WO2017210966A1 - 有机光电材料以及包括该有机材料的有机电致发光器件 - Google Patents

有机光电材料以及包括该有机材料的有机电致发光器件 Download PDF

Info

Publication number
WO2017210966A1
WO2017210966A1 PCT/CN2016/090641 CN2016090641W WO2017210966A1 WO 2017210966 A1 WO2017210966 A1 WO 2017210966A1 CN 2016090641 W CN2016090641 W CN 2016090641W WO 2017210966 A1 WO2017210966 A1 WO 2017210966A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
electroluminescent device
organic photoelectric
Prior art date
Application number
PCT/CN2016/090641
Other languages
English (en)
French (fr)
Inventor
盛磊
张鑫鑫
石宇
胡葆华
孟凡民
周银波
Original Assignee
中节能万润股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中节能万润股份有限公司 filed Critical 中节能万润股份有限公司
Priority to KR1020197000163A priority Critical patent/KR102138087B1/ko
Publication of WO2017210966A1 publication Critical patent/WO2017210966A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to the field of optoelectronic technology, and in particular to an organic optoelectronic material and an organic electroluminescent device comprising the same.
  • OLED Organic electroluminescent devices
  • the organic electroluminescent device is a current-driven light-emitting device. According to different illumination mechanisms, it can be divided into two types: a fluorescent device and a phosphorescent device.
  • a fluorescent device When a charge is injected from the electrode into the device, due to the randomness of the electron spin direction, the single weight The proportion of excitons is only 25%, and the other 75% are triplet excitons.
  • fluorescent devices can only use singlet excited exciton luminescence, while phosphorescent devices can simultaneously apply singlet excitons and triplet stimuli. The energy of the sub, therefore, the efficiency of the phosphorescent device is much greater than that of the fluorescent device.
  • Phosphorescent devices are more efficient than fluorescent devices.
  • phosphorescent devices also have their shortcomings.
  • phosphorescent materials are mainly complexes containing noble metals, especially complexes of metal ruthenium and platinum. Since metal ruthenium and platinum itself are expensive, The price of phosphorescent materials is extremely expensive, which also limits the application space of phosphorescent materials.
  • the present invention provides an organic photoelectric material which can be used as a light-emitting material in an organic electroluminescent device, thereby improving the maximum current efficiency of the organic electroluminescent device and reducing the organic electroluminescent device.
  • the voltage is bright and the spectral coverage of the emitted visible light of the organic electroluminescent device is wide.
  • R 1 and R 2 are each independently selected from the group consisting of a hydrogen group, a cyano group (-CN), an isothiocyanato group (-NCS), and a phenyl group
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently selected from the group consisting of a hydrogen group, a halogen group, and a carbon number of 10 to 50 and containing N, S, and O.
  • the halogen group can be selected according to actual needs, and is preferably a fluorine group, a chlorine group or a bromine group, and further preferably a fluorine group.
  • R 1 and R 2 are preferably the same, and R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same as each other, or may be different from each other, or may be either or both of them. The two are the same and are not subject to specific restrictions.
  • examples of the aromatic heterocyclic group include a fused heterocyclic group, a monocyclic aromatic heterocyclic group, and a polycyclic aromatic heterocyclic group, and the like, wherein the fused heterocyclic group may be a single
  • the cycloaromatic or non-aromatic heterocyclic ring (heterocyclic ring may be different) is obtained by condensation.
  • the aromatic heterocyclic group may also be the above fused heterocyclic group, monocyclic aromatic heterocyclic group or polycyclic aromatic group.
  • the heterocyclic group is obtained by bonding at least one group of an aryl group, a halogenated aryl group and an arylamine group, wherein the aryl group may be a phenyl group, an aralkyl group or an aromatic group containing at least one phenyl group.
  • the group is a biphenyl group
  • the halogenated aryl group is a group formed by substituting at least one of F, Cl, and Br, wherein F is preferably substituted for an aryl group, and the arylamine group is exemplified by a diphenylamine group.
  • the number of hetero atoms is not specifically limited, and may be, for example, one, two, three, four, five, six or seven, in addition, In one substituent, any one of the above hetero atoms may be selected, or any two of the above hetero atoms or Three kinds.
  • an aromatic heterocyclic group having 11 to 40 carbon atoms is selected, and more preferably, an aromatic heterocyclic group having 11 to 36 carbon atoms is selected.
  • the aromatic heterocyclic group is one or more selected from the group consisting of the following formulas (1) to (21):
  • R 9 and R 10 are each independently selected from a hydrogen group and an alkane having 1 to 10 carbon atoms.
  • L represents a bonded group, and L is selected from an arylene group having 6 to 20 carbon atoms; a halogenated arylene group having 6 to 20 carbon atoms and one of arylene cyano groups, wherein the halogen atom is F, Cl or Br, preferably F;
  • M a group representing a bond, M is selected from the group consisting of a secondary aryl group having 6 to 20 carbon atoms, a halogenated arylene group, and a arylene cyano group, wherein the halogen atom is F, Cl, Br, preferably F. .
  • an alkyl group having 1 to 10 carbon atoms, a chain alkyl group and a cycloalkyl group, wherein the chain alkyl group further includes a linear alkyl group and a branched alkyl group, and further, hydrogen on the chain alkyl group may also be used.
  • the hydrogen on the cycloalkyl group may also be substituted with an alkyl group.
  • an alkyl group having 1 to 6 carbon atoms is selected, and more preferably, an alkyl group having 1 to 4 carbon atoms and a cycloalkyl group having 5 to 6 carbon atoms are selected.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, and a t-butyl group.
  • aryl group having 6 to 10 carbon atoms examples include a phenyl group and an aralkyl group.
  • an aryl group having 6 to 9 carbon atoms is selected, and more preferably, an aryl group having 6 to 8 carbon atoms is selected.
  • the arylamine group having 6 to 20 carbon atoms may be a group formed by, for example, replacing a hydrogen on ammonia (NH 3 ) with an aryl group such as a phenyl group, and specifically may be a diphenylamine group in which a substituted aryl group is used.
  • the number may be 1, 2 or 3, and the aryl group mentioned above is preferably the above-mentioned aryl group, and thus will not be further described.
  • an arylamine group having 12 to 20 carbon atoms is selected, and more preferably, an arylamine group having 12 to 16 carbon atoms is selected.
  • fused heterocyclic group containing N and having 12 to 20 carbon atoms examples include a carbazolyl group.
  • a fused heterocyclic group containing N and having 12 to 16 carbon atoms is selected.
  • the L group is as follows.
  • the arylene group having 6 to 20 carbon atoms may, for example, be a phenylene group, a phenylene group such as a phenyl group containing a methyl group or a t-butyl group, or an arylene group having at least one phenyl group such as a biphenylylene group.
  • a fused ring aromatic hydrocarbon group in which a carbon on a biphenylylene group and a fused ring aromatic hydrocarbon group may be bonded to an alkyl group and/or an alkenyl group, wherein an alkyl group such as a methyl group or a t-butyl group.
  • an arylene group having 6 to 14 carbon atoms is selected, and more preferably, an arylene group having 6 to 12 carbon atoms is selected, and even more preferably, an arylene group having 6 to 8 carbon atoms is selected.
  • the arylene group specific examples thereof include:
  • a halogenated arylene group having 6 to 20 carbon atoms which is a group formed by substituting an arylene group with a halogen atom, and it is preferred that the above-mentioned arylene group is substituted by a halogen atom such as fluorine, and preferably the number of carbon atoms is 6 to 20 fluoroarylene.
  • a halogenated arylene group having 6 to 14 carbon atoms is selected, and more preferably, a halogenated arylene group having 6 to 14 carbon atoms is selected, and even more preferably, the number of carbon atoms is 6 to 12 Halogenated arylene.
  • Specific examples of the halogenated arylene group include:
  • the arylene group is a group formed by substituting an arylene group with a cyano group, and it is preferred that the above-mentioned arylene group is substituted with a cyano group.
  • the secondary aryl group having 6 to 20 carbon atoms has three groups on the aromatic compound which can be bonded to other groups.
  • a secondary aryl group having 6 to 14 carbon atoms is selected, and more preferably, a secondary aryl group having 6 to 12 carbon atoms is selected.
  • Specific examples of the secondary aryl group include:
  • halogenated arylene group and the arylarylcyano group are groups in which the arylene group is sequentially substituted by a halogen atom or a cyano group, and are preferably substituted by F.
  • the organic photoelectric material provided by the present invention is a small molecular material containing an indole pyrazine structure, and is modified by selecting other chemical groups on the structure containing an indole pyrazine, and the selected chemical group is as described above.
  • the organic photoelectric material has a DA type or DAD type molecular structural unit, that is, the organic photoelectric material provided by the present invention contains both an electron acceptor core and an electron donor, and the organic photoelectric material
  • the material has excellent fluorescence emission capability, has suitable molecular energy level, moderate molecular mass, good film stability, and is suitable as a functional layer of small molecule organic electroluminescent device, and is applied in the field of organic electroluminescence, in particular
  • the organic photoelectric material can be preferentially used as a light-emitting material for a light-emitting layer in a small molecule organic electroluminescent device.
  • the organic photoelectric material provided by the invention is applied as a luminescent material in an organic electroluminescent device, so that the organic electroluminescent device can emit visible light of different colors, such as sky blue, cyan, green, orange, etc., and the spectral coverage is wide. Moreover, the performance of the organic electroluminescent device is improved, such as greatly increasing the maximum current efficiency of the device while reducing the ignition voltage.
  • organic photoelectric material examples include the following compounds C001 to C372, wherein it is to be noted that the following compounds are representative structures in accordance with the spirit and principle of the present invention, and it should be understood that the specific structures of the following compounds are listed for the purpose of The invention is not to be construed as limiting the invention.
  • Another object of the present invention is to provide an organic electroluminescent device comprising a cathode, an anode and a light-emitting layer, the light-emitting layer being located between the anode and the cathode, wherein the light-emitting layer comprises an organic photoelectric material provided by the present invention Preparation is obtained.
  • a hole transport layer, an electron transport layer, and an electron injection layer may further be included, wherein the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer Both are disposed between the cathode and the anode, and a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer are sequentially stacked on the anode.
  • the anode is preferably indium tin oxide (ITO) conductive glass
  • the hole transport layer is preferably prepared by NPB
  • the light emitting layer is preferably prepared by the material provided by the present invention and mCP
  • the electron transport layer is formed by TPBI.
  • the electron injecting layer is obtained by LiF preparation
  • the cathode is preferably Al, wherein NPB, mCP and TPBI are as follows.
  • the respective functional layers are not limited to the use of the materials mentioned above, and these materials may be replaced by other materials, such as a hole transport layer which can be prepared by TAPC, and an electron transport layer which can be prepared by TpPYPB.
  • TAPC and TpPYPB are as follows:
  • each of the above film layers that is, the hole transporting layer, the light emitting layer, the electron transporting layer, and the electron injecting layer may be each formed by a vapor deposition method, a spin coating method, or a casting method.
  • the corresponding material of the layer is formed into a film. Further, in order to thin the material of each film layer and to easily obtain a uniform film layer, pinholes are less likely to be formed, and a vacuum deposition method is preferred.
  • the vacuum evaporation method is selected, the heating temperature, the degree of vacuum, the evaporation rate, and the temperature of the substrate can be conventionally selected according to actual needs.
  • the corresponding material is thinned by vacuum evaporation, a uniform film layer is easily obtained, and pinholes are not easily formed.
  • the organic electroluminescent device provided by the invention can be prepared by a conventional method, and there is no special need begging.
  • the organic electroluminescent device provided by the invention since the organic photoelectric material provided by the invention is contained, the maximum current efficiency of the organic electroluminescent device can be greatly improved, and at the same time, the ignition voltage is lowered, and the organic electricity is remarkably improved. The lifetime of the light-emitting device.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • the reagents, materials and instruments used are all conventional reagents, conventional materials and conventional instruments, unless otherwise specified, and are commercially available, and the reagents involved can also be synthesized by conventional synthesis methods. obtain.
  • Example 1 According to the method given in Example 1 and the raw material ratio, wherein different kinds of substrates are used as raw materials, the ring-closing reaction is carried out with ethylenediamine, wherein in each of the examples, the selected raw materials and the corresponding compounds are obtained.
  • the yield and mass spectrometric detection results are shown in Table 1 below.
  • Example 12 According to the method given in Example 12 and the raw material ratio, wherein different kinds of substrates are used as raw materials, the ring-closing reaction is carried out with diaminomaleonitrile, wherein in each of the examples, the selected raw materials and corresponding materials are obtained.
  • Table 2 The results of the compounds, as well as the yield and mass spectrometry, are shown in Table 2 below.
  • the crude product is purified by silica gel column chromatography, eluent ethyl acetate, and then the crude product is further purified by chemical vapor deposition system.
  • the sublimation temperature was 320 ° C, and finally 1.7 g of the compound C001 was obtained, and the calculated yield was 46%.
  • the compound C001 After high-resolution mass spectrometry, ESI source, positive ion mode detection, the compound C001 has a molecular formula of C 26 H 15 N 3 , the detected value is 369.1268, and the theoretical value is 369.1266. In addition, after the elemental analysis of the compound C001, C is detected. 84.54%, H: 4.11%, N: 11.35%, theoretical value C: 84.53%, H: 4.09%, N: 11.37%.
  • the C-N coupling reaction was carried out according to the method given in Example 23 and the ratio of the raw materials, but The kind of the raw material was changed, and in each of the examples, the corresponding compound structure, the corresponding molecular formula, the yield of the prepared compound, and the high-resolution mass spectrometry and elemental analysis test results were obtained as shown in Table 3 below.
  • the crude product is purified by silica gel column chromatography, eluting with ethyl acetate, and finally purifying the crude product by further purification using a chemical vapor deposition system, wherein the sublimation temperature is At 350 ° C, 2.9 g of compound C265 was obtained with a calculated yield of 54%.
  • the compound C265 After high-resolution mass spectrometry, ESI source, positive ion mode detection, the compound C265 has the formula C 38 H 22 N 4 , the detected value is 534.1849, and the theoretical value is 534.1844. In addition, after the elemental analysis, the compound C265 is detected as C: 85.34%, H: 4.19%, N: 10.47%, and the theoretical value is C: 85.37%, H: 4.15%, N: 10.48%.
  • the CN coupling reaction was carried out in accordance with the method given in Example 62 and the raw material ratio, except that the kind of the starting material was changed, wherein in each of the examples, the corresponding compound structure, the corresponding molecular formula, the yield of the prepared compound, and the high were obtained.
  • the resolution mass spectrometry and elemental analysis test results are shown in Table 4 below.
  • the compound C013 After high-resolution mass spectrometry, ESI source, positive ion mode detection, the compound C013 has a molecular formula of C 32 H 19 N 3 , the detected value is 445.1573, and the theoretical value is 445.1579. In addition, after the elemental analysis of the compound C013, C: 86.23% is detected. , H: 4.29%, N: 9.48%, and the theoretical value is C: 86.27%, H: 4.30%, N: 9.43%.
  • the CC coupling reaction was carried out in accordance with the method given in Example 87 and the raw material ratio, except that the kind of the starting material was changed, wherein in each of the examples, the corresponding compound structure, the corresponding molecular formula, the yield of the prepared compound, and the high were obtained.
  • the resolution mass spectrometry and elemental analysis test results are shown in Table 5 below.
  • the compound C269 After high-resolution mass spectrometry, ESI source, positive ion mode detection, the compound C269 has the formula C 50 H 30 N 4 , the detected value is 686.2476, and the theoretical value is 686.2470. In addition, after the elemental analysis, the compound C269 is detected as C: 87.46%, H: 4.41%, N: 8.13%, and the theoretical value is C: 87.44%, H: 4.40%, N: 8.16%.
  • the CC coupling reaction was carried out in accordance with the method given in Example 139 and the raw material ratio, except that the kind of the starting material was changed, wherein in each of the examples, the corresponding compound structure, the corresponding molecular formula, the yield of the prepared compound, and the high were obtained.
  • the results of the resolution mass spectrometry and elemental analysis are shown in Table 6 below.
  • Compound 28 was prepared to be 8.2 g, and the MS (m/z) detection value was 475.8.
  • compound 27 (1.58 g, 0.004 mol), carbazole (0.83 g, 0.005 mol), CuI (0.19 g, 0.001 mol), phenanthroline (0.36 g, 0.002 mol), potassium carbonate were added. (1.38g, 0.01mol) and o-dichlorobenzene (32g), the system was heated to 150 ° C, the reaction was incubated for 32h, then reduced to room temperature, then added toluene 50mL, then washed with 20mL of deionized water twice, then The organic phase was separated, and the solvent was evaporated under reduced pressure to give a crude material.
  • the crude product was purified by silica gel column chromatography.
  • the solvent was a solvent mixture of ethyl acetate and dichloromethane.
  • dichloromethane 2:1
  • compound C081 was obtained, and then compound C081 was further purified by a chemical vapor deposition system, wherein the sublimation temperature was 310 ° C, and 0.9 g of compound C081 was obtained, and the calculated yield was 47%. .
  • the CN coupling reaction was carried out in accordance with the method given in Example 154 and the ratio of the raw materials, except that the kind of the starting material was changed, wherein in each of the examples, the corresponding compound structure, the corresponding molecular formula, the yield of the prepared compound, and the high were obtained.
  • the results of the resolution mass spectrometry and elemental analysis are shown in Table 7 below.
  • the compound C093 has the molecular formula C 34 H 17 N 5 S 2 , the detected value is 559.0921, and the theoretical value is 559.0925.
  • C is detected. 72.99%, H: 3.07%, N: 12.49%, S: 11.45%, and the theoretical value is C: 72.97%, H: 3.06%, N: 12.51%, S: 11.46%.
  • the CC coupling reaction was carried out in accordance with the method given in Example 159 and the raw material ratio, except that the kind of the starting material was changed, wherein in each of the examples, the corresponding compound structure, the corresponding molecular formula, the yield of the prepared compound, and the high were obtained.
  • the results of the resolution mass spectrometry and elemental analysis are shown in Table 8 below.
  • the present invention has successfully obtained the organic photoelectric material provided, that is, the organic photoelectric material represented by Formula I.
  • Example 2 Preparation of an organic electroluminescent device (hereinafter may be referred to simply as a device)
  • ITO Indium tin oxide
  • NPB hole transport material
  • Luminescent material mCP
  • electron transporting material TPBI
  • electron injecting material LiF
  • Organic electroluminescent devices were prepared as follows:
  • a) cleaning the anode ultrasonically cleaning the ITO conductive glass with deionized water, acetone, ethanol, respectively, ultrasonic cleaning in the above solvent for 30 minutes, and then in the plasma cleaner for 5 minutes;
  • step d vacuum evaporation of electron injection material LiF, to obtain an electron injection layer, the thickness of the electron injection layer is 1nm;
  • the cathode Al was vacuum-evaporated, and the thickness of the cathode was 100 nm to obtain an organic electroluminescent device.
  • the pressure was less than 1.0 ⁇ 10 -3 Pa at the time of vacuum evaporation.
  • the organic electroluminescent device prepared by the above preparation process, as shown in FIG. 1, includes an anode 101, a hole transport layer 102, a light-emitting layer 103, an electron transport layer 104, an electron injection layer 105, and a cathode 106, wherein The hole transport layer 102, the light-emitting layer 103, the electron transport layer 104, and the electron injection layer 105 are both located between the cathode 106 and the anode 101. On the anode 101, a hole transport layer 102, a light-emitting layer 103, and an electron transport layer 104 are sequentially stacked. And an electron injection layer 105.
  • the organic electroluminescent device prepared in the above examples was subjected to the following tests using a Japanese Topcon SR3 spectroradiometer to obtain the on-voltage, maximum current efficiency and spectral color in each of the organic electroluminescent devices.
  • the organic photoelectric material provided by the present invention can be applied to an organic electroluminescent device.
  • the organic photoelectric material provided by the invention enables the organic electroluminescent device to obtain excellent performance, and the organic photoelectric material provided by the invention is used as the organic electro
  • the luminescent material of the illuminating device is used to make the device have a large maximum current efficiency, and the device has a low turning-on voltage, and at the same time, the device can emit visible light of different colors and has a wide spectral coverage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机光电材料以及包括该有机材料的有机电致发光器件,有机光电材料由式I所示,其中R l和R 2各自独立地选自氢基、氰基、异硫氰基和苯基中的一种,R 3、R 4、R 5、R 6、R 7和R 8各自独立地选自氢基、卤基以及碳原子数为10-50且含有N、S、O中的至少一种的芳族杂环基中的一种。该有机光电材料,能够作为发光材料应用在有机电致发光器件中,从而提高了有机电致发光器件的最大电流效率,降低了有机电致发光器件的启亮电压,并且使得有机电致发光器件的所发出的可见光的光谱覆盖范围较广。

Description

有机光电材料以及包括该有机材料的有机电致发光器件 技术领域
本发明涉及光电技术领域,尤其涉及一种有机光电材料以及包括该有机光电材料的有机电致发光器件。
背景技术
有机电致发光器件(简称OLED)产生于上世纪80年代,与液晶显示相比,OLED具有自发光、广视角、响应速度快、可实现柔性显示等诸多优点,因而受到广泛关注。
有机电致发光器件是一种电流驱动的发光器件,按照发光机制的不同,可以分为荧光器件和磷光器件两种,当电荷从电极注入器件时,由于电子自旋方向的随机性,单重态激子的比例只有25%,另外75%为三重态激子,一般情况下,荧光器件只能利用单重激发态激子发光,而磷光器件可以同时应用单重态激子和三重态激子的能量,因此,磷光器件的效率远大于荧光器件。
磷光器件的效率高于荧光器件,不过,磷光器件也有其不足之处,如磷光材料主要是含有贵金属的配合物,特别是金属铱和铂的配合物,由于金属铱和铂本身价格昂贵,因此,磷光材料的价格极其昂贵,这也限制了磷光材料的应用空间。
因此,开发使用荧光材料作为发光分子,且能够实现高效发光的OLED器件,这样的研究方向显得极具吸引力。
2012年,C.Adachi在Nature上发表论文(Nature.,2012,492,234),报道了一种基于热活化延迟荧光(TADF)机制,实现高效发光的荧光器件,这为高效率荧光器件的制作,带来了新方向。在现有的认识范围内,TADF材料,需要具有电子给体(简称D)和电子受体(简称A),由此组成的D-A型结构,能够实现延迟荧光的分子结构要求。
发明内容
为了解决上述问题,本发明提供了一种有机光电材料,能够作为发光材料应用在有机电致发光器件中,从而提高了有机电致发光器件的最大电流效率,降低了有机电致发光器件的启亮电压,并且使得有机电致发光器件的所发出的可见光的光谱覆盖范围较广。
本发明的目的在于提供一种有机光电材料,由下述式Ⅰ所示。
Figure PCTCN2016090641-appb-000001
在上述式Ⅰ中,R1和R2各自独立地选自氢基、氰基(-CN)、异硫氰基(-NCS)和苯基(
Figure PCTCN2016090641-appb-000002
)中的一种,R3、R4、R5、R6、R7和R8各自独立地选自氢基、卤基以及碳原子数为10~50且含有N、S、O中的至少一种的芳族杂环基中的一种。其中,卤基可根据实际需求进行选择,优选为氟基、氯基、溴基,进一步地,优选为氟基。在取代基中,优选R1和R2相同,R3、R4、R5、R6、R7和R8可以彼此相同,也可以彼此互不相同,也可以是其中的任意两者或者两者以上相同,并不受到具体的限制。
在上述式Ⅰ中,作为芳族杂环基的实例,可举出稠合杂环基、单环芳族杂环基和多环芳族杂环基等,其中稠合杂环基,可由单环芳族或非芳族杂环(杂环可以不同)缩合而得到,此外,所述芳族杂环基还可以为上述稠合杂环基、单环芳族杂环基或多环芳族杂环基中与芳基、卤代芳基和芳胺基中的至少一种基团键合后所得到,其中,芳基可举出苯基、芳烷基、至少含有一个苯基的芳基如联苯基,卤代芳基为芳基被F、Cl、Br中的至少一种取代后所形成的基团,其中优选F对芳基进行取代,芳胺基可举出二苯胺基,当然此处指出举出几个典型的基团,并不受到具体的限制。当含有N、S、O杂原子时,杂原子的个数并不受到具体的限制,例如可为1个、2个、3个、4个、5个、6个或者7个,另外,在一个取代基中,可以选取上述杂原子中的任意一种,也可以为上述杂原子中的任意两种或者 三种。优选地,选择碳原子数为11~40的芳族杂环基,进一步优选地,选择碳原子数为11~36的芳族杂环基。
优选地,所述芳族杂环基选自下述式(1)~式(21)所示的基团中的一种或多种:
Figure PCTCN2016090641-appb-000003
在上述式(1)、式(4)、式(9)、式(12)和式(17)中,R9和R10各自独立地选自氢基、碳原子数为1~10的烷基、碳原子数为6~10的芳基、碳原子数为6~20的芳胺基以及含有N且碳原子数为12~20的稠合杂环基的中的一种,R11选自氢基或碳原子数为1~10的烷基;上述式(1)~式(16)中,L表示键合的基团,L选自碳原子数为6~20的亚芳基、碳原子数为6~20的卤代亚芳基以及亚芳氰基中的一种,其中,卤原子为F、Cl、Br,优选F;上述式(17)~式(21)中,M表示键合的基团,M选自碳原子数为6~20的次芳基、卤代次芳基以及次芳氰基中的一种,其中,卤原子为F、Cl、Br,优选F。
在R9、R10和R11中,取代基如下所述。
碳原子数为1~10的烷基,链状烷基和环烷基均可,其中链状烷基又包括直链烷基和支链烷基,此外,链状烷基上的氢也可被环烷基所取代,同样的,位于环烷基上的氢也可被烷基取代。优选地,选择碳原子数为1~6的烷基,进一步优选地,选择碳原子数为1~4的链烷基,碳原子数为5~6的环烷基。作为烷基的实例,具体可以举出:甲基、乙基、正丙基、异丙基、正丁基、叔丁基。
碳原子数为6~10的芳基,例如可举出苯基、芳烷基等。优选地,选择碳原子数为6~9的芳基,更进一步优选地,选择碳原子数为6~8的芳基。
碳原子数为6~20的芳胺基,可为由例如氨(NH3)上的氢被芳基如苯基取代后形成的基团,具体可为二苯胺基,其中芳基的取代个数可为1个、2个或3个,其中所提及的芳基优选上述所提到的芳基,故此不再一一赘述。优选地,选择碳原子数为12~20的芳胺基,进一步优选地,选择碳原子数为12~16的芳胺基。
含有N且碳原子数为12~20的稠合杂环基的实例,可以举出咔唑基。优选地,选择含有N且碳原子数为12~16的稠合杂环基。
上述式(1)~式(16)中,L基团如下所述。
碳原子数为6~20的亚芳基,例如可为亚苯基、亚苯烷基如含有甲基或者叔丁基的苯基、至少含有一个苯基的亚芳基例如亚联苯基、亚稠环芳烃基,其中在亚联苯基和亚稠环芳烃基上的碳可以键合烷基和/或烯基,其中烷基如甲基、叔丁基。优选地,选择碳原子数为6~14的亚芳基,进一步优选地,选择碳原子数为6~12的亚芳基,更进一步优选地,选择碳原子数为6~8的亚芳基。作为亚芳基的实例,具体可以举出:
Figure PCTCN2016090641-appb-000005
碳原子数为6~20的卤代亚芳基,为亚芳基被卤原子取代后形成的基团,其中优选上述提到的亚芳基被卤原子例如氟所取代,优选碳原子数为6~20的氟代亚芳基。优选地,选择碳原子数为6~14的卤代亚芳基,进一步优选地,选择碳原子数为6~14的卤代亚芳基,更进一步优选地,选择碳原子数为6~12的卤代亚芳基。作为卤代亚芳基的实例,具体可以举出:
Figure PCTCN2016090641-appb-000006
亚芳氰基为亚芳基被氰基取代后形成的基团,其中优选上述提到的亚芳基被氰基所取代。
上述式(17)~式(21)中,M基团如下所述。
碳原子数为6~20的次芳基,为芳烃化合物上具有三个可与其他基团进行键合的基团。优选地,选择碳原子数为6~14的次芳基,进一步优选地,选择碳原子数为6~12的次芳基。作为次芳基的实例,具体可以举出:
Figure PCTCN2016090641-appb-000007
上述提及的卤代次芳基以及次芳氰基为次芳基依次被卤原子或者氰基取代所形成的基团,优选被F所取代。
本发明所提供的有机光电材料,是含有苊并吡嗪结构的小分子材料,通过在含有苊并吡嗪的结构上选用其他化学基团进行修饰,具体所选用的化学基团如上所述,在此不再一一赘述,从而使得该有机光电材料具有D-A型或D-A-D型分子结构单元,也就是本发明提供的有机光电材料既含有电子受体核心,又含有电子给体,则该有机光电材料具有优良的荧光发射能力,具有合适的分子能级、适中的分子质量、良好的薄膜稳定性,适合作为小分子有机电致发光器件的功能层,应用在有机电致发光领域中,特别地,该有机光电材料可作为发光材料优先适用于小分子有机电致发光器件中的发光层。
本发明提供的有机光电材料作为发光材料应用在有机电致发光器件中后,使得有机电致发光器件可以发出不同颜色的可见光,例如天蓝、青色、绿色、橙色等颜色,光谱覆盖范围较广,并且提高了有机电致发光器件的性能,如大幅提高了器件的最大电流效率,同时降低了启亮电压。
作为有机光电材料的实例,具体可以举出如下化合物C001~C372,其中需要说明的是,下述化合物是符合本发明精神和原则的代表结构,应当理解,列出以下化合物的具体结构,只是为了更好地解释本发明,并非是对本发明的限制。
Figure PCTCN2016090641-appb-000008
Figure PCTCN2016090641-appb-000009
Figure PCTCN2016090641-appb-000010
Figure PCTCN2016090641-appb-000011
Figure PCTCN2016090641-appb-000012
Figure PCTCN2016090641-appb-000013
Figure PCTCN2016090641-appb-000014
Figure PCTCN2016090641-appb-000015
Figure PCTCN2016090641-appb-000016
Figure PCTCN2016090641-appb-000017
Figure PCTCN2016090641-appb-000018
Figure PCTCN2016090641-appb-000019
Figure PCTCN2016090641-appb-000020
Figure PCTCN2016090641-appb-000021
Figure PCTCN2016090641-appb-000022
Figure PCTCN2016090641-appb-000023
Figure PCTCN2016090641-appb-000024
Figure PCTCN2016090641-appb-000025
Figure PCTCN2016090641-appb-000026
Figure PCTCN2016090641-appb-000027
Figure PCTCN2016090641-appb-000028
Figure PCTCN2016090641-appb-000029
Figure PCTCN2016090641-appb-000030
Figure PCTCN2016090641-appb-000031
Figure PCTCN2016090641-appb-000032
Figure PCTCN2016090641-appb-000033
Figure PCTCN2016090641-appb-000034
Figure PCTCN2016090641-appb-000035
本发明中所提供的有机电致发光材料的具体制备方法,将在后文实施例中详细描述,与之有关的合成路线和制备工艺,均为有机合成领域中的常规步骤和常规选择,在此不再赘述。
本发明的另一目的在于提供一种有机电致发光器件,包括阴极、阳极和发光层,所述发光层位于阳极和阴极之间,其中所述发光层由包括本发明所提供的有机光电材料制备获得。
此外,在上述有机电致发光器件中,还可包括空穴传输层、电子传输层和电子注入层,其中,空穴传输层、发光层、电子传输层和电子注入层 均位于阴极和阳极之间,在阳极上依次叠置有空穴传输层、发光层、电子传输层和电子注入层。
在上述有机电致发光器件中,阳极优选为氧化铟锡(简称ITO)导电玻璃,空穴传输层优选NPB制备获得,发光层优选由本发明提供的材料和mCP共同制备获得,电子传输层由TPBI制备获得,电子注入层由LiF制备获得,阴极优选Al,其中NPB、mCP和TPBI如下所示。
Figure PCTCN2016090641-appb-000036
在上述有机电致发光器件中,各个功能层并不限于使用上述所提及的材料,这些材料可以用其它材料代替,如空穴传输层可以由TAPC制备获得,电子传输层可以由TpPYPB制备获得,其中TAPC和TpPYPB如下所示:
Figure PCTCN2016090641-appb-000037
在上述有机电致发光器件中,上述各个膜层,也就是说空穴传输层、发光层、电子传输层和电子注入层均可通过蒸镀法、旋涂法或浇铸法等方法将各个膜层相对应的材料制成薄膜所形成。此外,为了各个膜层的材料薄膜化且易于获得均匀的膜层,与此同时,不易生成针孔,优选真空蒸镀法。选用真空蒸镀法时,其中加热温度、真空度、蒸镀速度以及基板的温度可根据实际需求进行常规选择即可。选用真空蒸镀法将相应的材料薄膜化时易于获得均匀的膜层,且不易生成针孔。
本发明提供的有机电致发光器选用常规方法制备即可,并无特别的需 求。
本发明提供的有机电致发光器件中,由于含有本发明提供的有机光电材料,能够大大提高有机电致发光器件的最大电流效率,与此同时,还降低了启亮电压,显著提高了有机电致发光器件的使用寿命。
附图说明
图1为本发明实施例所提供的有机电致发光器件的结构示意图。
附图标号说明:
101-阳极,102-空穴传输层,103-发光层,104-电子传输层,105-电子注入层,106-阴极。
具体实施方式
下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
实施例
以下通过具体实例进一步描述本发明。不过这些实例仅仅是范例性的,并不对本发明的保护范围构成任何限制。
在下述实施例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,其中所涉及的试剂也可通过常规合成方法合成获得。
实施例一 化合物的制备
实施例1 化合物1的制备
Figure PCTCN2016090641-appb-000038
在1L三口瓶中加入5-溴苊醌(26.1g,0.1mol),乙二胺(13g,0.12mol)和冰乙酸(300mL),升温至回流,在空气气氛下,保温反应12h后,降至室温,之后,将反应液倒入1000mL的去离子水中,搅拌反应0.5h后,抽滤,并选用500mL去离子水淋洗滤饼,再选用150mL无水乙醇淋洗滤 饼,收集滤饼,获得化合物1为22.2g,经计算收率为78%,质谱检测(简称MS)(m/z):281.9。
实施例2-实施例11 化合物2~化合物11的制备
化合物2~11均按照下述方法进行制备:
按照实施例1给出的方法以及原料配比,其中使用不同种类的底物为原料,均与乙二胺进行关环反应,其中在各个实施例中,所选用的原料和获得相应的化合物以及收率和质谱检测结果如下表1所示。
表1
Figure PCTCN2016090641-appb-000039
Figure PCTCN2016090641-appb-000040
实施例12 化合物12的制备
Figure PCTCN2016090641-appb-000041
在1L三口瓶中,加入5-溴苊醌(26.1g,0.1mol),二胺基马来腈(13g,0.12mol)和冰乙酸(300mL),升温至回流,保温反应6h后,降至室温,之后将反应液倒入1000mL去离子水中,搅拌0.5h,然后抽滤,再选用500mL去离子水淋洗滤饼,然后选用150mL无水乙醇淋洗滤饼后,收集滤饼,得到化合物12为28.6g,经计算收率为86%,质谱检测(简称MS)(m/z):331.9。
实施例13-实施例22 化合物13~化合物22的制备
化合物13~22均按照下述方法进行制备:
按照实施例12给出的方法以及原料配比,其中使用不同种类的底物为原料,均与二氨基马来腈进行关环反应,其中在各个实施例中,所选用的原料和获得相应的化合物以及收率和质谱检测结果如下表2所示。
表2
Figure PCTCN2016090641-appb-000042
Figure PCTCN2016090641-appb-000043
实施例23 前述化合物C001的制备
Figure PCTCN2016090641-appb-000044
在100mL三口瓶中,加入化合物1(2.83g,0.01mol),咔唑(2.0g,0.012mol),叔丁醇钠(1.92g,0.02mol),醋酸钯(0.044g,0.0002mol),三叔丁基膦(0.081g,0.0004mol)和邻二甲苯(30g),将体系升温至回流,保温反应8h后,降温至25℃,之后加入20g去离子水,搅拌10min,然后分液,收集有机相,再抽滤,抽滤后,对滤液脱溶剂,获得粗品,然后使用硅胶柱层析纯化粗品,其中洗脱剂为乙酸乙酯,之后再使用化学气相沉积系统对粗品进一步升华提纯,其中升华温度为320℃,最终获得1.7g化合物C001,经计算收率为46%。
经高分辨质谱,ESI源,正离子模式检测后,化合物C001的分子式为C26H15N3,检测值为369.1268,而理论值为369.1266;另外,化合物C001经过元素分析后,检测得到C:84.54%,H:4.11%,N:11.35%,理论值为C:84.53%,H:4.09%,N:11.37%。
实施例24-实施例61 化合物C003~化合物C235中的部分化合物的制备
化合物C003~化合物235中的部分化合物均按照下述方法进行制备:
按照实施例23给出的方法以及原料配比,进行C-N偶联反应,只是 改变原料的种类,其中在各个实施例中,获得相应的化合物结构、与其相应的分子式、制备化合物的收率以及高分辨质谱和元素分析检测结果如下表3中所示。
表3
Figure PCTCN2016090641-appb-000045
Figure PCTCN2016090641-appb-000046
Figure PCTCN2016090641-appb-000047
Figure PCTCN2016090641-appb-000048
Figure PCTCN2016090641-appb-000049
Figure PCTCN2016090641-appb-000050
注:上述表3中波浪线表示C-N键生成的位置。
实施例62 化合物C265的制备
Figure PCTCN2016090641-appb-000051
在100mL三口瓶中,加入化合物7(3.62g,0.01mol)、咔唑(4.0g,0.024mol)、叔丁醇钠(3.85g,0.04mol)、醋酸钯(0.088g,0.0004mol)、 三叔丁基膦(0.16g,0.0008mol)和邻二甲苯(40g),升温至回流,保温反应16h后,降温至25℃,之后加入20g去离子水,搅拌10min,再分液,之后收集有机相,然后抽滤,再将滤液脱溶剂,获得粗品,然后使用硅胶柱层析纯化粗品,其中洗脱剂为乙酸乙酯,最后在使用化学气相沉积系统进一步升华提纯粗品,其中升华温度为350℃,获得2.9g化合物C265,经计算收率为54%。
经高分辨质谱,ESI源,正离子模式检测后,化合物C265的分子式为C38H22N4,检测值为534.1849,而理论值为534.1844;另外,化合物C265经过元素分析后,检测得到C:85.34%,H:4.19%,N:10.47%,而理论值为C:85.37%,H:4.15%,N:10.48%。
实施例63-实施例86 化合物C266~化合物C372中的部分化合物的制备
化合物C266~化合物C372中的部分化合物均按照下述方法进行制备:
按照实施例62给出的方法以及原料配比,进行C-N偶联反应,只是改变原料的种类,其中在各个实施例中,获得相应的化合物结构、与其相应的分子式、制备化合物的收率以及高分辨质谱和元素分析检测结果如下表4中所示。
表4
Figure PCTCN2016090641-appb-000052
Figure PCTCN2016090641-appb-000053
Figure PCTCN2016090641-appb-000054
Figure PCTCN2016090641-appb-000055
注:上述表4中波浪线表示C-N键生成的位置。
实施例87 化合物C013的制备
Figure PCTCN2016090641-appb-000056
在100mL三口瓶中,加入化合物1(2.83g,0.01mol)、4-(9H-咔唑)苯硼酸(3.44g,0.012mol)、碳酸钾(5.5g,0.04mol)、醋酸钯(0.088g,0.0004mol)、三苯基膦(0.21g,0.0008mol)、甲苯(40g)和去离子水(15g),将体系升温至回流,保温反应16h后,降温至25℃,然后分液,再收集有机相,之后抽滤,收集滤液,脱溶剂,获得粗品,然后使用硅胶柱层析纯化粗品,其中洗脱剂为乙酸乙酯,最后使用化学气相沉积系统进一步升华提纯粗品,其中升华温度为340℃,获得1.9g化合物C013,经计算收率43%。
经高分辨质谱,ESI源,正离子模式检测后,化合物C013分子式为C32H19N3,检测值为445.1573,而理论值445.1579;另外,化合物C013经元素分析后,检测得到C:86.23%,H:4.29%,N:9.48%,而理论值为C:86.27%,H:4.30%,N:9.43%。
实施例88-实施例138 化合物C014~化合物C239中的部分化合物的制备
化合物C014~化合物239中的部分化合物均按照下述方法进行制备:
按照实施例87给出的方法以及原料配比,进行C-C偶联反应,只是改变原料的种类,其中在各个实施例中,获得相应的化合物结构、与其相应的分子式、制备化合物的收率以及高分辨质谱和元素分析检测结果如下表5中所示。
表5
Figure PCTCN2016090641-appb-000057
Figure PCTCN2016090641-appb-000058
Figure PCTCN2016090641-appb-000059
Figure PCTCN2016090641-appb-000060
Figure PCTCN2016090641-appb-000061
Figure PCTCN2016090641-appb-000062
Figure PCTCN2016090641-appb-000063
Figure PCTCN2016090641-appb-000064
Figure PCTCN2016090641-appb-000065
Figure PCTCN2016090641-appb-000066
注:上述表5中波浪线表示C-C键生成的位置。
实施例139 化合物C269的制备
Figure PCTCN2016090641-appb-000067
在250mL三口瓶中,加入化合物7(3.62g,0.01mol)、4-(9H-咔唑)苯硼酸(6.9g,0.024mol)、碳酸钾(11g,0.08mol)、醋酸钯(0.088g,0.0004mol)、三苯基膦(0.21g,0.0008mol)、甲苯(80g)和去离子水(35g),升温至回流,保温反应28h后,降温至25℃,再分液,之后收集有机相,然后抽滤,收集滤液,脱溶剂,获得粗品,再使用硅胶柱层析纯化粗品,其中洗脱剂为乙酸乙酯,最终使用化学气相沉积系统进一步升华提纯粗品,其中升华温度为370℃,最终获得2.7g化合物C269,经计算收率为39%。
经高分辨质谱,ESI源,正离子模式检测后,化合物C269的分子式为C50H30N4,检测值为686.2476,而理论值为686.2470;另外,化合物C269经过元素分析后,检测得到C:87.46%,H:4.41%,N:8.13%,而理论值为C:87.44%,H:4.40%,N:8.16%。
实施例140-实施例151 化合物C270~化合物C329中的部分化合物的制备
化合物C270~化合物C329中的部分化合物均按照下述方法进行制备:
按照实施例139给出的方法以及原料配比,进行C-C偶联反应,只是改变原料的种类,其中在各个实施例中,获得相应的化合物结构、与其相应的分子式、制备化合物的收率以及高分辨质谱和元素分析检测结果如下表6中所示。
表6
Figure PCTCN2016090641-appb-000068
Figure PCTCN2016090641-appb-000069
注:上述表6中波浪线表示C-C键生成的位置。
实施例152 化合物27的制备
Figure PCTCN2016090641-appb-000070
化合物23的制备:在1L三口瓶中,加入5-溴苊醌(26.1g,0.1mol)、2,3-二氨基-1,4-丁二醇(14.4g,0.12mol)和冰乙酸(300mL),升温至回流,然后在空气气氛中,保温反应18h,之后降至室温,再将反应液倒入1000mL的去离子水中后,搅拌0.5h,再抽滤,然后选用500mL去离子水淋洗滤饼,再选用150mL无水乙醇淋洗滤饼,收集滤饼,获得化合物23为32.8g,经计算收率为95.6%,MS(m/z)检测值为342.1。
化合物24的制备:在500mL三口瓶中,加入化合物23(32.5g,0.095mol)、二氧化锰(35g,0.4mol)和1,2-二氯乙烷(300g),升温至回流,保温反应32h,之后降温至25℃,再抽滤,收集滤液,脱去溶剂,获得22.4g化合物24,经计算收率为70%,MS(m/z)检测值为337.9。
化合物25的制备:在500mL三口瓶中,加入化合物24(22.2g,0.066mol)和四氢呋喃(120g),然后降温至5℃,再将盐酸羟胺(11.2g,0.16mol),乙酸钠(13.1g,0.16mol)溶解在140g去离子水中,而后滴加到三口瓶中,控制瓶内温度小于25℃,0.5小时滴加完毕后,在20℃下保温反应3小时,之后升温至60℃,保温反应1小时,然后降温至25℃,将反应液慢慢倒入500mL去离子水中,之后搅拌1h,再抽滤,然后选用去离子水淋洗至中性,收集滤饼,烘干,获得化合物25为23g,经计算收 率为94%,MS(m/z)检测值为368.1。
化合物26的制备:在500mL三口瓶中,加入化合物25(22.5g,0.061mol)和四氢呋喃(150g),将体系降温至15℃,再将N-氯-丁二酰亚胺(简称NCS)(16g,0.12mol)溶解在80g N,N-二甲基甲酰胺(DMF)之中,而后慢慢滴入三口瓶中,保持反应温度为25~28℃,2小时滴加完毕(反应引发时,剧烈放热)后,在25℃下保温反应2小时,停止反应,待用。
化合物27的制备:在500mL三口瓶中,加入硫脲(10g,0.133mol)、三乙胺(14g,0.133mol)和四氢呋喃(55g),开始搅拌,而后缓慢滴加上一步制备的化合物26的反应液,保持反应温度小于30℃,1小时滴加完毕后,在25℃下保温3小时,然后抽滤,收集滤饼,获得粗产品,再使用硅胶柱层析纯化粗产品,其中洗脱剂为乙酸乙酯,获得化合物27为18.9g,经计算收率为78%,MS(m/z)检测值395.9。
实施例153 化合物28的制备
Figure PCTCN2016090641-appb-000071
按照实施例152中给出的方法以及原料配比,只是以5,6-二溴苊醌为原料,制备得到化合物28为8.2g,MS(m/z)检测值为475.8。
实施例154 化合物C081的制备
Figure PCTCN2016090641-appb-000072
在100mL三口瓶中,加入化合物27(1.58g,0.004mol)、咔唑(0.83g,0.005mol)、CuI(0.19g,0.001mol)、邻菲罗啉(0.36g,0.002mol)、碳酸钾(1.38g,0.01mol)和邻二氯苯(32g),将体系升温至150℃,保温反应32h后,降至室温,再加入甲苯50mL,之后使用20mL去离子水洗涤有机相两次,然后分液,收集有机相,再减压脱溶剂,获得粗品,选用硅胶柱层析纯化粗品,其中洗脱剂为乙酸乙酯与二氯甲烷的混合溶剂,乙酸乙酯与二氯甲烷的体积比为为乙酸乙酯:二氯甲烷=2:1,获得化合物C081,再使用化学气相沉积系统进一步升华提纯化合物C081,其中升华温度为310℃,获得0.9g化合物C081,经计算收率为47%。
经高分辨质谱,ESI源,正离子模式检测,化合物C081的分子式C28H13N5S2,检测值为483.0618,而理论值483.0612;另外,化合物C081经过元素分析后,检测得到C:69.54%,H:2.72%,N:14.44%,S:13.30%,而理论值为C:69.55%,H:2.71%,N:14.48%,S:13.26%。
实施例155-实施例158 化合物C089~化合物C283中的部分化合物的制备
化合物C089~化合物C283中的部分化合物均按照下述方法进行制备:
按照实施例154给出的方法以及原料配比,进行C-N偶联反应,只是改变原料的种类,其中在各个实施例中,获得相应的化合物结构、与其相应的分子式、制备化合物的收率以及高分辨质谱和元素分析检测结果如下表7所示。
表7
Figure PCTCN2016090641-appb-000073
注:上述表7中波浪线表示C-N键生成的位置。
实施例159 化合物C093的制备
Figure PCTCN2016090641-appb-000074
在50mL三口瓶中,加入化合物27(1.58g,0.004mol)、4-(9H-咔唑)苯硼酸(1.44g,0.005mol)、碳酸钾(1.1g,0.008mol)、醋酸钯(0.022g,0.0001mol)、三苯基膦(0.052g,0.0002mol)、甲苯(28g)和去离子水(12g),将体系升温至回流后,保温反应16h,之后降温至25℃,再分液,收集有机相,然后抽滤,收集滤液,再脱溶剂,获得粗品使用硅胶柱层析进行纯化,其中洗脱剂为乙酸乙酯,然后使用化学气相沉积系统进一步升华提纯,其中升华温度为330℃,获得1.1g化合物C093,经计算收率为49%。
经高分辨质谱,ESI源,正离子模式检测,化合物C093的分子式C34H17N5S2,检测值为559.0921,而理论值为559.0925;另外,化合物C093经元素分析后,检测得到C:72.99%,H:3.07%,N:12.49%,S:11.45%,而理论值为C:72.97%,H:3.06%,N:12.51%,S:11.46%。
实施例160-实施例164 化合物C099-化合物C117中的部分化合物的制备
化合物C099~化合物C117中的部分化合物均按照下述方法进行制备:
按照实施例159给出的方法以及原料配比,进行C-C偶联反应,只是改变原料的种类,其中在各个实施例中,获得相应的化合物结构、与其相应的分子式、制备化合物的收率以及高分辨质谱和元素分析检测结果如下表8所示。
表8
Figure PCTCN2016090641-appb-000075
Figure PCTCN2016090641-appb-000076
注:上述表8中波浪线表示C-C键生成的位置。
从上述表1~表8中的数据可以得知,本发明已经成功获得了所提供的有机光电材料,即式Ⅰ所示的有机光电材料。
实施例二 制备有机电致发光器件(以下可简称为器件)
在下述制备有机电致发光器件的实施例中,所用到的试剂材料如下所示:
阳极:氧化铟锡(简称ITO)导电玻璃,空穴传输材料:NPB,
发光材料:mCP,电子传输材料:TPBI,电子注入材料:LiF,其中,NPB、mCP以及TPBI的结构式在前述中提到,在此不再赘述。
实施例165~实施例231 器件165~231的制备
有机电致发光器件均按照下述方法进行制备:
a)清洗阳极:分别用去离子水、丙酮、乙醇超声清洗ITO导电玻璃,在上述溶剂中各超声清洗30分钟,然后在等离子体清洗器中处理5分钟;
b)在步骤a)中获得的阳极上真空蒸镀空穴传输材料NPB,获得空穴传输层,厚度为50nm;
c)在步骤b)中获得的空穴传输层上,真空蒸镀包括前述实施例一中制备得到的化合物和mCP的发光材料,获得发光层,发光层的厚度为30nm,其中,化合物:mCP=1:10(W/W);
d)在步骤c)中获得的发光层上,真空蒸镀电子传输材料TPBI,获得电子传输层,电子传输层的厚度为30nm;
e)在步骤d)中获得的电子传输层上,真空蒸镀电子注入材料LiF,获得电子注入层,电子注入层的厚度为1nm;
f)在步骤e)中获得的电子注入层上,真空蒸镀阴极Al,阴极的厚度为100nm,获得有机电致发光器件。
在上述制备有机电致发光器件中,真空蒸镀时,压力小于1.0×10-3Pa。
由上述制备过程制备得到的有机电致发光器件,如图1中所示,包括阳极101、空穴传输层102、发光层103、电子传输层104、电子注入层105、阴极106,其中,空穴传输层102、发光层103、电子传输层104、电子注入层105均位于阴极106和阳极101之间,在阳极101上依次叠置有空穴传输层102、发光层103、电子传输层104和电子注入层105。
试验例
选用日本拓普康公司SR3型分光辐射度计对上述实施例制备得到的有机电致发光器件进行下述测试,得到各个有机电致发光器件中的启亮电压、最大电流效率和光谱颜色。
在上述试验例中,检测各有机电致发光器件所得到的启亮电压、最大电流效率和光谱颜色如下表9中所示。
表9
Figure PCTCN2016090641-appb-000077
Figure PCTCN2016090641-appb-000078
Figure PCTCN2016090641-appb-000079
由上述表9的结果,可以得知,本发明所提供的有机光电材料可应用于有机电致发光器件中。此外,通过由实施例中制备得到的器件的检测结果,还可以得知,本发明提供的有机光电材料使得有机电致发光器件获得优异的表现,本发明所提供的有机光电材料作为有机电致发光器件的发光材料使用,使得器件具有较大的最大电流效率,且使得器件具有较低的的启亮电压,同时,器件可以发出不同颜色的可见光,且光谱覆盖范围较广。
根据上述说明书的揭示,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。

Claims (9)

  1. 一种有机光电材料,其特征在于,由下述式Ⅰ所示:
    Figure PCTCN2016090641-appb-100001
    其中,R1和R2各自独立地选自氢基、氰基、异硫氰基和苯基中的一种,R3、R4、R5、R6、R7和R8各自独立地选自氢基、卤基以及碳原子数为10~50且含有N、S、O中的至少一种的芳族杂环基中的一种。
  2. 根据权利要求1所述的有机光电材料,其特征在于,卤基为氟基、氯基、溴基。
  3. 根据权利要求1所述的有机光电材料,其特征在于,R1和R2相同。
  4. 根据权利要求1所述的有机光电材料,其特征在于,所述芳族杂环基选自下述式(1)~式(21)所示的基团中的一种或多种:
    Figure PCTCN2016090641-appb-100002
    Figure PCTCN2016090641-appb-100003
    其中,R9和R10各自独立地选自氢基、碳原子数为1~10的烷基、碳原子数为6~10的芳基、碳原子数为6~20的芳胺基以及含有N且碳原子数为12~20的稠合杂环基的中的一种,R11选自氢基或碳原子数为1~10的烷基,L选自碳原子数为6~20的亚芳基、碳原子数为6~20的卤代亚芳基以及亚芳氰基中的一种,M选自碳原子数为6~20的次芳基、卤代次芳基以及次芳氰基中的一种,其中,卤原子为F、Cl、Br。
  5. 根据权利要求4所述的有机光电材料,其特征在于,
    R9和R10各自独立地选自碳原子数为1~6的烷基、碳原子数为6~8的 芳基、碳原子数为12~16的芳胺基以及含有N且碳原子数为12~16的稠合杂环基;
    R11选自碳原子数为1~6的烷基;
    L选自碳原子数为6~12的亚芳基和碳原子数为6~12的氟代亚芳基中的一种;
    M选自碳原子数为6~12的次芳基。
  6. 根据权利要求4所述的有机光电材料,其特征在于,
    R9和R10各自独立地选自下述基团中的一种:甲基、叔丁基、苯基、二苯胺基和咔唑基,
    R11选自下述基团中的一种:甲基和叔丁基,
    L选自下述基团中的一种:
    Figure PCTCN2016090641-appb-100004
    M为
    Figure PCTCN2016090641-appb-100005
  7. 根据权利要求1所述的有机光电材料,其特征在于,R3、R4、R5、R6、R7和R8各自独立地选自氟基和下述基团中的一种:
    Figure PCTCN2016090641-appb-100006
    Figure PCTCN2016090641-appb-100007
  8. 一种有机电致发光器件,其特征在于,包括包括阴极、阳极和发 光层,所述发光层位于所述阳极和所述阴极之间,其中所述发光层由权利要求1~7中任一项所述的有机光电材料制备获得。
  9. 根据权利要求8所述的有机电致发光器件,其特征在于,还包括空穴传输层、电子传输层和电子注入层,其中,所述空穴传输层、所述发光层、所述电子传输层和所述电子注入层均位于所述阴极和所述阳极之间,在所述阳极上依次叠置有所述空穴传输层、所述发光层、所述电子传输层和所述电子注入层。
PCT/CN2016/090641 2016-06-08 2016-07-20 有机光电材料以及包括该有机材料的有机电致发光器件 WO2017210966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197000163A KR102138087B1 (ko) 2016-06-08 2016-07-20 유기 광전자 재료 및 이 유기 재료를 포함하는 유기 전계 발광소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610403374.7 2016-06-08
CN201610403374.7A CN106083824B (zh) 2016-06-08 2016-06-08 有机光电材料以及包括该有机材料的有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2017210966A1 true WO2017210966A1 (zh) 2017-12-14

Family

ID=57227621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090641 WO2017210966A1 (zh) 2016-06-08 2016-07-20 有机光电材料以及包括该有机材料的有机电致发光器件

Country Status (4)

Country Link
KR (1) KR102138087B1 (zh)
CN (3) CN109796964A (zh)
TW (1) TWI624465B (zh)
WO (1) WO2017210966A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106831633B (zh) * 2016-12-30 2019-05-28 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
CN109575012A (zh) * 2017-09-28 2019-04-05 江苏三月光电科技有限公司 一种含芴和吡啶并吲哚的有机化合物及其应用
CN109599504B (zh) * 2017-09-30 2022-02-18 北京鼎材科技有限公司 一种新型化合物及采用该化合物的有机电致发光器件
CN109851613A (zh) * 2017-11-30 2019-06-07 北京鼎材科技有限公司 一种新型化合物及采用该化合物的有机电致发光器件
CN109851566A (zh) * 2017-11-30 2019-06-07 北京鼎材科技有限公司 一种新型化合物及采用该化合物的有机电致发光器件
CN108440424A (zh) * 2018-04-10 2018-08-24 苏州大学 苊并吡嗪衍生物及其应用
CN108409720B (zh) * 2018-04-10 2021-06-25 苏州大学 有机发光材料、有机发光材料的应用及有机电致发光器件
CN109456276A (zh) * 2018-10-22 2019-03-12 武汉华星光电半导体显示技术有限公司 深红光热活化延迟荧光材料及其合成方法、电致发光器件
CN109503508A (zh) * 2018-11-15 2019-03-22 武汉华星光电半导体显示技术有限公司 绿光热活化延迟荧光材料及其合成方法、电致发光器件
CN110746364A (zh) * 2018-12-06 2020-02-04 广州华睿光电材料有限公司 苊醌类有机化合物及其应用
CN109988559A (zh) * 2019-04-25 2019-07-09 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及有机发光二极管显示设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212875A (ja) * 2002-01-22 2003-07-30 Petroleum Energy Center アミノ基を有する新規アザ芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
JP2005068367A (ja) * 2003-08-27 2005-03-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2007029806A1 (ja) * 2005-09-09 2007-03-15 Idemitsu Kosan Co., Ltd. アザフルオランテン骨格を有するアザ芳香族化合物及びそれを用いた有機エレクトロルミネッセンス素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129499A (ja) * 1987-11-16 1989-05-22 Matsushita Electric Ind Co Ltd 不要輻射防止装置
US6723445B2 (en) * 2001-12-31 2004-04-20 Canon Kabushiki Kaisha Organic light-emitting devices
CN101723907B (zh) * 2009-07-25 2011-09-14 大连理工大学 一类邻二氰基苊并吡嗪化合物及其抗肿瘤应用
CN102634333B (zh) * 2012-04-01 2014-07-02 大连理工常熟研究院有限公司 一种以苊并吡嗪为母体的高灵敏极性荧光探针、制备及应用
KR20160029634A (ko) * 2014-09-05 2016-03-15 주식회사 엘지화학 함질소 축합고리 화합물 및 이를 이용한 유기 발광 소자
CN108440424A (zh) * 2018-04-10 2018-08-24 苏州大学 苊并吡嗪衍生物及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212875A (ja) * 2002-01-22 2003-07-30 Petroleum Energy Center アミノ基を有する新規アザ芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
JP2005068367A (ja) * 2003-08-27 2005-03-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2007029806A1 (ja) * 2005-09-09 2007-03-15 Idemitsu Kosan Co., Ltd. アザフルオランテン骨格を有するアザ芳香族化合物及びそれを用いた有機エレクトロルミネッセンス素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry 15 July 2010 (2010-07-15), retrieved from STN Database accession no. 1232206-91-5 *
DATABASE Registry 16 November 1984 (1984-11-16), retrieved from STN Database accession no. 17988-04-4 *
DATABASE Registry 16 November 1984 (1984-11-16), retrieved from STN Database accession no. 206-52-0 *
DATABASE Registry 16 November 1984 (1984-11-16), retrieved from STN Database accession no. 55408-51-0 *
DATABASE Registry 24 February 2014 (2014-02-24), retrieved from STN Database accession no. 1554148-65-0 *

Also Published As

Publication number Publication date
KR20190008412A (ko) 2019-01-23
CN109796435A (zh) 2019-05-24
CN109796964A (zh) 2019-05-24
CN106083824B (zh) 2019-02-15
TWI624465B (zh) 2018-05-21
KR102138087B1 (ko) 2020-07-27
CN109796435B (zh) 2020-05-12
TW201742861A (zh) 2017-12-16
CN106083824A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017210966A1 (zh) 有机光电材料以及包括该有机材料的有机电致发光器件
JP5373787B2 (ja) 有機エレクトロルミネッセンス素子
TWI466978B (zh) 新穎有機電致發光化合物及使用該化合物之有機電致發光裝置
JP5797672B2 (ja) 新規有機電界発光化合物およびこれを使用する有機電界発光素子
KR100991416B1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 발광 소자
JP4819655B2 (ja) 4−アリールフルオレン化合物及びそれを用いた有機発光素子
TWI603939B (zh) 有機材料及使用其的有機電激發光元件
JP2013526014A (ja) 新規有機電界発光化合物およびこれを使用する有機電界発光素子
TWI290582B (en) Anthracene compound and organic electroluminescent device including the anthracene compound
Tavgeniene et al. Phenanthro [9, 10-d] imidazole based new host materials for efficient red phosphorescent OLEDs
JP2009269909A (ja) 新規な電子材料用化合物及びこれを使用する有機電子素子
KR20110008723A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2009534376A (ja) 新規なアントラセン誘導体、その製造方法、およびそれを用いた有機電子素子
KR20140072295A (ko) 중수소 치환된 유기금속 착물 및 이를 포함하는 유기 발광 소자
CN114075252A (zh) 铱金属化合物、发光材料、发光层和有机电致发光器件
KR20130023071A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
JP4746492B2 (ja) 合成方法
KR20120020818A (ko) 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
TWI641598B (zh) 化合物及其有機電子裝置
TWI756542B (zh) 有機化合物及使用其的有機電激發光元件
CN113801109B (zh) 一种含有双咔唑结构的化合物及有机电致发光器件
JP6381874B2 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR101879846B1 (ko) 유기 발광 화합물, 이의 제조 방법 및 이를 포함하는 유기 전계 발광 소자
KR20150114658A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR102098920B1 (ko) 붕소원자를 포함하는 유기 화합물 및 이를 이용한 유기 전기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000163

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16904416

Country of ref document: EP

Kind code of ref document: A1