WO2017212595A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2017212595A1
WO2017212595A1 PCT/JP2016/067137 JP2016067137W WO2017212595A1 WO 2017212595 A1 WO2017212595 A1 WO 2017212595A1 JP 2016067137 W JP2016067137 W JP 2016067137W WO 2017212595 A1 WO2017212595 A1 WO 2017212595A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
battery
olefin resin
active material
positive electrode
Prior art date
Application number
PCT/JP2016/067137
Other languages
English (en)
French (fr)
Inventor
学 西嶋
文洋 川村
祐二 室屋
新田 芳明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2016/067137 priority Critical patent/WO2017212595A1/ja
Priority to EP16904630.7A priority patent/EP3471171A4/en
Priority to US16/308,073 priority patent/US11043717B2/en
Priority to KR1020187035515A priority patent/KR102210309B1/ko
Priority to JP2018522242A priority patent/JP6742408B2/ja
Priority to CN201680086559.8A priority patent/CN109314216B/zh
Publication of WO2017212595A1 publication Critical patent/WO2017212595A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/02Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/045Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a nonaqueous electrolyte secondary battery generally includes a positive electrode obtained by applying a positive electrode active material or the like to a current collector, and a negative electrode obtained by applying a negative electrode active material or the like to a current collector. It has the structure connected through the electrolyte layer holding electrolyte gel. Then, when ions such as lithium ions are occluded / released in the electrode active material, a charge / discharge reaction of the battery occurs.
  • non-aqueous electrolyte secondary batteries with a low environmental load are being used not only for portable devices, but also for power supply devices for electric vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and fuel cell vehicles. .
  • HEV hybrid vehicles
  • EV electric vehicles
  • fuel cell vehicles fuel cell vehicles.
  • Non-aqueous electrolyte secondary batteries intended for application to electric vehicles are required to have high output and high capacity. Furthermore, non-aqueous electrolyte secondary batteries intended for application to electric vehicles are required to have cycle characteristics capable of maintaining capacity even when charge / discharge cycles are repeated for a long period of time.
  • 4628764 discloses a separator having a maximum fiber thickness of 1000 nm or less and having an air permeability of 5 sec / 100 cc or more and 700 sec / 100 cc or less and having an electric resistance value of 1.0 ⁇ cm 2 or less. Furthermore, a technology for controlling the film thickness (5 to 50 ⁇ m), the porosity (60 to 90%), the maximum pore diameter (0.03 to 0.25 ⁇ m), and the non-uniformity parameter H (0.15 or less) of the separator. Is disclosed.
  • an object of the present invention is to provide a means capable of improving the cycle durability of a battery in a non-aqueous electrolyte secondary battery having a capacity and a size assuming a high capacity.
  • the present inventor has intensively studied to solve the above problems. As a result, in a non-aqueous electrolyte secondary battery having a capacity and size assuming high capacity, it is found that the above problem can be solved by controlling the variation in the porosity of the separator to a predetermined value or less.
  • the present invention has been completed.
  • a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material containing a negative electrode active material on the surface of the negative electrode current collector A power generation element including a negative electrode in which a layer is formed and a separator; a ratio of a rated capacity to a pore volume of the separator is 1.55 Ah / cc or more; and a ratio of a battery area to a rated capacity is 4.0 cm. 2 / Ah or higher and a rated capacity of 30 Ah or higher, and a non-aqueous electrolyte secondary battery having a separator porosity variation of 4.0% or lower.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat (stacked) bipolar type, which is an embodiment of a non-aqueous electrolyte secondary battery. It is explanatory drawing for demonstrating the method of selecting nine measurement area
  • a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer containing a negative electrode active material on the surface of the negative electrode current collector are formed.
  • the ratio of the rated capacity to the pore volume of the separator is 1.55 Ah / cc or more, and the ratio of the battery area to the rated capacity is 4.0 cm 2 / Ah or more.
  • the non-aqueous electrolyte secondary battery has a rated capacity of 30 Ah or more, and the non-aqueous electrolyte secondary battery has a porosity variation of 4.0% or less in the separator.
  • the uniformity of lithium ion conduction in the separator can be improved, and local current concentration at a portion having a large overvoltage and various problems caused thereby can be suppressed.
  • electric vehicles have a shorter distance (cruising range) that can be traveled by one charge compared to gasoline vehicles, and in order to popularize them, it is desired to increase the cruising range of electric vehicles.
  • the battery is increased in area (upsized), the active material contained in the active material layer is increased in capacity, or the active material density in the active material layer is increased. There are means such as.
  • non-aqueous electrolyte secondary battery having a capacity and size assuming high capacity
  • the inventors have a ratio of the rated capacity to the pore volume of the separator of 1.55 Ah / cc or more, and the battery area with respect to the rated capacity.
  • the non-aqueous electrolyte secondary battery in which the ratio is 4.0 cm 2 / Ah or more and the rated capacity is 30 Ah or more was studied. In the process, it has been found that if a conventionally known separator is simply applied, sufficient cycle durability may not be obtained. On the other hand, it has been found that high cycle durability can be realized by controlling the variation in the porosity of the separator to a predetermined value or less, and the present invention has been completed.
  • a non-aqueous electrolyte secondary battery having a capacity and size for realizing a high capacity pressure distribution occurs in the plane, and due to such pressure distribution, the overvoltage distribution is not uniform in the separator plane. Will occur.
  • a separator constituting a battery that needs to be repeatedly charged and discharged with a large current in a short time such as a battery mounted on an electric vehicle, is required to have high lithium ion conductivity.
  • current concentrates on a local part where the overvoltage is large for example, a part having a high air permeability or a part having a small separator pore volume per area
  • Various problems may occur, such as decomposition of the electrolyte solution, generation of an SEI film on the negative electrode surface, and cracking of the positive electrode active material during discharge. Both of these problems act as factors that deteriorate the cycle durability of the battery.
  • FIG. 1 is a schematic cross-sectional view schematically showing an outline of a stacked battery as an embodiment of the battery of the present invention.
  • the flat type (stacked type) lithium ion secondary battery shown in FIG. 1 will be described in detail as an example, but the technical scope of the present invention is only such a form. Not limited to.
  • FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat (stacked) bipolar type.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is a battery exterior body.
  • the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked.
  • the separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte).
  • the positive electrode has a structure in which the positive electrode active material layers 15 are disposed on both surfaces of the positive electrode current collector 12.
  • the negative electrode has a structure in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11.
  • the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with a separator 17 therebetween.
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the negative electrode active material layer 13 is arrange
  • the positive electrode current collector 12 and the negative electrode current collector 11 are each provided with a positive electrode current collector plate (tab) 27 and a negative electrode current collector plate (tab) 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out of the battery exterior material 29 so that it may be pinched
  • the positive electrode current collector 27 and the negative electrode current collector 25 are ultrasonically welded to the positive electrode current collector 12 and the negative electrode current collector 11 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
  • FIG. 1 shows a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector.
  • a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface.
  • one current collector also serves as a positive electrode current collector and a negative electrode current collector.
  • the positive electrode has a positive electrode current collector and a positive electrode active material layer containing a positive electrode active material formed on the surface of the positive electrode current collector.
  • a metal is preferably used.
  • the metal include aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the positive electrode active material layer 15 includes a positive electrode active material, and further includes a conductive additive, a binder, and other additives such as an electrolyte salt (lithium salt) and an ion conductive polymer as an electrolyte as necessary.
  • the positive electrode active material examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2, and lithium-- such as those in which some of these transition metals are substituted with other elements. Examples include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds. In some cases, two or more positive electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a lithium-transition metal composite oxide is used as the positive electrode active material. In some cases, two or more positive electrode active materials may be used in combination.
  • NMC composite oxide Li (Ni—Mn—Co) O 2 and those in which some of these transition metals are substituted with other elements (hereinafter also simply referred to as “NMC composite oxide”) are used.
  • the NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in an orderly manner) atomic layers are alternately stacked via an oxygen atomic layer.
  • Each Li atom is contained and the amount of Li that can be taken out is twice that of the spinel-type lithium manganese oxide, that is, the supply capacity is doubled, so that a high capacity can be obtained.
  • the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element.
  • Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
  • the NMC composite oxide has a high theoretical discharge capacity, it is preferable that the general formula (1): Li a Ni b Mn c Co d M x O 2 (where a, b, c, d, x Satisfies 0.9 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.5, and 0 ⁇ x ⁇ 0.3, where M is Ti, Zr, And an element selected from Nb, W, P, Al, Mg, V, Ca, Sr, and Cr.
  • a represents the atomic ratio of Li
  • b represents the atomic ratio of Ni
  • c represents the atomic ratio of Co
  • d represents the atomic ratio of Mn
  • x represents the atomic ratio of M.
  • the composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • Ti or the like partially replaces the transition metal in the crystal lattice. From the viewpoint of cycle characteristics, a part of the transition element may be substituted with another metal element. In this case, it is preferable that 0 ⁇ x ⁇ 0.3 in the general formula (1). Since at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr is dissolved, the crystal structure is stabilized. It is considered that the battery capacity can be prevented from decreasing even if the above is repeated, and that excellent cycle characteristics can be realized.
  • the NMC composite oxide can be prepared by selecting various known methods such as a coprecipitation method and a spray drying method.
  • the coprecipitation method is preferably used because the composite oxide is easy to prepare.
  • a nickel-cobalt-manganese composite hydroxide is produced by a coprecipitation method as in the method described in JP2011-105588A. Thereafter, the nickel-cobalt-manganese composite hydroxide and the lithium compound are mixed and fired to obtain an NMC composite oxide.
  • positive electrode active materials other than those described above may be used.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 25 ⁇ m from the viewpoint of increasing the output.
  • the content of the positive electrode active material is preferably 80 to 99.5% by weight, and more preferably 85 to 99.5% by weight.
  • binder Although it does not specifically limit as a binder used for a positive electrode active material layer, for example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (P
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but preferably 0.5 to 15% by weight with respect to the active material layer. More preferably, it is 1 to 10% by weight.
  • the positive electrode active material layer further contains other additives such as a conductive additive, an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.), and a lithium salt for improving ion conductivity, as necessary.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • the conductive auxiliary agent include carbon materials such as carbon black such as ketjen black and acetylene black, graphite, and carbon fiber.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer described later is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the negative electrode has a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the negative electrode active material layer contains a negative electrode active material and, if necessary, other materials such as a conductive aid, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt for increasing ion conductivity. Further includes an additive. Other additives such as conductive assistants, binders, electrolytes (polymer matrix, ion conductive polymers, electrolytes, etc.) and lithium salts for improving ion conductivity are those described in the above positive electrode active material layer column. It is the same.
  • the negative electrode active material examples include artificial graphite, coated natural graphite, graphite such as natural graphite, carbon materials such as soft carbon and hard carbon, and lithium-transition metal composite oxide (for example, Li 4 Ti 5 O 12 ), Metal materials, lithium alloy negative electrode materials, and the like.
  • two or more negative electrode active materials may be used in combination.
  • a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material.
  • negative electrode active materials other than those described above may be used.
  • the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 30 ⁇ m from the viewpoint of increasing the output.
  • the negative electrode active material layer preferably contains at least an aqueous binder.
  • a water-based binder has a high binding power.
  • it is easy to procure water as a raw material and since steam is generated at the time of drying, the capital investment in the production line can be greatly suppressed, and the environmental load can be reduced. There is.
  • the water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof.
  • the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water.
  • kind a polymer latex that is emulsion-polymerized in a system that self-emulsifies.
  • water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl meta Acrylate, etc.), polytyren
  • the aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
  • Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose (salt) as a binder.
  • the content of the aqueous binder is preferably 80 to 100% by weight, preferably 90 to 100% by weight, and preferably 100% by weight.
  • the separator has a function of holding an electrolyte inside the pores to ensure lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • separator examples include a porous sheet separator or a nonwoven fabric separator made of a polymer or fiber that absorbs and holds the electrolyte.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator holds the electrolyte inside the pores.
  • the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
  • a liquid electrolyte or a gel polymer electrolyte is used.
  • the gel polymer electrolyte By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
  • the ratio of the rated capacity to the pore volume of the separator is 1.55 Ah / cc or more.
  • the value of the ratio of the rated capacity to the pore volume of the separator is an index indicating the degree of current concentration (current density) per unit pore volume.
  • the unit (g / cc) of the density (apparent density; bulk density) of the separator it is necessary to consider the density (true density) of the constituent material itself of the separator.
  • the separator when the density (true density) of the material constituting the substantial part of the separator is small, even if the same volume of pores exist in the same volume, the separator is larger than the density (true density). Since the density (apparent density; bulk density) is small, it is not sufficient as an index of how much separator material is filled per unit volume. For this reason, here, the ratio of the rated capacity to the pore volume of the separator is defined as an index of current density per unit pore volume. In addition, by increasing the capacity of the battery (increasing the rated capacity), lithium ions in the separator increase, but on the other hand, if the pore volume in the separator decreases, the diffusibility of lithium ions decreases. .
  • the ratio of the rated capacity to the pore volume of the separator is an indicator of the diffusibility of lithium ions in the separator, and the ratio of the rated capacity to the pore volume of the separator is 1.55 Ah / cc or more. Even in a low environment, the cycle durability is remarkably improved by adopting a configuration in which the variation in the porosity of the separator is reduced as in the present embodiment.
  • the upper limit of the ratio of the rated capacity to the pore volume of the separator is not particularly limited, but considering the diffusibility of lithium ions, the ratio of the rated capacity to the pore volume of the separator is 3.50 Ah / cc or less. From the viewpoint of increasing the capacity and improving the diffusibility of lithium ions, it is more preferably 1.55 to 3.00 Ah / cc.
  • the rated capacity is measured by the following procedures 1 and 2 at a temperature of 25 ° C and a predetermined voltage range.
  • Procedure 1 After reaching the upper limit voltage with constant current charge of 0.2 C, charge with constant voltage charge for 2.5 hours, and then rest for 10 seconds.
  • Procedure 2 After reaching the lower limit voltage by constant current discharge of 0.2 C, pause for 10 seconds.
  • the discharge capacity (CC discharge capacity) in constant current discharge in procedure 2 is defined as the rated capacity.
  • the pore volume of the separator is measured as follows; the separator is extracted from the nonaqueous electrolyte secondary battery and cut into a 3 cm ⁇ 3 cm sample.
  • the volume of pores (micropores) existing inside the sample is measured by pore distribution measurement by a mercury intrusion method using a mercury intrusion porosimeter.
  • the variation in porosity in the separator is 4.0% or less.
  • the ratio of the rated capacity to the pore volume of the separator is 2.1 Ah / cc or more, and the variation in the porosity of the separator is 3.0% or less.
  • the variation in porosity in the separator is set to 3.0% or less. Durability (capacity maintenance rate) is significantly improved.
  • the adverse effect of the variation in the porosity on the cycle durability becomes more remarkable, and the demand for the uniformity of the pores of the separator also increases.
  • a high capacity retention rate of 88% or more can be achieved by setting the variation in porosity in the separator to 4.0% or less. It turns out that it can be done.
  • variation in the porosity in a separator is 3.0% or less. With such a configuration, the cycle durability of the battery can be further improved.
  • the variation in porosity in the separator is preferably 0.5% or more, and more preferably 1.0% or more.
  • the value computed by the method as described in the column of the Example mentioned later shall be employ
  • a conventionally known method such as a wet method or a stretching method is used as a method for producing an olefin-based resin porous film that is suitably used as a porous film having a large number of pores therein.
  • an olefin resin film is obtained by molding an olefin resin composition formed by mixing an olefin resin and a filler or a plasticizer, The method of obtaining the olefin resin porous film by which a micropore part is formed by extracting a filler and a plasticizer from this olefin resin film is mentioned.
  • an olefin-based resin porous film by a stretching method
  • an olefin-based resin porous film in which micropores are formed by uniaxially or biaxially stretching an olefin-based resin film containing an olefin-based resin is used.
  • the method of obtaining a film is mentioned.
  • stretching method is more preferable.
  • the olefin-based resin porous film produced by the stretching method is particularly susceptible to thermal shrinkage at high temperatures due to residual strain generated by stretching.
  • an olefin resin film was obtained by extruding an olefin resin, and lamellar crystals were generated and grown in the olefin resin film.
  • An olefin resin film is obtained by extruding the resin composition, and the olefin resin film is uniaxially stretched or biaxially stretched to peel off the interface between the olefin resin and the filler to form micropores.
  • Examples thereof include a method for obtaining an olefin-based resin porous film.
  • the former method is preferable because an olefin-based resin porous film in which a large number of micropores are uniformly formed is obtained.
  • the olefin resin was melt kneaded at a temperature not lower than 20 ° C higher than the melting point of the olefin resin and not higher than 100 ° C higher than the melting point of the olefin resin in an extruder, and attached to the tip of the extruder.
  • a first stretching step in which the olefin resin film after the curing step is uniaxially stretched at a stretch ratio of 1.2 to 1.6 times at a surface temperature of ⁇ 20 ° C. or more and less than 100 ° C .
  • a second stretching step in which the olefin resin film stretched in the first stretching step is uniaxially stretched at a surface temperature of 100 to 150 ° C. at a stretching ratio of 1.2 to 2.2 times;
  • an annealing step of annealing the olefin-based resin film that has been stretched in the second stretching step.
  • the above method it is possible to obtain an olefin-based resin porous film in which a large number of micropores communicating with each other are uniformly formed. Therefore, by using such an olefin-based resin porous film as a separator, it becomes easy to control the variation in porosity in the separator to a value within the predetermined range of the present application.
  • the olefin resin porous film obtained by the above method has excellent air permeability because the micropores are formed uniformly and in large numbers, and smoothly and uniformly transmits lithium ions. be able to.
  • the internal resistance of the non-aqueous electrolyte secondary battery can be reduced, and high output applications such as vehicles such as electric vehicles Can be charged and discharged at a high current density. Furthermore, even when overcharging occurs and the inside of the battery becomes high temperature, the electrical short circuit between the positive electrode and the negative electrode can be highly suppressed, and as a result, sufficient battery safety can be secured. Is possible.
  • the olefin-based resin film containing the olefin-based resin can be manufactured by supplying the olefin-based resin to an extruder, melt-kneading, and then extruding from a T-die attached to the tip of the extruder.
  • the temperature of the olefin resin when the olefin resin is melt-kneaded with an extruder is preferably 20 ° C. higher than the melting point of the olefin resin and 100 ° C. higher than the melting point of the olefin resin. More preferably, the temperature is 25 ° C. higher than the melting point of the olefin resin and 80 ° C. higher than the melting point of the olefin resin, and the temperature is 25 ° C. higher than the melting point of the olefin resin. It is particularly preferable that the temperature be 50 ° C. or higher than the melting point.
  • an olefin resin porous film having a uniform thickness can be obtained. Moreover, the orientation of an olefin resin can be improved and the production
  • the draw ratio when extruding the olefin-based resin from the extruder into a film is preferably 50 to 300, more preferably 65 to 250, and particularly preferably 70 to 250.
  • the draw ratio when extruding the olefin resin from the extruder into a film shape be 50 or more, the tension applied to the olefin resin is improved, thereby sufficiently orienting the olefin resin molecules to produce lamellae. Can be promoted.
  • the draw ratio when extruding the olefin resin from the extruder into a film to 300 or less the film forming stability of the olefin resin film is improved, and the olefin resin having a uniform thickness and width.
  • a porous film can be obtained.
  • the draw ratio refers to a value obtained by dividing the clearance of the lip of the T die by the thickness of the olefin resin film extruded from the T die.
  • T-die lip clearance is measured using a clearance gauge in accordance with JIS B7524 (for example, JIS clearance gauge manufactured by Nagai Gauge Manufacturing Co., Ltd.) at 10 or more lip clearances, and the arithmetic mean This can be done by determining the value.
  • the thickness of the olefin resin film extruded from the T die is 10 or more in the thickness of the olefin resin film extruded from the T die using a dial gauge (for example, Signal ABS Digimatic Indicator manufactured by Mitutoyo Corporation). It can be performed by measuring and calculating the arithmetic mean value.
  • the film forming speed of the olefin resin film is preferably 10 to 300 m / min, more preferably 15 to 250 m / min, and particularly preferably 15 to 30 m / min.
  • the film forming speed of the olefin resin film is preferably 10 to 300 m / min, more preferably 15 to 250 m / min, and particularly preferably 15 to 30 m / min.
  • the olefin resin which comprises the olefin resin film is cooled by cooling the olefin resin film extruded from T-die until the surface temperature becomes below 100 degreeC lower than melting
  • the olefin resin molecules constituting the olefin resin film are oriented in advance, and then the olefin resin film is oriented by cooling the olefin resin film. The part which is doing can accelerate
  • the surface temperature of the cooled olefin resin film is preferably 100 ° C. or lower than the melting point of the olefin resin, more preferably 140 to 110 ° C. lower than the melting point of the olefin resin, and more than the melting point of the olefin resin.
  • a temperature of 135 to 120 ° C. is particularly preferable.
  • the olefin resin film obtained by the extrusion process described above is cured.
  • the curing process of the olefin resin is performed to grow the lamella formed in the olefin resin film in the extrusion process.
  • crystallized portions lamellar
  • amorphous portions are alternately arranged in the extrusion direction of the olefin-based resin film. It is possible to generate a crack between lamellas, not within the lamella, and to form a micropore from the crack as a starting point.
  • the curing process is performed by curing the olefin resin film obtained by the extrusion process at a temperature not lower than 30 ° C. lower than the melting point of the olefin resin and not higher than 1 ° C. lower than the melting point of the olefin resin.
  • the curing temperature of the olefin resin film is preferably 30 ° C. lower than the melting point of the olefin resin and 1 ° C. lower than the melting point of the olefin resin, preferably 25 ° C. lower than the melting point of the olefin resin. And a temperature lower by 10 ° C. than the melting point of the olefin resin is more preferable.
  • the lamellar structure is destroyed due to relaxation of molecular orientation of the olefin resin constituting the olefin resin film. Can be reduced.
  • the curing temperature of the olefin resin film is the surface temperature of the olefin resin film.
  • the curing temperature of the olefin resin film is the atmospheric temperature and To do.
  • the temperature inside the heating apparatus is set as the curing temperature.
  • the curing of the olefin-based resin film may be performed while the olefin-based resin film is running, or may be performed in a state where the olefin-based resin film is wound up in a roll shape.
  • the curing time of the olefin resin film is preferably 1 minute or more, more preferably 5 minutes to 60 minutes.
  • the curing time is preferably 1 hour or longer, and more preferably 15 hours or longer.
  • the temperature of the olefin-based resin film is entirely cured from the surface to the inside of the roll with the above-described curing temperature.
  • the lamellae of the olefin resin film can be sufficiently grown.
  • the curing time is preferably 35 hours or less, and more preferably 30 hours or less.
  • the olefin resin film is cured in a roll shape, the olefin resin film is unwound from the olefin resin film roll after the curing process, and the stretching process and the annealing process described below are performed. Good.
  • a first stretching process is performed in which the olefin resin film after the curing process is uniaxially stretched at a stretching ratio of 1.2 to 1.6 times at a surface temperature of ⁇ 20 ° C. or more and less than 100 ° C.
  • the olefin resin film is preferably uniaxially stretched only in the extrusion direction.
  • the lamellae in the olefin-based resin film are hardly melted, and by separating the lamellae by stretching, a fine crack is efficiently generated independently in the non-crystalline part between the lamellae. A large number of micropores are reliably formed starting from this crack.
  • the surface temperature of the olefin resin film is preferably ⁇ 20 ° C. or more and less than 100 ° C., more preferably 0 to 80 ° C., and particularly preferably 10 to 40 ° C.
  • the surface temperature of the olefin resin film is preferably ⁇ 20 ° C. or higher, it is possible to reduce breakage of the olefin resin film during stretching.
  • a crack can be generated in the amorphous part between lamellae by setting the surface temperature of the olefin resin film to less than 100 ° C.
  • the stretching ratio of the olefin resin film is preferably 1.2 to 1.6 times, more preferably 1.25 to 1.5 times.
  • the draw ratio of the olefin-based resin film is 1.2 times or more, micropores are formed in the non-crystalline part between lamellae, and thereby excellent in air permeability and low resistance when lithium ions permeate.
  • a porous resin porous film can be provided.
  • a micropore part can be uniformly formed in an olefin resin porous film by making the draw ratio of an olefin resin film 1.6 times or less.
  • the draw ratio of an olefin resin film means the value which remove
  • the stretching speed in the first stretching process of the olefin resin film is preferably 20% / min or more. By setting the stretching speed to 20% / min or more, the micropores can be formed uniformly in the non-crystalline part between lamellae.
  • the stretching speed in the first stretching step of the olefin resin film is more preferably 20 to 500% / min, and particularly preferably 20 to 70% / min. By setting the stretching speed to 500% / min or less, the olefin resin film can be prevented from breaking.
  • the stretching speed of the olefin resin film refers to the rate of change in dimensions in the stretching direction of the olefin resin film per unit time.
  • the stretching method of the olefin resin film in the first stretching step is not particularly limited as long as the olefin resin film can be uniaxially stretched.
  • the olefin resin film is stretched at a predetermined temperature using a uniaxial stretching apparatus. Examples thereof include a uniaxial stretching method.
  • a second stretching step is performed in which the olefin resin film after the first stretching step is subjected to a uniaxial stretching treatment at a surface temperature of 100 to 150 ° C. and a stretching ratio of 1.2 to 2.2 times. Also in the second stretching step, the olefin resin film is preferably uniaxially stretched only in the extrusion direction. By performing the stretching treatment in the second stretching step, a large number of micropores formed in the olefin resin film in the first stretching step can be grown.
  • the surface temperature of the olefin resin film is preferably 100 to 150 ° C, more preferably 110 to 140 ° C.
  • the micropores formed in the olefin-based resin film are grown in the first stretching step, and the air permeability of the olefin-based resin porous film is improved. Can do.
  • stretching process can be suppressed by making the surface temperature of an olefin resin film into 150 degrees C or less.
  • the stretching ratio of the olefin resin film is preferably 1.2 to 2.2 times, and more preferably 1.5 to 2 times.
  • the draw ratio of the olefin resin film is preferably 1.2 to 2.2 times, and more preferably 1.5 to 2 times.
  • the olefin resin porous material having excellent air permeability can be grown by growing the micropores formed in the olefin resin film during the first drawing step.
  • a film can be provided.
  • stretching process can be suppressed by making the draw ratio of an olefin resin film 2.2 times or less.
  • the stretching rate of the olefin resin film is preferably 500% / min or less, more preferably 400% / min or less, and particularly preferably 15 to 60% / min.
  • the method for stretching the olefinic resin film in the second stretching step is not particularly limited as long as the olefinic resin film can be uniaxially stretched.
  • the olefinic resin film can be stretched at a predetermined temperature using a uniaxial stretching device. Examples thereof include a uniaxial stretching method.
  • an annealing process is performed in which the olefin-based resin film that has been stretched in the second stretching process is annealed.
  • This annealing step is performed to alleviate the residual strain generated in the olefin resin film due to the stretching applied in the above-described stretching step, and to suppress the heat shrinkage caused by heating in the resulting olefin resin porous film. Is called.
  • the surface temperature of the olefin resin film in the annealing step is preferably not less than the surface temperature of the olefin resin film in the second stretching step and 10 ° C. lower than the melting point of the olefin resin.
  • the shrinkage rate of the olefin resin film in the annealing step is 20% or less.
  • the shrinkage of the olefin-based resin film is 100 by dividing the shrinkage length of the olefin-based resin film in the stretching direction during the annealing step by the length of the olefin-based resin film in the stretching direction after the second stretching step. The value multiplied by.
  • the olefinic porous obtained is applied to the separator. Variation in porosity can be reduced.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • Li (CF 3 SO 2) 2 N Li (C 2 F 5 SO 2) 2 N
  • LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6 LiCF 3 SO 3
  • a compound that can be added to the active material layer of the electrode can be similarly employed.
  • the liquid electrolyte may further contain additives other than the components described above.
  • additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off.
  • ion conductive polymer used as the matrix polymer (host polymer) examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
  • PMMA methyl methacrylate
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the separator may be a separator in which a heat resistant insulating layer is laminated on a porous substrate (a separator with a heat resistant insulating layer).
  • a separator with a heat resistant insulating layer when measuring “the rated capacity with respect to the pore volume of the separator” or “the variation in the porosity of the separator” according to the present invention, the measurement is performed using a laminate of the heat-resistant insulating layer and the porous substrate.
  • the heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C.
  • the heat-resistant insulating layer By having the heat-resistant insulating layer, the internal stress of the separator that increases when the temperature rises is relieved, so that the effect of suppressing thermal shrinkage can be obtained. As a result, it is possible to prevent the induction of a short circuit between the electrodes of the battery, so that the battery configuration is unlikely to deteriorate in performance due to temperature rise. Moreover, by having a heat-resistant insulating layer, the mechanical strength of the separator with a heat-resistant insulating layer is improved, and it is difficult for the separator to break. Furthermore, the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as a binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat resistant insulating layer.
  • the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by weight or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
  • Battery exterior As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is desirable and an aluminate laminate is more preferable from the viewpoint that it is excellent in high output and cooling performance and can be suitably used for a battery for a large-sized device for EV and HEV.
  • FIG. 3 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
  • a flat laminated laminate battery is provided in which the power generation element is enclosed in a battery outer package made of a laminate film containing aluminum.
  • the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof.
  • the power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 shown in FIG. 1 described above.
  • the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 composed of a positive electrode (positive electrode active material layer) 15, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 13.
  • the lithium ion secondary battery is not limited to a stacked flat shape, but is preferably flat because of its high mounting efficiency in automobiles, and has a high capacity.
  • a laminate type is more preferable because it can be easily achieved.
  • the tabs 58 and 59 shown in FIG. 3 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • the battery storage space is about 170L. Since auxiliary devices such as cells and charge / discharge control devices are stored in this space, the storage efficiency of a normal cell is about 50%. The efficiency of loading cells into this space is a factor that governs the cruising range of electric vehicles. If the size of the single cell is reduced, the loading efficiency is impaired, so that the cruising distance cannot be secured.
  • the battery structure in which the power generation element is covered with the exterior body is preferably large.
  • the effects of the present invention are remarkably exhibited in a large battery.
  • an increase in the size of the battery is defined from the relationship between the battery area and the battery capacity.
  • the ratio of the battery area to the rated capacity is 4.0 cm 2 / Ah or more.
  • the battery area (projected area of the battery including the battery outer casing) is inevitably large as 120 cm 2 or more.
  • the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is preferably as large as possible, but is usually 1000 cm 2 / Ah or less in terms of the in-vehicle volume.
  • the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is preferably 5 to 15 cm 2 / Ah.
  • the rated capacity is 30 Ah or more.
  • the charge / discharge cycle is repeated. It becomes more difficult to maintain a high capacity, and the problem of improving the cycle durability can be expressed more remarkably.
  • a battery having a large area and not having a large capacity as described above such as a conventional consumer battery, the occurrence of such a problem is difficult to manifest (Comparative Examples 4 to 6 described later).
  • the rated capacity is preferably as large as possible, and the upper limit is not particularly limited, but is usually 100 Ah or less.
  • the rated capacity is preferably 30 to 70 Ah, and more preferably 40 to 60 Ah.
  • the value measured by the method as described in the following Example is employ
  • the length of the short side of the laminated cell battery is 100 mm or more. Such a large battery can be used for vehicle applications.
  • the length of the short side of the laminated cell battery refers to the side having the shortest length.
  • the upper limit of the short side length is not particularly limited, but is usually 400 mm or less.
  • the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2.
  • the electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the cell unit in which a plurality of batteries are stacked in this way may be accommodated in upper and lower cases (for example, metal cases) to form an assembled battery.
  • the battery case is accommodated in the case by fastening the metal case with the fastening member. Therefore, the battery is pressurized in the stacking direction within the case. Due to such pressurization, in-plane pressure distribution is likely to occur in a large battery, but according to the configuration of the present embodiment, the variation in the porosity in the positive electrode active material is small, so current concentration due to pressure distribution It is thought that can be relaxed.
  • the nonaqueous electrolyte secondary battery of this embodiment maintains a discharge capacity even when used for a long period of time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the nonaqueous electrolyte secondary battery can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • the porosity in nine measurement areas of 3 cm square selected in the surface direction of the separator is measured, and the maximum value among the nine measurement values is “maximum porosity”.
  • the minimum value was defined as “minimum porosity”.
  • the arithmetic average value of the nine measured values was defined as “average porosity”.
  • the variation in porosity was calculated according to the following formula.
  • Example 1 Preparation of Electrolyte Solution A mixed solvent (30:30:40 (volume ratio)) of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) was used as a solvent. Further, 1.0M LiPF 6 was used as a lithium salt. Furthermore, 2.0% by weight of vinylene carbonate was added to 100% by weight of the total of the solvent and the lithium salt to prepare an electrolytic solution. Note that “1.0 M LiPF 6 ” means that the lithium salt (LiPF 6 ) concentration in the mixture of the mixed solvent and the lithium salt is 1.0 M.
  • a solid content comprising 94% by weight of natural graphite (average particle size: 20 ⁇ m) as a negative electrode active material, 2% by weight of acetylene black as a conductive additive, 3% by weight of SBR as a binder, and 1% by weight of CMC was prepared.
  • An appropriate amount of ion-exchanged water as a slurry viscosity adjusting solvent was added to the solid content to prepare a negative electrode active material slurry.
  • the negative electrode active material slurry was applied to both sides of a copper foil (10 ⁇ m) as a current collector, dried and pressed to produce a negative electrode with a single-side coating amount of 7.3 mg / cm 2 .
  • the density of the negative electrode active material layer was 1.4 g / cc.
  • Step of Completing Single Cell The positive electrode produced above was cut into a 200 ⁇ 204 mm rectangular shape, and the negative electrode was cut into a 205 ⁇ 209 mm rectangular shape (24 positive electrodes and 25 negative electrodes).
  • the positive electrode and the negative electrode were alternately laminated through a 210 ⁇ 214 mm separator (polypropylene microporous film, thickness 25 ⁇ m, porosity 55%) to produce a power generation element.
  • the variation value of the porosity in the separator used here was 1.2%.
  • a tab was welded to the resulting power generation element, and the battery was completed by sealing together with the electrolyte in an exterior made of an aluminum laminate film. Thereafter, the battery was sandwiched between a urethane rubber sheet (thickness 3 mm) larger than the electrode area and an Al plate (thickness 5 mm), and the battery was appropriately pressed from both sides in the stacking direction. And about the battery obtained in this way, the first charge was performed over 5 hours (upper limit voltage 4.15V). Thereafter, aging was performed at 45 ° C. for 5 days, and degassing and discharging were performed to complete the battery of this example.
  • the battery thus produced had a rated capacity (cell capacity) of 40 Ah, and the ratio of the positive electrode area to the rated capacity was 10.2 cm 2 / Ah.
  • the rated capacity of the battery was obtained as follows.
  • Procedure 1 After reaching 4.15 V by constant current charging at 0.2 C, charge for 2.5 hours by constant voltage charging, and then rest for 10 seconds.
  • Procedure 2 After reaching 3.0 V by constant current discharge of 0.2 C, pause for 10 seconds.
  • the discharge capacity (CC discharge capacity) in constant current discharge in procedure 2 was defined as the rated capacity.
  • Example 2 The single-side coating amounts of the positive electrode active material layer and the negative electrode active material layer were changed to 18.0 mg / cm 2 and 8.8 mg / cm 2 , respectively, and the sizes of the positive electrode, the negative electrode, and the separator were 200 ⁇ 210 mm, 205 ⁇ 215 mm, and A battery was completed in the same manner as in Example 1 except that the size was changed to 210 ⁇ 220 mm.
  • Example 3 Except that the positive electrode active material layer and the single-sided coating amount of the negative electrode active material layer was changed respectively to 21.5 mg / cm 2 and 10.5 mg / cm 2, in the same manner as in Example 2 described above, complete a battery I let you.
  • the separator is a 210 ⁇ 214 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that the variation in porosity is 1.9%.
  • a battery was completed by the same method as in Example 1 described above.
  • the separator is a 210 ⁇ 220 mm separator (a microporous membrane made of polypropylene, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 1.9% is used.
  • a battery was completed by the same method as in Example 2 described above.
  • the separator is a 210 ⁇ 220 mm separator (a microporous membrane made of polypropylene, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 1.9% is used.
  • a battery was completed by the same method as in Example 3 described above.
  • the separator is a 210 ⁇ 214 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity is 2.9%.
  • a battery was completed by the same method as in Example 1 described above.
  • the separator is a 210 ⁇ 220 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 2.9% is used.
  • a battery was completed by the same method as in Example 2 described above.
  • Example 9 The separator is a 210 ⁇ 220 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 2.9% is used.
  • a battery was completed by the same method as in Example 3 described above.
  • the separator is a 210 ⁇ 214 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that the porosity variation value is 3.8%.
  • a battery was completed by the same method as in Example 1 described above.
  • the separator is a 210 ⁇ 220 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that the variation in porosity is 3.8%.
  • a battery was completed by the same method as in Example 2 described above.
  • the separator is a 210 ⁇ 220 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that the variation in porosity is 3.8%.
  • a battery was completed by the same method as in Example 3 described above.
  • the separator is a 210 ⁇ 214 mm separator (polypropylene microporous membrane, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 5.2% is used.
  • a battery was completed by the same method as in Example 1 described above.
  • the separator is a 210 ⁇ 220 mm separator (a microporous membrane made of polypropylene, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 5.2% is used.
  • a battery was completed by the same method as in Example 2 described above.
  • the separator is a 210 ⁇ 220 mm separator (a microporous membrane made of polypropylene, thickness 25 ⁇ m, porosity 55%), except that a variation in porosity of 5.2% is used.
  • a battery was completed by the same method as in Example 3 described above.
  • the current density with respect to the positive electrode was set to 2 mA / cm 2 , and the batteries produced in each Example and Comparative Example were charged to a cutoff voltage of 4.15 V to obtain an initial charge capacity, and after a pause of 1 hour, to a cutoff voltage of 3.0 V
  • the capacity when discharged was defined as the initial discharge capacity.
  • This charge / discharge cycle was repeated 500 times.
  • the ratio of the discharge capacity at the 500th cycle to the initial discharge capacity was defined as the capacity maintenance rate (%), and the cycle durability was evaluated.
  • FIG. 4 shows a graph in which the variation (%) in porosity of the separator is plotted on the horizontal axis and the capacity retention rate (%) is plotted on the vertical axis.
  • Comparative Examples 4 to 6 the variation in porosity in the separator was larger than 5%, but no decrease in the capacity retention rate was observed.
  • the ratio of the rated capacity to the pore volume of the separator is not so large (not a high capacity battery; Comparative Examples 4 to 5), or the rated capacity itself is not so large (also in a high capacity battery) Comparative examples 4 to 6), the ratio of the battery area to the rated capacity is not so large (not a large area battery; comparative example 6), so that the current concentration in a high capacity and large area battery and the resulting local concentration This is thought to be due to the fact that the problem of serious deterioration did not become apparent.
  • the present invention originates from the discovery that there is a problem that occurs peculiarly in a battery having a high capacity and a large area. Then, it can be said that the present invention has been completed by finding that the occurrence of the above-mentioned problems can be prevented by controlling the variation in the porosity of the separator to a predetermined value or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

【課題】高容量化を想定した容量、サイズを有する非水電解質二次電池において、電池のサイクル耐久性を向上させうる手段を提供する。 【解決手段】正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有し、セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上であり、定格容量に対する電池面積の比が4.0cm/Ah以上であり、かつ、定格容量が30Ah以上である、非水電解質二次電池であって、セパレータにおける空孔率のばらつきが4.0%以下である、非水電解質二次電池。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 現在、携帯電話などの携帯機器向けに利用される、リチウムイオン二次電池をはじめとする非水電解質二次電池が商品化されている。非水電解質二次電池は、一般的に、正極活物質等を集電体に塗布した正極と、負極活物質等を集電体に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持した電解質層を介して接続された構成を有している。そして、リチウムイオン等のイオンが電極活物質中に吸蔵・放出されることにより、電池の充放電反応が起こる。
 ところで、近年、地球温暖化に対処するために二酸化炭素量を低減することが求められている。そこで、環境負荷の少ない非水電解質二次電池は、携帯機器等だけでなく、ハイブリッド自動車(HEV)、電気自動車(EV)、および燃料電池自動車等の電動車両の電源装置にも利用されつつある。
 電動車両への適用を指向した非水電解質二次電池は、高出力および高容量であることが求められる。さらに、電動車両への適用を指向した非水電解質二次電池は、充放電サイクルを長期間繰り返しても、容量を維持できるサイクル特性が求められる。
 ここで、リチウムイオン二次電池等の非水電解質二次電池に用いられるセパレータについても、従来数多くの提案がなされている。例えば、特開平8-20659号公報および特開平8-20660号公報には、ポリエチレン等の結晶性ベースポリマーに対して、同系統の低分子量物質を含むフィルムを、室温付近程度の低温で延伸し、次いで加熱下一軸延伸させることで、均一で微細な多孔構造を有する微多孔膜を得る技術が開示されている。また、特許第4628764号公報には、最大繊維太さが1000nm以下であるセルロース繊維からなり、通気度が5sec/100cc以上700sec/100cc以下であるセパレータにおいて、電気抵抗値を1.0Ωcm2以下とし、さらにその膜厚(5~50μm)、空孔率(60~90%)、最大孔径(0.03~0.25μm)およびセパレータの不均一性パラメータH(0.15以下)を制御する技術が開示されている。
 電動車両に搭載される非水電解質二次電池においてはさらなる高容量化が求められている。また、電動車両への搭載用途を考慮すると、短時間の間に大電流での充放電を繰り返し行うことが想定されるため、セルの内部には高いリチウムイオン伝導性が求められる。ここで、本発明者らの検討によれば、高容量化を想定した容量、サイズを有する非水電解質二次電池において従来公知のセパレータを単に適用した場合には、十分なサイクル耐久性が得られない場合があることを見出した。
 そこで、本発明は、高容量化を想定した容量、サイズを有する非水電解質二次電池において、電池のサイクル耐久性を向上させうる手段を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意検討を行った。その結果、高容量化を想定した容量、サイズを有する非水電解質二次電池において、セパレータの空孔率のばらつきを所定の値以下に制御することによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有し、セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上であり、定格容量に対する電池面積の比が4.0cm/Ah以上であり、かつ、定格容量が30Ah以上である、非水電解質二次電池であって、セパレータにおける空孔率のばらつきが4.0%以下である、非水電解質二次電池が提供される。
非水電解質二次電池の一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 セパレータにおける空孔率のばらつきを算出するにあたって、面内における9箇所の測定領域を選択する方法を説明するための説明図である。 非水電解質二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。 後述する実施例において得られた結果について、横軸にセパレータにおける空孔率のばらつきをプロットし、縦軸に容量維持率(%)をプロットしたグラフである。
 本発明の一形態は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有し、セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上であり、定格容量に対する電池面積の比が4.0cm/Ah以上であり、かつ、定格容量が30Ah以上である、非水電解質二次電池であって、セパレータにおける空孔率のばらつきが4.0%以下である、非水電解質二次電池である。本発明に係る非水電解質二次電池によれば、セパレータにおけるリチウムイオン伝導の均一性が向上し、過電圧の大きい部位への局所的な電流集中やこれによる種々の問題の発生が抑制されうる。その結果、高容量化を想定した容量、サイズを有する非水電解質二次電池において、サイクル耐久性を向上させることが可能となる。
 電動車両はこれまでのところガソリン車と比較して1回の充電で走行できる距離(航続距離)が短く、その普及のためには、電動車両の航続距離を伸ばすことが希求されている。長い航続距離を達成するためには、電動車両に搭載される電池を高容量化することが必要である。また、電池の高容量化を達成するための手段として、電池を大面積化(大型化)したり、活物質層に含まれる活物質を高容量化したり、活物質層における活物質密度を高めたりするなどの手段がある。
 本発明者らは、高容量化を想定した容量、サイズを有する非水電解質二次電池として、セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上であり、定格容量に対する電池面積の比が4.0cm/Ah以上であり、かつ、定格容量が30Ah以上である非水電解質二次電池について検討を進めた。その過程で、従来公知のセパレータを単に適用した場合には、十分なサイクル耐久性が得られない場合があることを見出した。これに対し、セパレータの空孔率のばらつきを所定の値以下に制御することによって、高いサイクル耐久性を実現できることを見出し、本発明を完成させるに至ったのである。
 上記効果を奏する詳細なメカニズムは不明であるが、以下のように推測される。なお、本発明の技術的範囲は下記メカニズムに何ら制限されない。
 高容量化を実現するための容量、サイズを有する非水電解質二次電池においては、面内で圧力分布が生じ、かような圧力分布に起因してセパレータの面内でも過電圧の分布に不均一が生じた状態となる。電動車両に搭載されるような電池のように短時間で大電流での充放電を繰り返し行う必要がある電池を構成するセパレータには、高いリチウムイオン伝導性が求められる。しかしながら、上述したような不均一な過電圧分布が生じると、過電圧が大きい局所部位(例えば、透気度が高い部位や面積あたりのセパレータ空孔体積が小さい部位)に電流が集中して、充電時の電解液分解や負極表面へのSEI被膜生成、放電時の正極活物質の割れなど種々の問題が生じる可能性がある。これらの問題はいずれも、電池のサイクル耐久性に対しては悪化させる要因として働く。
 これに対し、上述したようにセパレータにおける空孔率のばらつきを4.0%以下とすることで、セパレータの面内における不均一な過電圧分布に起因する電流集中やそれによる種々の問題の発生が抑制される。その結果、電池のサイクル耐久性の向上に寄与するものと考えられる。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 [非水電解質二次電池]
 図1は、本発明の電池の一実施形態である積層型電池の概要を模式的に表した断面概略図である。なお、本明細書においては、図1に示す扁平型(積層型)の双極型でないリチウムイオン二次電池を例に挙げて詳細に説明するが、本発明の技術的範囲はかような形態のみに制限されない。
 まず、本発明の非水電解質二次電池の全体構造について、図面を用いて説明する。
 [電池の全体構造]
 図1は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体12の両面に正極活物質層15が配置された構造を有する。負極は、負極集電体11の両面に負極活物質層13が配置された構造を有する。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するとも言える。
 なお、発電要素21の両最外層に位置する最外層負極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面正極活物質層が配置されているようにしてもよい。
 正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板(タブ)27および負極集電板(タブ)25がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接などにより取り付けられていてもよい。
 なお、図1では、扁平型(積層型)の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。
 以下、本発明の一実施形態である非水電解質リチウムイオン二次電池を構成する各部材について説明する。
 [正極]
 正極は、正極集電体と、前記正極集電体の表面に形成された正極活物質を含む正極活物質層とを有するものである。
 (正極集電体)
 正極集電体を構成する材料に特に制限はないが、好適には金属が用いられる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
 集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 また、後述の負極において、負極集電体を用いる場合も、上記と同様のものを用いることができる。
 (正極活物質層)
 正極活物質層15は、正極活物質を含み、必要に応じて、導電助剤、バインダー、さらには電解質として電解質塩(リチウム塩)やイオン伝導性ポリマーなどのその他の添加剤をさらに含む。
 (正極活物質)
 正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。場合によっては、2種以上の正極活物質が併用されてもよい。
 より好ましくは、Li(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)が用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属の1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。
 NMC複合酸化物は、上述したように、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
 NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Coの原子比を表し、dは、Mnの原子比を表し、xは、Mの原子比を表す。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
 一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていてもよい。この場合、一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。
 上記NMC複合酸化物は、共沈法、スプレードライ法など、種々公知の方法を選択して調製することができる。複合酸化物の調製が容易であることから、共沈法を用いることが好ましい。具体的には、例えば、特開2011-105588号に記載の方法のように、共沈法により、ニッケル-コバルト-マンガン複合水酸化物を製造する。その後、ニッケル-コバルト-マンガン複合水酸化物と、リチウム化合物とを混合して焼成することによりNMC複合酸化物を得ることができる。
 なお、上記以外の正極活物質が用いられてもよいことは勿論である。
 正極活物質層に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~25μmである。
 正極活物質層中、正極活物質の含有量は、80~99.5重量%であることが好ましく、85~99.5重量%であることがより好ましい。
 (バインダー)
 正極活物質層に用いられるバインダーとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。
 正極活物質層中に含まれるバインダー量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15重量%であり、より好ましくは1~10重量%である。
 正極活物質層は、必要に応じて、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層および後述の負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2~100μm程度である。
 [負極]
 負極は、負極集電体と、負極集電体の表面に形成された負極活物質層とを有するものである。
 [負極活物質層]
 負極活物質層は負極活物質を含み、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤については、上記正極活物質層の欄で述べたものと同様である。
 負極活物質としては、例えば、人造黒鉛、被覆天然黒鉛、天然黒鉛などの黒鉛(グラファイト)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム-遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
 負極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~30μmである。
 負極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。
 水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。
 水系バインダーとしては、具体的にはスチレン系高分子(スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体等)、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン-プロピレン-ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200~4000、より好適には、1000~3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98~30/70モル比の共重合体の酢酸ビニル単位のうちの1~80モル%ケン化物、ポリビニルアルコールの1~50モル%部分アセタール化物等)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド-(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1~4)エステル-(メタ)アクリル酸塩共重合体など]、スチレン-マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂等)、ポリアミドポリアミンもしくはジアルキルアミン-エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにガラクトマンナン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 上記水系バインダーは、結着性の観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン-ブタジエンゴムを含むことが好ましい。
 水系バインダーとしてスチレン-ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン-ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン-ブタジエンゴムと、カルボキシメチルセルロース(塩)とを組み合わせることが好ましい。スチレン-ブタジエンゴムと、水溶性高分子との含有重量比は、特に制限されるものではないが、スチレン-ブタジエンゴム:水溶性高分子=1:0.1~10であることが好ましく、0.5~2であることがより好ましい。
 負極活物質層に用いられるバインダーのうち、水系バインダーの含有量は80~100重量%であることが好ましく、90~100重量%であることが好ましく、100重量%であることが好ましい。
 [セパレータ(電解質層)]
 セパレータは、空孔内部に電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 (セパレータ)
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、上述したように、セパレータは、その空孔内部に電解質を保持する。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
 (セパレータの空孔体積に対する容量の比)
 本形態に係る非水電解質二次電池において、セパレータの空孔体積に対する定格容量の比は1.55Ah/cc以上である。セパレータの空孔体積に対する定格容量の比の値は、単位空孔体積あたりの電流の集中の程度(電流密度)を示す指標である。ここで、セパレータの密度(見かけ密度;嵩密度)の単位(g/cc)では、セパレータの構成材料自体の密度(真密度)が考慮される必要がある。例えば、セパレータの実質部分を構成する材料の密度(真密度)が小さいと、同じ体積中に同程度の空孔が存在しても、当該密度(真密度)が大きい場合と比較して、セパレータの密度(見かけ密度;嵩密度)が小さくなるため、単位体積あたりにどの程度のセパレータ材料が充填されているかという指標としては十分ではない。このため、ここでは、セパレータの空孔体積に対する定格容量の比を規定することで、単位空孔体積あたりの電流密度の指標としている。また、電池を高容量化する(定格容量を大きくする)ことで、セパレータ内のリチウムイオンが増大するが、その一方で、セパレータ内の空孔体積が小さくなると、リチウムイオンの拡散性が低下する。したがって、セパレータの空孔体積に対する定格容量の比は、セパレータにおけるリチウムイオンの拡散性の指標となり、セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上と、リチウムイオンの拡散性が低い環境下であっても、本形態におけるようにセパレータにおける空孔率のばらつきが低減された構成とすることで、サイクル耐久性が顕著に向上するのである。
 なお、セパレータの空孔体積に対する定格容量の比の上限は特に限定されないが、リチウムイオンの拡散性を考慮すると、セパレータの空孔体積に対する定格容量の比は、3.50Ah/cc以下であることが好ましく、高容量化およびリチウムイオンの拡散性の向上の観点からは、1.55~3.00Ah/ccであることがより好ましい。
 定格容量は、下記記載の方法により測定された値を採用する。
 定格容量は、温度25℃、所定の電圧範囲で、次の手順1~2によって測定される。
 手順1:0.2Cの定電流充電にて上限電圧に到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
 手順2:0.2Cの定電流放電によって下限電圧に到達後、10秒間休止する。
 定格容量:手順2における定電流放電における放電容量(CC放電容量)を定格容量とする。
 また、セパレータの空孔体積は、以下のように測定する;非水電解質二次電池からセパレータを抜出し、3cm×3cmのサンプルに切り出す。水銀圧入ポロシメーターを用いた水銀圧入法による細孔分布測定により、当該サンプルの内部に存在する空孔(微細孔)の体積を測定する。液体中に毛細管を立てた場合、壁を濡らす液体は毛管内を上昇し、反対に濡らさない液体は降下する。この毛管現象はいうまでもなくメニスカスのところで表面張力により圧力が働くためで、水銀のように通常の物質に対して濡れないものは、圧力を加えなくては毛管内に入らない。水銀ポロシメーターはこれを利用するもので、水銀を細孔に圧入し、必要な圧力から細孔の径を、圧入量から細孔容積を求める。
 [セパレータにおける空孔率のばらつき]
 本形態に係る非水電解質二次電池においては、セパレータにおける空孔率のばらつきが4.0%以下である。また、より好適な実施形態においては、セパレータの空孔体積に対する定格容量の比が2.1Ah/cc以上であり、セパレータにおける空孔率のばらつきが3.0%以下である。セパレータの空孔体積に対する定格容量の比が2.1Ah/cc以上とさらに高容量の非水電解質二次電池においては、セパレータにおける空孔率のばらつきを3.0%以下とすることで、サイクル耐久性(容量維持率)が顕著に向上する。ここで、電池の容量が大きくなるほど、空孔率のばらつきがサイクル耐久性へ及ぼす悪影響が一層顕著となり、セパレータの空孔の均一性に対する要請もより大きくなる。しかしながら、本発明者らの検討によれば、このように高容量の電池においても、セパレータにおける空孔率のばらつきを4.0%以下とすることで、88%以上と高い容量維持率が達成されうることが判明したのである。また、他の好適な実施形態においては、セパレータにおける空孔率のばらつきが3.0%以下である。かような構成とすることで、電池のサイクル耐久性をより一層向上させることが可能となる。
 セパレータにおける空孔率のばらつきは、小さければ小さいほど好ましい。しかしながら、ばらつきを小さくしようとすると電池の生産効率が低下する。一方、後述する実施例の結果から、セパレータにおける空孔率のばらつきは2%程度でサイクル耐久性の向上効果が飽和することがわかる。このため、生産性(歩留り)および効果の飽和を鑑みると、セパレータにおける空孔率のばらつきは、0.5%以上であることが好ましく、1.0%以上であることがさらに好ましい。なお、セパレータにおける空孔率のばらつきは、後述する実施例の欄に記載の手法によって算出される値を採用するものとする。
 セパレータにおける空孔率のばらつきの値を上述した範囲に制御する方法について特に制限はなく、セパレータにおける空孔率のばらつきを低減させる目的で従来提案されている手法が同様に用いられうる。
 セパレータの構成材料は、内部に多数の空孔を有する多孔質フィルムとして好適に用いられるオレフィン系樹脂多孔質フィルムの製造方法としては、湿式法または延伸法など、従来公知の方法が用いられる。
 オレフィン系樹脂多孔質フィルムを湿式法により製造する方法としては、例えば、オレフィン系樹脂と充填剤や可塑剤とを混合してなるオレフィン系樹脂組成物を成形することによりオレフィン系樹脂フィルムを得、このオレフィン系樹脂フィルムから充填剤や可塑剤を抽出することにより微小孔部が形成されてなるオレフィン系樹脂多孔質フィルムを得る方法が挙げられる。一方、オレフィン系樹脂多孔質フィルムを延伸法により製造する方法としては、オレフィン系樹脂を含むオレフィン系樹脂フィルムを一軸延伸または二軸延伸させることにより微小孔部が形成されてなるオレフィン系樹脂多孔質フィルムを得る方法が挙げられる。
 なかでも、オレフィン系樹脂多孔質フィルムとしては、延伸法によって製造されてなるオレフィン系樹脂多孔質フィルムがより好ましい。延伸法によって製造されてなるオレフィン系樹脂多孔質フィルムは、延伸によって発生した残留歪みによって、高温時に特に熱収縮を生じやすい。
 オレフィン系樹脂多孔質フィルムを延伸法により製造する方法として、具体的には、オレフィン系樹脂を押出すことによりオレフィン系樹脂フィルムを得、このオレフィン系樹脂フィルム中にラメラ結晶を発生および成長させた後、オレフィン系樹脂フィルムを延伸してラメラ結晶間を離間させることにより微小孔部が形成されてなるオレフィン系樹脂多孔質フィルムを得る方法;オレフィン系樹脂と充填剤とを混合してなるオレフィン系樹脂組成物を押し出すことによりオレフィン系樹脂フィルムを得、このオレフィン系樹脂フィルムを一軸延伸または二軸延伸してオレフィン系樹脂と充填剤との界面を剥離させることにより微小孔部が形成されてなるオレフィン系樹脂多孔質フィルムを得る方法などが挙げられる。微小孔部が均一にかつ多数形成されているオレフィン系樹脂多孔質フィルムが得られることから、前者の方法が好ましい。
 オレフィン系樹脂多孔質フィルムの製造方法として、特に好ましくは、下記工程;
 オレフィン系樹脂を、押出機にてオレフィン系樹脂の融点よりも20℃高い温度以上でかつオレフィン系樹脂の融点よりも100℃高い温度以下にて溶融混練し、上記押出機の先端に取り付けたTダイから押出すことにより、オレフィン系樹脂フィルムを得る押出工程と、
 上記押出工程後の上記オレフィン系樹脂フィルムを上記オレフィン系樹脂の融点よりも30℃低い温度以上でかつ上記オレフィン系樹脂の融点よりも1℃低い温度以下で養生する養生工程と、
 記養生工程後の上記オレフィン系樹脂フィルムを、その表面温度が-20℃以上100℃未満にて延伸倍率1.2~1.6倍に一軸延伸する第1延伸工程と、
 記第1延伸工程において延伸が施された上記オレフィン系樹脂フィルムを、その表面温度が100~150℃にて延伸倍率1.2~2.2倍に一軸延伸する第2延伸工程と、
 記第2延伸工程において延伸が施されたオレフィン系樹脂フィルムをアニールするアニーリング工程と
を有する方法が挙げられる。
 上記方法によれば、相互に連通している微小孔部が均一にかつ多数形成されているオレフィン系樹脂多孔質フィルムを得ることができる。したがって、このようなオレフィン系樹脂多孔質フィルムをセパレータとして用いることで、セパレータにおける空孔率のばらつきを本願所定の範囲内の値に制御することが容易となる。また、上記方法により得られるオレフィン系樹脂多孔質フィルムは、微小孔部が均一にかつ多数形成されていることから、優れた透気性を有しており、リチウムイオンを円滑にかつ均一に透過させることができる。したがって、このようなオレフィン系樹脂多孔質フィルムを多孔質基材フィルムとしてセパレータに適用することで、非水電解質二次電池の内部抵抗を低減させることができ、電気自動車等の車両など高出力用途においても高電流密度で充放電を行うことが可能である。さらに、過充電などが発生して電池内部が高温となった場合であっても、正極と負極との電気的な短絡を高く抑制することができる結果、電池の安全性を十分に確保することが可能となる。
 (押出工程)
 オレフィン系樹脂を含むオレフィン系樹脂フィルムは、オレフィン系樹脂を押出機に供給して溶融混練した上で、押出機の先端に取り付けたTダイから押出すことにより製造することができる。
 オレフィン系樹脂を押出機にて溶融混練する際のオレフィン系樹脂の温度は、オレフィン系樹脂の融点よりも20℃高い温度以上でかつオレフィン系樹脂の融点よりも100℃高い温度以下が好ましく、オレフィン系樹脂の融点よりも25℃高い温度以上でかつオレフィン系樹脂の融点よりも80℃高い温度以下であることがより好ましく、オレフィン系樹脂の融点よりも25℃高い温度以上でかつオレフィン系樹脂の融点よりも50℃高い温度以下であることが特に好ましい。溶融混練時のオレフィン系樹脂の温度をオレフィン系樹脂の融点よりも20℃高い温度以上とすることにより、均一な厚みを有するオレフィン系樹脂多孔質フィルムを得ることができる。また、溶融混練時のオレフィン系樹脂の温度をオレフィン系樹脂の融点よりも100℃高い温度以下とすることにより、オレフィン系樹脂の配向性を向上させて、ラメラの生成を促進させることができる。
 オレフィン系樹脂を押出機からフィルム状に押出す際におけるドロー比は、50~300が好ましく、65~250がより好ましく、70~250が特に好ましい。オレフィン系樹脂を押出機からフィルム状に押出す際におけるドロー比を50以上とすることにより、オレフィン系樹脂に加わる張力を向上させ、これによりオレフィン系樹脂分子を十分に配向させてラメラの生成を促進させることができる。また、オレフィン系樹脂を押出機からフィルム状に押出す際におけるドロー比を300以下とすることによって、オレフィン系樹脂フィルムの製膜安定性を向上させて、均一な厚みや幅を有するオレフィン系樹脂多孔質フィルムを得ることができる。なお、ドロー比とは、TダイのリップのクリアランスをTダイから押出されたオレフィン系樹脂フィルムの厚みで除した値をいう。Tダイのリップのクリアランスの測定は、JIS B7524に準拠したすきまゲージ(例えば、株式会社永井ゲージ製作所製 JISすきまゲージ)を用いてTダイのリップのクリアランスを10箇所以上測定し、その相加平均値を求めることにより行うことができる。また、Tダイから押出されたオレフィン系樹脂フィルムの厚みは、ダイヤルゲージ(例えば、株式会社ミツトヨ製 シグナルABSデジマチックインジケータ)を用いてTダイから押出されたオレフィン系樹脂フィルムの厚みを10箇所以上測定し、その相加平均値を求めることにより行うことができる。
 さらに、オレフィン系樹脂フィルムの製膜速度は、10~300m/分が好ましく、15~250m/分がより好ましく、15~30m/分が特に好ましい。オレフィン系樹脂フィルムの製膜速度を10m/分以上とすることによって、オレフィン系樹脂に加わる張力を向上させ、これによりオレフィン系樹脂分子を十分に配向させてラメラの生成を促進させることができる。また、オレフィン系樹脂フィルムの製膜速度を300m/分以下とすることによって、オレフィン系樹脂フィルムの製膜安定性を向上させて、均一な厚みや幅を有するオレフィン系樹脂多孔質フィルムを得ることができる。
 そして、Tダイから押出されたオレフィン系樹脂フィルムをその表面温度が上記オレフィン系樹脂の融点よりも100℃低い温度以下となるまで冷却することにより、オレフィン系樹脂フィルムを構成しているオレフィン系樹脂が結晶化してラメラを生成する。また、溶融混練したオレフィン系樹脂を押出すことにより、オレフィン系樹脂フィルムを構成しているオレフィン系樹脂分子を予め配向させた上で、オレフィン系樹脂フィルムを冷却することで、オレフィン系樹脂が配向している部分がラメラの生成を促進させることができる。
 冷却されたオレフィン系樹脂フィルムの表面温度は、オレフィン系樹脂の融点よりも100℃低い温度以下が好ましく、オレフィン系樹脂の融点よりも140~110℃低い温度がより好ましく、オレフィン系樹脂の融点よりも135~120℃低い温度が特に好ましい。このような表面温度にオレフィン系樹脂フィルムを冷却することによって、オレフィン系樹脂フィルムを構成しているオレフィン系樹脂を十分に結晶化させることができる。
 (養生工程)
 次いで、上述した押出工程により得られたオレフィン系樹脂フィルムを養生する。このオレフィン系樹脂の養生工程は、押出工程においてオレフィン系樹脂フィルム中に生成させたラメラを成長させるために行う。このことにより、オレフィン系樹脂フィルムの押出方向に結晶化部分(ラメラ)と非結晶部分とが交互に配列してなる積層ラメラ構造を形成させることができ、後述するオレフィン系樹脂フィルムの延伸工程において、ラメラ内ではなく、ラメラ間において亀裂を発生させ、この亀裂を起点として微小孔部を形成することができる。
 養生工程は、押出工程により得られたオレフィン系樹脂フィルムを、オレフィン系樹脂の融点よりも30℃低い温度以上でかつ上記オレフィン系樹脂の融点より1℃低い温度以下にて養生することにより行う。
 オレフィン系樹脂フィルムの養生温度は、オレフィン系樹脂の融点よりも30℃低い温度以上で且つオレフィン系樹脂の融点よりも1℃低い温度以下が好ましく、オレフィン系樹脂の融点よりも25℃低い温度以上で且つオレフィン系樹脂の融点よりも10℃低い温度以下がより好ましい。オレフィン系樹脂フィルムの養生温度をオレフィン系樹脂の融点よりも30℃低い温度以上とすることによって、オレフィン系樹脂フィルムの結晶化を促進させて、後述する延伸工程においてオレフィン系樹脂フィルムのラメラ間において微小孔部を形成し易くすることができる。また、オレフィン系樹脂フィルムの養生温度をオレフィン系樹脂の融点よりも1℃低い温度以下にすることによって、オレフィン系樹脂フィルムを構成しているオレフィン系樹脂の分子配向の緩和によってラメラ構造が崩れることを低減することができる。
 なお、オレフィン系樹脂フィルムの養生温度とは、オレフィン系樹脂フィルムの表面温度である。しかしながら、オレフィン系樹脂フィルムの表面温度を測定できないような場合、例えば、オレフィン系樹脂フィルムをロール状に巻き取った状態で養生させる場合には、オレフィン系樹脂フィルムの養生温度とは、雰囲気温度とする。例えば、熱風炉などの加熱装置内部でオレフィン系樹脂フィルムをロール状に巻き取った状態で養生を行う場合には、加熱装置内部の温度を養生温度とする。
 オレフィン系樹脂フィルムの養生は、オレフィン系樹脂フィルムを走行させながら行ってもよく、オレフィン系樹脂フィルムをロール状に巻き取った状態で行ってもよい。
 オレフィン系樹脂フィルムの養生をオレフィン系樹脂フィルムを走行しながら行う場合、オレフィン系樹脂フィルムの養生時間は、1分以上が好ましく、5分~60分がより好ましい。
 オレフィン系樹脂フィルムをロール状に巻き取った状態で養生させる場合、養生時間は、1時間以上が好ましく、15時間以上がより好ましい。このような養生時間でロール状に巻き取った状態のオレフィン系樹脂フィルムを養生させることにより、ロールの表面から内部まで全体的にオレフィン系樹脂フィルムをその温度を上述した養生温度にして十分に養生させることができ、オレフィン系樹脂フィルムのラメラを十分に成長させることができる。また、オレフィン系樹脂フィルムの熱劣化を抑制するために、養生時間は、35時間以下が好ましく、30時間以下がより好ましい。
 なお、オレフィン系樹脂フィルムをロール状に巻き取った状態で養生させた場合、養生工程後のオレフィン系樹脂フィルムロールからオレフィン系樹脂フィルムを巻き出して、後述する延伸工程およびアニーリング工程を実施すればよい。
 (第一延伸工程)
 次に、養生工程後のオレフィン系樹脂フィルムに、その表面温度が-20℃以上100℃未満にて延伸倍率1.2~1.6倍に一軸延伸を施す第一延伸工程を実施する。第一延伸工程では、オレフィン系樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。第一延伸工程において、オレフィン系樹脂フィルム中のラメラは殆ど溶融しておらず、延伸によってラメラ同士を離間させることによって、ラメラ間の非結晶部において効率的に微細な亀裂を独立して生じさせ、この亀裂を起点として多数の微小孔部を確実に形成させる。
 第一延伸工程において、オレフィン系樹脂フィルムの表面温度は、-20℃以上100℃未満が好ましく、0~80℃がより好ましく、10~40℃が特に好ましい。オレフィン系樹脂フィルムの表面温度を-20℃以上とすることにより、延伸時におけるオレフィン系樹脂フィルムの破断を低減することができる。また、オレフィン系樹脂フィルムの表面温度を100℃未満とすることにより、ラメラ間の非結晶部において亀裂を発生させることができる。
 第一延伸工程において、オレフィン系樹脂フィルムの延伸倍率は、1.2~1.6倍が好ましく、1.25~1.5倍がより好ましい。オレフィン系樹脂フィルムの延伸倍率を1.2倍以上とすることにより、ラメラ間の非結晶部において微小孔部が形成され、これにより透気性に優れ、リチウムイオンが透過する際の抵抗が低いオレフィン系樹脂多孔質フィルムを提供することができる。また、オレフィン系樹脂フィルムの延伸倍率を1.6倍以下とすることにより、オレフィン系樹脂多孔質フィルムに微小孔部を均一に形成することができる。このようにして得られたオレフィン系樹脂多孔質フィルムをセパレータに適用することで、セパレータにおける空孔率のばらつきを本願所定の範囲内の値に制御することが容易となる。なお、本発明において、オレフィン系樹脂フィルムの延伸倍率とは、延伸後のオレフィン系樹脂フィルムの長さを延伸前のオレフィン系樹脂フィルムの長さで除した値をいう。
 オレフィン系樹脂フィルムの第一延伸工程における延伸速度は、20%/分以上が好ましい。延伸速度を20%/分以上とすることにより、ラメラ間の非結晶部において微小孔部を均一に形成することができる。また、オレフィン系樹脂フィルムの第一延伸工程における延伸速度は、20~500%/分がより好ましく、20~70%/分が特に好ましい。延伸速度を500%/分以下とすることにより、オレフィン系樹脂フィルムの破断を抑制することができる。
 なおオレフィン系樹脂フィルムの延伸速度とは、単位時間当たりのオレフィン系樹脂フィルムの延伸方向における寸法の変化割合をいう。
 上記第一延伸工程におけるオレフィン系樹脂フィルムの延伸方法としては、オレフィン系樹脂フィルムを一軸延伸することができれば、特に限定されず、例えば、オレフィン系樹脂フィルムを一軸延伸装置を用いて所定温度にて一軸延伸する方法などが挙げられる。
 (第二延伸工程)
 次いで、第一延伸工程後のオレフィン系樹脂フィルムに、その表面温度が100~150℃にて延伸倍率1.2~2.2倍に一軸延伸処理を施す第二延伸工程を実施する。第二延伸工程においても、オレフィン系樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。このような第二延伸工程における延伸処理を行うことによって、第一延伸工程にてオレフィン系樹脂フィルムに形成された多数の微小孔部を成長させることができる。
 第二延伸工程において、オレフィン系樹脂フィルムの表面温度は、100~150℃が好ましく、110~140℃がより好ましい。オレフィン系樹脂フィルムの表面温度を100℃以上とすることによって、第一延伸工程においてオレフィン系樹脂フィルムに形成された微小孔部を成長させて、オレフィン系樹脂多孔質フィルムの透気性を向上させることができる。また、オレフィン系樹脂フィルムの表面温度を150℃以下とすることによって、第一延伸工程においてオレフィン系樹脂フィルムに形成された微小孔部の閉塞を抑制することができる。
 第二延伸工程において、オレフィン系樹脂フィルムの延伸倍率は、1.2~2.2倍が好ましく、1.5~2倍がより好ましい。オレフィン系樹脂フィルムの延伸倍率を1.2倍以上とすることによって、第一延伸工程時にオレフィン系樹脂フィルムに形成された微小孔部を成長させて、優れた透気性を有するオレフィン系樹脂多孔質フィルムを提供することができる。また、オレフィン系樹脂フィルムの延伸倍率を2.2倍以下とすることによって、第一延伸工程においてオレフィン系樹脂フィルムに形成された微小孔部の閉塞を抑制することができる。
 第二延伸工程において、オレフィン系樹脂フィルムの延伸速度は、500%/分以下が好ましく、400%/分以下がより好ましく、15~60%/分が特に好ましい。オレフィン系樹脂フィルムの延伸速度を上記範囲内とすることによって、オレフィン系樹脂フィルムに微小孔部を均一に形成することができる。このようにして得られたオレフィン系樹脂多孔質フィルムをセパレータに適用することで、セパレータにおける空孔率のばらつきを本願所定の範囲内の値に制御することが容易となる。
 上記第二延伸工程におけるオレフィン系樹脂フィルムの延伸方法としては、オレフィン系樹脂フィルムを一軸延伸することができれば、特に限定されず、例えば、オレフィン系樹脂フィルムを一軸延伸装置を用いて所定温度にて一軸延伸する方法などが挙げられる。
 (アニーリング工程)
 次に、第二延伸工程において延伸が施されたオレフィン系樹脂フィルムにアニール処理を施すアニーリング工程を行う。このアニーリング工程は、上述した延伸工程において加えられた延伸によってオレフィン系樹脂フィルムに生じた残存歪みを緩和して、得られるオレフィン系樹脂多孔質フィルムに加熱による熱収縮が生じるのを抑えるために行われる。
 アニーリング工程におけるオレフィン系樹脂フィルムの表面温度は、第二延伸工程時のオレフィン系樹脂フィルムの表面温度以上で且つオレフィン系樹脂の融点よりも10℃低い温度以下が好ましい。オレフィン系樹脂フィルムの表面温度を第二延伸工程時のオレフィン系樹脂フィルムの表面温度以上とすることによって、オレフィン系樹脂フィルム中に残存した歪みを十分に緩和して、得られるオレフィン系樹脂多孔質フィルムの加熱時における寸法安定性を向上させることができる。また、オレフィン系樹脂フィルムの表面温度をオレフィン系樹脂の融点よりも10℃低い温度以下とすることによって、延伸工程で形成された微小孔部の閉塞を抑制することができる。
 アニーリング工程におけるオレフィン系樹脂フィルムの収縮率は、20%以下に設定することが好ましい。オレフィン系樹脂フィルムの収縮率を20%以下とすることによって、オレフィン系樹脂フィルムのたるみの発生を低減して、オレフィン系樹脂フィルムを均一にアニールすることができる。なお、オレフィン系樹脂フィルムの収縮率とは、アニーリング工程時における延伸方向におけるオレフィン系樹脂フィルムの収縮長さを、第二延伸工程後の延伸方向におけるオレフィン系樹脂フィルムの長さで除して100を乗じた値をいう。
 上述した各工程において、条件および手法(例えば、押出後冷却速度、延伸倍率、延伸速度、結晶転移)を適宜調節することにより、得られるオレフィン系多孔質をセパレータに適用した際の、セパレータにおける空孔率のばらつきを小さくすることができる。
 (電解質)
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であってもよい。この場合、本発明に係る「セパレータの空孔体積に対する定格容量」や「セパレータにおける空孔率のばらつき」を測定する際には、耐熱絶縁層と多孔質基体との積層体を用いて測定するものとする。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダーは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダーは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダーとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダーの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダーの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダーの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 [電池外装体]
 電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましく、アルミネートラミネートがより好ましい。
 [セルサイズ]
 図3は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。このリチウムイオン二次電池のように、本発明における好ましい実施形態によれば、アルミニウムを含むラミネートフィルムからなる電池外装材に前記発電要素が封入されてなる扁平積層型ラミネート電池が提供される。このように扁平積層型ラミネートとすることで、大容量化を図ることができる。
 図3に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図1に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)15、電解質層17および負極(負極活物質層)13で構成される単電池層(単セル)19が複数積層されたものである。
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではないが、自動車への搭載効率が高いことから、扁平な形状であることが好ましく、高容量化を容易に達成することができることから積層型であることがより好ましい。
 また、図3に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図3に示すものに制限されるものではない。
 [定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比および定格放電容量]
 一般的な電気自動車では、電池格納スペースが170L程度である。このスペースにセルおよび充放電制御機器等の補機を格納するため、通常セルの格納スペース効率は50%程度となる。この空間へのセルの積載効率が電気自動車の航続距離を支配する因子となる。単セルのサイズが小さくなると上記積載効率が損なわれるため、航続距離を確保できなくなる。
 したがって、本発明において、発電要素を外装体で覆った電池構造体は大型であることが好ましい。また、上述したように、大型の電池において、本発明の効果が顕著に発揮される。具体的には、本形態に係る非水電解質二次電池においては、電池面積および電池容量の関係から電池の大型化が規定される。具体的には、本形態に係る非水電解質二次電池は、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が4.0cm/Ah以上である。本形態においては、後述するように定格容量が30Ah以上と大きいため、電池面積(電池外装体まで含めた電池の投影面積)は必然的に120cm以上と大型となる。高容量の点からは定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比は大きければ大きいほど好ましいが、車載容積の関係上、通常1000cm/Ah以下である。定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値は、好ましくは、5~15cm/Ahである。
 本形態に係る非水電解質二次電池においては、定格容量が30Ah以上である。定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が4cm/Ah以上でかつ、定格容量が30Ah以上と、大容量の電池の場合、充放電サイクルの繰り返しによって高容量を維持することが一層困難となり、サイクル耐久性の向上という課題がより一層顕著に発現しうるのである。一方、従来の民生型電池のような、上記のように大面積かつ大容量ではない電池においては、かような問題の発生は顕在化しにくい(後述の比較例4~6)。定格容量は、大きいほど好ましく、その上限は特に限定されるものではないが、通常100Ah以下となる。定格容量は、30~70Ahであることが好ましく、40~60Ahであることがより好ましい。なお、定格容量は下記実施例に記載の方法により測定された値を採用する。
 また、物理的な電極の大きさとしては、ラミネートセル電池の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、ラミネートセル電池の短辺の長さとは、最も長さが短い辺を指す。短辺の長さの上限は特に限定されるものではないが、通常400mm以下である。
 さらに、矩形状の電極のアスペクト比は1~3であることが好ましく、1~2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、車両要求性能と搭載スペースを両立できるという利点がある。
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 このように電池を複数枚積層したセルユニットを、上下のケース(例えば金属ケース)内に収容して、組電池を形成してもよい。この際、通常は、締結部材により金属ケースを締結して組電池がケース内に収納される。したがって、ケース内では電池が積層方向に加圧されることとなる。かような加圧により、大型電池では面内の圧力分布が生じやすくなるが、本実施形態の構成によれば、正極活物質内の空孔率のばらつきが小さいため、圧力分布による電流の集中を緩和することができると考えられる。
 [車両]
 本実施形態の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 本発明の効果を、以下の実施例および比較例を用いて説明する。実施例において「部」あるいは「%」の表示を用いる場合があるが、特に断りがない限り、「重量部」あるいは「重量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。
 (空孔率のばらつきの測定方法)
 以下の実施例・比較例で用いた各セパレータにおける空孔率のばらつきは、以下の手法により算出した。
 まず、図2に示すようにセパレータの面方向において選択された9箇所の3cm角の測定領域における空孔率を測定し、その9個の測定値の中の最大値を「最大空孔率」とし、最小値を「最小空孔率」とした。また、9個の測定値の相加平均値を「平均空孔率」とした。そして、これらの値から、下記式に従って、空孔率のばらつきを算出した。
Figure JPOXMLDOC01-appb-M000001
 なお、セパレータのサンプルにおける空孔率の測定の際には、まず、水銀圧入ポロシメーターを用いた水銀圧入法による細孔分布測定により、当該サンプルの内部に存在する空孔(微細孔)の体積を測定した。そして、この空孔体積の測定値とサンプルの見かけ体積とから、セパレータサンプルの空孔率を算出した(空孔率=(サンプル空孔体積/サンプル体積)×100(%))。
 (実施例1)
 1.電解液の作製
 エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)の混合溶媒(30:30:40(体積比))を溶媒とした。また1.0MのLiPFをリチウム塩とした。さらに上記溶媒と上記リチウム塩との合計100重量%に対して2.0重量%のビニレンカーボネートを添加して電解液を作製した。なお、「1.0MのLiPF」とは、当該混合溶媒およびリチウム塩の混合物におけるリチウム塩(LiPF)濃度が1.0Mであるという意味である。
 2.正極の作製
 正極活物質としてLiNi1/3Mn1/3Co1/3(平均粒子径:15μm)90重量%、導電助剤としてアセチレンブラック 5重量%、およびバインダーとしてPVdF 5重量%からなる固形分を用意した。この固形分に対し、スラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量添加して、正極活物質スラリーを調製した。次に、正極活物質スラリーを、集電体であるアルミニウム箔(厚み20μm)の両面に塗工機を用いて塗布し、乾燥・プレスを行って、正極活物質層の片面塗工量15.0mg/cmの正極を作製した。また、正極活物質層の密度は、2.8g/ccとした。
 3.負極の作製
 負極活物質として天然黒鉛(平均粒子径:20μm)94重量%、導電助剤としてアセチレンブラック2重量%およびバインダーとしてSBR 3重量%、CMC 1重量%からなる固形分を用意した。この固形分に対し、スラリー粘度調整溶媒であるイオン交換水を適量添加して、負極活物質スラリーを調製した。次に、負極活物質スラリーを、集電体である銅箔(10μm)の両面に塗布し、乾燥・プレスを行って、片面塗工量7.3mg/cmの負極を作製した。また、負極活物質層の密度は、1.4g/ccとした。
 4.単電池の完成工程
 上記で作製した正極を200×204mmの長方形状に切断し、負極を205×209mmの長方形状に切断した(正極24枚、負極25枚)。この正極と負極とを210×214mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)を介して交互に積層して発電要素を作製した。なお、ここで用いたセパレータにおける空孔率のばらつきの値は、1.2%であった。
 得られた発電要素にタブを溶接し、アルミラミネートフィルムからなる外装中に電解液とともに密封して電池を完成させた。その後、電極面積よりも大きいウレタンゴムシート(厚み3mm)、さらにAl板(厚み5mm)で電池を挟み込み、電池を両側から積層方向に適宜加圧した。そして、このようにして得られた電池について、5時間かけて初回充電を行った(上限電圧4.15V)。その後、45℃にて5日間エージングを行い、ガス抜き、放電を実施して、本実施例の電池を完成させた。このようにして作製された電池の定格容量(セル容量)は40Ahであり、定格容量に対する正極面積の比の値は10.2cm/Ahであった。
 なお、電池の定格容量は以下により求めた。
 ≪定格容量の測定≫
 手順1:0.2Cの定電流充電によって4.15Vに到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
 手順2:0.2Cの定電流放電によって3.0Vに到達後、10秒間休止する。
 定格容量:手順2における定電流放電における放電容量(CC放電容量)を定格容量とした。
 (実施例2)
 正極活物質層および負極活物質層の片面塗工量をそれぞれ18.0mg/cmおよび8.8mg/cmに変更し、正極、負極およびセパレータのサイズをそれぞれ200×210mm、205×215mmおよび210×220mmに変更したこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (実施例3)
 正極活物質層および負極活物質層の片面塗工量をそれぞれ21.5mg/cmおよび10.5mg/cmに変更したこと以外は、上述した実施例2と同様の手法により、電池を完成させた。
 (実施例4)
 セパレータとして、210×214mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が1.9%のものを用いたこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (実施例5)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が1.9%のものを用いたこと以外は、上述した実施例2と同様の手法により、電池を完成させた。
 (実施例6)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が1.9%のものを用いたこと以外は、上述した実施例3と同様の手法により、電池を完成させた。
 (実施例7)
 セパレータとして、210×214mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が2.9%のものを用いたこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (実施例8)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が2.9%のものを用いたこと以外は、上述した実施例2と同様の手法により、電池を完成させた。
 (実施例9)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が2.9%のものを用いたこと以外は、上述した実施例3と同様の手法により、電池を完成させた。
 (実施例10)
 セパレータとして、210×214mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が3.8%のものを用いたこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (実施例11)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が3.8%のものを用いたこと以外は、上述した実施例2と同様の手法により、電池を完成させた。
 (実施例12)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が3.8%のものを用いたこと以外は、上述した実施例3と同様の手法により、電池を完成させた。
 (比較例1)
 セパレータとして、210×214mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が5.2%のものを用いたこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (比較例2)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が5.2%のものを用いたこと以外は、上述した実施例2と同様の手法により、電池を完成させた。
 (比較例3)
 セパレータとして、210×220mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が5.2%のものを用いたこと以外は、上述した実施例3と同様の手法により、電池を完成させた。
 (比較例4)
 正極活物質層および負極活物質層の片面塗工量をそれぞれ10.6mg/cmおよび5.3mg/cmに変更した。また、正極および負極のサイズをそれぞれ200×179mmおよび205×184mmに変更した。そして、セパレータとして、210×189mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が5.2%のものを用いた。これらのこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (比較例5)
 正極活物質層および負極活物質層の片面塗工量をそれぞれ10.8mg/cmおよび5.6mg/cmに変更した。また、正極および負極のサイズをそれぞれ200×226mmおよび205×231mmに変更した。そして、セパレータとして、210×236mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が6.5%のものを用いた。これらのこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (比較例6)
 正極活物質層および負極活物質層の片面塗工量をそれぞれ26.0mg/cmおよび12.7mg/cmに変更した。また、正極および負極のサイズをそれぞれ80×132mmおよび85×137mmに変更した。さらに、正極35枚および負極36枚をセパレータを介して交互に積層することで、電池の積層数を35とした。そして、セパレータとして、90×142mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空孔率55%)であって、空孔率のばらつきの値が6.5%のものを用いた。これらのこと以外は、上述した実施例1と同様の手法により、電池を完成させた。
 (サイクル特性)
 正極に対する電流密度を2mA/cmとして、各実施例および比較例で作製した電池をカットオフ電圧4.15Vまで充電して初期充電容量とし、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。この充放電サイクルを500回繰返した。初期放電容量に対する500サイクル目の放電容量の割合を容量維持率(%)とし、サイクル耐久性として評価した。
 各実施例および比較例の製造条件ならびにサイクル特性の結果を下記表1に示す。また、横軸にセパレータにおける空孔率のばらつき(%)をプロットし、縦軸に容量維持率(%)をプロットしたグラフを図4に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表1に示す結果のうち、比較例1~3のそれぞれとセパレータの空孔体積に対する定格容量の比が同等である実施例1、4、7および10、実施例2、5、8および11、並びに実施例3、6、9および12とを比較すると、セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上である場合には、セパレータにおける空孔率のばらつきが4.0%以下であるときに、電池のサイクル耐久性が大幅に向上することがわかる。
 また、実施例どうしで対比すると、セパレータの空孔体積に対する定格容量の比が比較的小さめ(1.6Ah/cc)である実施例1、4、7および10では、容量維持率の値に大きな差は見られなかった。これに対し、セパレータの空孔体積に対する定格容量の比が2.1となる実施例2、5、8および11を対比すると、セパレータにおける空孔率のばらつきが3.0%以下となったときに容量維持率がさらに大幅に向上することがわかる。同様に、セパレータの空孔体積に対する定格容量の比がさらに大きい2.6となる実施例3、6、9および12を対比すると、やはりセパレータにおける空孔率のばらつきが3.0%以下となったときに容量維持率がさらに大幅に向上することがわかる。
 なお、セパレータにおける空孔率のばらつきの値に着目すると、この値が2.0%以下となる実施例1~6では、いずれも93%以上というきわめて高い容量維持率が達成された。
 一方、比較例4~6では、セパレータにおける空孔率のばらつきが5%よりも大きいが、容量維持率の低下は観察されなかった。これは、これらの比較例ではセパレータの空孔体積に対する定格容量の比がそれほど大きくない(高容量電池ではない;比較例4~5)か、定格容量自体がそれほど大きくない(やはり高容量電池ではない;比較例4~6)、定格容量に対する電池面積の比がそれほど大きくない(大面積電池ではない;比較例6)ことで、高容量かつ大面積の電池における電流集中とそれに起因する局所的な劣化の問題が顕在化しなかったことによるものと考えられる。このように、本発明は、高容量かつ大面積の電池において特有に発生する課題が存在することを見出したことに端を発している。そしてその上で、セパレータの空孔率のばらつきを所定の値以下に制御することで、上記課題の発生を防止することができることを見出したことにより完成されたものであるといえる。
10、50 リチウムイオン二次電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。

Claims (5)

  1.  正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
     負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
     セパレータと、
    を含む発電要素を有し、
     セパレータの空孔体積に対する定格容量の比が1.55Ah/cc以上であり、定格容量に対する電池面積の比が4.0cm/Ah以上であり、かつ、定格容量が30Ah以上である、非水電解質二次電池であって、
     セパレータにおける空孔率のばらつきが4.0%以下である、非水電解質二次電池。
  2.  前記セパレータの空孔体積に対する定格容量の比が2.1Ah/cc以上であり、前記セパレータにおける空孔率のばらつきが3.0%以下である、請求項1に記載の非水電解質二次電池。
  3.  前記セパレータにおける空孔率のばらつきが2.0%以下である、請求項1または2に記載の非水電解質二次電池。
  4.  前記正極活物質が一般式(1):LiNiMnCo
    (但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)
    で表される組成を有するリチウム複合酸化物である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  アルミニウムを含むラミネートフィルムからなる電池外装体に前記発電要素が封入されてなる扁平積層型ラミネート電池である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
PCT/JP2016/067137 2016-06-08 2016-06-08 非水電解質二次電池 WO2017212595A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2016/067137 WO2017212595A1 (ja) 2016-06-08 2016-06-08 非水電解質二次電池
EP16904630.7A EP3471171A4 (en) 2016-06-08 2016-06-08 NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US16/308,073 US11043717B2 (en) 2016-06-08 2016-06-08 Non-aqueous electrolyte secondary battery
KR1020187035515A KR102210309B1 (ko) 2016-06-08 2016-06-08 비수전해질 이차 전지
JP2018522242A JP6742408B2 (ja) 2016-06-08 2016-06-08 非水電解質二次電池
CN201680086559.8A CN109314216B (zh) 2016-06-08 2016-06-08 非水电解质二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067137 WO2017212595A1 (ja) 2016-06-08 2016-06-08 非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2017212595A1 true WO2017212595A1 (ja) 2017-12-14

Family

ID=60578484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067137 WO2017212595A1 (ja) 2016-06-08 2016-06-08 非水電解質二次電池

Country Status (6)

Country Link
US (1) US11043717B2 (ja)
EP (1) EP3471171A4 (ja)
JP (1) JP6742408B2 (ja)
KR (1) KR102210309B1 (ja)
CN (1) CN109314216B (ja)
WO (1) WO2017212595A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200036034A1 (en) * 2018-07-24 2020-01-30 Michael Wang High-capacity polymer lithium-ion battery structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582868B (zh) * 2017-02-24 2022-05-10 库伯格股份有限公司 用于稳定的高温二次电池的系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142101A (ja) * 2012-01-10 2013-07-22 Tetsuro Nogata ポリオレフィン微多孔膜の製造方法
JP2014532979A (ja) * 2012-10-25 2014-12-08 トップテク エイチエヌエス カンパニー リミテッドTOPTEC HNS Co.,Ltd. 二次電池分離膜用pet不織布及びその二次電池用分離膜
JP2015008124A (ja) * 2013-06-06 2015-01-15 レクランシェ エスエイLeclanche SA ガラス含有セパレータを有する電気化学セル
WO2016031493A1 (ja) * 2014-08-29 2016-03-03 住友化学株式会社 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820659A (ja) 1994-07-08 1996-01-23 Daicel Chem Ind Ltd 微多孔膜及びその製造方法並びに非水電解液電池用セパレータ
JPH0820660A (ja) 1994-07-08 1996-01-23 Daicel Chem Ind Ltd 微多孔膜及びその製造方法並びに非水電解液電池用セパレータ
JP4628764B2 (ja) 2004-07-06 2011-02-09 旭化成株式会社 蓄電デバイス用セパレータ
JP4519685B2 (ja) * 2005-03-14 2010-08-04 株式会社東芝 非水電解質電池
JP4213688B2 (ja) * 2005-07-07 2009-01-21 株式会社東芝 非水電解質電池及び電池パック
JP2011162669A (ja) * 2010-02-10 2011-08-25 Toray Ind Inc 多孔性ポリプロピレンフィルムロールおよびその製造方法
JP5830953B2 (ja) * 2010-11-17 2015-12-09 ソニー株式会社 二次電池、バッテリユニットおよびバッテリモジュール
JP5924550B2 (ja) * 2011-10-11 2016-05-25 トヨタ自動車株式会社 非水系二次電池
JP2014127242A (ja) * 2012-12-25 2014-07-07 Hitachi Maxell Ltd リチウム二次電池
US9899649B2 (en) * 2013-03-26 2018-02-20 Nissan Motor Co. Ltd. Non-aqueous electrolyte secondary battery
EP2980911B1 (en) * 2013-03-26 2018-06-06 Nissan Motor Co., Ltd Non-aqueous electrolyte secondary battery
JP6135916B2 (ja) * 2013-04-04 2017-05-31 トヨタ自動車株式会社 非水電解液二次電池および該電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142101A (ja) * 2012-01-10 2013-07-22 Tetsuro Nogata ポリオレフィン微多孔膜の製造方法
JP2014532979A (ja) * 2012-10-25 2014-12-08 トップテク エイチエヌエス カンパニー リミテッドTOPTEC HNS Co.,Ltd. 二次電池分離膜用pet不織布及びその二次電池用分離膜
JP2015008124A (ja) * 2013-06-06 2015-01-15 レクランシェ エスエイLeclanche SA ガラス含有セパレータを有する電気化学セル
WO2016031493A1 (ja) * 2014-08-29 2016-03-03 住友化学株式会社 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3471171A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200036034A1 (en) * 2018-07-24 2020-01-30 Michael Wang High-capacity polymer lithium-ion battery structure

Also Published As

Publication number Publication date
KR20190005214A (ko) 2019-01-15
JPWO2017212595A1 (ja) 2019-05-23
KR102210309B1 (ko) 2021-01-29
CN109314216A (zh) 2019-02-05
US11043717B2 (en) 2021-06-22
CN109314216B (zh) 2021-08-17
JP6742408B2 (ja) 2020-08-19
EP3471171A4 (en) 2019-05-15
EP3471171A1 (en) 2019-04-17
US20190259999A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6036999B2 (ja) 非水電解質二次電池
JP6112204B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
WO2014157421A1 (ja) 非水電解質二次電池
WO2014142283A1 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6070823B2 (ja) 非水電解質二次電池
WO2014142284A1 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP2015095329A (ja) リチウムイオン二次電池
JP6777737B2 (ja) 非水電解質二次電池
JP6740011B2 (ja) 非水電解質二次電池
WO2017212595A1 (ja) 非水電解質二次電池
CN109565072B (zh) 非水电解质二次电池
JP6755311B2 (ja) 非水電解質二次電池
WO2014157418A1 (ja) 非水電解質二次電池
JP6585843B2 (ja) 非水電解質二次電池
JP6585842B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018522242

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20187035515

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016904630

Country of ref document: EP

Effective date: 20190108