WO2018126758A1 - 一种旋转压缩机、制冷系统及调温设备 - Google Patents

一种旋转压缩机、制冷系统及调温设备 Download PDF

Info

Publication number
WO2018126758A1
WO2018126758A1 PCT/CN2017/106287 CN2017106287W WO2018126758A1 WO 2018126758 A1 WO2018126758 A1 WO 2018126758A1 CN 2017106287 W CN2017106287 W CN 2017106287W WO 2018126758 A1 WO2018126758 A1 WO 2018126758A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
suction
rotary compressor
partition
crankshaft
Prior art date
Application number
PCT/CN2017/106287
Other languages
English (en)
French (fr)
Inventor
阙沛祯
魏会军
杨欧翔
胡艳军
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2018126758A1 publication Critical patent/WO2018126758A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • the present application relates to the field of compressor manufacturing technology, and in particular, to a rotary compressor, a refrigeration system, and a temperature regulating device.
  • the compressors in the industry In order to expand the displacement of the current single-cylinder rotor compressor and reduce the vibration of the single-cylinder compressor, the compressors in the industry generally adopt a double-cylinder structure.
  • the so-called double-cylinder structure has two in the axial direction of the compressor.
  • the superimposed cylinders are separated by two partitions in the middle.
  • the two-cylinder structure has two cylinders, large size in the height direction, large bearing span, poor bearing reliability, and one more cylinder compression assembly than the single-cylinder structure, requiring two suction ports, and the overall cost of the compressor is high.
  • this type of compressor has problems of leakage and friction.
  • the single-cylinder double-slide structure of the compressor has two suction ports, which easily causes the gas that has been sucked into the cylinder to be discharged again from the suction port (ie, the suction is reversed), which causes the actual displacement of the compressor to increase.
  • the shut-off valve on the suction port.
  • increasing the shut-off valve will significantly increase the suction resistance of the compressor, resulting in increased power consumption of the compressor, and the shut-off valve.
  • There is still a clearance volume between the suction port and the suction port which cannot completely solve the problem of suction backflow.
  • One of the purposes of the present application is to provide a rotary compressor in order to prevent the phenomenon of inhalation backflow in a multi-slide cylinder, effectively expanding the displacement of the multi-slide cylinder, and improving the energy efficiency of the compressor.
  • Another object of the present application is to provide a refrigeration system using the above rotary compressor.
  • Still another object of the present application is to provide a temperature regulating device using the above refrigeration system.
  • the rotary compressor provided by the present application has at least one multi-slide cylinder, and the multi-slider cylinder includes:
  • crankshaft and a rotor disposed on the crankshaft and cooperating with the sliding piece
  • a disc partition fixedly connected to the crankshaft, the disc partition for closing a bottom end or a top end of the cylinder body
  • the multi-slide cylinder further comprises:
  • a suction member having an air inlet
  • a cavity is disposed inside the air suction member, and an inner wall of the cavity is configured to cooperate with an outer circle of the disk partition to form a communication with the air inlet Suction chamber.
  • the multi-slide rotary compressor is a single cylinder compressor.
  • two cylinders are disposed in the cylinder body.
  • the angle between the two sliding sheets is between 90° and 270°.
  • the suction gap is fan-shaped, and an outer arc of the suction gap is an outer circle of the disc partition, and an inner arc of the suction gap is concentric with an eccentric portion of the crankshaft,
  • the central angle corresponding to the suction gap is smaller than the minimum angle between the two sliding sheets.
  • the angle between the two sliding sheets is 180°.
  • the suction gap is fan-shaped, and an outer arc of the suction gap is an outer circle of the disc partition, and an inner arc of the suction gap is concentric with an eccentric portion of the crankshaft.
  • the eccentric tangent point of the crankshaft is a starting point, and the rotation direction ⁇ 1 of the crankshaft is reversed as a starting point of the suction notch, and the eccentric tangent point of the crankshaft is used as a starting point, and the rotation direction of the crankshaft is reversed by ⁇ 2 as The stop point of the suction gap, wherein 0° ⁇ ⁇ 1 ⁇ 45°, 50° ⁇ ⁇ 2 ⁇ 110°.
  • the inner arc radius of the suction gap is R 1
  • the radius of the disc partition is R 2
  • the suction member is a lower flange of the compressor, and the disc partition closes a bottom end of the cylinder body.
  • a partition plate having a middle through hole is further disposed between the upper end surface of the lower flange of the compressor and the bottom end of the cylinder body, and the disk partition is embedded in the central through hole
  • the radius of the disk partition is R 2
  • the radius of the central through hole of the partition plate is R 5 , wherein R 5 — R 2 ⁇ 0.01 mm.
  • the thickness of the disc spacer is H 1
  • the thickness of the partition plate is H 2
  • the radius of the disc spacer is R 2
  • the inner diameter of the cylinder body is R 3
  • the rotary compressor comprises two of the multi-slider cylinders, and the two multi-slider cylinders are respectively a first cylinder and a second cylinder arranged along the axial direction of the compressor, the disc
  • the partition plate is a first disc partition and a second disc partition disposed at intervals, wherein the first disc partition is for closing a bottom end of the first cylinder, and the second disc partition For closing a top end of the second cylinder, the suction gap is a first suction gap formed on the first disc partition, and a second opening on the second disc partition a suction gap, the suction member is disposed between the first cylinder and the second cylinder, and the first disc partition and the second disc spacer are nested therein a dividing plate in the cavity.
  • the first suction gap and the second suction gap are offset from each other.
  • an angle between the first suction gap and the second suction gap is 90°.
  • two of the slides are disposed in any one of the cylinders.
  • the rotary compressor includes one of the multi-slide cylinder and one single vane cylinder, and an exhaust port of the multi-slider cylinder communicates with an intake port of the single vane cylinder.
  • the rotary compressor includes one of the multi-slide cylinder and one single vane cylinder, and an intake port of the multi-slide cylinder communicates with an exhaust port of the single vane cylinder.
  • three cylinders are disposed in the cylinder body of the multi-slide cylinder, and three of the sliders are evenly distributed along the circumferential direction of the cylinder body.
  • the refrigeration system disclosed in the present application includes a compressor, a condenser, a throttle device, and an evaporator, which is the rotary compressor disclosed in any of the above.
  • the temperature regulating device disclosed in the present application is provided with a refrigeration system, which is the above-described refrigeration system.
  • the temperature regulating device is an air conditioner or a refrigerator.
  • the rotary compressor disclosed in the present application has at least one multi-slider cylinder, and the multi-slide cylinder includes basic components such as a cylinder body, a sliding piece, a crankshaft and the like, but the cylinder body is not provided with an intake port on the crankshaft.
  • the disc partition will rotate synchronously with the crankshaft, the disc partition is used to close the bottom end or the top end of the cylinder body, and the suction disc is opened on the disc, and rotates with the crankshaft
  • the suction gap is in communication with the working chamber being increased to achieve suction
  • the suction gap is Isolated from the working chamber being reduced
  • the disc spacer closes the working chamber being reduced, avoiding gas Re-discharge after over compression.
  • the rotary compressor disclosed in the present application can effectively prevent the backflow phenomenon in the multi-slide cylinder, ensure that all the gas in the cylinder of the suction multi-slide cylinder is compressed, effectively expands the displacement of the rotary compressor, and does not adopt
  • the shut-off valve has low suction resistance, low energy consumption, stable operation of multi-slide cylinders, low vibration and high energy efficiency.
  • FIG. 1 is a schematic structural view of a rotary compressor disclosed in a first embodiment of the present application
  • Figure 2 is a partial enlarged view of the portion H of Figure 1;
  • Figure 3 is a schematic exploded view of the rotary compressor disclosed in the first embodiment of the present application.
  • Figure 4 is a schematic structural view of the crankshaft of Figure 3;
  • Figure 5 is a top plan view of the upper flange of Figure 4.
  • Figure 6 is a schematic structural view of the partition plate of Figure 4.
  • Figure 7 is a schematic structural view of the lower flange of Figure 4.
  • Figure 8 is a schematic structural view of the cylinder of Figure 4.
  • Figure 9 is a schematic view showing the cooperation relationship of the components of the cylinder in the first embodiment of the present application.
  • Figure 10 is a schematic structural view showing the rotor rotated 45° in the first embodiment of the present application.
  • Figure 11 is a schematic structural view of the first embodiment of the present invention when the rotor is rotated by 90°;
  • Figure 12 is a schematic view showing the structure of the rotor in the first embodiment of the present application when the rotor is rotated by 135°;
  • Figure 13 is a schematic structural view of the first embodiment of the present invention when the rotor is rotated by 180°;
  • Figure 14 is a schematic view showing the structure of the rotor in the first embodiment of the present application when the rotor is rotated by 225°;
  • Figure 15 is a schematic structural view showing a rotor rotated by 270° in the first embodiment of the present application
  • Figure 16 is a schematic view showing the structure of the rotor in the first embodiment of the present application when the rotor is rotated by 315°;
  • Figure 17 is a schematic structural view showing a rotor rotated 360° in the first embodiment of the present application.
  • Figure 18 is a schematic structural view of a rotary compressor disclosed in a second embodiment of the present application.
  • Figure 19 is a schematic structural view of the crankshaft of Figure 18;
  • Figure 20 is a schematic structural view of the partition plate of Figure 18;
  • Figure 21 is a schematic structural view of a rotary compressor disclosed in a third embodiment of the present application.
  • Figure 22 is a schematic structural view of a rotary compressor disclosed in a fourth embodiment of the present application.
  • FIG. 23 is a schematic structural view of a refrigeration system disclosed in an embodiment of the present application.
  • 1 is the crankshaft
  • 2 is the eccentric part
  • 3 is the rotor
  • 4 is the upper flange
  • 5 is the cylinder body
  • 6 is the partition plate
  • 7 is Lower flange
  • 8 is the cavity
  • 9 is the disc partition
  • 10 is the exhaust port
  • 11 is the sliding piece
  • 12 is the suction port
  • 13 is the suction gap
  • 14 is the central through hole
  • 15 is the sliding groove 16 is the exhaust cut
  • 17 is the first disc partition
  • 18 is the second disc partition
  • 19 is the upper sealing plate
  • 20 is the partition
  • 21 is the high pressure cylinder
  • 22 is the condenser
  • 23 is the throttling
  • the device, 24 is an evaporator
  • 25 is a gas-liquid separator.
  • One of the cores of the present application is to provide a rotary compressor in order to prevent the phenomenon of suction backflow in the multi-slide cylinder, effectively expand the displacement of the multi-slide cylinder, and improve the energy efficiency of the compressor.
  • Another core of the present application is also to provide a refrigeration system using the above rotary compressor.
  • Still another core of the present application is to provide a temperature regulating device using the above refrigeration system.
  • the rotary compressor disclosed in the present application has at least one multi-slide cylinder, and the so-called multi-slide cylinder is a plurality of slides disposed in one cylinder, and the multi-slide cylinder specifically includes: a cylinder body 5, a slide 11, a crankshaft 1 and a disc partition 9, wherein the slider 11 is disposed in the cylinder body 5, the crankshaft 1 passes through the cylinder body 5, and the crankshaft 1 is provided with a rotor 3 for cooperating with the slider 11 to form a working chamber, the disc
  • the partition plate 9 is fixedly disposed on the crankshaft 1, and the function of the disc partition 9 is to close the bottom end or the top end of the cylinder body 5.
  • the disc partition 9 closes the bottom end of the cylinder body 5, the cylinder The body 5, the disc partition 9, the slide 11, the rotor 3, and the upper flange 4 of the cylinder will collectively enclose the working chamber of the compressor, and since the vane 11 includes a plurality, the cylinder body 5 will be divided into a plurality of independent and periodically changing working chambers, the outer circumference of the disc partition 9 is provided with an air suction notch 13, and when the working chamber volume in the cylinder body 5 is increased, the suction notch 13 is in communication with the working chamber; When the volume of the working chamber is reduced, the disc partition 9 seals the working chamber .
  • the disc partition 9 rotates with the crankshaft 1.
  • the suction notch 13 communicates with the working chamber that is being enlarged to achieve suction;
  • the suction gap 13 is isolated from the working chamber being reduced, and the disc partition 9 closes the working chamber being reduced to prevent the gas from being discharged again without being compressed.
  • the rotary compressor disclosed in the present application can effectively prevent the backflow phenomenon in the multi-slide cylinder, ensure that all the gas in the cylinder of the suction multi-slide cylinder is compressed, effectively expands the displacement of the rotary compressor, and does not adopt
  • the shut-off valve has low suction resistance, low energy consumption, stable operation of multi-slide cylinders, low vibration and high energy efficiency.
  • the multi-slider cylinder further includes a suction member, the suction member is provided with an air inlet 12, and the internal setting of the air suction member 12 There is a cavity 8, and the inner wall of the cavity 8 serves to cooperate with the outer circumference of the disc spacer 9 to form an air suction chamber that communicates with the suction port 12.
  • the rotary compressor disclosed in this embodiment is a single-cylinder rotary compressor including an upper flange 4, a cylinder body 5, a crankshaft 1, and a lower flange 7.
  • the lower flange 7 serves as a suction member, and correspondingly, the disk partition 9 is used to close the bottom end of the cylinder body 5, and the top end of the cylinder body 5 is closed by the upper flange 4, as shown in FIG.
  • the number of the sliders 11 provided in the cylinder body 5 is not limited, and may be, for example, two, three or more. In this embodiment, two sliders 11 are taken as an example for introduction, two sliders.
  • the angle between 11 is preferably 90° to 270°, so as to divide the inside of the cylinder body 5 into two larger cavities.
  • the angle between the two sliding sheets 11 is 180°.
  • the shape of the suction notch 13 is a fan shape, as shown in FIGS. 3, 4 and 9, and the outer arc of the suction notch 13 is the outer circle of the disk partition 9, the inner arc of the suction notch 13 and The eccentric portion 2 of the crankshaft 1 is concentric, and the central angle corresponding to the suction notch 13 is smaller than the minimum angle between the two sliding blades 11 to ensure that gas can be performed in each cavity. Shrink.
  • the cylinder body 5 in this embodiment has two opposite slide grooves 15 therein, and an exhaust slit 16 is provided on one side of the slide groove 15, respectively, and no suction is provided on the cylinder.
  • the crankshaft 1 includes a long axis, a short axis, and an eccentric portion 2, and one side of the eccentric portion 2 is provided with a disk partition 9 integrally fixedly coupled to the crankshaft 1, and a disk partition 9
  • the suction opening 13 is provided in the upper opening, the disc partition 9 and the suction notch 13 rotate synchronously with the crankshaft 1, and the disc partition 9 functions to seal the lower end surface of the cylinder body 5, and the suction gap 13 can increase the volume.
  • the working chamber communicates with the suction port 12, and the exhaust port 10 communicating with the exhaust slit 16 provided on the cylinder is disposed on the upper flange 4.
  • the exhaust port 10 specifically includes two. Separatingly with the two exhaust slits 16 on the cylinder, as shown in FIG. 7, the lower flange 7 is provided with a bearing hole for the short shaft of the crankshaft 1, and the lower flange 7 is provided with a cavity 8 therein.
  • the side wall of the lower flange 7 is provided with an air inlet 12 communicating with the cavity 8, since the upper end of the bearing hole is flush with the upper end surface of the lower flange 7, in order to protect 9 can be smoothly rotating separator disk, the present embodiment also the addition of the partition plate 6, as shown in Figure 6, the partition plate 6 is provided with a central through hole 14, the radius of the central through hole 14 is R 5, round
  • the disk separator has a radius R 2 , R 5 - R 2 ⁇ 0.01 mm, the disk spacer 9 has a thickness H 1 , the partition plate 6 has a thickness H 2 , and H 2 - H 1 ⁇ 0.01 mm, It is ensured that the partitioning plate 6 can provide sufficient rotational space for the disc partition 9.
  • each component is as shown in the figure.
  • the short axis of the crankshaft 1 is mounted in the bearing hole of the lower flange 7, and the lower end surface of the disk partition 9 is placed in the cavity 8 of the lower flange 7.
  • the outer circle of the disc spacer 9 and the cavity of the lower flange 7 8 inner wall fits into an air suction cavity, the disk partition 9 is inserted into the middle through hole 14 of the partition plate 6, and the partition plate 6 is placed on the upper end surface of the lower flange 7, and the cylinder body 5 is installed in the branch
  • the upper end surface of the partition plate 6 is simultaneously installed in the cylinder and sleeved outside the eccentric portion 2 of the crankshaft 1.
  • the slide vanes 11 are respectively placed in the two sliding vanes 15, and the upper flange 4 and the upper flange are finally installed.
  • the inner hole of 4 is sleeved on the long axis of the crankshaft 1, the lower end surface of the upper flange 4 is placed on the upper end surface of the cylinder body 5, and the two exhaust ports 10 of the upper flange 4 are respectively covered at the exhaust slit 16 of the cylinder.
  • the outer diameter of the disc partition 9 is R2, the inner diameter of the cylinder body 5 is R3, and 1.1 ⁇ R2 / R3 ⁇ 1.5, that is, a circle
  • the diameter of the disk partition 9 is larger than the inner diameter of the cylinder body 5, so that the plate surface of the disk partition 9 is in sealing engagement with the lower end surface of the cylinder body 5, as shown in Fig. 9, the arrow in Fig.
  • the suction of the working chamber is optimized, and the suction gap 13 formed on the disk partition 9 of the crankshaft 1 is fan-shaped, and the outer arc of the suction gap 13 is the outer circle of the disk partition 9 and the suction gap
  • the inner arc of 13 is concentric with the eccentric portion of the crankshaft 1, starting from the eccentric tangent point of the crankshaft 1, and rotating the rotational direction ⁇ 1 of the reverse crankshaft 1 as the starting point of the suction notch, starting from the eccentric tangent point of the crankshaft 1, and reversing
  • the rotation direction ⁇ 2 of the crankshaft 1 serves as a stop point of the suction notch 13, wherein 0° ⁇ ⁇ 1 ⁇ 45°, 50° ⁇ ⁇ 2 ⁇ 110°, and the inner arc radius of the suction notch 13 is R1, and the disk partition 9
  • the radius of the radius is R2, and 0.8 ⁇ R1/R2 ⁇ 1, which needs to be explained that the eccentricity of the cranks
  • the cylinder body 5, the upper flange 4, the disk partition 9, the rotor 3, and the slider 11 form a working chamber in the cylinder, as shown in FIGS. 10 to 17.
  • the working chamber includes three working chambers I, a working chamber II and a working chamber III.
  • the suction gap 13 on the disc partition 9 rotates with the crankshaft 1, so that the three working chambers are inhaled, compressed and exhausted.
  • the three states are constantly changing.
  • Fig. 11 when the crankshaft is rotated by 90°, the volume of the working chamber I is continuously increased, and the working chamber I is connected to the suction chamber of the lower flange 7 through the suction notch 13 opened in the disc partition 9, and is sucked by suction.
  • the gas gap 13 is inhaled;
  • the working chamber II is closed by the disc partition 9, the volume is continuously reduced, the compression process is being performed, and the high-pressure refrigerant is discharged through the exhaust slit 16 on the cylinder;
  • the working chamber III reaches its maximum volume at this time, and the disc partition 9 is about to close it, which is in a critical state of inhalation end and compression start;
  • the three working chambers of the compressor continuously change the inhalation, compression and exhaust in the range of the rotation angle of the crankshaft 1 by 360°, for each working chamber, the crankshaft 1 Rotating one and a half turns to complete one complete cycle of itself.
  • the crankshaft 1 has two exhaust processes per revolution, and the maximum volume of the working chamber is at the crankshaft rotation to 90° and 270° due to the cylinder body.
  • the suction gap 13 rotates with the rotation of the crankshaft, and the volume of the single working chamber can be increased.
  • the working chamber can communicate with the suction gap 13 to perform inhalation, after the working chamber volume reaches a maximum, The working chamber can be separated by the suction gap 13 and the working chamber is compressed without gas backflow, thereby achieving a substantial increase in the displacement of the compressor.
  • the effective volume of the compressor is the sum of the working chamber volume in which the maximum volume of the working chamber is rotated by the crankshaft to 90° and the working chamber when the crankshaft is rotated to 270°, compared with the conventional single-slide compressor of the same size structure.
  • the effective volume can be increased by 50%-60%.
  • the rotary compressor in this embodiment is a two-cylinder compressor, and the two cylinders are multi-slide cylinders, two The plurality of sliding cylinders are arranged along the axial direction of the compressor, respectively being the first cylinder and the second cylinder.
  • the disc partition 9 also includes two spaced apart, respectively, the first disc partition 17 and the first Two disc spacers 18 are shown in Figures 18 and 19.
  • the first disc partition 17 is for closing the bottom end of the first cylinder
  • the second disc partition 18 is for closing the top end of the second cylinder
  • the suction notch 13 is opened on the first disc partition 17 a first suction gap
  • a second suction gap formed on the second disc partition 18 the suction member is disposed between the first cylinder and the second cylinder
  • the A disc partition 17 and the second disc partition 18 are nested in a partitioning plate 6 in the cavity 8 thereof.
  • the first suction gap and the second suction gap are mutually offset in the circumferential direction.
  • the angle between the two suction gaps is 90°, such as As shown in Fig. 19, the gap between the first disc spacer 17 and the second disc spacer 18 constitutes an air flow passage, and the arrows in Fig. 18 represent the flow direction of the air flow.
  • the working process of the compressor in this embodiment is as follows: the refrigerant gas enters the air passage formed by the cavity of the disc partition 9 and the partition plate 6 through the suction port of the partition plate 6, and enters the air flow passage.
  • the refrigerant gas inside enters into the working chambers of the first cylinder and the second cylinder through the first suction gap and the second suction gap, respectively, for compression.
  • the rotary compressor disclosed in this embodiment includes the multi-slide cylinder of Embodiment 1 and another single-slide cylinder, which form a multi-stage compression, which is easy for a person skilled in the art. It is understood that any of the multi-slide cylinder and the single vane cylinder can act as a low-pressure stage cylinder, for example, when the multi-slide cylinder exhaust and single-slide gas When the suction ports of the cylinders are connected, the multi-slide cylinder is equivalent to the low-pressure cylinder. The refrigerant gas is compressed in the multi-slide cylinder and is sucked into the single-slide cylinder for further compression.
  • the single-slide cylinder is equivalent to the high-pressure cylinder. As shown in FIG. 21; of course, if the intake port of the multi-slide cylinder communicates with the exhaust port of the single-slide cylinder, the multi-slide cylinder becomes a high-pressure cylinder, and the single-slide cylinder becomes For low pressure cylinders.
  • the multi-stage compressor is currently known to those skilled in the art, in this embodiment, at least one of the multi-stage compressors is replaced with a multi-slide cylinder, so how to connect each cylinder, I will not go into details here.
  • three sliding vanes are disposed in the multi-slide cylinder of the embodiment, and the three sliding vanes are evenly arranged in the cylinder body.
  • the compressor of this mode has smaller vibration and the operation will be more stable.
  • a refrigeration system including a compressor, a condenser 22, a throttling device 23, and an evaporator 24 is disclosed in the embodiment of the present application, and the compressor in the refrigeration system is in any of the above embodiments.
  • the disclosed rotary compressor is disclosed in the embodiment of the present application, and the compressor in the refrigeration system is in any of the above embodiments.
  • the disclosed rotary compressor is disclosed in the embodiment of the present application, and the compressor in the refrigeration system is in any of the above embodiments.
  • the temperature regulating device disclosed in the embodiment of the present application includes, but is not limited to, an air conditioner and a refrigerator, and the refrigeration system in the temperature regulating device is the refrigeration system disclosed in the above embodiment.
  • the refrigeration system in the embodiment of the present application generally refers to that the heating system can also realize heating when the four-way valve is added to the refrigeration system, so the refrigeration system also includes a system that can be heated after adding the four-way valve. .

Abstract

一种旋转压缩机,至少具有一个多滑片气缸,多滑片气缸包括:气缸本体(5);设置在气缸本体(5)内的多个滑片(11);曲轴(1)以及设置在曲轴(1)上并与滑片(11)配合的转子(3);固定连接于曲轴(1)上的圆盘隔板(9),圆盘隔板(9)用于封闭气缸本体(5)的底端或者顶端;开设于圆盘隔板(9)的外圆上的吸气缺口(13),并且在气缸本体(5)内的工作腔容积增大时,吸气缺口(13)与工作腔连通;在工作腔的容积减小时,圆盘隔板(9)将工作腔封闭。该旋转压缩机可以有效防止多滑片气缸内的吸气逆流现象,保证吸入多滑片气缸内的气体全部被压缩,有效扩展了旋转压缩机的排量。

Description

一种旋转压缩机、制冷系统及调温设备
相关申请
本申请要求2017年1月5日申请的,申请号为201710008622.2,名称为“一种旋转压缩机、制冷系统及调温设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及压缩机制造技术领域,尤其是涉及一种旋转压缩机、制冷系统及调温设备。
背景技术
为了扩大目前单气缸转子压缩机的排量,并减小单气缸压缩机的振动,目前行业内的压缩机普遍采用双气缸结构,所谓双气缸结构就是在压缩机的轴向方向上具有两个叠加的气缸,中间用隔板分隔两个气缸。
然而双气缸结构因存在两个气缸,高度方向的尺寸大,轴承跨距大,轴承可靠性差,同时比单气缸结构多了一个气缸压缩组件,需要两个吸气口,压缩机整体成本较高,此外该种压缩机还存在泄露、摩擦力大的问题。
为了克服双气缸压缩机的上述缺点,本领域技术人员在单气缸压缩机的缸体上设置了两个滑片,一个气缸用两个滑片,实现一个气缸内两个工作腔的目的,以便在扩大压缩机排量的同时,降低压缩机的振动并使其结构紧凑。
单气缸双滑片结构的压缩机存在两个吸气口,这容易导致已经吸入到气缸内的气体重新从吸气口中排出(即吸气逆流)的问题,这使得压缩机实际的排量增加非常有限,为了解决吸气逆流问题,出现了一种在吸气口上设置截止阀的方式,然而增加截止阀后会显著增加压缩机的吸气阻力,导致压缩机的功耗增加,同时截止阀与吸气口之间依然会存在余隙容积,无法真正完全解决吸气逆流的问题。
因此,一个气缸内设置多个滑片时如何防止吸气逆流的现象出现,以有效扩展压缩机的排量是目前本领域技术人员亟需解决的技术问题。
申请内容
本申请的目的之一是提供一种旋转压缩机,以便防止多滑片气缸出现吸气逆流的现象,有效扩展多滑片气缸的排量,提高压缩机的能效。
本申请的另一目的还在于提供一种采用上述旋转压缩机的制冷系统。
本申请的再一目的还在于提供一种采用上述制冷系统的调温设备。
为达到上述目的,本申请所提供的旋转压缩机,至少具有一个多滑片气缸,所述多滑片气缸包括:
气缸本体;
设置在所述气缸本体内的多个滑片;
曲轴以及设置在所述曲轴上并与所述滑片配合的转子;
固定连接于所述曲轴上的圆盘隔板,所述圆盘隔板用于封闭所述气缸本体的底端或者顶端;
开设于所述圆盘隔板的外圆上的吸气缺口,并且在所述气缸本体内的工作腔容积增大时,所述吸气缺口与所述工作腔连通;在所述工作腔的容积减小时,所述圆盘隔板将所述工作腔封闭。
优选的,所述多滑片气缸还包括:
开设有吸气口的吸气件,所述吸气件的内部设置有空腔,所述空腔的内壁用于与所述圆盘隔板的外圆配合形成与所述吸气口连通的吸气腔。
优选的,所述多滑片旋转压缩机为单缸压缩机。
优选的,所述气缸本体内设置有两个所述滑片。
优选的,两个所述滑片之间的夹角为90°~270°。
优选的,所述吸气缺口呈扇形,且所述吸气缺口的外弧为所述圆盘隔板的外圆,所述吸气缺口的内弧与所述曲轴的偏心部同心,所述吸气缺口所对应的圆心角小于两个所述滑片之间的最小夹角。
优选的,两个所述滑片之间的夹角为180°。
优选的,所述吸气缺口呈扇形,且所述吸气缺口的外弧为所述圆盘隔板的外圆,所述吸气缺口的内弧与所述曲轴的偏心部同心,以所述曲轴的偏心切点为起点,逆向所述曲轴的旋转方向旋转θ1作为所述吸气缺口的起点,以所述曲轴的偏心切点为起点,逆向所述曲轴的旋转方向旋转θ2作为所述吸气缺口的止点,其中,0°<θ1<45°,50°<θ2<110°。
优选的,所述吸气缺口的内弧半径为R1,所述圆盘隔板的半径为R2,且0.8<R1/R2<1。
优选的,所述吸气件为压缩机下法兰,所述圆盘隔板封闭所述气缸本体的底端。
优选的,所述压缩机下法兰的上端面与所述气缸本体的底端之间还设置有带有中部通孔 的分隔板,所述圆盘隔板嵌设在所述中部通孔内,所述圆盘隔板的半径为R2,所述分隔板的中部通孔的半径为R5,其中,R5-R2≥0.01mm。
优选的,所述圆盘隔板的厚度为H1,所述分隔板的厚度为H2,且H2-H1≥0.01mm。
优选的,所述圆盘隔板的半径为R2,所述气缸本体的内径为R3,且1.1<R2/R3<1.5。
优选的,所述旋转压缩机包括两个所述多滑片气缸,且两个所述多滑片气缸分别为沿所述压缩机轴向布置的第一气缸和第二气缸,所述圆盘隔板为间隔设置的第一圆盘隔板和第二圆盘隔板,其中,所述第一圆盘隔板用于封闭所述第一气缸的底端,所述第二圆盘隔板用于封闭所述第二气缸的顶端,所述吸气缺口为开设在所述第一圆盘隔板上的第一吸气缺口,和开设在所述第二圆盘隔板上的第二吸气缺口,所述吸气件为设置在所述第一气缸和所述第二气缸之间,且将所述第一圆盘隔板和所述第二圆盘隔板套入其所述空腔内的分隔板。
优选的,所述第一吸气缺口和所述第二吸气缺口相互错开。
优选的,所述第一吸气缺口和所述第二吸气缺口之间的夹角为90°。
优选的,任意一个所述气缸内设置有两个所述滑片。
优选的,所述旋转压缩机包括一个所述多滑片气缸和一个单滑片气缸,且所述多滑片气缸的排气口与所述单滑片气缸的吸气口相通。
优选的,所述旋转压缩机包括一个所述多滑片气缸和一个单滑片气缸,且所述多滑片气缸的吸气口与所述单滑片气缸的排气口相通。
优选的,所述多滑片气缸的气缸本体内设置有三个所述滑片,且三个所述滑片沿所述气缸本体的周向均匀分布。
本申请所公开的制冷系统,包括压缩机、冷凝器、节流装置以及蒸发器,所述压缩机为上述任意一项中所公开的旋转压缩机。
本申请所公开的调温设备设置有制冷系统,所述制冷系统为上述制冷系统。
优选的,所述调温设备为空调或冰箱。
本申请所公开的旋转压缩机中,至少具有一个多滑片气缸,多滑片气缸包括基本部件如气缸本体、滑片、以及曲轴等,但是该气缸本体上并未设置吸气口,曲轴上固定设置有圆盘隔板,该圆盘隔板将随着曲轴进行同步旋转,圆盘隔板用于封闭气缸本体的底端或者顶端,并且圆盘上开设有吸气缺口,在随曲轴旋转的过程中,当转子、气缸本体以及滑片所形成的工作腔的容积增大时,吸气缺口与正在增大的工作腔连通,实现吸气;当工作腔的容积减小时,吸气缺口与正在减小的工作腔隔绝,圆盘隔板将正在减小的工作腔封闭,避免气体未经 过压缩重新排出。因此,本申请所公开的旋转压缩机可以有效防止多滑片气缸内的吸气逆流现象,保证吸入多滑片气缸内的气体全部被压缩,有效扩展了旋转压缩机的排量,而且没有采用截止阀,吸气阻力小,能耗低,多滑片气缸运转稳定,振动小且能效高。
附图说明
图1为本申请第一实施例中所公开的旋转压缩机的结构示意图;
图2为图1中H部分的局部放大图;
图3为本申请第一实施例中所公开的旋转压缩机的爆炸示意图;
图4为图3中曲轴的结构示意图;
图5为图4中上法兰的俯视示意图;
图6为图4中的分隔板的结构示意图;
图7为图4中下法兰的结构示意图;
图8为图4中气缸的结构示意图;
图9为本申请第一实施例中气缸各部件配合关系示意图;
图10为本申请第一实施例中转子旋转45°时的结构示意图;
图11为本申请第一实施例中转子旋转90°时的结构示意图;
图12为本申请第一实施例中转子旋转135°时的结构示意图;
图13为本申请第一实施例中转子旋转180°时的结构示意图;
图14为本申请第一实施例中转子旋转225°时的结构示意图;
图15为本申请第一实施例中转子旋转270°时的结构示意图;
图16为本申请第一实施例中转子旋转315°时的结构示意图;
图17为本申请第一实施例中转子旋转360°时的结构示意图;
图18为本申请第二实施例中所公开的旋转压缩机的结构示意图;
图19为图18中曲轴的结构示意图;
图20为图18中分隔板的结构示意图;
图21为本申请第三实施例中所公开的旋转压缩机的结构示意图;
图22为本申请第四实施例中所公开的旋转压缩机的结构示意图;
图23为本申请实施例中所公开的制冷系统的结构示意图。
其中,1为曲轴,2为偏心部,3为转子,4为上法兰,5为气缸本体,6为分隔板,7为 下法兰,8为空腔,9为圆盘隔板,10为排气口,11为滑片,12为吸气口,13为吸气缺口,14为中部通孔,15为滑片槽,16为排气切口,17为第一圆盘隔板,18为第二圆盘隔板,19为上封板,20为隔板,21为高压气缸,22为冷凝器,23为节流装置,24为蒸发器,25为气液分离器。
具体实施方式
本申请的核心之一是提供一种旋转压缩机,以便防止多滑片气缸出现吸气逆流的现象,有效扩展多滑片气缸的排量,提高压缩机的能效。
本申请的另一核心还在于提供一种采用上述旋转压缩机的制冷系统。
本申请的再一核心在于提供一种采用上述制冷系统的调温设备。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
本申请所公开的旋转压缩机中,至少具有一个多滑片气缸,所谓多滑片气缸就是一个气缸内设置有多个滑片,该多滑片气缸具体包括:气缸本体5、滑片11、曲轴1以及圆盘隔板9,其中,滑片11设置在气缸本体5内,曲轴1穿过气缸本体5并且曲轴1上设置有用于与滑片11配合以形成工作腔的转子3,圆盘隔板9固定设置在曲轴1上,并且圆盘隔板9的作用在于封闭气缸本体5的底端或者顶端,不难理解的是,当圆盘隔板9封闭气缸本体5底端时,气缸本体5、圆盘隔板9、滑片11、转子3以及气缸的上法兰4将共同围成压缩机的工作腔,而由于滑片11包括多个,因此气缸本体5内将被分隔为多个独立且周期性变化的工作腔,圆盘隔板9的外圆上开设有吸气缺口13,并且在气缸本体5内的工作腔容积增大时,吸气缺口13与工作腔连通;在工作腔的容积减小时,圆盘隔板9将工作腔封闭。
圆盘隔板9随曲轴1旋转,当转子3、气缸本体5以及滑片11所形成的工作腔的容积增大时,吸气缺口13与正在增大的工作腔连通,实现吸气;当工作腔的容积减小时,吸气缺口13与正在减小的工作腔隔绝,圆盘隔板9将正在减小的工作腔封闭,避免气体未经过压缩重新排出。因此,本申请所公开的旋转压缩机可以有效防止多滑片气缸内的吸气逆流现象,保证吸入多滑片气缸内的气体全部被压缩,有效扩展了旋转压缩机的排量,而且没有采用截止阀,吸气阻力小,能耗低,多滑片气缸运转稳定,振动小且能效高。
本领域技术人员容易理解的是,气缸本体5上的排气切口应当紧靠滑片槽15设置,而压缩机的排气口10的设置位置并不受限制,为了方便压缩机的安装,通常会将压缩机的排气口 10设置在上法兰4或者下法兰7上,为了进一步优化上述技术方案,上述多滑片气缸还包括吸气件,该吸气件开设有吸气口12,吸气件12的内部设置有空腔8,并且空腔8的内壁用于与圆盘隔板9的外圆配合形成与吸气口12连通的吸气腔。
以下内容中,本文将以多个不同的实施例来对本申请进行详细说明。
第一实施例
请参考图1至图17,本实施例中所公开的旋转压缩机为单缸旋转压缩机,该旋转压缩机包括上法兰4、气缸本体5、曲轴1、下法兰7,在本实施例中,下法兰7作为吸气件,相应的,圆盘隔板9用于封闭气缸本体5的底端,而气缸本体5的顶端通过上法兰4来封闭,如图1中所示,气缸本体5内所设置的滑片11数量实际不受限制,例如可以为2个、3个或者更多个,本实施例中以2个滑片11为例来进行介绍,两个滑片11之间的夹角以90°至270°为宜,以便将气缸本体5内部分隔为两个较大的腔体,本实施例中两个滑片11之间的夹角为180°,在本实施例中,吸气缺口13的形状为扇形,如图3、4和9所示,并且吸气缺口13的外弧为圆盘隔板9的外圆,吸气缺口13的内弧与曲轴1的偏心部2同心,吸气缺口13所对应的圆心角小于两个滑片11之间的最小夹角,以保证气体能够在每个腔体内进行压缩。
如图8中所示,该实施例中的气缸本体5内具有对置的两个滑片槽15,并且分别在滑片槽15的一侧设置有排气切口16,气缸上并未设置吸气口,如图4中所示,曲轴1包括长轴、短轴和偏心部2,偏心部2的一侧设置有和曲轴1一体式固定连接的圆盘隔板9,圆盘隔板9上开设有吸气缺口13,圆盘隔板9以及吸气缺口13随曲轴1同步旋转,圆盘隔板9起到密封气缸本体5下端面的作用,而吸气缺口13可以将容积正在增加的工作腔与吸气口12连通,与气缸上设置的排气切口16相连通的排气口10设置在上法兰4上,如图5中所示,排气口10具体包括两个,分别与气缸上的两个排气切口16相连通,如图7中所示,下法兰7上设置有供曲轴1的短轴安装的轴承孔,并且下法兰7内开设有空腔8,下法兰7的侧壁上开设有与空腔8连通的吸气口12,由于轴承孔的上端与下法兰7的上端面平齐,为了保证圆盘隔板9能够顺利旋转,本实施例中还增设了分隔板6,如图6中所示,分隔板6设置有中部通孔14,中部通孔14的半径为R5,圆盘隔板的半径为R2,R5-R2≥0.01mm,圆盘隔板9的厚度为H1,分隔板6的厚度为H2,且H2-H1≥0.01mm,以保证分隔板6能够为圆盘隔板9提供足够的旋转空间。
请参考图3,各部件的装配关系如图所示,曲轴1的短轴安装于下法兰7的轴承孔中,圆盘隔板9的下端面放置于下法兰7的空腔8内,并且圆盘隔板9的外圆与下法兰7的空腔 8内壁配合围成一个吸气腔体,圆盘隔板9套入分隔板6的中部通孔14内,分隔板6放置于下法兰7的上端面上,气缸本体5安装在分隔板6的上端面,同时转子3安装于气缸内并套设在曲轴1的偏心部2外,两个滑片槽15内分别放入滑片11,最后安装上法兰4,上法兰4的内孔套于曲轴1的长轴上,上法兰4下端面放置于气缸本体5的上端面,上法兰4的两个排气口10分别覆盖在气缸的排气切口16处。
为了保证工作腔的密封以及曲轴的顺畅运转,本实施例中,圆盘隔板9的外径为R2,气缸本体5的内径为R3,并且1.1<R2/R3<1.5,也就是说,圆盘隔板9的直径大于气缸本体5的内径,因此圆盘隔板9的板面与气缸本体5的下端面密封配合,如图9中所示,图9中的箭头代表曲轴转动方向,为了对工作腔的吸气进行优化,曲轴1圆盘隔板9上所开设的吸气缺口13为扇形,且吸气缺口13的外弧为所述圆盘隔板9的外圆,吸气缺口13的内弧与曲轴1的偏心部同心,以曲轴1的偏心切点为起点,逆向曲轴1的旋转方向旋转θ1作为所述吸气缺口的起点,以曲轴1的偏心切点为起点,逆向曲轴1的旋转方向旋转θ2作为吸气缺口13的止点,其中,0°<θ1<45°,50°<θ2<110°,吸气缺口13的内弧半径为R1,圆盘隔板9的半径为R2,并且0.8<R1/R2<1,需要进行说明的是,本实施例中曲轴1的偏心切点是指曲轴1的偏心部2上与曲轴旋转中心距离最大的点。
根据上述各个零部件之间的装配关系,气缸本体5、上法兰4、圆盘隔板9、转子3以及滑片11就形成了气缸内的工作腔,如图10至图17中所示,工作腔包括3个,分别为工作腔Ⅰ、工作腔Ⅱ和工作腔Ⅲ,圆盘隔板9上的吸气缺口13随曲轴1转动,使得三个工作腔从吸气、压缩到排气三种状态不断交替变化。
图10至17是以图中位置靠上的滑片11为曲轴的0°起点,从曲轴旋转45°至360°范围内来展示各个工作腔的变化过程。
图10中,曲轴旋转45°时,工作腔Ⅰ的容积不断增大,工作腔Ⅰ通过圆盘隔板9上开设的吸气缺口13与下法兰7的吸气腔相连通,正通过吸气缺口13进行吸气;工作腔Ⅱ被圆盘隔板9封闭,容积在不断缩小,正在进行压缩过程,高压制冷剂通过气缸上的排气切口16排出;工作腔Ⅲ此时容积也在增大,也是通过圆盘隔板9上开设的吸气缺口13与下法兰7的吸气腔相连通,正通过吸气缺口13进行吸气;
图11中,曲轴旋转90°时,工作腔Ⅰ的容积不断增大,工作腔Ⅰ通过圆盘隔板9上开设的吸气缺口13与下法兰7的吸气腔相连通,正通过吸气缺口13进行吸气;工作腔Ⅱ被圆盘隔板9封闭,容积在不断缩小,正在进行压缩过程,高压制冷剂通过气缸上的排气切口16排出; 工作腔Ⅲ此时容积达到最大,圆盘隔板9即将将其封闭,其正处于吸气结束和压缩开始的临界状态;
图12中,曲轴旋转135°时,工作腔Ⅰ的容积仍在不断增大,工作腔Ⅰ通过圆盘隔板9上开设的吸气缺口13与下法兰7的吸气腔相连通,正通过吸气缺口13进行吸气;工作腔Ⅱ被圆盘隔板9封闭,容积仍然在不断缩小,正在进行压缩排气,高压制冷剂通过气缸上的排气切口16排出;工作腔Ⅲ此时容积在减小,圆盘隔板9将其封闭,正在进行压缩过程,当气体压力达到排出值时,会通过气缸上的排气切口16排出;
图13中,曲轴旋转180°时,工作腔Ⅰ的容积仍在不断增大,工作腔Ⅰ依然在通过吸气缺口13进行吸气;工作腔Ⅱ容积减小到0,排气结束;工作腔Ⅲ此时容积依然在减小,圆盘隔板9将其封闭,正在进行压缩排气过程;
图14中,曲轴旋转225°时,工作腔Ⅰ的容积仍在不断增大,工作腔Ⅰ依然在通过吸气缺口13进行吸气;工作腔Ⅱ容积开始增大,通过圆盘隔板9上开设的吸气缺口13与下法兰7的吸气腔相连通,正通过吸气缺口13进行吸气;工作腔Ⅲ此时容积依然在减小,圆盘隔板9将其封闭,正在进行压缩排气过程;
图15中,曲轴旋转270°时,工作腔Ⅰ的容积达到最大,停止吸气,圆盘隔板9即将将其封闭,其正处于吸气结束和压缩开始的临界状态;工作腔Ⅱ容积增大,正通过吸气缺口13进行吸气;工作腔Ⅲ此时容积依然在减小,圆盘隔板9将其封闭,正在进行压缩排气过程;
图16中,曲轴旋转315°时,工作腔Ⅰ的容积减小,圆盘隔板9将其封闭,正在进行压缩过程;工作腔Ⅱ容积增大,正通过吸气缺口13进行吸气;工作腔Ⅲ此时容积继续不断减小,圆盘隔板9将其封闭,正在进行排气过程;
图17中,曲轴旋转360°时,工作腔Ⅰ的容积减小,圆盘隔板9将其封闭,正在进行压缩排气过程;工作腔Ⅱ容积依然在增大,正通过吸气缺口13进行吸气;工作腔Ⅲ此时容积减小到0,排气结束;
由以上工作过程可以看出,该压缩机的3个工作腔在曲轴1旋转360°的转角范围内,不断进行吸气、压缩和排气的交替变化,针对每一个工作腔而言,曲轴1旋转一圈半完成自身的一个完整循环,对于整个压缩机而言,曲轴1每旋转一圈,具有两次排气过程,工作腔最大容积处于曲轴旋转至90°和270°时,因气缸本体5上无吸气口,工作腔的吸气是通过设置在的圆盘隔板9上的吸气缺口13实现的,吸气缺口13随曲轴旋转而旋转,可以实现在单个工作腔容积增大过程中,工作腔能与吸气缺口13连通,进行吸气,在工作腔容积达到最大后, 工作腔能于吸气缺口13分离,工作腔进行压缩后无气体的逆流,实现了压缩机排量的大幅提升。本实施例中压缩机的有效容积为工作腔最大容积处于曲轴旋转至90°的工作腔容积与曲轴旋转至270°时工作腔之和,与传统的同尺寸结构单滑片压缩机相比,有效容积可以提升50%-60%。
另外根据上述工作过程的描述,当一侧吸气结束开始压缩时,另外一侧排气结束开始吸气,这一工作原理使其在压缩过程中比传统单气缸单滑片压缩机的转矩波动和轴承载荷要小,从而使压缩机的振动比普通压缩机小。
第二实施例
本实施例的基本原理与实施例一相同,与实施例一的不同之处在于,本实施例中的旋转压缩机为双缸压缩机,并且这两个气缸均为多滑片气缸,两个多滑片气缸沿压缩机的轴向布置,分别为第一气缸和第二气缸,相应的,圆盘隔板9也就包括间隔设置的两个,分别为第一圆盘隔板17和第二圆盘隔板18,如图18和图19中所示。其中,第一圆盘隔板17用于封闭第一气缸的底端,第二圆盘隔板18用于封闭第二气缸的顶端,吸气缺口13为开设在第一圆盘隔板17上的第一吸气缺口,和开设在第二圆盘隔板18上的第二吸气缺口,吸气件为设置在所述第一气缸和所述第二气缸之间,且将所述第一圆盘隔板17和所述第二圆盘隔板18套入其所述空腔8内的分隔板6。如图18至图20所示。
更进一步的,为了避免两个气缸产生吸气争夺现象,第一吸气缺口和第二吸气缺口在周向上相互错开,优选的,两个吸气缺口之间的夹角为90°,如图19中所示,第一圆盘隔板17和第二圆盘隔板18之间的间隙构成了气流通道,图18中的箭头代表气流流动方向。不难理解的是,由于第一气缸的底端与第一圆盘隔板17配合,因此第一气缸的排气口设置在上法兰上,第二气缸的顶端与第二圆盘隔板18配合,因此第二气缸的排气口设置在下法兰上,分隔板6还兼具了吸气件的作用。
本实施例中压缩机的工作过程如下:制冷剂气体经过分隔板6的吸气口进入到圆盘隔板9以及分隔板6的空腔所形成的气流通道内,进入到该气流通道内的制冷剂气体分别通过第一吸气缺口和第二吸气缺口进入到第一气缸和第二气缸的工作腔内进行压缩。
第三实施例
请参考图21,本实施例中所公开的旋转压缩机,包括了实施例1中的多滑片气缸和另外一个单滑片气缸,这两个气缸形成了多级压缩,本领域技术人员容易理解的是,多滑片气缸和单滑片气缸中的任意一者可以充当低压级气缸,例如,当多滑片气缸的排气口与单滑片气 缸的吸气口相通时,多滑片气缸相当于低压级气缸,制冷剂气体在多滑片气缸内压缩后将被吸入单滑片气缸内进一步压缩,因此单滑片气缸相当于高压级气缸,如图21中所示;当然,若多滑片气缸的吸气口与所述单滑片气缸的排气口相通,那么多滑片气缸就变为高压级气缸,单滑片气缸就变为了低压级气缸。
由于多级压缩机目前已经为本领域技术人员的公知技术,本实施例中主要是将多级压缩机中的至少一级更换为多滑片气缸,因此对于各个气缸之间如何连接,本文中对此不再进行赘述。
第四实施例
请参考图22,本实施例中的多滑片气缸内设置有三个滑片,三个滑片均匀布置在气缸本体内,该种方式的压缩机振动更小,运转将更加平稳。
需要进行说明的是,本申请对上述各个实施例进行了单独的介绍,在不矛盾的前提下,上述各个实施例之间可以自由组合叠加,并且本申请中的压缩机不限于立式压缩机,对于卧式压缩机同样适用。
除此之外,本申请实施例中还公开了一种制冷系统,包括压缩机、冷凝器22、节流装置23以及蒸发器24,并且该制冷系统中的压缩机为上述任意一实施例中所公开的旋转压缩机。
本申请实施例中所公开的调温设备,包括但不限于空调和冰箱,该调温设备中的制冷系统为上述实施例中所公开的制冷系统。
需要进行说明的是,本申请实施例中的制冷系统为泛指,当该制冷系统中加入四通阀后也能够实现制热,因此该制冷系统也包含加入四通阀后可制热的系统。
以上对本申请中的旋转压缩机、制冷系统及调温设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (23)

  1. 一种旋转压缩机,至少具有一个多滑片气缸,其特征在于,所述多滑片气缸包括:
    气缸本体(5);
    设置在所述气缸本体(5)内的多个滑片(11);
    曲轴(1)以及设置在所述曲轴(1)上并与所述滑片(11)配合的转子(3);
    固定连接于所述曲轴(1)上的圆盘隔板(9),所述圆盘隔板(9)用于封闭所述气缸本体(5)的底端或者顶端;
    开设于所述圆盘隔板(9)的外圆上的吸气缺口(13),并且在所述气缸本体(5)内的工作腔容积增大时,所述吸气缺口(13)与所述工作腔连通;在所述工作腔的容积减小时,所述圆盘隔板(9)将所述工作腔封闭。
  2. 根据权利要求1所述的旋转压缩机,其特征在于,所述多滑片气缸还包括:
    开设有吸气口(12)的吸气件,所述吸气件的内部设置有空腔(8),所述空腔的内壁用于与所述圆盘隔板(9)的外圆配合形成与所述吸气口(12)连通的吸气腔。
  3. 根据权利要求2所述的旋转压缩机,其特征在于,所述旋转压缩机为单缸压缩机。
  4. 根据权利要求3所述的旋转压缩机,其特征在于,所述气缸本体(5)内设置有两个所述滑片(11)。
  5. 根据权利要求4所述的旋转压缩机,其特征在于,两个所述滑片(11)之间的夹角为90°~270°。
  6. 根据权利要求5所述的旋转压缩机,其特征在于,所述吸气缺口(13)呈扇形,且所述吸气缺口(13)的外弧为所述圆盘隔板(9)的外圆,所述吸气缺口(13)的内弧与所述曲轴(1)的偏心部(2)同心,所述吸气缺口(13)所对应的圆心角小于两个所述滑片(11)之间的最小夹角。
  7. 根据权利要求6所述的旋转压缩机,其特征在于,两个所述滑片(11)之间的夹角为180°。
  8. 根据权利要求7所述的旋转压缩机,其特征在于,所述吸气缺口(13)呈扇形,且所述吸气缺口(13)的外弧为所述圆盘隔板(9)的外圆,所述吸气缺口(13)的内弧与所述曲轴(1)的偏心部同心,以所述曲轴(1)的偏心切点为起点,逆向所述曲轴(1)的旋转方向旋转θ1作为所述吸气缺口(13)的起点,以所述曲轴(1)的偏心切点为起点,逆向所述曲轴(1)的旋转方向旋转θ2作为所述吸气缺口(13)的止点,其中,0°<θ1<45°,50°<θ2<110°。
  9. 根据权利要求8所述的旋转压缩机,其特征在于,所述吸气缺口(13)的内弧半径为R1,所述圆盘隔板(9)的半径为R2,且0.8<R1/R2<1。
  10. 根据权利要求3所述的旋转压缩机,其特征在于,所述吸气件为压缩机的下法兰(7),所述圆盘隔板(9)封闭所述气缸本体(5)的底端。
  11. 根据权利要求10所述的旋转压缩机,其特征在于,所述压缩机的下法兰(7)的上端面与所述气缸本体(5)的底端之间还设置有带有中部通孔(14)的分隔板(6),所述圆盘隔板(9)嵌设在所述中部通孔(14)内,所述圆盘隔板(9)的半径为R2,所述分隔板(6)的中部通孔(14)的半径为R5,其中,R5-R2≥0.01mm。
  12. 根据权利要求11所述的旋转压缩机,其特征在于,所述圆盘隔板(9)的厚度为H1,所述分隔板(6)的厚度为H2,且H2-H1≥0.01mm。
  13. 根据权利要求10所述的旋转压缩机,其特征在于,所述圆盘隔板(9)的半径为R2,所述气缸本体(5)的内径为R3,且1.1<R2/R3<1.5。
  14. 根据权利要求2所述的旋转压缩机,其特征在于,所述旋转压缩机包括两个所述多滑片气缸,且两个所述多滑片气缸分别为沿所述压缩机轴向布置的第一气缸和第二气缸,所述圆盘隔板(9)为间隔设置的第一圆盘隔板(17)和第二圆盘隔板(18),其中,所述第一圆盘隔板(17)用于封闭所述第一气缸的底端,所述第二圆盘隔板(18)用于封闭所述第二气缸的顶端,所述吸气缺口(13)为开设在所述第一圆盘隔板(17)上的第一吸气缺口,和开设在所述第二圆盘隔板(18)上的第二吸气缺口,所述吸气件为设置在所述第一气缸和所述第二气缸之间,且将所述第一圆盘隔板(17)和所述第二圆盘隔板(18)套入其所述空腔内的分隔板(6)。
  15. 根据权利要求14所述的旋转压缩机,其特征在于,所述第一吸气缺口和所述第二吸气缺口相互错开。
  16. 根据权利要求15所述的旋转压缩机,其特征在于,所述第一吸气缺口和所述第二吸气缺口之间的夹角为90°。
  17. 根据权利要求14-16任意一项所述的旋转压缩机,其特征在于,任意一个所述气缸内设置有两个所述滑片(11)。
  18. 根据权利要求2所述的旋转压缩机,其特征在于,所述旋转压缩机包括一个所述多滑片气缸和一个单滑片气缸,且所述多滑片气缸的排气口与所述单滑片气缸的吸气口相通。
  19. 根据权利要求18所述的旋转压缩机,其特征在于,所述旋转压缩机包括一个所述多 滑片气缸和一个单滑片气缸,且所述多滑片气缸的吸气口与所述单滑片气缸的排气口相通。
  20. 根据权利要求1所述的旋转压缩机,其特征在于,所述多滑片气缸的气缸本体(5)内设置有三个所述滑片(11),且三个所述滑片(11)沿所述气缸本体(5)的周向均匀分布。
  21. 一种制冷系统,包括压缩机、冷凝器、节流装置以及蒸发器,其特征在于,所述压缩机为如权利要求1-20任意一项所述的旋转压缩机。
  22. 一种调温设备,设置有制冷系统,其特征在于,所述制冷系统为如权利要求21所述的制冷系统。
  23. 根据权利要求22所述的调温设备,其特征在于,所述调温设备为空调或冰箱。
PCT/CN2017/106287 2017-01-05 2017-10-16 一种旋转压缩机、制冷系统及调温设备 WO2018126758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008622.2 2017-01-05
CN201710008622.2A CN106837790B (zh) 2017-01-05 2017-01-05 一种旋转压缩机、制冷系统及调温设备

Publications (1)

Publication Number Publication Date
WO2018126758A1 true WO2018126758A1 (zh) 2018-07-12

Family

ID=59117070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106287 WO2018126758A1 (zh) 2017-01-05 2017-10-16 一种旋转压缩机、制冷系统及调温设备

Country Status (2)

Country Link
CN (1) CN106837790B (zh)
WO (1) WO2018126758A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320914A (zh) * 2021-12-23 2022-04-12 珠海格力电器股份有限公司 泵体组件和压缩机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837790B (zh) * 2017-01-05 2020-01-14 珠海格力电器股份有限公司 一种旋转压缩机、制冷系统及调温设备
JP6460173B1 (ja) * 2017-07-27 2019-01-30 株式会社富士通ゼネラル ロータリ圧縮機
CN107701448A (zh) * 2017-10-20 2018-02-16 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机及具有其的空调器
CN108999781A (zh) * 2018-08-24 2018-12-14 珠海凌达压缩机有限公司 泵体组件及压缩机
CN109209878B (zh) * 2018-10-25 2024-05-07 珠海格力节能环保制冷技术研究中心有限公司 曲轴、泵体组件、旋转式压缩机和制冷设备
CN117619008B (zh) * 2024-01-26 2024-04-23 西安康诺化工有限公司 一种化工产品过滤器及其过滤方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087256A (ko) * 2005-01-28 2006-08-02 엘지전자 주식회사 로터리 압축기의 실린더 변형 저감 구조
CN1978904A (zh) * 2005-12-06 2007-06-13 上海日立电器有限公司 两级滚动转子式压缩机
CN203272136U (zh) * 2013-04-11 2013-11-06 珠海格力电器股份有限公司 单缸多级压缩机
CN105201833A (zh) * 2015-11-06 2015-12-30 广东美芝制冷设备有限公司 压缩机
CN106837790A (zh) * 2017-01-05 2017-06-13 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机、制冷系统及调温设备
CN206397738U (zh) * 2017-01-05 2017-08-11 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机、制冷系统及调温设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531281B1 (ko) * 2003-05-13 2005-11-28 엘지전자 주식회사 로터리 압축기
KR100539561B1 (ko) * 2004-04-08 2005-12-29 엘지전자 주식회사 이중용량 로터리 압축기
CN101520044B (zh) * 2008-02-27 2012-07-18 王玉华 双滚动转子式压缩机
CN104564675A (zh) * 2014-11-04 2015-04-29 广东美芝制冷设备有限公司 双缸旋转式压缩机及具有其的制冷装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087256A (ko) * 2005-01-28 2006-08-02 엘지전자 주식회사 로터리 압축기의 실린더 변형 저감 구조
CN1978904A (zh) * 2005-12-06 2007-06-13 上海日立电器有限公司 两级滚动转子式压缩机
CN203272136U (zh) * 2013-04-11 2013-11-06 珠海格力电器股份有限公司 单缸多级压缩机
CN105201833A (zh) * 2015-11-06 2015-12-30 广东美芝制冷设备有限公司 压缩机
CN106837790A (zh) * 2017-01-05 2017-06-13 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机、制冷系统及调温设备
CN206397738U (zh) * 2017-01-05 2017-08-11 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机、制冷系统及调温设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320914A (zh) * 2021-12-23 2022-04-12 珠海格力电器股份有限公司 泵体组件和压缩机

Also Published As

Publication number Publication date
CN106837790A (zh) 2017-06-13
CN106837790B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2018126758A1 (zh) 一种旋转压缩机、制冷系统及调温设备
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
JP2008286095A (ja) スクロール圧縮機
US20060198749A1 (en) Capacity-changing unit of orbiting vane compressor
WO2019024562A1 (zh) 压缩机以及具有它的制冷设备
WO2013172144A1 (ja) 気体圧縮機
JP2007170253A (ja) スクロール圧縮機
KR20120007337A (ko) 압축기
JP5338314B2 (ja) 圧縮機および冷凍装置
CN104912795B (zh) 变容量涡旋压缩机
CN104963861B (zh) 用于旋转式压缩机的压缩机构及具有其的旋转式压缩机
US11346221B2 (en) Backpressure passage rotary compressor
WO2019137036A1 (zh) 压缩机及具有其的空调器
CN206397738U (zh) 一种旋转压缩机、制冷系统及调温设备
CN206280255U (zh) 一种气缸、滑片弹簧固定结构及旋转式压缩机
KR200381016Y1 (ko) 로터리 압축기의 흡입손실 저감 구조
KR102608742B1 (ko) 로터리 압축기
JPH01253583A (ja) 低圧型回転圧縮機
US20060177339A1 (en) Horizontal type orbiting vane compressor
WO2020211450A1 (zh) 变容压缩机
KR20150081142A (ko) 로터리 압축기
CN214170836U (zh) 压缩机及其上法兰组件
JP2000009065A (ja) スクロール型圧縮機
JP5668556B2 (ja) 回転式圧縮機
WO2021203639A1 (zh) 压缩机构及涡旋压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890632

Country of ref document: EP

Kind code of ref document: A1