WO2017219669A1 - 泵体组件及具有其的压缩机 - Google Patents

泵体组件及具有其的压缩机 Download PDF

Info

Publication number
WO2017219669A1
WO2017219669A1 PCT/CN2017/071967 CN2017071967W WO2017219669A1 WO 2017219669 A1 WO2017219669 A1 WO 2017219669A1 CN 2017071967 W CN2017071967 W CN 2017071967W WO 2017219669 A1 WO2017219669 A1 WO 2017219669A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
pump body
pressure passage
body assembly
stage
Prior art date
Application number
PCT/CN2017/071967
Other languages
English (en)
French (fr)
Inventor
阙沛祯
魏会军
杨欧翔
胡艳军
翟元彬
黄建峰
向柳
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to KR1020187036798A priority Critical patent/KR102151339B1/ko
Priority to JP2018561663A priority patent/JP6757803B2/ja
Publication of WO2017219669A1 publication Critical patent/WO2017219669A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to the field of air conditioner equipment, and in particular to a pump body assembly and a compressor therewith.
  • the ordinary single-stage rotor compressor in order to increase the specific volume of the refrigerant in a low temperature environment, the ordinary single-stage rotor compressor has a small amount of suction per unit volume, resulting in insufficient heat capacity of the compression mechanism. At the same time, the pressure ratio of the compressor is large, the exhaust gas temperature is high, and the reliability of the compressor is lowered.
  • two-stage enthalpy compressors are widely used to increase the cooling capacity and reliability in low temperature environments.
  • the existing two-stage twirling machine primary and secondary cylinders are separated by an intermediate partition.
  • a cylinder has only one exhaust port.
  • the first-stage cylinder exhausts through the lower flange cavity or the middle diaphragm cavity, and then passes through the intermediate flow channel and is mixed with the enthalpy and supplemental gas to enter the secondary compressor cylinder as the secondary compressed suction.
  • the high-pressure gas after the compressor is driven by the secondary cylinder is directly discharged from the upper flange and enters the compressor casing.
  • the multi-cylinder two-stage booster compressor is now used. That is, one stage compression has one or more cylinders.
  • the displacement of the first-stage cylinder is large, and at the same time, the air intake of the secondary cylinder is greatly increased by the supplement of the air.
  • the pressure ratio of the secondary cylinder is relatively small, the exhaust opening angle is small, the exhaust time is long in one compression cycle, and the exhaust loss of the exhaust gas through the exhaust port of the secondary cylinder is greatly increased, which is the main factor affecting the efficiency of the compressor indication.
  • One of the factors Especially when the number of primary cylinders is two or more, the influence of suction and exhaust loss of the compressor is particularly prominent.
  • the secondary cylinder and the primary cylinder can only communicate through a single suction passage, and there is a large phase difference between the secondary suction and the primary exhaust, the suction is not smooth, and the suction resistance is large. Furthermore, as the displacement increases, the amount of increase will be relatively small, resulting in insufficient compressor cooling.
  • a primary object of the present invention is to provide a pump body assembly and a compressor therewith for solving the problem of large exhaust loss of the compressor exhaust port in the prior art.
  • a pump body assembly includes: a first stage cylinder; a second stage cylinder, a second stage cylinder and a first stage cylinder are stacked, and the second stage cylinder is formed to be isolated from each other.
  • Each working chamber has an intake port and an exhaust port.
  • the secondary cylinder comprises: a sliding piece, and the sliding piece is a plurality of sliding pieces, and the plurality of sliding pieces divide the inner cavity of the secondary cylinder into a plurality of working chambers when the secondary cylinder is in operation.
  • the sliding piece includes a first sliding piece and a second sliding piece, and the axis of the first sliding piece coincides with or has an angle with the axis of the second sliding piece.
  • the axis of the first sliding piece has an angle with the axis of the second sliding piece, and the included angle is ⁇ , wherein 150° ⁇ 210°.
  • first sliding piece and the second sliding piece divide the inner cavity of the secondary cylinder into a first working cavity and a second working cavity, the first working cavity has a first suction port and a first exhaust port, and the second The working chamber has a second suction port and a second exhaust port.
  • first air inlet and the second air outlet are respectively located at two sides of the first sliding piece, and the second air inlet and the first air outlet are respectively located at two sides of the second sliding piece.
  • the pump body assembly further includes a medium pressure passage, one end of the medium pressure passage is in communication with the exhaust port of the first stage cylinder, and the other end of the medium pressure passage is in communication with each suction port of the secondary cylinder.
  • a valve is disposed in the medium pressure passage to prevent backflow of the airflow in the secondary cylinder.
  • the medium pressure passage includes a plurality of one-to-one correspondences corresponding to the respective suction ports, one end of each medium pressure passage is in communication with the exhaust port of the first-stage cylinder, and the other end of the intermediate pressure passage is corresponding to the corresponding secondary cylinder The suction ports are connected.
  • the pump body assembly further includes: an augmentation channel, wherein the augmentation channel is in communication with the medium pressure channel.
  • the first stage cylinder comprises: a first stage cylinder; a second stage cylinder, the first stage cylinder, the second stage cylinder and the second stage cylinder are stacked, and the first stage cylinder and the second stage cylinder are located On the same side of the secondary cylinder, each suction port of the secondary cylinder is in communication with the exhaust port of the first stage cylinder and the exhaust port of the second stage cylinder.
  • the secondary cylinder is provided with a first suction port and a second suction port
  • the pump body assembly further includes a medium pressure passage
  • the medium pressure passage includes: a first intermediate pressure passage
  • the first intermediate pressure passage is opened in the first one On the stage cylinder, the second stage cylinder and the second stage cylinder, one end of the first medium pressure passage is in communication with the first intake port, and the other end of the first intermediate pressure passage is respectively connected to the exhaust port of the first stage cylinder
  • the exhaust ports of the second stage cylinders are in communication.
  • the medium pressure passage further includes: a second intermediate pressure passage, wherein the second intermediate pressure passage is formed on the first primary cylinder, the second primary cylinder and the secondary cylinder, and the second intermediate pressure passage and the first intermediate pressure passage Independent of each other, one end of the second intermediate pressure passage is in communication with the second intake port, and the other end of the second intermediate pressure passage is respectively connected to the exhaust port of the first primary cylinder and the exhaust port of the second primary cylinder .
  • the inner cavity volume of the primary cylinder is greater than the inner cavity volume of the secondary cylinder.
  • a compressor comprising a pump body assembly, the pump body assembly being the pump body assembly of any of the above.
  • the pump body assembly includes a primary cylinder and a secondary cylinder.
  • the two-stage cylinder is stacked with the first-stage cylinder, and the two-stage cylinder is formed with a plurality of working chambers isolated from each other, each working chamber has an air inlet and an exhaust port, and a plurality of working chambers At least one of the remaining working chambers is in a connected state when at least one of the compression operations is performed. Since the secondary cylinder of the pump body assembly adopts a plurality of working chambers for gas compression and realizes a mode of exhausting, the displacement of the pump body assembly is effectively improved and the exhaust loss of the secondary cylinder is effectively reduced. Increases the reliability of the pump body components.
  • Figure 1 shows a schematic view of an embodiment of a compressor according to the invention
  • FIG. 2 is a schematic view showing the structure of the pump body assembly of Figure 1;
  • Figure 3 is a schematic view showing the structure of the upper flange of the pump body assembly of Figure 1;
  • Figure 4 is a schematic view showing the structure of the upper flange assembly of the pump body assembly of Figure 1;
  • Figure 5 is a schematic view showing the roller in the first position during the exhausting of the secondary cylinder of Figure 1;
  • Figure 6 is a schematic view showing the roller in the second position during the exhausting of the secondary cylinder of Figure 1;
  • Figure 7 is a schematic view showing the roller in the third position during the exhausting of the two-stage cylinder of Figure 1;
  • Figure 8 is a schematic view showing the roller in the fourth position during the exhausting of the two-stage cylinder of Figure 1;
  • Figure 9 is a schematic view showing the structure of the second embodiment of the secondary cylinder of Figure 1;
  • Figure 10 is a schematic view showing the structure of a second embodiment of a compressor according to the present invention.
  • Figure 11 is a block diagram showing the structure of a third embodiment of the compressor according to the present invention.
  • Fig. 12 is a view showing the comparison of the cylinder suction port volume of the secondary compressor of the two-stage cylinder of Fig. 1 and the conventional single-slide structure.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.
  • a pump body assembly As shown in Figure 1, in accordance with one aspect of the invention, a pump body assembly is provided.
  • the pump body assembly includes a primary cylinder 40 and a secondary cylinder 6.
  • the secondary cylinder 6 is stacked with the first-stage cylinder 40.
  • the secondary cylinder 6 is formed with a plurality of working chambers separated from each other, each working chamber has an air inlet and an exhaust port, and at least one of the plurality of working chambers is compressed. At work, at least one of the remaining working chambers is in communication.
  • the secondary cylinder 6 of the pump body assembly adopts a plurality of working chambers for gas compression and realizes a mode of exhausting, the displacement of the pump body assembly is effectively increased and the number of cylinders is effectively reduced.
  • the exhaust loss of the secondary cylinder 6 increases the reliability of the pump body assembly.
  • the secondary cylinder 6 includes a slide. There are a plurality of slides, and the plurality of slides divide the inner cavity of the secondary cylinder 6 into a plurality of working chambers when the secondary cylinder 6 is in operation. This arrangement allows the secondary cylinder 6 to be in one compression cycle of the secondary cylinder 6. Multiple compressions can be achieved, and each time the compressed secondary cylinder 6 is completed, the compressed gas discharge can be timely reduced to effectively reduce the exhaust loss of the secondary cylinder 6, thereby effectively improving the compression performance of the pump assembly.
  • the pump body assembly also includes a medium pressure passage.
  • One end of the intermediate pressure passage communicates with the exhaust port of the primary cylinder 40, and the other end of the intermediate pressure passage communicates with each intake port of the secondary cylinder 6.
  • a valve is provided in the intermediate pressure passage.
  • the valve is preferably a one-way valve.
  • the medium-pressure passage can be arranged in plurality, and the plurality of medium-pressure passages are arranged in one-to-one correspondence with the respective suction ports, respectively.
  • One end of the pressure passage communicates with the exhaust port of the primary cylinder 40, and the other end of the intermediate pressure passage communicates with the intake port of the corresponding secondary cylinder 6.
  • the pump body assembly further includes an augmentation passage 24.
  • the boosting channel 24 is in communication with the medium pressure channel. This arrangement can effectively increase the compression performance of the pump body assembly.
  • the slider includes a first slider 26 and a second slider 27, the axis of which coincides with the axis of the second slider 27. That is, the first slider 26 and the second slider 27 are oppositely disposed on the secondary cylinder 6. This arrangement is such that the heads of the first slider 26 and the second slider 27 abut against the outer peripheral surface of the roller, respectively, so that two working chambers are formed in the secondary cylinder 6.
  • the axis of the first sliding piece 26 and the axis of the second sliding piece 27 may also have an angle.
  • the angle is ⁇ , where 150° ⁇ ⁇ ⁇ 210°.
  • This arrangement also makes it possible to form two working chambers in the secondary cylinder 6.
  • the position of the second slider 27 is 0° of the rotation angle of the roller 7, and the roller 7 is rotated in the rotation direction ⁇ (the direction of the arrow in the vicinity of the roller in Fig. 9), and the rotation angle of the roller 7 is ⁇ .
  • the first sliding piece 26 and the second sliding piece 27 divide the inner cavity of the secondary cylinder 6 into a first working chamber 63 and a second working chamber 64, and the first working chamber 63 has the first
  • the intake port 61 and the first exhaust port 65 have a second intake port 62 and a second exhaust port 66.
  • the rotation angle ⁇ of the roller 7 is: 0 ⁇ ⁇ ⁇ 90 °
  • the second working chamber 64 is divided by the roller 7 into the suction chamber 641 and the compression chamber 642.
  • the volume of the suction chamber 641 increases, and the refrigerant discharged from the primary cylinder 40 and the refrigerant from the enhanced pipeline are continuously sucked from the second intake port 62 through the intermediate pressure passage.
  • the volume of the compression chamber 642 is continuously reduced, and the pressure in the chamber is increased.
  • the secondary cylinder 6 is discharged from the second exhaust port 66.
  • the first working chamber 63 is a separate compression chamber whose volume is continuously increasing, continuously sucking the refrigerant discharged from the first-stage cylinder from the first suction port 61 through the medium-pressure passage and from increasing The refrigerant in the pipeline.
  • the first air inlet 61 and the second air outlet 66 are respectively located on two sides of the first sliding piece 26, and the second air inlet 62 and the first air outlet 65 are respectively located in the second sliding. Both sides of the sheet 27. This arrangement can effectively increase the compression performance of the pump body assembly.
  • the second working chamber 64 is still divided into the suction chamber 641 and the compression chamber 642 by the roller 7.
  • the ⁇ increases, the volume of the suction chamber 641 increases, and the refrigerant discharged from the primary cylinder 40 and the refrigerant from the enhanced pipeline are continuously sucked from the second intake port 62 through the intermediate pressure passage.
  • Compression chamber The volume of the 642 is continuously reduced, and the pressure in the chamber is increased.
  • the secondary cylinder is discharged from the second exhaust port 66.
  • the first working chamber 63 is still a separate compression chamber, and its volume is continuously decreasing.
  • the roller 7 does not close the first suction port 61, and cannot perform compression. A small portion of the refrigerant in the first working chamber 63 will flow back to the intermediate pressure passage.
  • the second working chamber 64 is exhausted, and the second working chamber 64 is an independent suction chamber, and the volume is increasing.
  • the refrigerant discharged from the primary cylinder 40 and the refrigerant in the boosting line are sucked from the second intake port 62 through the intermediate pressure passage.
  • the first working chamber 63 is divided by the roller 7 into the suction chamber 631 and the compression chamber 632.
  • the volume of the suction chamber 631 increases, and the refrigerant discharged from the primary cylinder 40 and the refrigerant from the enhanced pipeline are continuously sucked from the first intake port 61 through the intermediate pressure passage.
  • the volume of the compression chamber 632 is continuously reduced, and the pressure in the chamber is increased. After the exhaust back pressure is reached, the secondary cylinder 6 is discharged from the first exhaust port 65.
  • the second working chamber 64 is still a separate compression chamber, the volume is decreasing, and the roller 7 is not closed.
  • the two suction ports 62 do not function as a compression, so that a small portion of the refrigerant in the second working chamber 64 will flow back to the intermediate pressure passage.
  • the first working chamber 63 is still divided by the roller 7 into the suction chamber 631 and the compression chamber 632.
  • increases, the volume of the suction chamber 631 increases, and the refrigerant discharged from the primary cylinder 40 and the refrigerant from the enhanced pipeline are continuously sucked from the first intake port 61 through the intermediate pressure passage.
  • the volume of the compression chamber 632 is continuously reduced, and the pressure in the chamber is increased. After the exhaust back pressure is reached, the secondary cylinder 6 is discharged from the first exhaust port 65.
  • the secondary compression cylinder of the ordinary single slide has only one suction and exhaust in one cycle. There is only one suction port and one exhaust oblique slit.
  • the upper flange has only one exhaust port, and the size of the exhaust port cannot be effectively expanded by the limitation of the cylinder structure, and the intake and exhaust resistance may be large.
  • the two-stage cylinder 6 in this embodiment is provided with two sliding pieces (the first sliding piece 26 and the second sliding piece 27), so that one cylinder has two compression chambers, and the two-stage compression cylinder is completed in one cycle of 360°. The two inhalation and two exhaust processes make the pumping and exhausting of the pump assembly more stable.
  • a large increase in the suction volume is achieved by a double cylinder suction chamber structure.
  • a double suction chamber is realized by a double slide structure, and a single suction chamber (first working chamber 63 / second working chamber 64) can achieve an inspiratory volume of 0.77, and one cycle has With two inhalations, the inspiratory volume is 1.54, which means that the inspiratory volume in one cycle can be increased by 54%.
  • the primary cylinder 40 includes a first primary cylinder 9 and a second primary cylinder 13.
  • the first stage cylinder 9, the second stage cylinder 13 and the second stage cylinder 6 are stacked, and the first stage cylinder 9 and the second stage cylinder 13 are located on the same side of the secondary cylinder 6, and the suction of the second stage cylinder 6
  • the gas port is in communication with an exhaust port of the first stage cylinder 9 and an exhaust port of the second stage cylinder 13.
  • the secondary cylinder 6 is provided with a first intake port 61 and a second intake port 62, and the pump body assembly further includes a medium pressure passage.
  • the medium pressure passage includes a first intermediate pressure passage 33 and a second intermediate pressure passage 34.
  • the first intermediate pressure passage 33 is opened on the first primary cylinder 9, the second primary cylinder 13 and the secondary cylinder 6, and one end of the first intermediate pressure passage 33 communicates with the first intake port 61, and the first intermediate pressure
  • the other end of the passage 33 is respectively associated with the exhaust port of the first stage cylinder 9 and the second stage cylinder 13
  • the exhaust ports are connected.
  • the second intermediate pressure passage 34 is defined in the first primary cylinder 9, the second primary cylinder 13 and the secondary cylinder 6, the second intermediate pressure passage 34 and the first intermediate pressure passage 33 are independent of each other, and the second intermediate pressure passage 34 is independent.
  • One end of the second intermediate pressure passage 34 communicates with the exhaust port of the first primary cylinder 9 and the exhaust port of the second primary cylinder 13 respectively.
  • a check valve 25 having a one-way cut-off function is disposed on the first intermediate pressure passage 33 and the second intermediate pressure passage 34, respectively. That is, the medium-pressure refrigerant can enter the suction port of the secondary cylinder 6 through the check valve 25 without reverse flow. Its function is to prevent the backflow problem existing after the secondary cylinder 6 is inhaled, to ensure the effective suction volume of the secondary cylinder 6, and to improve the performance of the compressor.
  • the internal cavity volume of the primary cylinder 40 is greater than the internal volume of the secondary cylinder 6.
  • the pump body assembly of the above embodiment can also be used in the field of compressor technology, and according to another aspect of the present invention, a compressor is provided.
  • the compressor includes a pump body assembly that is the pump body assembly of the above embodiment.
  • the pump body assembly includes a primary cylinder 40 and a secondary cylinder 6.
  • the secondary cylinder 6 is stacked with the first-stage cylinder 40.
  • the secondary cylinder 6 is formed with a plurality of working chambers separated from each other, each working chamber has an air inlet and an exhaust port, and at least one of the plurality of working chambers is compressed. At work, at least one of the remaining working chambers is in communication.
  • This embodiment provides a rolling rotor type multi-cylinder two-stage booster compressor.
  • the compressor structure includes a motor stator 1, a motor rotor 2, and a pump body assembly.
  • the pump body assembly comprises a secondary cylinder 6, a first primary cylinder 9, a second primary cylinder 13, and the secondary cylinder 6 and the first primary cylinder 9 are separated by an upper partition 8, the first primary cylinder 9 is separated from the second stage cylinder 13 by the intermediate partition 11 and the lower partition 12, and the intermediate partition 11 and the lower partition 12 are laminated to form the partition cavity 32.
  • Above the secondary cylinder 6 is an upper flange 5, and below the second primary cylinder 13 is a lower flange 15.
  • the crankshaft 3 is installed in the bearing holes of the upper flange 5 and the lower flange 15, and the roller 7, the roller 10, and the roller 14 are respectively placed in the secondary cylinder 6, the first primary cylinder 9, and the second primary cylinder.
  • the pump body assembly has a first air inlet 61 and a second air inlet 62 connecting the secondary cylinder 6, and a diaphragm intermediate chamber 32 and two intermediate medium pressure passages of the lower flange cavity 31. And a second intermediate pressure passage 34.
  • the above motor and pump body assembly are fixed to the inner wall of the casing 4, and the casing 4 is sealed by the upper cover assembly 30 and the lower cover 17, forming a high pressure volume chamber.
  • the operating principle of the compressor is that after the motor stator 1 is energized, the rotor 2 of the drive motor and the crankshaft 3 fixedly connected thereto are rotated, and the crankshaft 3 drives the rollers in the cylinder to rotate and compress the refrigerant in the respective cylinders.
  • the external air conditioning system of the compressor includes a condenser 22, an evaporator 18, a flasher 20, a primary throttle mechanism 21, a secondary throttle mechanism 19, and the like.
  • a solenoid valve 23 and a check valve 25 are disposed on the boosting circuit, and the opening and closing of the solenoid valve 23 can realize the switching control of the system increase.
  • the refrigerant circulation process of the compressor and system is shown by the arrow in Fig. 1: the low pressure Ps refrigerant passing through the evaporator 18 flows into the first stage cylinder 9 of the compressor and the suction port of the second stage cylinder 13 respectively. After the first stage cylinder 9 and the second The primary cylinder 13 is compressed. The medium-pressure refrigerant compressed by the second-stage cylinder 13 is discharged to the lower flange cavity 31 through the lower flange exhaust port. The medium-pressure refrigerant compressed by the first stage cylinder 9 is discharged to the partition cavity 32 through the exhaust port of the intermediate partition 11.
  • the medium-pressure refrigerant passes through two intermediate medium-pressure passages (the first intermediate pressure passage 33 and the second intermediate pressure passage 34), and simultaneously mixes with the medium-pressure Pm refrigerant passing through the inlet of the enhanced passage 24, and then enters separately.
  • the first suction port 61 and the second suction port 62 of the secondary cylinder 6 are sucked by the secondary cylinder 6 and then subjected to secondary compression, and the refrigerant after the secondary compression is discharged to the compressor and then enters the condenser 22, and thereafter passes through After the first-stage throttle mechanism 21 is throttled, it enters the flasher 20 and passes through the flashing.
  • the medium-pressure Pm gaseous refrigerant flows into the boosting pipeline, passes through the electromagnetic valve 23 and the check valve 25, and enters the compression through the inlet of the boosting passage 24.
  • the medium pressure flow passage inside the machine is mixed with the medium pressure refrigerant.
  • the liquid refrigerant in the flasher 20 is throttled by the secondary throttle mechanism 19, enters the evaporator 18, and enters the suction port of the primary cylinder 40. Thus, one cycle of the refrigerant is completed.
  • the above compression process is mainly performed by means of two slides in which the secondary cylinder 6 is disposed.
  • the first slide 26 and the second slide 27 are respectively.
  • the first slide 26 and the second slide 27 may be placed opposite each other by 180°.
  • the first slide 26 and the second slide 27 are separated from the inner space of the secondary cylinder 6 by the roller 7 into a first working chamber 63 and a second working chamber 64.
  • the secondary cylinder 6 is further provided with a first intake port 61 and a second intake port 62, and a first exhaust port 65 and a second exhaust port 66.
  • the first suction port 61 and the second exhaust port 66 are located on both sides of the first sliding piece 26 in the roller rotating direction, respectively.
  • the second suction port 62 and the first exhaust port 65 are located on both sides of the second sliding piece 27 in the roller rotating direction.
  • the upper flange 5 mounted above the secondary cylinder 6 has two exhaust ports, respectively an exhaust port 51 and an exhaust port 52, as shown in FIG.
  • the exhaust port 51 covers the first exhaust port 65 of the secondary cylinder 6, and the exhaust port 52 covers the second exhaust port 66 of the secondary cylinder 6.
  • An exhaust valve piece 29 and a valve flapper 28 are mounted on the exhaust port 51 and the exhaust port 52 of the upper flange 5, as shown in FIG.
  • the first suction port 61 and the second suction port 62 of the secondary cylinder 6 respectively communicate with the first intermediate pressure passage 33 and the second intermediate pressure passage 34 inside the pump body assembly, and the first working chamber 63 and the second working Cavity 64.
  • the medium-pressure refrigerant discharged from the first-stage cylinder 40 passes through the medium-pressure passages, enters the intake port of the secondary cylinder 6, and is respectively sucked into the compression chamber of the secondary cylinder 6 for compression.
  • the compressor solves the problem of large exhaust loss, greatly increases the amount of increase in the compressor, and also solves the problem of low volumetric efficiency and large friction loss of the sliding plate of the single-cylinder double-slide structure. It also solves the problem of large suction resistance of the secondary cylinder.
  • the entrainment passage 24 may be in communication with the intermediate pressure passage at the diaphragm cavity 32, and may also be in communication with the intermediate pressure passage at the lower flange cavity 31.
  • the compressor described above is not limited to a vertical compressor, and may be a horizontal compressor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种泵体组件及具有其的压缩机,泵体组件包括:一级气缸(40);二级气缸(6),二级气缸(6)与一级气缸(40)叠置,二级气缸(6)内形成有相互隔离的多个工作腔(63,64),各工作腔(63,64)均具有吸气口(61,62)及排气口(51,52),多个工作腔(63,64)中的至少一个进行压缩工作时,其余的工作腔中的至少一个处于连通状态。由于该泵体组件的二级气缸(6)采用了多个工作腔(63,64)进行气体压缩并实现排气的模式,有效地提高了该泵体组件的排气量和有效地减小了二级气缸(6)的排气损失,增加了泵体组件的可靠性。

Description

泵体组件及具有其的压缩机 技术领域
本发明涉及空调器设备技术领域,具体而言,涉及一种泵体组件及具有其的压缩机。
背景技术
现有技术中,为了在低温环境下增大制冷剂的比容,普通的单级转子压缩机单位容积的吸气量较小,造成压缩机制热能力不足。同时会造成压缩机的压比大,排气温度高,压缩机可靠性降低。
为此,目前广泛采用双级增焓压缩机提高低温环境下的制冷量和可靠性。现有的双级增焓缩机一级和二级气缸是通过中间隔板分隔开。一个气缸只有一个排气口。一级气缸排气通过下法兰腔体或中隔板腔,然后经过中间流道后与增焓补气进行混合,作为二级压缩的吸气,进入二级压缩机气缸。二级气缸进行压缩机后的高压气体直接从上法兰排出,进入压缩机壳体内。
随着双级压缩机整机排量的不断加大,现在采用多缸双级增焓压缩机。即一级压缩有一个或多个气缸。一级气缸排气量大,同时通过补气增焓,使得二级气缸吸气量大幅增加。而二级气缸的压比比较小,排气开启角度小,一个压缩周期内排气时间长,排气通过二级气缸排气口的排气损失大幅增大,是影响压缩机指示效率的主要因素之一。尤其是在一级气缸数量为两个以上时,压缩机的吸、排气损失的影响尤为突出。同时二级气缸难以加大单个排气口的尺寸,不能通过大幅增大排气口来减小排气阻力。另外,二级气缸和一级气缸仅能通过单个吸气通道进行连通,二级吸气和一级排气间存在较大的相位差,吸气不顺畅,吸气阻力大。再者,随着排量的增大,增焓量会相对偏小,导致压缩机冷量提升不足。
上述问题导致压缩机能效低,在大排量双级增焓压缩机中表现尤为突出,是制约双级增焓压缩机排量拓展的重要瓶颈问题。
发明内容
本发明的主要目的在于提供一种泵体组件及具有其的压缩机,以解决现有技术中压缩机排气口排气损失大的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种泵体组件,包括:一级气缸;二级气缸,二级气缸与一级气缸叠置,二级气缸内形成有相互隔离的多个工作腔,各工作腔均具有吸气口及排气口,多个工作腔中的至少一个进行压缩工作时,其余的工作腔中的至少一个处于连通状态。
进一步地,二级气缸包括:滑片,滑片为多个,多个滑片在二级气缸工作时将二级气缸的内腔分隔成多个工作腔。
进一步地,滑片包括第一滑片和第二滑片,第一滑片的轴线与第二滑片的轴线重合或者具有夹角。
进一步地,第一滑片的轴线与第二滑片的轴线具有夹角,夹角为β,其中,150°≤β≤210°。
进一步地,第一滑片和第二滑片将二级气缸的内腔分隔成第一工作腔和第二工作腔,第一工作腔具有第一吸气口和第一排气口,第二工作腔具有第二吸气口和第二排气口。
进一步地,第一吸气口和第二排气口分别位于第一滑片的两侧,第二吸气口和第一排气口分别位于第二滑片的两侧。
进一步地,泵体组件还包括中压通道,中压通道的一端与一级气缸的排气口相连通,中压通道的另一端与二级气缸的各吸气口相连通。
进一步地,中压通道内设置有阀门以防止吸入二级气缸内的气流逆流。
进一步地,中压通道包括多个并与各吸气口一一对应的设置,各中压通道的一端与一级气缸的排气口相连通,中压通道的另一端与对应的二级气缸的吸气口相连通。
进一步地,泵体组件还包括:增焓通道,增焓通道与中压通道相连通。
进一步地,一级气缸包括:第一一级气缸;第二一级气缸,第一一级气缸、第二一级气缸与二级气缸叠置,第一一级气缸与第二一级气缸位于二级气缸的同侧,二级气缸的各吸气口与第一一级气缸的排气口和第二一级气缸的排气口相连通。
进一步地,二级气缸开设有第一吸气口和第二吸气口,泵体组件还包括中压通道,中压通道包括:第一中压通道,第一中压通道开设于第一一级气缸、第二一级气缸和二级气缸上,第一中压通道的一端与第一吸气口相连通,第一中压通道的另一端分别与第一一级气缸的排气口和第二一级气缸的排气口相连通。
进一步地,中压通道还包括:第二中压通道,第二中压通道开设于第一一级气缸、第二一级气缸和二级气缸上,第二中压通道与第一中压通道相互独立,第二中压通道的一端与第二吸气口相连通,第二中压通道的另一端分别与第一一级气缸的排气口和第二一级气缸的排气口相连通。
进一步地,一级气缸的内腔容积大于二级气缸的内腔容积。
根据本发明的另一方面,提供了一种压缩机,包括泵体组件,泵体组件为上述中任一项的泵体组件。
应用本发明的技术方案,泵体组件包括一级气缸和二级气缸。二级气缸与一级气缸叠置,二级气缸内形成有相互隔离的多个工作腔,各工作腔均具有吸气口及排气口,多个工作腔中 的至少一个进行压缩工作时,其余的工作腔中的至少一个处于连通状态。由于该泵体组件的二级气缸采用了多个工作腔进行气体压缩并实现排气的模式,有效地提高了该泵体组件的排气量和有效地减小了二级气缸的排气损失,增加了泵体组件的可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的压缩机的实施例的示意图;
图2示出了图1中泵体组件的结构示意图;
图3示出了图1中泵体组件的上法兰的结构示意图;
图4示出了图1中泵体组件的上法兰组件的结构示意图;
图5示出了图1中二级气缸排气过程中滚子位于第一位置时的示意图;
图6示出了图1中二级气缸排气过程中滚子位于第二位置时的示意图;
图7示出了图1中二级气缸排气过程中滚子位于第三位置时的示意图;
图8示出了图1中二级气缸排气过程中滚子位于第四位置时的示意图;
图9示出了图1中二级气缸的实施例二的结构示意图;
图10示出了根据本发明的压缩机的实施例二的结构示意图;
图11示出了根据本发明的压缩机的实施例三的结构示意图;以及
图12示出了图1中二级气缸与传统单滑片结构的二级压缩机气缸吸气口容积对比图。
其中,上述附图包括以下附图标记:
1、电机定子;2、电机转子;3、曲轴;4、壳体;5、上法兰;51、排气口;52、排气口;6、二级气缸;61、第一吸气口;62、第二吸气口;63、第一工作腔;631、吸气腔;632、压缩腔;64、第二工作腔;641、吸气腔;642、压缩腔;65、第一排气口;66、第二排气口;7、滚子;8、上隔板;9、第一一级气缸;10、滚子;11、中隔板;12、隔板;13、第二一级气缸;14、滚子;15、下法兰;16、下盖板;17、下盖;18、蒸发器;19、二级节流机构;20、闪蒸器;21、一级节流机构;22、冷凝器;23、电磁阀;24、增焓通道;25、单向阀;26、第一滑片;27、第二滑片;28、阀片挡板;29、排气阀片;30、上盖组件;31、下法兰空腔;32、隔板空腔;33、第一中压通道;34、第二中压通道;40、一级气缸。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
如图1所示,根据本发明的一个方面,提供了一种泵体组件。该泵体组件包括一级气缸40和二级气缸6。二级气缸6与一级气缸40叠置,二级气缸6内形成有相互隔离的多个工作腔,各工作腔均具有吸气口及排气口,多个工作腔中的至少一个进行压缩工作时,其余的工作腔中的至少一个处于连通状态。
在本实施例中,由于该泵体组件的二级气缸6采用了多个工作腔进行气体压缩并实现排气的模式,有效地提高了该泵体组件的排气量和有效地减小了二级气缸6的排气损失,增加了泵体组件的可靠性。
其中,二级气缸6包括滑片。滑片为多个,多个滑片在二级气缸6工作时将二级气缸6的内腔分隔成多个工作腔。这样设置可以使得在二级气缸6的一个压缩周期内,二级气缸6 可以实现多次压缩,而且每完成一次压缩二级气缸6都能够及时的将压缩后的气体排出有效地减小了二级气缸6的排气损失,有效地提高了泵体组件的压缩性能。
如图1所示,泵体组件还包括中压通道。中压通道的一端与一级气缸40的排气口相连通,中压通道的另一端与二级气缸6的各吸气口相连通。这样设置能够及时的将经一级气缸40压缩后的气体通入二级气缸6,能够有效地增加了二级气缸6与一级气缸40之间进气更加顺畅。
为了防止吸入二级气缸6内的气流逆流,在中压通道内设置有阀门。其中,阀门优选为单向阀。
为了进一步地提高一级气缸40的排气能够顺畅的进入到二级气缸6内,可以将中压通道设置成多个,多个中压通道与各吸气口一一对应的设置,各中压通道的一端与一级气缸40的排气口相连通,中压通道的另一端与对应二级气缸6的吸气口相连通。
再请参照图1所示,泵体组件还包括增焓通道24。增焓通道24与中压通道相连通。这样设置能够有效地增加泵体组件的压缩性能。
如图2所示,滑片包括第一滑片26和第二滑片27,第一滑片26的轴线与第二滑片27的轴线重合。即第一滑片26和第二滑片27相对地设置在二级气缸6上。这样设置使得第一滑片26和第二滑片27的头部分别与滚子的外周面相抵接,使得二级气缸6内形成两个工作腔。
当然,如图9所示,第一滑片26的轴线与第二滑片27的轴线也可以有夹角。夹角为β,其中,150°≤β≤210°。以满足不同的吸气口布置,同时能减小一部分吸气逆流。这样设置同样能够实现将二级气缸6内形成两个工作腔。其中,以第二滑片27位置为滚子7旋转角度的0°,滚子7沿旋转方向ω(图9中滚子附近箭头方向旋转),滚子7旋转角度为θ。
进一步地,如图5所示,第一滑片26和第二滑片27将二级气缸6的内腔分隔成第一工作腔63和第二工作腔64,第一工作腔63具有第一吸气口61和第一排气口65,第二工作腔64具有第二吸气口62和第二排气口66。在图5中,滚子7旋转角度θ为:0<θ<90°角度时,第二工作腔64被滚子7分成了吸气腔641和压缩腔642。随着θ的增大,吸气腔641容积在增大,不断从第二吸气口62通过中压通道吸入来自一级气缸40排出的制冷剂和来自增焓管路的制冷剂。而压缩腔642容积不断减小,腔内压力增大,达到排气背压后就从第二排气口66排出二级气缸6。同时在此角度旋转范围,第一工作腔63为一个独立的压缩腔,其容积在不断增大,不断从第一吸气口61通过中压通道吸入来自一级气缸排出的制冷剂和来自增焓管路的制冷剂。
再请参照图5所示,第一吸气口61和第二排气口66分别位于第一滑片26的两侧,第二吸气口62和第一排气口65分别位于第二滑片27的两侧。这样设置能够有效地增加泵体组件的压缩性能。
如图6所示,滚子7旋转角度θ为:90°<θ<180°角度时,第二工作腔64被滚子7仍然分成了吸气腔641和压缩腔642。随着θ的增大,吸气腔641容积在增大,不断从第二吸气口62通过中压通道吸入来自一级气缸40排出的制冷剂和来自增焓管路的制冷剂。而压缩腔 642容积不断减小,腔内压力增大,达到排气背压后就从第二排气口66排出二级气缸。同时在此角度旋转范围,第一工作腔63仍然为一个独立的压缩腔,其容积在不断减小,此时滚子7并没有封闭第一吸气口61,并不能起到压缩作用,此时第一工作腔63中的制冷剂有小部分会逆流回中压通道。
如图7所示,滚子7旋转角度θ为:180°<θ<270°角度时,第二工作腔64排气结束,第二工作腔64为独立吸气腔,容积在增大,不断从第二吸气口62通过中压通道吸入来自一级气缸40排出的制冷剂和增焓管路的制冷剂。同时在此角度旋转范围,第一工作腔63被滚子7分成了吸气腔631和压缩腔632。随着θ的增大,吸气腔631容积在增大,不断从第一吸气口61通过中压通道吸入来自一级气缸40排出的制冷剂和来自增焓管路的制冷剂。而压缩腔632容积不断减小,腔内压力增大,达到排气背压后就从第一排气口65排出二级气缸6。
图8为滚子7旋转角度θ为:270°<θ<360°角度时,第二工作腔64仍然为一个独立的压缩腔,其容积在不断减小,此时滚子7并没有封闭第二吸气口62,并不能起到压缩作用,所以此时第二工作腔64中的制冷剂有小部分会逆流回中压通道。第一工作腔63被滚子7仍然分成了吸气腔631和压缩腔632。随着θ的增大,吸气腔631容积在增大,不断从第一吸气口61通过中压通道吸入来自一级气缸40排出的制冷剂和来自增焓管路的制冷剂。而压缩腔632容积不断减小,腔内压力增大,达到排气背压后就从第一排气口65排出二级气缸6。
图5至图8完成了二级气缸6的吸排气过程。而普通单滑片的二级压缩气缸,一个周期只有一次吸排气。且只有一个吸气口和一个排气斜切口,上法兰只有一个排气口,而排气口的尺寸受气缸结构的限制无法得到有效的扩大,会出现吸气、排气阻力大。而本实施例中的二级气缸6设置有两个滑片(第一滑片26、第二滑片27),使得一个气缸具有两个压缩腔,二级压缩气缸在一个周期360°内完成了两次吸气和两次排气过程,使得该泵体组件的吸气和排气更加平稳。同时布置了两个排气口(第一排气口65、第二排气口66),有效地扩大了排气口流通面积,降低了排气阻力。此外,通过一个气缸双吸气腔结构,实现了吸气容积的大幅增加。如图12所示,假如传统单吸气腔气缸的一个周期的吸气容积为1。在相同尺寸结构情况下,通过双滑片结构,实现一个气缸双吸气腔,单个吸气腔(第一工作腔63/第二工作腔64)可以实现0.77的吸气容积,一个周期内有两次吸气,吸气容积达1.54,即一个周期的吸气量可以增加54%。这样大幅增加了二级气缸6的吸气的增焓量,有效提升制冷量,解决增焓量小问题。
如图1所示,一级气缸40包括第一一级气缸9和第二一级气缸13。第一一级气缸9、第二一级气缸13与二级气缸6叠置,第一一级气缸9与第二一级气缸13位于二级气缸6的同侧,二级气缸6的各吸气口与第一一级气缸9的排气口和第二一级气缸13的排气口相连通。这样设置能够有效地增加一级气缸40的排气量,继而能够有效地增加了该泵体组件压缩性能。
如图1、图5至图9所示,二级气缸6开设有第一吸气口61和第二吸气口62,泵体组件还包括中压通道。中压通道包括第一中压通道33和第二中压通道34。第一中压通道33开设于第一一级气缸9、第二一级气缸13和二级气缸6上,第一中压通道33的一端与第一吸气口61相连通,第一中压通道33的另一端分别与第一一级气缸9的排气口和第二一级气缸13的 排气口相连通。第二中压通道34开设于第一一级气缸9、第二一级气缸13和二级气缸6上,第二中压通道34与第一中压通道33相互独立,第二中压通道34的一端与第二吸气口62相连通,第二中压通道34的另一端分别与第一一级气缸9的排气口和第二一级气缸13的排气口相连通。第一中压通道33和第二中压通道34上分别设置了具有单向截止功能的单向阀25。即中压制冷剂能通过单向阀25进去二级气缸6的吸气口,而不会出现反向流动。其作用在于防止二级气缸6吸气后存在的逆流问题,保证二级气缸6的有效吸气容积,提高压缩机的性能。
一级气缸40的内腔容积大于二级气缸6的内腔容积。通过对多缸双级增焓压缩机的泵体组件中的二级气缸设置成具有双压缩腔结构,可以实现一个周期内的两次吸气、排气。有效降低吸排气阻力损失,同时提高了增焓量,提高了压缩机性能。
上述实施例中的泵体组件还可以用于压缩机技术领域,根据本发明的另一方面,提供了一种压缩机。该压缩机包括泵体组件,泵体组件为上述实施例中的泵体组件。该泵体组件包括一级气缸40和二级气缸6。二级气缸6与一级气缸40叠置,二级气缸6内形成有相互隔离的多个工作腔,各工作腔均具有吸气口及排气口,多个工作腔中的至少一个进行压缩工作时,其余的工作腔中的至少一个处于连通状态。
具体地,如图1、图3和图4所示,为了解决现有多缸双级增焓压缩机排气量不断增大,二级气缸吸气和压缩量大幅增加,导致吸气和排气损失大幅增大,增焓量不足等问题。本实施例提供了一种滚动转子式多缸双级增焓压缩机。该压缩机结构包含电机定子1、电机转子2、以及泵体组件。泵体组件包含二级气缸6、第一一级气缸9、第二一级气缸13,二级气缸6和第一一级气缸9之间通过上隔板8分隔开,第一一级气缸9与第二一级气缸13被中隔板11和下隔板12分隔开,中隔板11和下隔板12层叠在一起,形成了隔板空腔32。二级气缸6上方为上法兰5,第二一级气缸13下方为下法兰15。曲轴3安装于上法兰5和下法兰15的轴承孔中,滚子7、滚子10、滚子14,分别置于二级气缸6、第一一级气缸9、第二一级气缸13中,并套于曲轴3的上、中、下偏心部上。此外,下法兰15的下端通过下盖板16密封,形成下法兰空腔31。泵体组件内部具有连接二级气缸6的第一吸气口61和第二吸气口62以及隔板空腔32、下法兰空腔31的两个中间中压通道第一中压通道33和第二中压通道34。上述的电机、泵体组件都固定于壳体4的内壁,壳体4通过上盖组件30和下盖17进行密封,形成一个高压容积腔。
压缩机的运转原理为:电机定子1通电后,驱动电机转子2以及与其固定相连的曲轴3旋转,曲轴3带动气缸内的滚子旋转压缩各自气缸内的制冷剂。
在本实施例中,压缩机的外部的空调系统包含冷凝器22、蒸发器18、闪蒸器20、一级节流机构21、二级节流机构19等。并在增焓回路上设置有电磁阀23和单向阀25,通过电磁阀23的打开和关闭,可实现对系统增焓进行开关控制。
该压缩机及系统的制冷剂循环过程见图1中箭头所示:经过蒸发器18的低压Ps制冷剂分别流入到压缩机的第一一级气缸9、第二一级气缸13的吸气口,经过第一一级气缸9和第二 一级气缸13进行压缩。第二一级气缸13压缩后的中压制冷剂通过下法兰排气口排出到下法兰空腔31。第一一级气缸9压缩后的中压制冷剂通过中隔板11的排气口排出到隔板空腔32。中压制冷剂再通过两个中间中压通道(第一中压通道33和第二中压通道34),并同时与经增焓通道24流入口的中压Pm制冷剂进行混合,此后分别进入二级气缸6的第一吸气口61和第二吸气口62,被二级气缸6吸入后进行二次压缩,经二级压缩后的制冷剂排出压缩机后进入冷凝器22,此后经过一级节流机构21节流后进入闪蒸器20中经过闪发,中压Pm气态制冷剂流入增焓管路,通过电磁阀23和单向阀25,在经过增焓通道24流入口进入压缩机内部的中压流道中与中压制冷剂进行混合。闪蒸器20中的液态制冷剂则经过二级节流机构19节流后进入蒸发器18,再进入一级气缸40的吸气口,至此,完成了制冷剂的一个循环。
具体地,上述压缩过程主要通过二级气缸6设置两个滑片的方式来完成。分别为第一滑片26和第二滑片27。第一滑片26和第二滑片27可以间隔180°对置放置。第一滑片26和第二滑片27同滚子7将二级气缸6的内腔分隔成第一工作腔63和第二工作腔64。同时二级气缸6还设置有第一吸气口61和第二吸气口62以及第一排气口65和第二排气口66。第一吸气口61和第二排气口66分别沿滚子旋转方向,位于第一滑片26的两侧。第二吸气口62和第一排气口65分别沿滚子旋转方向,位于第二滑片27的两侧。在二级气缸6的上方安装的上法兰5具有两个排气口,分别为排气口51和排气口52,如图3所示。排气口51覆盖于二级气缸6的第一排气口65,排气口52覆盖于二级气缸6的第二排气口66。在上法兰5的排气口51和排气口52上都安装有排气阀片29和阀片挡板28,如图4所示。所述二级气缸6的第一吸气口61和第二吸气口62分别连通泵体组件内部的第一中压通道33和第二中压通道34以及第一工作腔63和第二工作腔64。一级气缸40排出的中压制冷剂分别通过中压通通道后,进入二级气缸6的吸气口,然后分别被吸入二级气缸6的压缩腔中进行压缩。该压缩机解决了排气损失大的问题,大幅提高了压缩机的增焓量,同时还解决了单气缸双滑片结构的容积效率低、滑片摩擦损失大的问题。还解决了二级气缸吸气阻力大问题。
如图1、图10和图11所示,增焓通道24可以与位于隔板空腔32处的中压通道相连通外,还可以与位于下法兰空腔31处的中压通道相连通。上述中的压缩机不局限于立式压缩机,还可以是卧式压缩机等。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种泵体组件,其特征在于,包括:
    一级气缸(40);
    二级气缸(6),所述二级气缸(6)与所述一级气缸(40)叠置,所述二级气缸(6)内形成有相互隔离的多个工作腔,各工作腔均具有吸气口及排气口,多个所述工作腔中的至少一个进行压缩工作时,其余的所述工作腔中的至少一个处于连通状态。
  2. 根据权利要求1所述的泵体组件,其特征在于,所述二级气缸(6)包括:
    滑片,所述滑片为多个,多个所述滑片在所述二级气缸(6)工作时将所述二级气缸(6)的内腔分隔成多个所述工作腔。
  3. 根据权利要求2所述的泵体组件,其特征在于,所述滑片包括第一滑片(26)和第二滑片(27),所述第一滑片(26)的轴线与所述第二滑片(27)的轴线重合或者具有夹角。
  4. 根据权利要求3所述的泵体组件,其特征在于,所述第一滑片(26)的轴线与所述第二滑片(27)的轴线具有夹角,所述夹角为β,其中,150°≤β≤210°。
  5. 根据权利要求3所述的泵体组件,其特征在于,所述第一滑片(26)和所述第二滑片(27)将所述二级气缸(6)的内腔分隔成第一工作腔(63)和第二工作腔(64),所述第一工作腔(63)具有第一吸气口(61)和第一排气口(65),所述第二工作腔(64)具有第二吸气口(62)和第二排气口(66)。
  6. 根据权利要求5所述的泵体组件,其特征在于,所述第一吸气口(61)和所述第二排气口(66)分别位于所述第一滑片(26)的两侧,所述第二吸气口(62)和所述第一排气口(65)分别位于所述第二滑片(27)的两侧。
  7. 根据权利要求1所述的泵体组件,其特征在于,所述泵体组件还包括中压通道,所述中压通道的一端与所述一级气缸(40)的排气口相连通,所述中压通道的另一端与所述二级气缸(6)的各所述吸气口相连通。
  8. 根据权利要求7所述的泵体组件,其特征在于,所述中压通道内设置有阀门以防止吸入所述二级气缸(6)内的气流逆流。
  9. 根据权利要求7所述的泵体组件,其特征在于,所述中压通道包括多个并与各所述吸气口一一对应的设置,各所述中压通道的一端与所述一级气缸(40)的排气口相连通,所述中压通道的另一端与对应的所述二级气缸(6)的所述吸气口相连通。
  10. 根据权利要求7所述的泵体组件,其特征在于,所述泵体组件还包括:
    增焓通道(24),所述增焓通道(24)与所述中压通道相连通。
  11. 根据权利要求1所述的泵体组件,其特征在于,所述一级气缸(40)包括:
    第一一级气缸(9);
    第二一级气缸(13),所述第一一级气缸(9)、所述第二一级气缸(13)与所述二级气缸(6)叠置,所述第一一级气缸(9)与所述第二一级气缸(13)位于所述二级气缸(6)的同侧,所述二级气缸(6)的各所述吸气口与所述第一一级气缸(9)的排气口和所述第二一级气缸(13)的排气口相连通。
  12. 根据权利要求11所述的泵体组件,其特征在于,所述二级气缸(6)开设有第一吸气口(61)和第二吸气口(62),所述泵体组件还包括中压通道,所述中压通道包括:
    第一中压通道(33),所述第一中压通道(33)开设于所述第一一级气缸(9)、所述第二一级气缸(13)和所述二级气缸(6)上,所述第一中压通道(33)的一端与所述第一吸气口(61)相连通,所述第一中压通道(33)的另一端分别与所述第一一级气缸(9)的排气口和所述第二一级气缸(13)的排气口相连通。
  13. 根据权利要求12所述的泵体组件,其特征在于,所述中压通道还包括:
    第二中压通道(34),所述第二中压通道(34)开设于所述第一一级气缸(9)、所述第二一级气缸(13)和所述二级气缸(6)上,所述第二中压通道(34)与所述第一中压通道(33)相互独立,所述第二中压通道(34)的一端与所述第二吸气口(62)相连通,所述第二中压通道(34)的另一端分别与所述第一一级气缸(9)的排气口和所述第二一级气缸(13)的排气口相连通。
  14. 根据权利要求1所述的泵体组件,其特征在于,所述一级气缸(40)的内腔容积大于所述二级气缸(6)的内腔容积。
  15. 一种压缩机,包括泵体组件,其特征在于,所述泵体组件为权利要求1至14中任一项所述的泵体组件。
PCT/CN2017/071967 2016-06-22 2017-01-20 泵体组件及具有其的压缩机 WO2017219669A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187036798A KR102151339B1 (ko) 2016-06-22 2017-01-20 펌프 모듈 및 이를 구비한 압축기
JP2018561663A JP6757803B2 (ja) 2016-06-22 2017-01-20 ポンプアセンブリ及びそれを備えた圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610471649.0 2016-06-22
CN201610471649.0A CN105927537B (zh) 2016-06-22 2016-06-22 泵体组件及具有其的压缩机

Publications (1)

Publication Number Publication Date
WO2017219669A1 true WO2017219669A1 (zh) 2017-12-28

Family

ID=56829119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071967 WO2017219669A1 (zh) 2016-06-22 2017-01-20 泵体组件及具有其的压缩机

Country Status (4)

Country Link
JP (1) JP6757803B2 (zh)
KR (1) KR102151339B1 (zh)
CN (1) CN105927537B (zh)
WO (1) WO2017219669A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513290A (zh) * 2019-08-07 2019-11-29 珠海凌达压缩机有限公司 带并行独立泵体的压缩机及空调系统
CN110953151A (zh) * 2019-11-25 2020-04-03 珠海格力电器股份有限公司 泵体组件及具有其的滑片式压缩机

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927537B (zh) * 2016-06-22 2019-01-18 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN108223374B (zh) * 2018-01-02 2024-06-18 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、流体机械及换热设备
CN108412764A (zh) * 2018-04-16 2018-08-17 珠海格力节能环保制冷技术研究中心有限公司 压缩机及制冷循环系统及空调器
CN108533490B (zh) * 2018-06-22 2024-08-20 珠海格力电器股份有限公司 压缩机及空调系统
CN108843573B (zh) * 2018-07-26 2023-08-11 珠海格力节能环保制冷技术研究中心有限公司 一种三缸双级变容压缩机
CN109488594A (zh) * 2018-12-07 2019-03-19 江西氟斯新能源科技有限公司 一种防内转子径向间隙泄漏结构
CN110056507B (zh) * 2019-05-28 2023-08-01 西安交通大学 一种带顶部中间腔的多级旋转压缩机及工作方法
CN110863985A (zh) * 2019-11-29 2020-03-06 安徽美芝精密制造有限公司 压缩机及制冷设备
CN110985383A (zh) * 2019-11-29 2020-04-10 安徽美芝精密制造有限公司 压缩机及制冷设备
CN110778498B (zh) * 2019-11-29 2022-03-22 安徽美芝精密制造有限公司 压缩机及制冷设备
CN110863986B (zh) * 2019-11-29 2022-07-12 安徽美芝精密制造有限公司 压缩机及制冷设备
CN111089052B (zh) * 2020-01-10 2024-08-30 中国石油大学(华东) 一种两级压缩的滑片式真空泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709701A (zh) * 2009-12-22 2010-05-19 西安庆安制冷设备股份有限公司 单缸多级气体压缩的滚动活塞式压缩机
WO2011125652A1 (ja) * 2010-04-01 2011-10-13 三洋電機株式会社 ロータリコンプレッサ
JP2012107568A (ja) * 2010-11-17 2012-06-07 Panasonic Corp ロータリ圧縮機及び冷凍サイクル装置
CN202301036U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 旋转式双级增焓压缩机
CN203272136U (zh) * 2013-04-11 2013-11-06 珠海格力电器股份有限公司 单缸多级压缩机
CN105927537A (zh) * 2016-06-22 2016-09-07 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN205858678U (zh) * 2016-06-22 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749091A (en) * 1980-09-10 1982-03-20 Hitachi Ltd Rotary compressor
JPS6270686A (ja) * 1985-09-20 1987-04-01 Sanyo Electric Co Ltd 多気筒回転圧縮機
CN1548753A (zh) * 2003-05-22 2004-11-24 乐金电子(天津)电器有限公司 密闭型旋转式压缩机
JP2011032958A (ja) * 2009-08-04 2011-02-17 Daikin Industries Ltd 回転式流体機械
CN202301035U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 中间隔板排气的双级压缩机
CN103967788A (zh) * 2013-02-05 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 压缩组件、压缩机、空调器及热泵热水器
CN104214100B (zh) * 2013-06-05 2018-08-07 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN104251207B (zh) * 2013-06-28 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 双级增焓转子压缩机及具有其的空调器、热泵热水器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709701A (zh) * 2009-12-22 2010-05-19 西安庆安制冷设备股份有限公司 单缸多级气体压缩的滚动活塞式压缩机
WO2011125652A1 (ja) * 2010-04-01 2011-10-13 三洋電機株式会社 ロータリコンプレッサ
JP2012107568A (ja) * 2010-11-17 2012-06-07 Panasonic Corp ロータリ圧縮機及び冷凍サイクル装置
CN202301036U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 旋转式双级增焓压缩机
CN203272136U (zh) * 2013-04-11 2013-11-06 珠海格力电器股份有限公司 单缸多级压缩机
CN105927537A (zh) * 2016-06-22 2016-09-07 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN205858678U (zh) * 2016-06-22 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513290A (zh) * 2019-08-07 2019-11-29 珠海凌达压缩机有限公司 带并行独立泵体的压缩机及空调系统
CN110953151A (zh) * 2019-11-25 2020-04-03 珠海格力电器股份有限公司 泵体组件及具有其的滑片式压缩机

Also Published As

Publication number Publication date
KR102151339B1 (ko) 2020-09-02
CN105927537B (zh) 2019-01-18
JP6757803B2 (ja) 2020-09-23
KR20190002715A (ko) 2019-01-08
JP2019516907A (ja) 2019-06-20
CN105927537A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
CN105605817B (zh) 一种制冷系统
TWI337223B (zh)
CN202851355U (zh) 可单双级互换的双缸压缩机
CN104074763B (zh) 双级增焓转子压缩机及具有其的空调器、热泵热水器
WO2019242311A1 (zh) 压缩机及空调系统
WO2018126758A1 (zh) 一种旋转压缩机、制冷系统及调温设备
US20200217317A1 (en) Compressor, air conditioner and method for assembling compressor
JP5228905B2 (ja) 冷凍装置
US11933526B2 (en) Compressor and refrigeration device
WO2019029264A1 (zh) 具有补气结构的转子压缩机及压缩方法
CN105443384B (zh) 压缩机及其控制方法和空调器
CN107191372B (zh) 旋转式压缩机和具有其的制冷装置
CN110159532B (zh) 压缩机、空调器
WO2019137036A1 (zh) 压缩机及具有其的空调器
WO2017031669A1 (zh) 旋转式压缩机和具有其的冷冻循环装置
CN104214100A (zh) 压缩机及具有其的空调器
CN205858678U (zh) 泵体组件及具有其的压缩机
CN210423017U (zh) 压缩机、空调器
CN103557157A (zh) 变容量压缩机及空调系统
CN210317754U (zh) 压缩机变容结构、压缩机及制冷循环装置
CN107228070A (zh) 压缩机以及具有它的制冷系统
CN208311044U (zh) 压缩机及空调系统
CN111005870A (zh) 双泵体组件、压缩机和空调系统
CN108799116A (zh) 四缸十级输气量的单级滚动转子压缩机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561663

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036798

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814409

Country of ref document: EP

Kind code of ref document: A1