selectivity enhancing coating
GB9905561D0 (en) * 1999-03-11 1999-05-05 Exxon Chemical Patents Inc Molecular sieve layers and process for their manufacture
US20030039609A1 (en) * 2000-03-02 2003-02-27 Toshihiro Tomita Zeolite formed product, zeolite laminate intermediate, zeolite laminate composite and method for their preparation
US20020114958A1 (en) 2000-11-27 2002-08-22 Toray Industries, Inc. Method of coating zeolite crystals, substrate containing zeolite crystals, method of manufacturing zeolite membrane, method of processing zeolite membrane, zeolite membrane, aluminum electrolytic capacitor, degassing membrane and separation method
US20070286800A1 (en) * 2006-06-08 2007-12-13 Chevron U.S.A. Inc. Gas separation using molecular sieve ssz-75
CN101274223B (zh) * 2007-12-18 2011-11-16 大连理工大学 一种利用沸石层调控大孔载体制备钯-沸石复合膜的方法
EP2402071B1 (en) * 2009-02-27 2019-04-03 Mitsubishi Chemical Corporation Inorganic porous support-zeolite membrane composite, production method thereof, and separation method using the composite
CN102348494B (zh) * 2009-03-16 2014-09-17 日本碍子株式会社 沸石分离膜构件、其制造方法、混合流体的分离方法以及混合流体分离装置
US10265660B2 (en) * 2009-05-21 2019-04-23 Battelle Memorial Institute Thin-sheet zeolite membrane and methods for making the same
JP6107809B2 (ja) * 2012-02-24 2017-04-05 三菱化学株式会社 多孔質支持体―ゼオライト膜複合体
CN105451880B (zh) * 2013-08-06 2018-09-07 百特吉公司 用于气体分离的掺杂金属的沸石膜
CN106255545B (zh) * 2014-04-18 2019-08-27 三菱化学株式会社 多孔支持体-沸石膜复合体和多孔支持体-沸石膜复合体的制造方法
JP6670764B2 (ja) * 2015-01-30 2020-03-25 日本碍子株式会社 分離膜構造体
JP6622226B2 (ja) * 2015-01-30 2019-12-18 日本碍子株式会社 分離膜構造体
US10239022B2 (en) * 2016-06-02 2019-03-26 C-Crete Technologies, Llc Porous calcium-silicates and method of synthesis
JP6757606B2 (ja) * 2016-06-21 2020-09-23 日立造船株式会社 Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法
CN106378013B (zh) * 2016-11-10 2020-02-07 南京工业大学 一种多级孔道分子筛膜的制备方法及其应用
EP4234493A3 (en) * 2017-06-15 2024-03-06 Mitsubishi Chemical Corporation Ammonia separation method and zeolite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507909A (ja) * 1996-03-14 2000-06-27 エクソン ケミカル パテンツ インコーポレイテッド モレキュラーシーブフィルムの調製方法
JP2002249313A (ja) * 2000-12-19 2002-09-06 Toray Ind Inc ゼオライト結晶のコーティング方法、ゼオライト結晶がコーティングされた基材、ゼオライト膜の製造方法、ゼオライト膜、および分離方法
US20050014371A1 (en) * 2003-03-06 2005-01-20 Michael Tsapatsis Crystalline membranes
JP2016515921A (ja) * 2013-03-14 2016-06-02 ヨーナス・ヘドルンド 多孔性基板上にゼオライトおよび/またはゼオライト様結晶の結晶膜を製造するための方法
JP2016098205A (ja) * 2014-11-25 2016-05-30 学校法人早稲田大学 パラキシレンの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. NEGISHI ET AL., DESALINATION, vol. 144, 2002, pages 47 - 52
See also references of EP3473332A4
T. SANO ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 107, 1995, pages 193 - 196
Y. HASEGAWA ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 80, 2006, pages 397 - 405

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131184A (ja) * 2019-02-26 2020-08-31 東ソー株式会社 ゼオライト膜付多孔質支持体、その製造方法、及びそれを用いた窒素の分離方法
JP7227031B2 (ja) 2019-02-26 2023-02-21 東ソー株式会社 ゼオライト膜付多孔質支持体、その製造方法、及びそれを用いた窒素の分離方法
CN112619447A (zh) * 2019-10-08 2021-04-09 中国石油化工股份有限公司 一种mfi分子筛膜的制备方法
CN112619447B (zh) * 2019-10-08 2023-03-03 中国石油化工股份有限公司 一种mfi分子筛膜的制备方法

Also Published As

Publication number Publication date
CN109195693A (zh) 2019-01-11
JP6757606B2 (ja) 2020-09-23
JP2017225917A (ja) 2017-12-28
US20190160437A1 (en) 2019-05-30
US11110403B2 (en) 2021-09-07
EP3473332A4 (en) 2020-03-11
EP3473332A1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2017221761A1 (ja) Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法
JP7060042B2 (ja) 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法
JP5527107B2 (ja) 含水有機化合物の分離方法および分離装置
JP6107809B2 (ja) 多孔質支持体―ゼオライト膜複合体
JP7056658B2 (ja) アンモニアの分離方法およびゼオライト
JP7163951B2 (ja) ゼオライト膜複合体
JP5903802B2 (ja) 多孔質支持体―ゼオライト膜複合体の製造方法
JP2018202416A (ja) 二酸化炭素の分離方法
CN105451880A (zh) 用于气体分离的掺杂金属的沸石膜
JP6511307B2 (ja) ゼオライト分離膜および分離モジュール
JP6163719B2 (ja) 硫化水素の分離方法
JP5857533B2 (ja) 有機溶剤−酸−水混合物からの有機溶剤の回収方法
JP5810750B2 (ja) 酸−水混合物からの酸の回収方法
JP6213062B2 (ja) 気体の分離または濃縮方法、および高酸素濃度混合気体の製造方法
JP6056310B2 (ja) アンモニアの分離方法
JP5494356B2 (ja) ゼオライト膜の再生方法
JP5533437B2 (ja) メンブレンリアクター
JP6436207B2 (ja) 気体の分離または濃縮方法、および高酸素濃度混合気体の製造方法
JP6217242B2 (ja) 多孔質支持体−ゼオライト膜複合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815230

Country of ref document: EP

Effective date: 20190121