WO2020211450A1 - 变容压缩机 - Google Patents

变容压缩机 Download PDF

Info

Publication number
WO2020211450A1
WO2020211450A1 PCT/CN2019/129067 CN2019129067W WO2020211450A1 WO 2020211450 A1 WO2020211450 A1 WO 2020211450A1 CN 2019129067 W CN2019129067 W CN 2019129067W WO 2020211450 A1 WO2020211450 A1 WO 2020211450A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure chamber
air passage
low
intermediate plate
Prior art date
Application number
PCT/CN2019/129067
Other languages
English (en)
French (fr)
Inventor
王艳珍
潘瑾
刘春慧
Original Assignee
上海海立电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海立电器有限公司 filed Critical 上海海立电器有限公司
Priority to US17/059,300 priority Critical patent/US11384761B2/en
Publication of WO2020211450A1 publication Critical patent/WO2020211450A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioning and refrigeration, in particular to a variable capacity compressor.
  • air conditioners are used more and more frequently. In order to improve the quality of life, the air conditioners are also turned on in the transitional seasons (spring and autumn). However, the temperature difference between indoor and outdoor is smaller after the air conditioners are used in the transitional season, and the load of the air conditioner is smaller. When I get home in winter, I hope that the air conditioner can blow out hot air and operate at a super high load.
  • the air conditioner can take care of both rapid heating in winter and minimal load operation in the transitional season. This requires the compressor to take both into account, that is, the capacity (volume flow) of the air conditioner compressor can vary according to the load.
  • the compressor capacity used in traditional air conditioners is fixed and immutable.
  • inverter technology is used to change the input current or digital scroll technology to achieve changes in air conditioning load.
  • the former cannot well meet the temperature control needs of the four seasons.
  • the latter is gradually abandoned due to technical shortcomings such as fluctuating noise, frequent switching noise of electronic expansion valves, and pulse noise of refrigerant flow. Therefore, it is necessary to design a compressor with its own variable capacity to meet the larger load change span and realize the load change of the air conditioner.
  • the purpose of the present invention is to provide a variable capacity compressor
  • variable displacement compressor of the present invention connects the exhaust cavity of one cylinder with the suction cavity of another cylinder through a series flow passage arranged in the intermediate plate, and the series flow passage is provided with a flow control component for controlling the series flow passage
  • the flow rate of the refrigerant to achieve the switching of the compressor's own capacity to meet the needs of different loads in different seasons;
  • the series flow channel When the temperature difference between indoor and outdoor is large, the series flow channel is completely closed, so that the two cylinders can operate completely independently. Compared with when the series flow channel is opened, the capacity of the compressor is increased and the compressor can operate at full load.
  • variable capacity compressor including:
  • the intermediate plate separates the two cylinders, and at least one series flow passage is formed in the intermediate plate, wherein one end of the series flow passage communicates with the exhaust chamber of any one of the two cylinders, and the series The other end of the flow passage communicates with the suction chamber of the other of the two cylinders, and each of the series flow passages is provided with a flow control assembly for adjusting the flow rate of the refrigerant flowing through the series flow passages .
  • the flow control assembly includes a first sliding block arranged in the intermediate plate, and the first sliding block can move along the radial direction of the intermediate plate to change the effective circulation of the string flow channel. Area, thereby regulating the flow rate of the refrigerant flowing through the series flow channel.
  • the first slider is driven by a solenoid valve, so that the first slider moves along the radial direction of the intermediate plate.
  • the first end of the first slider is provided with a compression spring, and the second end of the first slider is connected with the valve core of the solenoid valve.
  • the intermediate plate is provided with a radial slide
  • the first sliding block is arranged on the radial slide
  • an end of the radial slide away from the center of the intermediate plate is provided with a pressure chamber
  • the pressure chambers are respectively connected with a high-pressure gas passage and a low-pressure gas passage, and the gas pressure of the gas introduced into the pressure chamber by the high-pressure gas passage is greater than that of the gas introduced into the pressure chamber by the low-pressure gas passage, so
  • the pressure chamber is provided with a second slider for blocking the high-pressure air passage or the low-pressure air passage;
  • a compression spring is provided at one end of the first slider facing away from the pressure chamber;
  • the compression spring pushes the first sliding block to slide away from the string flow channel.
  • the intermediate plate is provided with a radial slide
  • the first sliding block is arranged on the radial slide
  • an end of the radial slide away from the center of the intermediate plate is provided with a low pressure chamber
  • the other end of the radial slide is provided with a high pressure chamber
  • the gas pressure in the high pressure chamber is greater than the pressure of the gas in the low pressure chamber
  • a compression spring is provided in the low pressure chamber, One end of the compression spring abuts against the first slider;
  • the gas in the high-pressure chamber pushes the first sliding block to slide toward the low-pressure chamber.
  • the intermediate plate is respectively provided with a high-pressure air passage and a low-pressure air passage, one end of the high-pressure air passage is connected with the high-pressure chamber, and one end of the low-pressure air passage is connected with the low-pressure chamber .
  • the string flow channel is parallel to the thickness direction of the intermediate plate.
  • the cross section of the pressure chamber is rectangular, and the second slider slides along the length of the rectangle.
  • one end of the first slider is connected with the valve core of the solenoid valve.
  • the flow passage is clamped between the line between the center of the projection of the end surface of any one of the cylinders and the center of the end surface of the cylinder and the projection of the vane groove of the cylinder on the end surface of the cylinder.
  • the angle is 100° ⁇ 270°.
  • the included angle ranges from 170° to 220°.
  • the included angle ranges from 180° to 210°.
  • variable displacement compressor of the present invention connects the exhaust cavity of one cylinder with the suction cavity of another cylinder through a series flow passage arranged in the intermediate plate, and the series flow passage is provided with a flow control component for controlling the series flow passage
  • the flow rate of the refrigerant to achieve the switching of the compressor's own capacity to meet the needs of different loads in different seasons;
  • the series flow channel When the temperature difference between indoor and outdoor is large, the series flow channel is completely closed, so that the two cylinders can operate completely independently. Compared with when the series flow channel is opened, the capacity of the compressor is increased and the compressor can operate at full load.
  • Figure 1 is a structural schematic diagram of a compression assembly of a variable capacity compressor
  • FIG. 2 is a schematic cross-sectional structure diagram of the intermediate plate in Embodiment 1;
  • Figure 3 is a schematic diagram of the position of a stream channel
  • FIG. 4 is a schematic diagram of the structure of an intermediate plate in Embodiment 2;
  • Figure 5 is a schematic view of an axial cross-section of the intermediate plate in Figure 4.
  • FIG. 6 is a schematic diagram of the structure of an intermediate plate in the third embodiment.
  • Embodiment 1 of the present invention a variable capacity compressor is provided.
  • Fig. 1 is a schematic structural diagram of a compression assembly of a variable capacity compressor.
  • the compression assembly shown in Figure 1 has two cylinders, namely a first cylinder 13 and a second cylinder 15.
  • the first cylinder 13 is located at the upper part
  • the second cylinder 15 is located at the lower part
  • the first cylinder 13 and the second cylinder 15 are The space is divided by the intermediate plate 14.
  • the first cylinder 13 is the upper cylinder in this embodiment
  • the second cylinder 15 is the lower cylinder in this embodiment.
  • the upper part of the first cylinder 13 is provided with an upper cylinder head 11, and the lower part of the second cylinder 15 is provided with a lower cylinder head 16.
  • a first rotating piston 133 is provided in the first cylinder 13.
  • the first rotating piston 133 divides the space in the first cylinder 13 into a first suction chamber 132 and a first exhaust chamber 131.
  • the first rotating piston 133 is sleeved in The crankshaft 12 drives the first rotary piston 133 to rotate by the crankshaft 12.
  • the first suction chamber 132 sucks in through the suction port
  • the first exhaust chamber 131 discharges the compressed gas (refrigerant) through the exhaust port connected to the first exhaust chamber 131 .
  • a second rotating piston 153 is provided in the second cylinder 15.
  • the second rotating piston 153 divides the space in the second cylinder 15 into a second suction chamber 151 and a second exhaust chamber 152.
  • the second rotating piston 153 is sleeved in The crankshaft 12 drives the second rotary piston 153 to rotate by the crankshaft 12.
  • the second suction chamber 151 takes in air through the suction port
  • the second exhaust chamber 152 discharges the compressed gas (refrigerant) through the exhaust port connected to the second exhaust chamber 152 .
  • a serial flow channel 141 is provided in the middle plate 14, and the serial flow channel 141 penetrates the entire middle plate 14 and is parallel to the thickness direction of the middle plate 14.
  • the series flow passage 141 shown in FIG. 1 communicates with the first exhaust chamber 131 of the first cylinder 13 and the second suction chamber 151 of the second cylinder 15.
  • the first exhaust chamber 131 of the first cylinder 13 communicates with the second suction chamber 151 of the second cylinder 15 through a series flow passage 141, and the first suction chamber 132 of the first cylinder 13 passes through a The series flow passage 141 communicates with the second exhaust chamber 152 of the second cylinder 15.
  • FIG. 2 is a schematic cross-sectional structure diagram of the intermediate plate in Embodiment 1.
  • FIG. The intermediate plate 14 shown in FIG. 2 is provided with a string flow channel 141 which is parallel to the thickness direction of the intermediate plate 14.
  • a flow control component 22 is provided in the serial flow channel 141 to adjust the flow rate of the refrigerant flowing through the serial flow channel 141.
  • the flow control assembly 22 includes a first slider 221 and a first compression spring 222.
  • the first slider 221 can move along the radial direction of the intermediate plate 14 to change the effective flow area of the series flow channel 141, thereby adjusting the flow rate of the refrigerant flowing through the series flow channel 141.
  • the effective flow area is the The minimum cross-sectional area of the gas.
  • the first sliding block 221 slides toward the center of the middle plate 14, it can gradually block the string flow channel 141, thereby reducing the effective flow area of the string flow channel 141 until the entire string flow channel 141 is closed. After the first slider 221 intercepts (closes) the serial flow passage 141, the first cylinder 13 and the second cylinder 15 work independently.
  • the movement of the first slider 221 is driven by the solenoid valve 21, the first end of the first slider 221 is provided with a first compression spring 222, the second end is connected with the valve core 211 of the solenoid valve 21, and the valve core 211 is in the coil Driven by 212, it can slide along the radial direction of the intermediate plate 14, so that the valve core 211 can drive the first slider 221 to slide along the radial direction of the intermediate plate 14.
  • the series flow passage 141 is fully or partly opened, the refrigerant in the discharge chamber 131 flows into the suction chamber 151 through the series flow passage 141, that is, the upper and lower cylinders communicate with each other, thereby reducing the overall displacement (capacity) of the compressor. Part load operation of the compressor.
  • the series flow passage 141 is completely closed, the two cylinders 13 and 15 are completely operated independently. Compared with the time when the series flow passage 141 is opened, the capacity of the compressor is increased, and the full load operation of the compressor is realized.
  • FIG. 3 is a schematic diagram of the position of a stream channel.
  • FIG. 3 shows the top view structure of the first cylinder 13, and the projection of the series flow passage 141 on the end surface of the first cylinder 13 is located in the area B.
  • the coverage angle range of area B is from ⁇ to ⁇ , where ⁇ is 100 degrees, ⁇ is 270 degrees, and the position of the center of the vane groove 134 is 0 degrees, that is, the flow channel 141 is at the end of the first cylinder 13
  • the angle between the line connecting the center of the projection and the center of the end surface of the first cylinder 13 and the projection of the vane groove 134 of the first cylinder 13 on the end surface of the first cylinder 13 ranges from 100° to 270°.
  • is 170 degrees and ⁇ is 220 degrees; alternatively, ⁇ is 180 degrees and ⁇ is 210 degrees.
  • the opening of the serial flow passage 141 is located between the inner wall of the cylinder and the outer wall of the rotary piston, and the inner diameter of the serial passage 141 is smaller than the wall thickness of any rotary piston to prevent leakage from the first cylinder 13 or the second cylinder 15.
  • Embodiment 2 provides a variable capacity compressor.
  • the difference between the variable displacement compressor in the second embodiment and the first embodiment is that the intermediate plate 14 is provided with a radial slide 142, the first sliding block 221 is provided on the radial slide 142, and the radial slide 142 is far away
  • One end of the center plate 14 is provided with a pressure chamber 143.
  • the pressure chamber 143 is connected to a high pressure air passage 144 and a low pressure air passage 145 respectively.
  • the pressure of the gas introduced into the pressure chamber 143 by the high pressure air passage 144 is greater than that of the low pressure air passage 145.
  • the pressure of the gas in the pressure chamber 143 is provided with a second sliding block 224 for blocking the high pressure air passage 144 or the low pressure air passage 145.
  • FIG. 5 is a schematic axial cross-sectional view of the intermediate plate 14 in FIG. 4. 4 and 5, the radial slide 142 in the middle plate 14 is arranged along the radial direction of the middle plate 14, and the radial slide 142 intersects the string flow channel 141, and the first slider 221 is arranged on the In the radial slide 142.
  • the first slider 221 slides in the radial slide 142 to change the effective flow area of the series flow channel 141, thereby adjusting the flow rate of the refrigerant flowing through the series flow channel 141.
  • the pressure chamber 143 is located at one end (the second end) away from the center of the intermediate plate 14 and communicates with the radial slide 142.
  • An end (first end) of the first slider 221 facing away from the pressure chamber 143 is provided with a compression spring.
  • the pressure chamber 143 is respectively connected with a high-pressure gas passage 144 and a low-pressure gas passage 145.
  • the pressure of the gas introduced into the pressure chamber 143 by the high-pressure gas passage 144 is greater than that of the gas introduced into the pressure chamber 143 by the low-pressure gas passage 145.
  • a second sliding block 224 for blocking the high-pressure air passage 144 or the low-pressure air passage 145 is provided.
  • the high-pressure gas outside the middle plate 14 can enter the pressure chamber 143 through the high-pressure gas passage 144, and the low-pressure gas passage 145 is connected to the suction port (not shown in the figure) of the first cylinder 13 or the second cylinder 15 so as to pass through the suction port. Air port to introduce low-pressure gas.
  • the cross section of the pressure chamber 143 is rectangular, and the second slider 224 slides along the length of the rectangle. When the second slider 224 slides to the side of the low-pressure air passage 145, the second slider 224 blocks the low-pressure air passage 145, and the gas (high-pressure gas) in the high-pressure air passage 144 pushes the first slider 221 to slide toward the series flow passage 141, That is, the stream channel 141 is closed.
  • the second slider 224 slides to the side of the high-pressure air passage 144, the second slider 224 blocks the high-pressure air passage 144, and the compression spring pushes the first slider 221 to slide away from the string flow channel 141, thereby opening the string flow channel 141, enabling the discharge
  • the refrigerant in the air cavity flows into the suction cavity.
  • the sliding of the second slider 224 may be driven by a solenoid valve.
  • FIG. 6 is a schematic diagram of the structure of an intermediate plate in the third embodiment.
  • the difference between the variable displacement compressor in the third embodiment and the first embodiment is that the intermediate plate 14 is provided with a radial slide 142, the first sliding block 221 is provided on the radial slide 142, and the radial slide 142 is far away
  • One end of the center plate 14 is provided with a low pressure chamber 147, and the other end of the radial slide 142 is provided with a high pressure chamber 146.
  • the pressure of the gas in the high pressure chamber 146 is greater than that of the gas in the low pressure chamber 147.
  • a second compression spring 223 is provided in the chamber 147, and one end of the second compression spring 223 abuts against the first slider 221.
  • the middle plate 14 is respectively provided with a high pressure air passage 144 ′ and a low pressure air passage 145 ′.
  • One end of the high pressure air passage 144 ′ is connected to the high pressure chamber 146, and one end of the low pressure air passage 145 ′ is connected to the low pressure chamber 147.
  • the gas pressure of the gas introduced into the pressure chamber 143 by the high pressure gas passage 144 ′ is greater than the pressure of the gas introduced into the pressure chamber 143 by the low pressure gas passage 145 ′, and the high pressure gas outside the intermediate plate 14 can enter the high pressure chamber 146 through the high pressure gas passage 144 ′.
  • the low-pressure air passage 145' is connected to the suction port (not shown in the figure) of the first cylinder 13 or the second cylinder 15 so that low-pressure gas can be introduced into the low-pressure chamber 147 through the suction port.
  • variable displacement compressor of the present invention connects the exhaust cavity of one cylinder with the suction cavity of the other cylinder through the series flow passage arranged in the intermediate plate, and the series flow passage is provided with a flow control assembly for controlling The flow rate of the refrigerant in the serial flow channel, so as to realize the switching of the compressor's own capacity to meet the needs of different loads in different seasons;
  • the series flow channel When the temperature difference between indoor and outdoor is large, the series flow channel is completely closed, so that the two cylinders can operate completely independently. Compared with when the series flow channel is opened, the capacity of the compressor is increased and the compressor can operate at full load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种变容压缩机,包括:两个气缸(13、15);中间板(14),分隔两个气缸(13、15),中间板(14)中形成至少一个串流通道(141),串流通道(141)一端连通两个气缸(13、15)中任意一个气缸的排气腔(131、152),串流通道(141)的另一端连通两个气缸(13、15)中的另一个气缸的吸气腔(132、151),每个串流通道(141)设置有一用于调节流过串流通道(141)的冷媒的流量的流量控制组件(22)。

Description

变容压缩机 技术领域
本发明涉及空调制冷技术领域,具体涉及一种变容压缩机。
背景技术
现今社会,空调使用的频率越来越多,为了提高生活质量,过渡季节(春、秋季)也同样会开空调,但过渡季节使用空调后室内外温差较小,空调的负荷较小。而在冬天一到家,就希望空调能吹出热风,能够超大负荷运转。空调能兼顾冬天快速制热、过渡季节极小负荷运行,这就需要压缩机能将两者兼顾,即使得空调压缩机容量(容积流量)能够根据负荷的不同而变化。而传统的空调使用的压缩机容量为固定且不可变,而是通过变频技术,改变输入电流,或者数码涡旋技术,达到空调负荷的变化,前者也不能很好的满足四季的温控需求,而后者由于波动性噪声、电子膨胀阀频繁开关噪声、冷媒流动脉冲噪声等技术短板,被逐渐抛弃。所以,需要设计一种自身容量可变的压缩机,以满足较大负荷变化跨度,实现空调的负荷变换。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种变容压缩机,
本发明中的变容压缩机通过设置于中间板中的串流通道将一个气缸的排气腔与另一个气缸的吸气腔相连,串流通道设有一个流量控制组件用于控制串流通道中的冷媒的流量,从而实现压缩机自身容量的切换,以满足不同季节不同负荷的需求;
在室内外温差较小时,串流通道打开,排气腔中的冷媒通过串流通道流入吸气腔即上下气缸进行气体串通,从而使得压缩机的整体排气量(容量)减小,实现压缩机的部分负荷运转;
在室内外温差较大时,串流通道完全关闭,使得两个气缸完全独立运行,与串流通道打开时相比,提高了压缩机的容量,实现压缩机的全负荷运行。
根据本发明的一个方面,提供一种变容压缩机,包括:
两个气缸;
中间板,分隔两个所述气缸,所述中间板中形成至少一个串流通道,其中,所述串流通道一端连通所述两个气缸中任意一个所述气缸的排气腔,所述串流通道的另一端连通所述两个气缸中的另一个所述气缸的吸气腔,每个所述串流通道设置有一用于调节流过所述串流通道的冷媒的流量的流量控制组件。
优选的,所述流量控制组件包括一设置于所述中间板内的第一滑块,所述第一滑块能够沿着所述中间板的径向移动以改变所述串流通道的有效流通面积,从而调节流过所述串流通道的冷媒的流量。
优选的,所述第一滑块由一电磁阀驱动,以使得所述第一滑块沿着所述中间板的径向移动。
优选的,所述第一滑块的第一端设有一压缩弹簧,所述第一滑块的第二端与所述电磁阀的阀芯相连。
优选的,所述中间板设有一径向滑道,所述第一滑块设置于所述径向滑道,所述径向滑道的远离所述中间板中心的一端设有一压力腔室,所述压力腔室分别连有一高压气道和一低压气道,所述高压气道引入所述压力腔室的气体的气压大于所述低压气道引入所述压力腔室的气体的气压,所述压力腔室中设有一用于封堵所述高压气道或所述低压气道的第二滑块;
所述第二滑块封堵所述低压气道时,所述高压气道中的气体推动所述第一滑块朝向所述串流通道滑动。
优选的,所述第一滑块的背离所述压力腔室的一端设有一压缩弹簧;
所述第二滑块封堵所述高压气道时,所述压缩弹簧推动所述第一滑块背离所述串流通道滑动。
优选的,所述中间板设有一径向滑道,所述第一滑块设置于所述径向滑道,所述径向滑道的远离所述中间板中心的一端设有一低压腔室,所述径向滑道的另一端设有一高压腔室,所述高压腔室中的气体的气压大于所述所述低压腔室中的气体的气压,所述低压腔室中设有一压缩弹簧,所述压缩弹簧 的一端与所述第一滑块相抵;
所述高压腔室中气体推动所述第一滑块向着所述低压腔室滑动。
优选的,所述中间板分别设有一高压气道和一低压气道,所述高压气道的一端与所述高压腔室相连通,所述低压气道的一端与所述低压腔室相连通。
优选的,所述串流通道平行于所述中间板的厚度方向。
优选的,所述压力腔室的横截面呈矩形,所述第二滑块沿着所述矩形的长度方向滑动。
优选的,所述第一滑块的一端与所述电磁阀的阀芯相连。
优选的,所述串流通道在任一所述气缸的端面的投影的中心与所述气缸的端面的中心的连线和所述气缸的叶片槽于所述气缸的端面上的投影之间的夹角为100°~270°。
优选的,所述夹角范围为170~220°。
优选的,所述夹角范围为180~210°。
上述技术方案的有益效果是:
本发明中的变容压缩机通过设置于中间板中的串流通道将一个气缸的排气腔与另一个气缸的吸气腔相连,串流通道设有一个流量控制组件用于控制串流通道中的冷媒的流量,从而实现压缩机自身容量的切换,以满足不同季节不同负荷的需求;
在室内外温差较小时,串流通道打开,排气腔中的冷媒通过串流通道流入吸气腔即上下气缸进行气体串通,从而使得压缩机的整体排气量(容量)减小,实现压缩机的部分负荷运转;
在室内外温差较大时,串流通道完全关闭,使得两个气缸完全独立运行,与串流通道打开时相比,提高了压缩机的容量,实现压缩机的全负荷运行。
本发明的其它特征和优点以及本发明的各种实施例的结构和操作,将在以下参照附图进行详细的描述。应当注意,本发明不限于本文描述的具体实施例。在本文给出的这些实施例仅仅是为了说明的目的。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1是一种变容压缩机的压缩组件的结构示意图;
图2是实施例1中的中间板的剖面结构示意图;
图3是一种串流通道的位置示意图;
图4是实施例2中的一种中间板的结构示意图;
图5是图4中的中间板的轴向截面示意图;
图6是实施例3中的一种中间板的结构示意图。
附图标记清单:
11     上缸盖
12     曲轴
13     第一气缸
131    第一排气腔
132    第一吸气腔
133    第一旋转活塞
134    叶片槽
14     中间板
141    串流通道
142    径向滑道
143    压力腔室
144    高压气道
145    低压气道
146    高压腔室
147    低压腔室
144'   高压气道
145'   低压气道
15     第二气缸
151    第二吸气腔
152    第二排气腔
153    第二旋转活塞
16     下缸盖
21     电磁阀
211    阀芯
212    线圈
22     流量控制组件
221    第一滑块
222    第一压缩弹簧
223    第二压缩弹簧
224    第二滑块
从以下结合附图的详细描述中,本发明的特征和优点将变得更加明显。贯穿附图,相同的附图标识相应元素。在附图中,相同附图标记通常指示相同的、功能上相似的和/或结构上相似的元件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
实施例1
在本发明的实施例1中提供一种变容压缩机。
图1是一种变容压缩机的压缩组件的结构示意图。图1示出的压缩组件,具有两个气缸,即第一气缸13和第二气缸15,其中,第一气缸13位于上部,第二气缸15位于下部,第一气缸13和第二气缸15之间通过中间板14进行分割。第一气缸13为本实施例中的上气缸,第二气缸15为本实施例中的下气缸。第一气缸13的上部设置有上缸盖11,第二气缸15的下部设置有下缸盖16。第一气缸13中设置有第一旋转活塞133,第一旋转活塞133将第一气缸13内的空间划分为了第一吸气腔132和第一排气腔131,第一旋转活塞133套设于曲轴12,由该曲轴12带动第一旋转活塞133旋转。随着第一转向活塞的转动第一吸气腔132通过吸气口进行吸气,第一排气腔131将压缩之后的气体(冷媒)由与第一排气腔131相连的排气口排出。第二气缸15中设置有第二旋转活塞153,第二旋转活塞153将第二气缸15内的空间划分为了第二吸气腔151和第二排气腔152,第二旋转活塞153套设于曲轴12,由该曲轴12带动第二旋转活塞153旋转。随着第二转向活塞的转动第二吸气腔151通过吸气口进行吸气,第二排气腔152将压缩之后的气体(冷媒)由与第二排气腔152相连的排气口排出。中间板14中设置了一个串流通道141,该串流通道141贯通整个中间板14,并且平行于该中间板14的厚度方向。图1中示出的串流通道141连通了第一气缸13的第一排气腔131和第二气缸15的第二吸气腔151。
一些实施例中,第一气缸13的第一排气腔131通过一个串流通道141与第二气缸15的第二吸气腔151相连通,第一气缸13的第一吸气腔132通过一个串流通道141与第二气缸15的第二排气腔152相连通。
图2是实施例1中的中间板的剖面结构示意图。图2中示出的中间板14 设置了一条串流通道141,该串流通道141平行于中间板14的厚度方向。并且串流通道141设置了一个流量控制组件22,以调节流过串流通道141的冷媒的流量。流量控制组件22包括了第一滑块221和第一压缩弹簧222。第一滑块221能够沿着中间板14的径向移动以改变串流通道141的有效流通面积,从而调节流过串流通道141的冷媒的流量,有效流通面积即该串流通道141中的气体的横截面面积最小值。第一滑块221向着中间板14的中心滑动时,能够逐渐的遮挡串流通道141,从而减小串流通道141的有效流通面积,直至关闭整个串流通道141。当第一滑块221截断(关闭)串流通道141后,第一气缸13和第二气缸15独立工作。第一滑块221的移动是由电磁阀21来驱动,第一滑块221的第一端设置第一压缩弹簧222,第二端与电磁阀21的阀芯211相连,而阀芯211在线圈212的驱动下能够沿着中间板14的径向滑动,从而阀芯211能够带动第一滑块221沿中间板14的径向滑动。串流通道141完全或部分打开时,排气腔131中的冷媒通过串流通道141流入吸气腔151即上下气缸进行气体串通,从而使得压缩机的整体排气量(容量)减小,实现压缩机的部分负荷运转。串流通道141完全关闭时,使得两个气缸13、15完全独立运行,与串流通道141打开时相比,提高了压缩机的容量,实现压缩机的全负荷运行。
图3是一种串流通道的位置示意图。图3中示出了第一气缸13的俯视结构,串流通道141在第一气缸13的端面的投影位于区域B中。区域B的覆盖的角度范围是在α~β,其中,α为100度,β为270度,叶片槽134的中心所在的位置为0度,即串流通道141在第一气缸13的端面的投影的中心与第一气缸13的端面的中心的连线和第一气缸13的叶片槽134于第一气缸13的端面上的投影之间的夹角范围为100°~270°。一些实施例中,α为170度,β为220度;或者,α为180度,β为210度。串流通道141的开口位于气缸内壁和旋转活塞外壁之间,并且串流通道141的内径小于任意一个旋转活塞的壁厚,以防止从第一气缸13或第二气缸15泄露。
实施例2
图4是实施例2中的一种中间板的结构示意图。实施例2中提供一种变容压缩机。实施例2中的变容压缩机与实施例1的不同之处在于:中间板14 设有一径向滑道142,第一滑块221设置于径向滑道142,径向滑道142的远离中间板14中心的一端设有一压力腔室143,压力腔室143分别连有一高压气道144和一低压气道145,高压气道144引入压力腔室143的气体的气压大于低压气道145引入压力腔室143的气体的气压,压力腔室143中设有一用于封堵高压气道144或低压气道145的第二滑块224。
图5是图4中的中间板14的轴向截面示意图。参考图4和图5,中间板14中的径向滑道142沿着中间板14的径向设置,并且该径向滑道142与串流通道141向交,第一滑块221设置于该径向滑道142中。第一滑块221在径向滑道142中滑动,从而改变串流通道141的有效流通面积,从而调节流过串流通道141的冷媒的流量。压力腔室143位于远离中间板14中心的一端(第二端),与径向滑道142相连通。第一滑块221的背离压力腔室143的一端(第一端)设有一压缩弹簧。压力腔室143分别连有高压气道144和低压气道145,高压气道144引入压力腔室143的气体的气压大于低压气道145引入压力腔室143的气体的气压,压力腔室143中设有一用于封堵高压气道144或低压气道145的第二滑块224。中间板14外部的高压气体能够通过高压气道144进入压力腔室143,而低压气道145与第一气缸13或第二气缸15的吸气口(图中未示出)相连从而能够通过吸气口来引入低压气体。压力腔室143的横截面呈矩形,第二滑块224沿着矩形的长度方向滑动。第二滑块224滑动至低压气道145侧时,第二滑块224封堵低压气道145,高压气道144中的气体(高压气体)推动第一滑块221朝向串流通道141滑动,即封闭串流通道141。第二滑块224滑动至高压气道144侧时,第二滑块224封堵高压气道144,压缩弹簧推动第一滑块221背离串流通道141滑动,从而打开串流通道141,能够使得排气腔中的冷媒流入吸气腔。一些实施例中,第二滑块224的滑动可以由一电磁阀来驱动。
实施例3
图6是实施例3中的一种中间板的结构示意图。实施例3中的变容压缩机与实施例1的不同之处在于:中间板14设有一径向滑道142,第一滑块221设置于径向滑道142,径向滑道142的远离中间板14中心的一端设有一低压腔室147,径向滑道142的另一端设有一高压腔室146,高压腔室146 中的气体的气压大于低压腔室147中的气体的气压,低压腔室147中设有一第二压缩弹簧223,第二压缩弹簧223的一端与第一滑块221相抵。中间板14分别设有一高压气道144'和一低压气道145',高压气道144'的一端与高压腔室146相连通,低压气道145'的一端与低压腔室147相连通。高压气道144'引入压力腔室143的气体的气压大于低压气道145'引入压力腔室143的气体的气压,中间板14外部的高压气体能够通过高压气道144'进入高压腔室146。低压气道145'与第一气缸13或第二气缸15的吸气口(图中未示出)相连从而能够通过吸气口来引入低压气体至低压腔室147。高压腔室146中的高压气体对第一滑块221的压力和低压腔室147中的低压气体对第一滑块221的压力的合力大于第二压缩弹簧223的对第一滑动施加的压力时,第一滑块221向着低压腔室147滑动,串流通道141打开;相反的,则第一滑块221向着高压腔室146滑动,串流通道141闭合。
综上,本发明中的变容压缩机通过设置于中间板中的串流通道将一个气缸的排气腔与另一个气缸的吸气腔相连,串流通道设有一个流量控制组件用于控制串流通道中的冷媒的流量,从而实现压缩机自身容量的切换,以满足不同季节不同负荷的需求;
在室内外温差较小时,串流通道打开,排气腔中的冷媒通过串流通道流入吸气腔即上下气缸进行气体串通,从而使得压缩机的整体排气量(容量)减小,实现压缩机的部分负荷运转;
在室内外温差较大时,串流通道完全关闭,使得两个气缸完全独立运行,与串流通道打开时相比,提高了压缩机的容量,实现压缩机的全负荷运行。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (13)

  1. 一种变容压缩机,其特征在于,包括:
    两个气缸;
    中间板,分隔两个所述气缸,所述中间板中形成至少一个串流通道,其中,所述串流通道一端连通所述两个气缸中任意一个所述气缸的排气腔,所述串流通道的另一端连通所述两个气缸中的另一个所述气缸的吸气腔,每个所述串流通道设置有一用于调节流过所述串流通道的冷媒的流量的流量控制组件。
  2. 根据权利要求1所述的变容压缩机,其特征在于,所述流量控制组件包括一设置于所述中间板内的第一滑块,所述第一滑块能够沿着所述中间板的径向移动以改变所述串流通道的有效流通面积,从而调节流过所述串流通道的冷媒的流量。
  3. 根据权利要求2所述的变容压缩机,其特征在于,所述第一滑块由一电磁阀驱动,以使得所述第一滑块沿着所述中间板的径向移动。
  4. 根据权利要求3所述的变容压缩机,其特征在于,所述第一滑块的第一端设有一压缩弹簧,所述第一滑块的第二端与所述电磁阀的阀芯相连。
  5. 根据权利要求3所述的变容压缩机,其特征在于,所述第一滑块的一端与所述电磁阀的阀芯相连。
  6. 根据权利要求2所述的变容压缩机,其特征在于,所述中间板设有一径向滑道,所述第一滑块设置于所述径向滑道,所述径向滑道的远离所述中间板中心的一端设有一压力腔室,所述压力腔室分别连有一高压气道和一低压气道,所述高压气道引入所述压力腔室的气体的气压大于所述低压气道引入所述压力腔室的气体的气压,所述压力腔室中设有一用于封堵所述高压气道或所述低压气道的第二滑块;
    所述第二滑块封堵所述低压气道时,所述高压气道中的气体推动所述第一滑块朝向所述串流通道滑动。
  7. 根据权利要求6所述的变容压缩机,其特征在于,所述第一滑块的背离所述压力腔室的一端设有一压缩弹簧;
    所述第二滑块封堵所述高压气道时,所述压缩弹簧推动所述第一滑块背 离所述串流通道滑动。
  8. 根据权利要求2所述的变容压缩机,其特征在于,所述中间板设有一径向滑道,所述第一滑块设置于所述径向滑道,所述径向滑道的远离所述中间板中心的一端设有一低压腔室,所述径向滑道的另一端设有一高压腔室,所述高压腔室中的气体的气压大于所述所述低压腔室中的气体的气压,所述低压腔室中设有一压缩弹簧,所述压缩弹簧的一端与所述第一滑块相抵;
    所述高压腔室中气体推动所述第一滑块向着所述低压腔室滑动。
  9. 根据权利要求8所述的变容压缩机,其特征在于,所述中间板分别设有一高压气道和一低压气道,所述高压气道的一端与所述高压腔室相连通,所述低压气道的一端与所述低压腔室相连通。
  10. 根据权利要求2所述的变容压缩机,其特征在于,所述串流通道平行于所述中间板的厚度方向。
  11. 根据权利要求2所述的变容压缩机,其特征在于,所述串流通道在任一所述气缸的端面的投影的中心与所述气缸的端面的中心的连线和所述气缸的叶片槽于所述气缸的端面上的投影之间的夹角为100°~270°。
  12. 根据权利要求11所述的变容压缩机,其特征在于,所述夹角范围为170~220°。
  13. 根据权利要求12所述的变容压缩机,其特征在于,所述夹角范围为180~210°。
PCT/CN2019/129067 2019-04-17 2019-12-27 变容压缩机 WO2020211450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/059,300 US11384761B2 (en) 2019-04-17 2019-12-27 Variable capacity compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910308314.0 2019-04-17
CN201910308314.0A CN111828323B (zh) 2019-04-17 2019-04-17 变容压缩机

Publications (1)

Publication Number Publication Date
WO2020211450A1 true WO2020211450A1 (zh) 2020-10-22

Family

ID=72836819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129067 WO2020211450A1 (zh) 2019-04-17 2019-12-27 变容压缩机

Country Status (3)

Country Link
US (1) US11384761B2 (zh)
CN (1) CN111828323B (zh)
WO (1) WO2020211450A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152156A (en) * 1990-10-31 1992-10-06 Kabushiki Kaisha Toshiba Rotary compressor having a plurality of cylinder chambers partitioned by intermediate partition plate
CN1769710A (zh) * 2004-11-01 2006-05-10 Lg电子株式会社 用于改变多级旋转式压缩机容量的装置
JP2013104368A (ja) * 2011-11-15 2013-05-30 Panasonic Corp ロータリ圧縮機
CN103244413A (zh) * 2012-02-14 2013-08-14 广东美芝制冷设备有限公司 旋转式压缩机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873993U (ja) * 1981-11-12 1983-05-19 三菱電機株式会社 2気筒回転式圧縮機
JPS6270686A (ja) * 1985-09-20 1987-04-01 Sanyo Electric Co Ltd 多気筒回転圧縮機
JPS63191287U (zh) * 1987-01-19 1988-12-09
JP2960152B2 (ja) * 1990-11-21 1999-10-06 株式会社東芝 能力可変型ロータリコンプレッサ
JP2699724B2 (ja) * 1991-11-12 1998-01-19 松下電器産業株式会社 2段気体圧縮機
JP3174202B2 (ja) * 1993-07-22 2001-06-11 東芝キヤリア株式会社 多気筒形回転圧縮機
JP3408005B2 (ja) * 1995-01-30 2003-05-19 三洋電機株式会社 多気筒回転圧縮機
KR20050031794A (ko) * 2003-09-30 2005-04-06 삼성전자주식회사 용량가변 회전압축기
KR20050050482A (ko) * 2003-11-25 2005-05-31 삼성전자주식회사 용량가변 회전압축기
CN103185166B (zh) * 2011-12-29 2016-03-16 浙江三花制冷集团有限公司 一种电磁阀及具有该电磁阀的制冷设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152156A (en) * 1990-10-31 1992-10-06 Kabushiki Kaisha Toshiba Rotary compressor having a plurality of cylinder chambers partitioned by intermediate partition plate
CN1769710A (zh) * 2004-11-01 2006-05-10 Lg电子株式会社 用于改变多级旋转式压缩机容量的装置
JP2013104368A (ja) * 2011-11-15 2013-05-30 Panasonic Corp ロータリ圧縮機
CN103244413A (zh) * 2012-02-14 2013-08-14 广东美芝制冷设备有限公司 旋转式压缩机

Also Published As

Publication number Publication date
US20220025887A1 (en) 2022-01-27
US11384761B2 (en) 2022-07-12
CN111828323A (zh) 2020-10-27
CN111828323B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2018126758A1 (zh) 一种旋转压缩机、制冷系统及调温设备
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
EP3628871B1 (en) Compressor, air conditioner, and method for assembling compressor
WO2009098874A1 (ja) 圧縮機及び冷凍装置
TWI626380B (zh) 螺桿壓縮機以及具有螺桿壓縮機之冷凍循環裝置
WO2019242311A1 (zh) 压缩机及空调系统
US8221104B2 (en) Screw compressor having a slide valve with hot gas bypass port
CN102656367A (zh) 单螺杆式压缩机
CN207195139U (zh) 压缩机及具有其的空调器
WO2021196607A1 (zh) 一种单级增焓转子压缩机及具有其的空调器
GB2528214A (en) Screw compressor and refrigeration cycle device
US6422846B1 (en) Low pressure unloader mechanism
WO2020211450A1 (zh) 变容压缩机
WO2017094057A1 (ja) シングルスクリュー圧縮機および冷凍サイクル装置
WO2019085501A1 (zh) 压缩机及具有其的空调系统
CN111322240B (zh) 旋转式压缩机和具有其的制冷系统
JP2008291650A (ja) ロータリ式2段圧縮機及び空気調和機
WO2017088586A1 (zh) 多缸双级增焓压缩机及空调器、热泵热水器和控制方法
WO2020211449A1 (zh) 双缸两级变容压缩机
US12000401B2 (en) Rotary compressor with first and second main suction ports
US20220186731A1 (en) Rotary compressor and home appliance including same
WO2021120656A1 (zh) 涡旋压缩机
JPS61129495A (ja) ロ−タリ−式圧縮機
CN112211818B (zh) 一种旋转式压缩机及其控制方法
CN212055114U (zh) 涡旋压缩机以及具有其的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925113

Country of ref document: EP

Kind code of ref document: A1