WO2017209025A1 - 気体流通管、気体放出装置、液質調整装置、調整液の製造方法及び調整液 - Google Patents
気体流通管、気体放出装置、液質調整装置、調整液の製造方法及び調整液 Download PDFInfo
- Publication number
- WO2017209025A1 WO2017209025A1 PCT/JP2017/019843 JP2017019843W WO2017209025A1 WO 2017209025 A1 WO2017209025 A1 WO 2017209025A1 JP 2017019843 W JP2017019843 W JP 2017019843W WO 2017209025 A1 WO2017209025 A1 WO 2017209025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- gas flow
- liquid
- gas discharge
- flow pipe
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
Definitions
- the present invention relates to a gas flow pipe, a gas discharge device including the gas flow pipe, a liquid quality adjustment device including the gas discharge device, a method for producing a conditioned liquid using the liquid quality adjustment device, and an adjustment obtained by the production method Regarding liquids.
- Patent Document 1 discloses an ultrafine bubble generating apparatus including an upstream bubble mixing portion and a downstream contracted nozzle portion connected in a continuous manner (FIG. 1 of Patent Literature 1).
- Cited Document 2 discloses a water purification system using an ultrafine bubble generating device (Patent Document 2 FIG. 3).
- Patent Document 3 discloses a beverage electrolytic microbubble water generator (FIG. 2 of Patent Document 3) that generates water containing microbubbles for beverages.
- one bubble generator is equipped with one bubble generating nozzle or as shown in FIG.
- the present invention is, for example, a gas flow pipe (1) that can be configured in a compact form for use in various volumes of liquid and has high gas discharge efficiency, and a gas discharge apparatus including the gas flow pipe (1). It is an object of the present invention to provide a liquid quality adjusting device (2) including the gas release device, a method for producing a liquid adjustment using the liquid quality adjusting device (2), and a liquid adjustment obtained by the method.
- the present invention [1] A gas introduction hole (13) for introducing gas, a gas flow path (11) through which the gas introduced from the gas introduction hole (13) flows, and the gas flow path (11)
- a gas flow pipe (1) comprising a plurality of gas discharge paths (12) branched and communicating with the gas flow path (11),
- the gas discharge path (12) communicates with the outside of the gas flow pipe (1), and exceeds the gas flow pipe (1) with respect to the length direction of the gas flow path (11).
- a gas flow pipe (1) (hereinafter also referred to as the present invention 1) having a gas discharge hole (121) capable of discharging the gas in the direction of an angle of less than 180 °; [2]
- a gas discharge device (hereinafter also referred to as the present invention 2) comprising the gas flow pipe (1) according to [1] above and a gas introduction mechanism for introducing the gas from the gas introduction hole (13), [3]
- the gas discharge device according to [2] above and a liquid tank (21) When the liquid tank (21) is filled with a liquid, the gas discharge hole (121) of the gas flow pipe (1) is immersed in the liquid,
- the liquid quality adjusting device (2) (hereinafter referred to as the present invention) is configured such that the gas is discharged into the liquid from the gas discharge path (12).
- a gas-liquid permeable ceramic particle holder (22) is provided, When the ceramic particles are stored in the ceramic particle holder (22), The liquid quality adjusting device (2) according to [3] above, wherein the gas discharged from the gas discharge path (12) in the liquid is in contact with the ceramic particles (hereinafter referred to as the present invention). 4) [5] Using the liquid quality adjusting device (2) described in [4] above, In the liquid, the gas released from the gas discharge path (12) is brought into contact with the ceramic particles to obtain a liquid for adjusting the liquid quality (hereinafter, the present invention). 5) [6] An adjustment liquid (hereinafter also referred to as the present invention 6) obtained by the method for producing an adjustment liquid according to [5] above.
- a gas flow pipe (1) having a high gas discharge efficiency which can be configured in a compact form for use in various volumes of liquid, and a gas discharge provided with the gas flow pipe (1).
- a device a liquid quality adjusting device (2) provided with the gas release device, a method for producing a liquid adjustment using the liquid quality adjusting device (2), and a liquid prepared by the method.
- Liquid quality adjusting device (2) of embodiment example of the present invention 4 (a) EE sectional view of ceramic particle holder (22), (b) DD sectional view of ceramic particle holder (22) and gas flow It is a front view of a pipe (1) and a gas distribution pipe stand plate (222), and (c) a bottom view of a gas distribution pipe stand plate (222) (a gas discharge mechanism is not illustrated).
- the present invention 1 includes a gas introduction hole (13) for introducing gas, and a gas flow path (11) through which the gas introduced from the gas introduction hole (13) flows (hereinafter referred to as a gas flow path (11)). ) And a plurality of gas discharge passages (12) branched from the gas flow passage (11) and communicating with the gas flow passage (11) (hereinafter referred to as gas discharge passages (12)). It is.
- the gas flow passage (11) is a cylindrical space, and the gas introduced from the gas introduction hole (13) flows in the length direction of the space surrounded by the inner wall surface (111) forming the cylindrical space. Will do.
- the cross section of the cylindrical space refers to the one having the smallest area among the contours of the inner wall surface (111) cut by a plane passing through any one point of the inner wall surface (111) constituting the cylindrical space.
- a section cut by a plane perpendicular to the rotational axis of the space is a cross section.
- the diameter of a circle having the cross-sectional area of the cylindrical space is referred to as a circle-converted cross-sectional diameter
- the average of the circle-converted cross-sectional diameters along the length of the cylindrical space is referred to as an average diameter.
- the one with the smallest area is called the end section of each end.
- the length of the cylindrical space refers to the length of the shortest curve (hereinafter referred to as the axis of the cylindrical space) connecting the end sections of both ends of the cylindrical space, and the length direction of the gas flow passage (11) refers to the cylindrical space.
- the tangential direction of the axis refers to the cylindrical space.
- the cross section of the gas flow passage (11) can be selected from a circle, an ellipse, a rectangle, a polygon, a star, and the like according to the required gas flow capacity. It is preferable that it is circular, and more preferably circular.
- the axis of the gas flow passage (11) may be a straight line or a curve. If the cylindrical space is straight like a straight cylinder, the axis of the gas flow passage (11) is straight, and if the cylindrical space is curved like a semi-cylindrical tube, the axis of the gas flow passage (11) is It becomes a curve.
- the gas flow path (11) may be linear or curved, but is preferably linear from the viewpoint of stabilizing the gas pressure.
- the inner wall surface (111) of the gas flow passage (11) is preferably smooth with respect to the length direction of the gas flow passage (11) from the viewpoint of smoothly circulating the gas.
- the average diameter of the gas flow passage (11) is preferably 1 mm to 10 m, more preferably 2 mm to 1 m, still more preferably 5 mm to 500 mm, and further
- the thickness is preferably 10 mm to 200 mm, more preferably 15 mm to 50 mm, and still more preferably 15 mm to 30 mm.
- the length of the gas flow path (11) is preferably 1 cm to 100 m, more preferably 10 cm to 20 m, still more preferably 20 cm to 10 m, and still more preferably, from the viewpoint of branching as many gas discharge paths (12) as will be described later. It is 30 cm to 5 m, more preferably 50 cm to 2 m, still more preferably 70 cm to 1.5 m.
- the material of the inner wall surface (111) of the gas flow passage (11) circulates toward the gas discharge path (12) described later, it is sufficient that the material has a gas shielding property that does not leak from the inner wall surface (111).
- Paper, synthetic fiber, plastic, fiber reinforced plastic, ceramics, metal, etc. can be used, but from the viewpoint of moldability, durability and water resistance, plastic, ceramics or metal are preferable, plastic or metal is more preferable, and metal is further preferable.
- the plastics are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyamide (PA), polyethylene.
- Thermoplastic resins such as terephthalate (PET), amorphous polyethylene terephthalate (A-PET), and polylactic acid (PLA) are preferable, polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) are more preferable.
- PP is more preferred.
- stainless steel iron, aluminum, brass, carbon steel, titanium, copper, etc.
- stainless steel or titanium is preferred, and stainless steel is more preferred. preferable.
- the gas discharge path (12) is a cylindrical space that branches from the gas flow path (11) and communicates with the gas flow path (11).
- the gas discharge path (12) is a branch hole (122) into which gas flows from the gas flow path (11) into a connection portion with the gas flow path (11), and an end on the outer side of the gas flow pipe (1).
- This is a cylindrical space having a gas discharge hole (121) and having a branch hole (122) and a gas discharge hole (121) at both ends.
- the branch hole (122) is preferably formed so that the surface surrounded by the contour of the branch hole (122) is smoothly connected to the inner wall surface (111) of the adjacent gas flow pipe (1).
- the gas discharge hole (121) communicates with the outside of the gas flow pipe (1) and has an angle of more than 0 and less than 180 ° with respect to the length direction of the gas flow path (11) outside the gas flow pipe (1). Gas can be released in the direction of.
- the gas flowing through the gas flow passage (11) flows into the gas discharge path (12) from the branch hole (122) by the internal pressure, and is discharged from the gas discharge hole (121) to the outside of the gas flow pipe (1).
- the gas discharge path (12) may be linear or curvilinear, but it is preferable that the gas discharge path (12) is linear from the viewpoint of releasing gas at a predetermined angle at the shortest distance from the branch hole (122).
- a circular shape, an elliptical shape, a rectangular shape, a polygonal shape, a star shape, etc. can be selected according to the required gas releasing ability. Is preferably circular or elliptical, more preferably circular.
- the average diameter of the gas discharge passage (12) is preferably 1 to the circular equivalent sectional diameter of the cross section of the gas flow passage (11). 100%, more preferably 2 to 80%, still more preferably 5 to 60%, still more preferably 10 to 30%.
- the gas discharge path (12) When used as a component of the liquid quality adjusting device (2) to be described later, from the viewpoint of securing the discharge pressure when discharged from the gas discharge hole (121), the gas discharge path (12) has a branch hole (122). It is preferable that the taper shape has a circular equivalent cross-sectional diameter from the gas outlet hole (121) to the gas outlet hole (121).
- the inner wall surface (123) of the gas discharge path (12) is smoothly formed into a Taber shape from the viewpoint of smooth gas discharge.
- the circular equivalent cross-sectional diameter of the gas discharge hole (121) is preferably 0.1 to 100 mm from the viewpoint of the formation of bubbles in the liquid.
- the thickness is preferably 0.2 to 50 mm, more preferably 0.3 to 10 mm, still more preferably 0.5 to 5 mm, and still more preferably 0.7 to 2 mm.
- the circular equivalent cross-sectional diameter of the branch hole (122) is the circular equivalent cross section of the gas discharge hole (121) from the viewpoint of the formation of bubbles in the liquid. It is larger than the diameter and is preferably 150 to 2000%, more preferably 200 to 1000%, and still more preferably 300 to 700% of the circular equivalent cross-sectional diameter of the gas discharge hole (121).
- the length of the gas discharge path (12) is preferably 1 to 10000%, more preferably 50 to 1000%, and still more preferably 200 to 500 with respect to the circular equivalent cross-sectional diameter of the end section on the branch hole (122) side. %.
- the gas discharge path (12) branches off from a branch hole (122) formed in the inner wall surface (111) of the gas flow path (11), but more than 0 with respect to the length direction of the gas flow path (11). Branches so that the gas can be released in the direction of less than 0 °, preferably 30 ° to 150 °, more preferably 60 ° to 120 °, more preferably 75 ° to 105 °, and still more preferably 80 ° to 100 °. .
- the gas discharge path (12) has at least one in the length direction from the inner wall surface (111) of the gas flow passage (11), and at least one along the inner circumference of the inner wall surface (111) of the gas flow passage (11). It is preferable to branch two or more in total, and it is more preferable to branch so as to be equiangular with each other along the outline of the cross section perpendicular to the axis of the gas flow passage (11) in plan view.
- the gas discharge path (12) is branched at 180 ° from each other (opposite directions) in plan view along the outline of the cross section perpendicular to the axis of the gas flow path (11).
- 3 may be connected to each other at 120 ° (in 3 directions)
- 4 may be branched at 90 ° from each other (in 4 directions)
- 60 ° from each other 6 branches (in 6 directions) may be branched from each other by 30 ° (in 12 directions)
- 12 branches may be branched from each other, and 90 ° from each other in consideration of bubble discharge efficiency and moldability. It is preferable that four branches (in four directions).
- the gas discharge path (12) is preferably 0.01 to 30, more preferably, per cm in the length direction from the inner wall surface (111) of the gas flow path (11). It is preferable to branch 0.1 to 20, more preferably 0.5 to 10, more preferably 1 to 5.
- the end of the gas flow pipe (1) may be closed, but the gas discharge path (12) also branches from the end, and the gas can be discharged also from the gas discharge path (12) at the end. It may be.
- the preferred material of the inner wall surface (123) of the gas discharge passage (12) is the same as the preferred material of the inner wall surface (111) of the gas flow passage (11), but from the viewpoint of the moldability of the gas flow pipe (1), The same material as the inner wall surface (111) of the gas flow passage (11) is preferable.
- the present invention 1 includes a gas introduction hole (13) for introducing a gas.
- the gas introduction hole (13) can be provided in any part of the gas flow pipe (1), and is provided in any part of the inner wall of the gas flow pipe (1) so as to directly communicate with the gas flow path (11). However, from the viewpoint of efficiently filling the gas in the gas flow pipe (1), it is preferably provided at the end of the gas flow pipe (1).
- the gas introduction hole (13) only needs to be configured to be connected to a gas introduction mechanism, which will be described later.
- the gas introduction hole (13) protrudes from the outer wall surface of the gas circulation pipe (1) so as to be connected to the air supply pipe of the gas introduction mechanism. It may be in the form of a connected nozzle.
- the gas flow pipe (1) has a constant-thickness side tube having a gas discharge passage (12) as an internal space on the side surface of a constant-thickness cylindrical body having the gas flow passage (11) as an internal space. It can have a shape in which a plurality of side cylindrical bodies protrude from the side of the cylindrical body.
- the wall thickness of the gas flow pipe (1) is the distance from the inner wall surface (111) of the gas flow passage (1) to the side surface of the cylindrical body, but a plurality of side cylindrical shapes are formed on the side of the cylindrical body.
- the body has a protruding shape, from the viewpoint of the strength of the gas flow pipe (1), it is preferably 1 to 1000 mm, more preferably 2 to 500 mm, still more preferably 3 to 100 mm, still more preferably 4 to 50 mm,
- the thickness is preferably 5 to 30 mm, more preferably 5 to 20 mm.
- the outer shape of the gas discharge path (12) is similar to the cylindrical space of the gas discharge path (12). In consideration of design, it is preferably a uniaxial rotationally symmetric shape such as a cylinder, a triangular pyramid, or a polygonal pyramid.
- the side cylindrical body protrudes from the side surface of the cylindrical body, avoids contact with other objects in the environment and the side cylindrical body, and damage to each other. From this viewpoint, it is preferable that the thickness of the cylindrical body is sufficiently large, and the gas discharge path (12) is disposed within the thickness of the cylindrical body (hereinafter also referred to as embedded). In this case, it is preferable that the thickness of the cylindrical body is approximately the same as the protruding length of the gas discharge path (12).
- the side of the cylindrical body is a non-projecting surface, and the gas discharge hole (121) is provided in the same plane.
- the shape is preferred.
- the gas flow pipe (1) can be arranged compactly by connecting the straight gas flow pipes (1) to each other with connecting pipes such as L-shaped, T-shaped, U-shaped, and trifurcated. Form may be sufficient.
- the gas flow pipe (1) shown in FIGS. 1 and 2 can be formed as follows.
- it is made of plastic or metal, and a central portion in a plan view of a cylindrical body having the same length as the gas flow passage (11) is cut out in the length direction to form a cylindrical tube, Seal one end of the cylindrical tube with a cap with an aperture, Seal the other end of the cylindrical tube with a cap that does not have an aperture, Let the opening of a cap be a gas introduction hole (13), and let the cylindrical pipe
- a cylindrical hole having a cross-sectional diameter of the branch hole (122) of the gas discharge path (12) communicating with the gas flow path (11) from the outside is cut out on the side surface of the cylindrical tube.
- the space where the cylindrical hole and the conical inner space are combined becomes a gas discharge path.
- the opening on the gas flow path (11) side of the cylindrical hole is the branch hole (122), and the opening communicating with the outside of the cylindrical tube in the conical inner space is the gas discharge hole (121).
- gas flow pipe (1) including the gas flow path (11) and the gas discharge path (12) can be manufactured.
- a plurality of unit tubes are manufactured by hollowing a cylindrical hole in the side surface of a short cylindrical tube having both ends open, and connecting a conical tip (124) to the cylindrical hole.
- a gas flow pipe (1) having a desired length is formed by connecting and forming both ends of the plurality of unit pipes by fitting, bonding with an adhesive, welding by welding, or the like. ) Is sealed with a cap having an opening, and the other end of the gas flow pipe (1) is sealed with a cap having no opening, and the opening of the cap is used as a gas introduction hole (13).
- the gas flow pipe (1) can be formed.
- the entire gas flow pipe (1) is integrally formed by vacuum forming, a 3D printer, or the like, or a lengthwise divided body is formed by vacuum forming, injection molding, casting, a 3D printer, etc. It is conceivable to manufacture and bond the pieces by joining, bonding with an adhesive, welding by welding, or the like.
- the present invention 2 includes a gas introduction mechanism (hereinafter referred to as gas introduction) that introduces gas into the gas flow passage (11) from the gas flow pipe (1) of the present invention 1 and the gas introduction hole (13) of the gas flow pipe (1).
- gas introduction a gas introduction mechanism that introduces gas into the gas flow passage (11) from the gas flow pipe (1) of the present invention 1 and the gas introduction hole (13) of the gas flow pipe (1).
- Gas discharge device provided with a mechanism).
- a high-pressure gas is supplied from a high-pressure gas generator such as an air compressor or the like, for example, from a gas introduction hole (13) at the end of the gas circulation pipe (1) by connecting a gas supply pipe such as a tube.
- a gas supply pipe such as a tube.
- An introduction mechanism is conceivable.
- a gas introduction mechanism is conceivable in which an insufflation pipe such as a tube is connected from a compressed gas cylinder filled with a gas compressed to a high pressure, for example, from a gas inflow hole at the end of the gas flow pipe (1).
- the gas introduced into the gas flow path (11) circulates and moves along the gas flow path (11) and flows into the gas discharge path (12) to enter the gas discharge hole (121). To the outside of the gas flow pipe (1).
- the gas introduced into the gas flow passage (11) is discharged from the multiple gas discharge holes (121) in a predetermined direction of the gas flow passage (11). ) Can be efficiently released into the environment where the
- gas that can be used in the present invention air, hydrogen, oxygen, nitrogen, chlorine, carbon dioxide, helium and other rare gases, methane gas, butane gas, natural gas, and the like can be selected as necessary.
- the present invention 2 is an indoor space in which a predetermined amount of a predetermined amount of gas is filled in the gas flow pipe (1), a lake in which the predetermined gas is discharged into the liquid and the liquid quality is required to be adjusted. Pond; gas-liquid, gas-gas reaction tank; liquid storage tank, fishbowl, aquarium, aquatic organism tank, fish pond / fish tank, algae culture tank, fungus culture tank, fermentation tank, septic tank, bath tub, etc. It can be used by being placed in the liquid filled in the liquid tank (21).
- the present invention 3 includes the gas discharge device of the present invention 2 and a liquid tank (21).
- the liquid tank (21) is filled with liquid
- the gas discharge hole (121) of the gas flow pipe (1) is liquid.
- Liquid quality adjusting device configured to be immersed in the gas and introducing gas into the gas flow pipe (1) so that the gas is discharged from the gas discharge path (12) into the liquid, preferably as gas bubbles. (2).
- the gas discharge path (12) of the present invention 2 preferably has a tapered shape, and preferably has the above-mentioned preferred tapered shape. More preferred.
- the gas discharge hole (121) of the gas flow pipe (1) can be immersed in the liquid, preferably all the gas discharge of the gas flow pipe (1).
- the hole (121) has sufficient volume to be submerged in the liquid.
- the material of the liquid tank (21) only needs to have leakproofness, corrosion resistance, durability and the like required for liquids and gases, and plastics, fiber reinforced plastics, ceramics, metals, and the like can be used.
- plastics include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyamide (PA), polyethylene terephthalate (PET), amorphous
- PE polyethylene
- PP polypropylene
- PS polystyrene
- PVDC polyvinyl chloride
- PA polyamide
- PET polyethylene terephthalate
- A-PET polylactic acid
- PLA polylactic acid
- stainless steel iron, aluminum, brass, carbon steel, titanium, copper, etc.
- stainless steel or titanium is preferable, and stainless steel is more preferable.
- the present invention 4 further comprises a gas-liquid permeable ceramic particle holder (22) in the present invention 3, and when the ceramic particles are stored in the ceramic particle holder (22), the gas discharge path ( 12) A liquid quality adjusting device (2) configured such that the gas released from 12) collides with the ceramic particles and comes into contact therewith.
- ceramic particles are immersed in an aqueous liquid such as water or alcohol to produce a mixed composition of an elution component from the ceramic particles and an aqueous liquid, and the mixed composition is used as a raw material for food or cosmetics.
- an aqueous liquid such as water or alcohol
- the mixed composition is used as a raw material for food or cosmetics.
- the present invention 4 improves the elution efficiency of the eluted component by colliding the ceramic particles with the gas generated in the present invention 3 in the liquid in the liquid tank (21), or in addition, Due to the interaction between the ceramic particles and the elution component, liquid quality adjusted water that cannot be obtained only by mixing conventional elution components can be obtained.
- the bubbles discharged in the liquid come into contact with the ceramic particles, so that, for example, negatively charged ions from the ceramic particles are in the liquid. It is considered that liquid quality is adjusted by dissociation.
- the ceramic particles may be a ceramic block having a maximum length of a line segment (hereinafter, referred to as a maximum diameter) cut by the contour line of the ceramic particles, or may be a ceramic powder having a size of ⁇ m to mm.
- the ceramic particle holder (22) may be, for example, in a mesh-type pack shape containing ceramic particles, and may be configured to be detachably mounted in the liquid tank (21), or the liquid tank (21). It may be configured as a net-type ceramic particle storage space fixed inside.
- the ceramic storage holder (32) is, for example, a net-type container in which the gas flow pipe (1) can also be arranged, as shown in FIG. 3, and the side surface of the gas flow pipe (1) and the inner circumference of the net-type container.
- a configuration hereinafter referred to as a gas flow pipe integrated holder (32)
- a ceramic particle storage portion (224) may be used.
- the gas flow pipe integrated holder (32) is composed of, for example, a net-type outer cylinder (222) and a gas flow pipe stand plate (222), and a gas flow pipe (1) at the center of the gas flow pipe stand plate (222). ), And a ceramic particle container (225) is provided in the net type outer cylinder (222) so that the entire gas flow pipe integrated holder (32) can be conveyed.
- the ceramic particle storage part (224) of the gas flow pipe integrated holder (32) The side surface of the gas flow pipe (1) cannot be directly contacted with the side surface of the gas flow pipe (1) so that the gas flow pipe (1) is not physically damaged. It may be configured to be covered with a liquid permeable sheet, Gas-liquid permeability so that the filled ceramic particles can be in direct contact with the side of the gas flow tube (1) so that the gas released from the gas flow tube (1) does not hinder the arrival of the gas to the filled ceramic particles. You may make it the structure which is not coat
- the gas flow tube integrated holder (32) filled with ceramic particles When the gas flow tube integrated holder (32) filled with ceramic particles is immersed in the liquid and the gas is released from the gas flow tube (1), the released gas collides with the adjacent ceramic particles. So that the eluted components from the ceramic particles can be efficiently eluted.
- the gas flow tube integrated holder (32) When the gas flow tube integrated holder (32) is used, the gas flow tube integrated holder (32) itself can be carried. Therefore, a liquid layer is prepared separately, and the gas flow tube integrated holder (32) is placed in the liquid layer. Invention 4 can be easily assembled only by putting.
- the gas flow pipe (1) and the ceramic particle holder (22) may be relatively rotatable in the liquid tank (21).
- the ceramic particle holder (22) can be rotated around the gas flow pipe (1) so that the stored ceramic particles can alternately contact the gas discharged from one gas discharge hole (121). It may be.
- the periphery of the gas discharge device of the present invention 3 in the liquid tank (21) is covered with a ceramic net type container formed of ceramic particles, and the gas released from the gas discharge path (12) collides with the ceramic net type container. You may make it contact.
- the ceramic net container can be manufactured as a cylindrical article in which the gas releasing device of the present invention 3 can be disposed on the inside by, for example, adhering ceramic particles with an adhesive or welding with hot air.
- the gas flow pipe (1) has a gas flow path (11), a gas discharge path (12) and a gas introduction hole (13) described below in a stainless steel straight cylindrical bar having an average diameter of 45 mm and a length of about 1100 mm. It is a stainless steel straight cylindrical tube provided.
- the gas flow passage (11) is a straight cylindrical space formed by hollowing out a cylindrical hole having an average diameter of 20 mm coaxial with the stainless steel straight cylindrical bar in the length direction of the stainless steel straight cylindrical bar. As a result, the thickness of the gas flow passage (11) is 12.5 mm.
- the gas discharge path (12) is a straight cylindrical space having a diameter of 7 mm and a length of 2.5 mm from the side of the gas flow path (11) perpendicular to the axis of the stainless steel straight cylindrical pipe on the side surface of the stainless steel straight cylindrical pipe. And a side through hole in which a straight cylindrical space having a diameter of more than 7 mm and not more than 8 mm and a length of 10 mm is connected coaxially, and a conical cylinder provided with a straight cylindrical piece described below coaxially with the side through hole. It is formed by press-fitting the lower surface of the shaped space so as to face the gas flow passage (11).
- the straight cylinder piece is formed by drilling a conical space with a bottom surface of 5 mm in diameter and a top surface of 1 mm in diameter on a stainless steel straight cylindrical bar having a diameter of 8 mm and a length of 10 mm.
- the gas discharge path (12) thus formed has a cylindrical space having a conical taber inner wall with a branch hole (122) having a diameter of 7 mm, a gas discharge hole having a diameter of 1 mm, and a protruding length d of 10 mm. It is.
- the thickness of the gas flow pipe (1) is the same as the protruding length of the gas discharge path (12), and the gas discharge path (12) is embedded in the thickness.
- the gas discharge path (12) protrudes in a direction of 90 ° with respect to the length direction of the gas flow passage (11), and can release the gas in a direction of 90 ° with respect to the length direction of the gas flow passage. It is like that.
- the gas discharge path (12) has four branches (90 directions) (in four directions) along the contour of the cross section perpendicular to the axis of the gas flow path (11) (hereinafter referred to as “four directions”).
- the tubular portion of the gas flow pipe including the four branches is referred to as a unit unit pipe).
- the unit unit tubes are stacked 119 steps adjacent to each other in the length direction of the rotational symmetry axis of the gas discharge path, and the adjacent unit unit tubes are stacked by rotating 45 ° at a time.
- the paths (12) make 45 ° with each other.
- Gas release device Using a gas introduction mechanism consisting of an air compressor and an air supply pipe that supplies high-pressure gas discharged from the air compressor, the air supply pipe is connected to the gas introduction hole (13) of the gas flow pipe (1) to release the gas.
- the air supply pipe is connected to the gas introduction hole (13) of the gas flow pipe (1) to release the gas.
- the cap (14) When using the gas flow pipe (1) upright, when the gas flow pipe (1) is upright, for example, when using a heavy gas whose specific gravity is higher than air, the cap (14) is provided at the upper end, When gas is circulated from the top to the bottom of the gas flow pipe (1) and a light gas having a specific gravity less than air is used, a cap (14) is provided at the lower end, and the gas is fed from the bottom of the gas flow pipe (1). It is preferable to distribute it above.
- the cap at the lower end of the gas flow pipe (1) can be provided with a fixing screw for installing the gas flow pipe (1).
- a screw (16) is provided.
- All the parts constituting the above gas flow pipe (1) can be made of metal such as plastic and / or stainless steel.
- the ceramic particle storage holder includes, for example, a cylindrical net-type outer cylinder (222) having a diameter of 200 mm and a height of 1050 mm larger than the length of the gas flow pipe (1) as shown in FIG. It can comprise a gas flow tube stand plate (222) on the bottom.
- the net type outer cylinder (222) is, for example, a stainless steel net having an opening of preferably 0.05 to 150 mm, more preferably 0.1 mm to 100 mm, still more preferably 0.5 to 10 mm, still more preferably 1 to 5 mm. Can be configured.
- the gas flow tube stand plate (222) is connected to the end of the net-type outer cylinder (222) and needs to be strong enough to place the gas flow tube (1), such as plastic and / or stainless steel. Can be made of metal.
- the gas flow pipe stand plate (222) is provided with a female screw that engages with the male screw provided on the cap (15) of the gas flow pipe (1), and the gas flow pipe stand plate (222) has a gas A female screw that engages with a male screw provided on the cap (15) of the flow pipe (1) is provided, and the gas flow pipe (1) is fixed to the gas flow pipe stand plate (222) with the screw, and the gas flow pipe integrated holder (32) can be formed.
- 3 is preferably 1 to 100 kg of ceramic particles having an average diameter of 0.01 to 50 mm, more preferably 10 to 90 kg of ceramic particles having an average diameter of 0.1 to 40 mm, and even more preferably. 30 to 80 kg of ceramic particles having an average diameter of 1 to 30 mm, more preferably 50 to 70 kg of ceramic particles having an average diameter of 5 to 20 mm can be filled.
- the gas flow tube support frame (223) is in the vicinity of the side surface of the gas flow tube (1) in the direction perpendicular to the length direction of the gas flow tube (1) from the inner periphery of the net type outer cylinder (222). Is a plate that is fixed to the inner periphery of the net type outer cylinder (222), and the end on the side of the gas flow pipe (1) surrounds the periphery of the side of the gas flow pipe (1).
- the gas flow pipe (1) which is fixed to the gas flow pipe stand plate (222) is stably supported.
- the gas flow tube integrated holder (32) in FIG. 3 is provided with a ceramic particle storage portion (225) on the open end side of the net-type outer cylinder, and conveys the entire gas flow tube integrated holder (32). It is easy to do.
- the gas flow pipe integrated holder (32) is placed at the center of the liquid tank (21), the ceramic particle storage section (224) is filled with ceramic particles (not shown), and the gas flow pipe ( Fill the liquid tank (21) with liquid (not shown) until 1) is completely submerged.
- This invention 5 uses the liquid quality adjustment apparatus (2) of this invention 4, This is a method for producing an adjustment liquid in which a gas released from a gas discharge path (12) is collided with ceramic particles in a liquid and the liquid quality of the liquid is adjusted to obtain an adjustment liquid.
- Sedimentary rocks such as sandstone, mudstone, slate, Igneous rocks such as lava, serpentine, basalt, chrysanthemum stone, obsidian, Oya stone, Barley stone (preferably from Gifu Prefecture), Ioishi, Kiyoishi (preferably from Gunma Prefecture), black silica (Kamiakishi, graphite silica, preferably from Hokkaido), white silica (quartz metamorphic rock), pine ore, cordierite , Metamorphic rocks such as chlorite, granite, crystalline schist, shale, and cold water, Tourmaline (tourmaline, preferably from Himalayan altitude above 5000m), zeolite, clinoptilolite, Kitaishi stone, Ryuo stone (Soryu stone), brilliant stone (precious gemstone), Koseki stone, Amaterite, silica, alumina , Titania, soda ash, tron
- precious metals such as gold, silver, copper, and platinum
- carbon group elements such as carbon, silicon, germanium, tin, lead, and flerobium as required for liquid quality adjustment. More preferably, at least one metal selected from the group consisting of gold, silver, copper, platinum and tin can be mixed.
- the ceramic particle storage part (224) as other additives, from the viewpoint of reinforcing the effect of adsorbing unnecessary organic substances and odor components according to the purpose and the effect of adjusting water, shells, shell fossils, bones, bone fossils, Plant charcoal, animal charcoal, activated carbon, dredging, fossil, bentonite, diatomaceous earth, silicic earth, dolomite, loess, coal, peat, shirasu, volcanic ash, or crushed products of these, and those molded into appropriate shapes and sizes It can be mixed with ceramic particles or placed in a mesh bag or container.
- the ceramic particles can be obtained, for example, by firing powdery raw material stones together with necessary additives and firing at 500 to 2000 ° C. according to each raw material stone.
- tourmaline may be baked at 500 to 800 ° C.
- barleystone, kiyoishi, and meioite may be baked at 1300 ° C.
- ceramic particles X using tourmaline as a raw stone is a spherical product with a diameter of about 1 cm by mixing tourmaline pulverized material collected around 3000 m in the Himalaya Mountains in Nepal with porcelain clay at 50:50 (mass ratio). Can be obtained by sintering at around 600 ° C.
- barley stone, kiyoishi, medioishi, and shinmei stone which are used as bedrock stones, 50:50 (mass ratio) of a mixture of porcelain stones as the main component (40-60% by mass) and ceramic clay
- the ceramic particles Y can be obtained by sintering the mixture in a spherical shape having a diameter of about 1 cm at about 1300 ° C.
- liquid whose liquid quality can be adjusted examples include water and water-soluble organic substances such as ethanol and water-soluble carboxylic acid from the viewpoint of environmental hygiene in consideration of the use of the raw material liquid of the adjustment liquid such as food and cosmetics.
- water-soluble organic substances such as ethanol and water-soluble carboxylic acid from the viewpoint of environmental hygiene in consideration of the use of the raw material liquid of the adjustment liquid such as food and cosmetics.
- tap water natural water such as well water, ground water, river water, lake water, spring water, sea water, hot spring water and the like can be mentioned.
- the average particle size of the ceramic particles is preferably 0.01 to 50 cm, more preferably 0.1 to 20 cm. More preferably, it is 0.2 to 10 cm, and more preferably 0.5 to 3 cm.
- the average particle size of the ceramic particles is 100 ceramic particles randomly selected from the aggregate of ceramic particles, each ceramic particle is in the field of view, and all the ceramic particles are photographed at a magnification that does not enter the field of view.
- the maximum diameter of the ceramic particles is obtained from a micrograph of the particles, and an arithmetic average value of the maximum diameters of 100 ceramic particles is used.
- the gas released from the gas discharge path (12) is preferably a bubble in the liquid.
- the average diameter is preferably 0.001 ⁇ m to 100 mm, more preferably 0.01 to 10 mm, still more preferably 0.1 to 1000 ⁇ m, 0.5 to 100 ⁇ m, still more preferably 0.5 to 10 ⁇ m.
- the gas release amount is preferably 0.1 to 100 ml / min, more preferably per gas discharge path (12). Is 1 to 50 ml / min, more preferably 5 to 25 ml / min.
- the gas release time is [T / number of gas release paths (12)] as a guideline.
- T is preferably 100 to 10000, more preferably 500 to 7000, and still more preferably 1000 to 3000.
- the liquid temperature is preferably set at 10 ° C. lower than the boiling point of the liquid, preferably water.
- the temperature is 10 to 95 ° C, more preferably 30 to 90 ° C, still more preferably 50 to 85 ° C, still more preferably 60 to 80 ° C.
- the volume of liquid per 1 cm 2 of ceramic particles is preferably 0.1 to 100 ml / cm 2 , more preferably 1 to 50 ml / cm 2 , more preferably 5 to 30 ml / cm 2 , more preferably 10 to 20 ml / cm 2 .
- This invention 6 is an adjustment liquid obtained by the manufacturing method of the adjustment liquid of this invention 5.
- the ceramic particles X are used as the ceramic particles and the hot spring water is used as the liquid
- the air bubbles released from the gas discharge device of the present invention 3 collide with and contact the ceramic particles in the water.
- Air bubbles, water and elution components from ceramics are mixed to obtain a liquid having a low oxidation-reduction potential.
- this is used as a raw material for skin lotion, the absorption of cosmetic ingredients increases, There are preferable effects such as the expectation of an aging effect.
- Simple hot spring alkaline
- chloride spring sodium chloride spring, sodium / magnesium chloride spring, sodium / calcium chloride spring
- bicarbonate spring calcium (magnesium) bicarbonate, sodium bicarbonate spring
- Sulfate spring sulfate spring, magnesium sulfate spring, sodium sulfate spring, calcium sulfate spring
- carbon dioxide spring silica
- iron-containing spring iron spring, iron (II) bicarbonate spring, iron (II) Sulfate spring
- acidic spring simple acidic spring
- iodine-containing spring iodine sodium chloride spring
- sulfur spring sulfur spring, sulfur spring (hydrogen sulfide type)
- radioactive spring etc.
- hot spring water is weakly acidic to weakly alkaline (preferably weakly alkaline) and soft water so that it can be ingested as it is. It is preferable that the content of components that cause salty taste and odor such as chlorine and sulfur is low. That is, when the present invention 6 is for food and / or cosmetics (for example, lotion), preferably for cosmetics (for example, lotion), the hot spring water is raw water, The pH is preferably 5 to 9,5, more preferably 6 to 9, still more preferably 7 to 9, and still more preferably 8 to 9.
- the hardness is preferably 0 to 120 mg / L, more preferably 20 to 100 mg / L, still more preferably 30 to 80 mg / L.
- the content of the sulfur compound is preferably 10 mg / L or less, more preferably 1 mg / L or less, more preferably 0.1 mg / L or less, and still more preferably 0.01 mg / L or less.
- the pH is preferably 5 to 9,5, more preferably 6 to 9, still more preferably 7 to 9, further preferably 8 to 9,
- the electrical conductivity is preferably 30 to 200, more preferably 50 to 150, still more preferably 70 to 100, It is preferable to produce the present invention 6 having a redox potential of preferably 50 to 300, more preferably 100 to 250, and still more preferably 150 to 200.
- the ceramic particles Y are used as the ceramic particles and water (preferably hot spring water) is used as the liquid
- the air bubbles released from the gas discharge device of the present invention 3 in the water are the ceramic particles. Collision and contact, mixing of bubbles, water and elution components from ceramics gives an adjustment liquid with a low oxidation-reduction potential, and when used as a raw material for skin lotion, an anti-aging effect can be expected The following effects are achieved.
- the adjustment liquid of the present invention 6 is expected to have an effect in the following applications, for example, because the hot spring water described above has a low redox potential and is weakly alkaline.
- a microorganism that exists in the soil such as Thomas bacteria, nitrifying bacteria, artificial EM bacteria (preferably Thomas bacteria) or the like, or further added with Olga bacteria and / or actinomycetes
- Thomas bacteria nitrifying bacteria
- artificial EM bacteria preferably Thomas bacteria
- Olga bacteria and / or actinomycetes When the used fertilizer is mixed with the adjustment solution using the hot spring water of the present invention 6 and used as a fertilizer in soil for growing plants, the penetration of nutrients into the plant tissue is efficient and quickly grows the plant. It is expected.
- the hydrolyzate obtained by blending the adjustment liquid using the hot spring water of the present invention 6 into a hydraulic composition such as concrete or mortar as kneaded water can be submerged in the seabed, for example, in a tetrapot or mangrove If it is used as a revetment wall of a river that grows, etc., the surface of the cured product is easily covered with plants, and the contamination from the cured product is suppressed against the water environment that contacts the surface of the cured product. It is expected.
- the resulting adjustment liquid is, for example, a raw material liquid for cosmetics, foods, beverages, cooking, medicines, etc .; water used for bathing, washing, etc .: plants used for plant cultivation, etc. Breeding water; Fish farming water; Aquatic organism breeding water; Algal, fungal and isolated cell culture water; Fermentation water; Medical and industrial wash water; Functional industrial water used for hydraulic compositions such as concrete Can be used for applications.
- the gas flow pipe (1) is provided with a gas flow path (11), a gas discharge path (12) and a gas introduction hole (13) described below in a stainless steel straight cylindrical bar having an average diameter of 45 mm and a length of 1100 mm.
- a stainless steel straight cylindrical tube was used.
- the gas flow passage (11) was defined as a gas flow passage (11) in which a straight cylindrical space having a wall thickness of 12.5 mm formed by hollowing out a cylindrical hole having an average diameter of 20 mm in the length direction of a stainless steel straight cylindrical bar.
- a side through-hole that connects the right cylindrical space of the cylinder is provided coaxially.
- the right cylindrical piece described below is provided coaxially to the side through-hole, and the lower surface of the conical space provided in the right cylindrical piece is connected to the gas flow passage (11).
- the gas discharge path (12) was formed by press-fitting to face.
- the straight cylindrical piece was formed by drilling a conical space with a bottom surface of 5 mm in diameter and a top surface of 1 mm in diameter on a stainless steel straight cylindrical bar having a diameter of 8 mm and a length of 10 mm.
- the gas discharge path (12) thus formed has a cylindrical space having a conical taber inner wall with a branch hole (122) having a diameter of 7 mm, a gas discharge hole having a diameter of 1 mm, and a protruding length d of 10 mm. It is.
- the thickness of the gas flow pipe (1) is the same as the protruding length of the gas discharge path (12), and the gas discharge path (12) is embedded in the thickness.
- the gas discharge path (12) protrudes in a direction of 90 ° with respect to the length direction of the gas flow passage (11), and can discharge the gas in a direction of 90 ° with respect to the length direction of the gas flow passage. .
- the gas discharge path (12) is a unit unit having four branches in 90 ° with each other (in four directions) along the outline of the cross section perpendicular to the axis of the gas flow path (11) in plan view.
- the tubes are stacked 119 steps adjacent to each other in the length direction of the rotational symmetry axis of the gas discharge path, and the adjacent unit unit tubes are rotated and stacked by 45 °, and the adjacent gas discharge path (12). Make 45 ° to each other.
- a gas introduction mechanism consisting of an air compressor (OSP-15M5A manufactured by HITACHI) and an air supply pipe (polyurethane resin tube) for supplying high-pressure air discharged from the air compressor is used. ) To the gas introduction hole (13) to obtain a gas discharge device.
- the gas flow pipe (1) was used upright, a cap (14) was provided at the upper end, and air was circulated from the top to the bottom of the gas flow pipe (1).
- the ceramic particle storage holder includes a cylindrical net-type outer cylinder (222) having a capacity of 1050 mm in height and an inner diameter of 200 mm and larger than the length of the gas flow pipe (1), and a gas flow pipe stand plate (222) on the bottom surface. did.
- the net type outer cylinder (222) was composed of a stainless steel net having an opening of 5 mm.
- the stainless steel gas flow tube stand plate (222) was connected to the end of the net type outer cylinder (222).
- the gas flow pipe stand plate (222) is provided with a female screw that engages with the male screw provided on the cap (15) of the gas flow pipe (1), and the gas flow pipe stand plate (222) has a gas flow pipe ( 1) A female screw that engages with the male screw provided on the cap (15) is provided, and the gas flow pipe (1) is fixed to the gas flow pipe stand plate (222) with the screw to hold the gas flow pipe integrated holder (32). Formed.
- the space between the side surface of the gas flow pipe (1) and the net type outer cylinder (222) was used as the ceramic particle storage portion (224).
- the gas flow pipe integrated holder (32) was provided with a gas flow pipe support frame (223) along the inner periphery of the net type outer cylinder (321).
- the end of the gas flow pipe support frame (223) reaches the vicinity of the side surface of the gas flow pipe (1) in the direction perpendicular to the length direction of the gas flow pipe (1) from the inner periphery of the net type outer cylinder (222).
- a plate fixed to the inner periphery of the net type outer cylinder (222), and the end of the side of the gas flow pipe (1) surrounds the periphery of the side of the gas flow pipe (1),
- the gas flow pipe (1) which was fixed to the stand plate (222) was stably supported.
- the gas flow pipe integrated holder (32) is placed in the center of the liquid tank (21) (inner diameter 1010 mm, depth 800 mm stainless steel cylindrical layer), the ceramic particle storage portion (224) is filled with ceramic particles, and the liquid The tank (21) was filled to the full depth.
- cover which can coat
- the ceramic particle container (224) is filled with ceramic particles, the liquid tank (21) is filled with liquid until the gas circulation pipe (1) is completely submerged, and the temperature of the liquid is kept at 80 ° C. A comparative adjustment solution was allowed to stand for 4 days without releasing air bubbles.
- Test conditions (4-1) Monitor 1 female in 20s; 1 female in 30s; 3 females in 40s; 2 females in 50s; and 1 female in 60s.
- the practical adjustment liquid which is the adjustment liquid of the present invention 6 obtained by the production method of the present invention 5 using the apparatus of the present invention 1 to 4, has a higher electric conductivity and pH than before the application of the production method of the present invention. And the reduction of the oxidation-reduction potential is large, and according to the production method of the present invention 5, it is considered that the ion release efficiency from the ceramic particles into the liquid is high and the liquid quality adjustment effect is large.
- the obtained adjustment liquid of the present invention when used as a skin lotion, when applied to the face, hands or arms, the penetrating power and the moisturizing power are good, and the result of the evaluation is that the skin lotion and the texture of the skin lotion are good. Obtained.
- the obtained adjustment liquid of the present invention since the odor is not recognized even if the obtained adjustment liquid of the present invention is used as a skin lotion, it can be used as a skin lotion as it is, and even if a flavor is added, the flavor of the blended flavor is inhibited. It is thought not to.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Accessories For Mixers (AREA)
Abstract
【課題】本発明は、例えば、多様な容積の液体中での使用に合せてコンパクトな形態を構成でき、気体放出効率の高い気体流通管(1)、該気体流通管(1)を備える気体放出装置、該気体放出装置を備える液質調整装置(2)、該液質調整装置(2)を使用した調整液の製造方法及び該製造方法で得られる調整液を提供することを課題とする。 【解決手段】気体を導入するための気体導入孔(13)を備え、気体導入孔(13)から導入された気体が流通する気体流通路(11)と、気体流通路(11)から分岐して気体流通路(11)と連通する複数の気体放出路(12)とを備える気体流通管(1)であって、気体放出路(12)は、気体流通管(1)の外部と連通して、気体流通管(1)の外部に、気体流通路(11)の長さ方向に対して0超180°未満の角度の方向に気体を放出できる気体放出孔(121)を有する気体流通管(1)。
Description
本発明は、気体流通管、該気体流通管を備える気体放出装置、該気体放出装置を備える液質調整装置、該液質調整装置を使用した調整液の製造方法及び該製造方法で得られる調整液に関する。
特許文献1には、連通状に接続している上流側の気泡混合部と下流側の縮流ノズル部からなる超微細気泡発生装置が開示されている(特許文献1図1)。
引用文献2には、超微細気泡発生装置(特許文献2図3)を使用した水質浄化システムが開示されている。
特許文献3には、飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生装置(特許文献3図2)が開示されている。
しかし、従来開示された気泡発生装置は、特許文献1図1及び特許文献3図2のように一の気泡発生装置に気泡発生用ノズルが1つ装備されているか、特許文献2図3のように個々に独立した気泡発生用ノズルを複数使用するもので、例えば、多様な容積の液体中で使用するにはコンパクト性と気泡発生効率に改善の余地があった。
本発明は、例えば、多様な容積の液体中での使用に合せてコンパクトな形態を構成でき、気体放出効率の高い気体流通管(1)、該気体流通管(1)を備える気体放出装置、該気体放出装置を備える液質調整装置(2)、該液質調整装置(2)を使用した調整液の製造方法及び該製造方法で得られる調整液を提供することを課題とする。
本発明は、
〔1〕気体を導入するための気体導入孔(13)を備え、前記気体導入孔(13)から導入された前記気体が流通する気体流通路(11)と、前記気体流通路(11)から分岐して前記気体流通路(11)と連通する複数の気体放出路(12)とを備える気体流通管(1)であって、
前記気体放出路(12)は、前記気体流通管(1)の外部と連通して、前記気体流通管(1)の外部に、前記気体流通路(11)の長さ方向に対して0超180°未満の角度の方向に前記気体を放出できる気体放出孔(121)を有する気体流通管(1)(以下、本発明1ともいう)、
〔2〕前項〔1〕記載の気体流通管(1)と、前記気体導入孔(13)から前記気体を導入する気体導入機構とを備えた気体放出装置(以下、本発明2ともいう)、
〔3〕前項〔2〕記載の気体放出装置と、液体槽(21)とを備え、
前記液体槽(21)に液体を充填すると、前記気体流通管(1)の気体放出孔(121)が前記液体の中に浸漬し、
前記気体導入孔(13)から前記気体を導入すると、前記気体放出路(12)から前記気体が前記液体の中に放出されるように構成される液質調整装置(2)(以下、本発明3ともいう)、
〔4〕さらに、気液透過性のセラミックス粒子ホルダー(22)を備え、
前記セラミックス粒子を前記セラミックス粒子ホルダー(22)に収納すると、
前記液体の中で、前記気体放出路(12)から放出された前記気体が前記セラミックス粒子に接触するように構成される、前項〔3〕記載の液質調整装置(2)(以下、本発明4ともいう)、
〔5〕前項〔4〕記載の液質調整装置(2)を使用して、
前記液体の中で、前記気体放出路(12)から放出された前記気体を前記セラミックス粒子に接触させて、前記液体の液質を調整した調整液を得る調整液の製造方法(以下、本発明5ともいう)、
〔6〕前項〔5〕記載の調整液の製造方法で得られる調整液(以下、本発明6ともいう)である。
〔1〕気体を導入するための気体導入孔(13)を備え、前記気体導入孔(13)から導入された前記気体が流通する気体流通路(11)と、前記気体流通路(11)から分岐して前記気体流通路(11)と連通する複数の気体放出路(12)とを備える気体流通管(1)であって、
前記気体放出路(12)は、前記気体流通管(1)の外部と連通して、前記気体流通管(1)の外部に、前記気体流通路(11)の長さ方向に対して0超180°未満の角度の方向に前記気体を放出できる気体放出孔(121)を有する気体流通管(1)(以下、本発明1ともいう)、
〔2〕前項〔1〕記載の気体流通管(1)と、前記気体導入孔(13)から前記気体を導入する気体導入機構とを備えた気体放出装置(以下、本発明2ともいう)、
〔3〕前項〔2〕記載の気体放出装置と、液体槽(21)とを備え、
前記液体槽(21)に液体を充填すると、前記気体流通管(1)の気体放出孔(121)が前記液体の中に浸漬し、
前記気体導入孔(13)から前記気体を導入すると、前記気体放出路(12)から前記気体が前記液体の中に放出されるように構成される液質調整装置(2)(以下、本発明3ともいう)、
〔4〕さらに、気液透過性のセラミックス粒子ホルダー(22)を備え、
前記セラミックス粒子を前記セラミックス粒子ホルダー(22)に収納すると、
前記液体の中で、前記気体放出路(12)から放出された前記気体が前記セラミックス粒子に接触するように構成される、前項〔3〕記載の液質調整装置(2)(以下、本発明4ともいう)、
〔5〕前項〔4〕記載の液質調整装置(2)を使用して、
前記液体の中で、前記気体放出路(12)から放出された前記気体を前記セラミックス粒子に接触させて、前記液体の液質を調整した調整液を得る調整液の製造方法(以下、本発明5ともいう)、
〔6〕前項〔5〕記載の調整液の製造方法で得られる調整液(以下、本発明6ともいう)である。
本発明によれば、例えば、多様な容積の液体中での使用に合せてコンパクトな形態を構成でき、気体放出効率の高い気体流通管(1)、該気体流通管(1)を備える気体放出装置、該気体放出装置を備える液質調整装置(2)、該液質調整装置(2)を使用した調整液の製造方法及び該製造方法で得られる調整液を提供することができる。
〔本発明1〕
本発明1は、気体を導入するための気体導入孔(13)を備え、気体導入孔(13)から導入された気体が流通する気体流通路(11)(以下、気体流通路(11)という)と、気体流通路(11)から分岐して気体流通路(11)と連通する複数の気体放出路(12)(以下、気体放出路(12)という)とを備える気体流通管(1)である。
本発明1は、気体を導入するための気体導入孔(13)を備え、気体導入孔(13)から導入された気体が流通する気体流通路(11)(以下、気体流通路(11)という)と、気体流通路(11)から分岐して気体流通路(11)と連通する複数の気体放出路(12)(以下、気体放出路(12)という)とを備える気体流通管(1)である。
(気体流通路)
気体流通路(11)は筒状空間で、気体導入孔(13)から導入された気体は、該筒状空間を形成する内壁面(111)で囲まれた空間の長さ方向に向いて流通することになる。
気体流通路(11)は筒状空間で、気体導入孔(13)から導入された気体は、該筒状空間を形成する内壁面(111)で囲まれた空間の長さ方向に向いて流通することになる。
筒状空間の断面とは、その筒状空間を構成する内壁面(111)の任意の1点を通過する平面で切り取られる内壁面(111)の輪郭のうち最小の面積のものをいい、例えば円筒、錐体のような一軸回転対称の空間であれば、その空間の回転軸に垂直な平面で切り取られる面が断面である。
筒状空間の断面の面積を有する円の直径を円換算断面直径といい、筒状空間の長さに沿った円換算断面直径の平均を平均直径という。
筒状空間の一方の末端を構成する内壁面(111)の点と、他方の末端を構成する内壁面(111)の点との距離が最小となる点を選び、各末端の該点を通過する平面で切り取られる内壁面(111)の輪郭のうち最小の面積のものをそれぞれの末端の末端断面という。
円筒空間の長さとは、円筒空間の両末端の末端断面を結ぶ最短の曲線(以下、円筒空間の軸という)の長さをいい、気体流通路(11)の長さ方向とは、円筒空間の軸の接線方向をいう。
円筒空間の軸に垂直な断面を、該断面の垂直上方から見ることを平面視するという。
気体流通路(11)の断面は、必要な気体の流通能に応じて円形、楕円形、矩形、多角形、星型等を選べるが、気体が円滑に流通するという観点から円形又は楕円形であることが好ましく、円形であることがより好ましい。
気体流通路(11)の軸は直線でも曲線でもよい。円筒空間が直円筒のように直線的であれば気体流通路(11)の軸は直線であり、円筒空間が半円筒のチューブのように曲線的であれば気体流通路(11)の軸は曲線になる。
気体流通路(11)は直線的でも曲線的でもよいが、気体圧力が安定するという観点からは、直線的であることが好ましい。
気体流通路(11)の内壁面(111)は、気体円滑に流通させる観点から、気体流通路(11)の長さ方向に対して平滑であることが好ましい。
後述する液質調整装置(2)の構成要素として使用する観点から、気体流通路(11)の平均直径は、好ましくは1mm~10m、より好ましくは2mm~1m、更に好ましくは5mm~500mm、更に好ましくは10mm~200mm、更に好ましくは15mm~50mm、更に好ましくは15mm~30mmである。
気体流通路(11)の長さは、後述する気体放出路(12)をできるだけ多く分岐させる観点から、好ましくは1cm~100m、より好ましくは10cm~20m、更に好ましくは20cm~10m、更に好ましくは30cm~5m、更に好ましくは50cm~2m、更に好ましくは70cm~1.5mである。
気体流通路(11)の内壁面(111)の材質は、後述する気体放出路(12)に向けて流通する以外は、内壁面(111)から漏出しない程度の気体遮蔽性があればよく、紙、合成繊維、プラスチック、繊維強化プラスチック、セラミックス、金属等を使用できるが、成形性、耐久性及び耐水性の観点から、プラスチック、セラミックス又は金属が好ましく、プラスチック又は金属がより好ましく、金属が更に好ましい。
成形性、耐久性及び耐水性の観点から、プラスチックとしてはポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、非結晶ポリエチレンテレフタレート(A-PET)、ポリ乳酸(PLA)等の熱可塑性樹脂が好ましく、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、がより好ましく、ポリプロピレン(PP)が更に好ましい。
成形性、耐久性及び耐水性の観点から、金属としてはステンレス、鉄、アルミニウム、真鍮、炭素鋼、チタン、銅等を使用できるが、環境衛生の観点から、ステンレス又はチタンが好ましく、ステンレスがより好ましい。
(気体放出路)
気体放出路(12)は、気体流通路(11)から分岐して気体流通路(11)と連通する筒状空間である。
気体放出路(12)は、気体流通路(11)から分岐して気体流通路(11)と連通する筒状空間である。
気体放出路(12)は、気体流通路(11)との接続部分に気体流通路(11)から気体が流入する分岐孔(122)と、気体流通管(1)の外部側の末端である気体放出孔(121)とを備え、分岐孔(122)と気体放出孔(121)を両末端とする筒状空間である。
分岐孔(122)は、分岐孔(122)の輪郭で囲まれる面が隣接する気体流通管(1)の内壁面(111)と滑らかに接続するように形成されていることが好ましい。
気体放出孔(121)は、気体流通管(1)の外部と連通して、気体流通管(1)の外部に気体流通路(11)の長さ方向に対して0超180°未満の角度の方向に気体を放出できる。
気体流通路(11)を流通する気体は内圧により分岐孔(122)から気体放出路(12)に流入し、気体放出孔(121)から気体流通管(1)の外部に放出される。
気体放出路(12)は、直線的でも曲線的でもよいが、気体を分岐孔(122)から最短距離で所定の角度で放出できるようにする観点から、直線的であることが好ましい。
気体放出路(12)の分岐孔(122)、気体放出孔(121)及び断面は、必要な気体の放出能に応じて円形、楕円形、矩形、多角形、星型等を選べるが、気体が円滑に流通するという観点から円形又は楕円形であることが好ましく、円形であることがより好ましい。
後述する液質調整装置(2)の構成物品として使用する観点から、気体放出路(12)の平均直径は、気体流通路(11)の断面の円換算断面直径に対して、好ましくは1~100%、より好ましくは2~80%、更に好ましくは5~60%、更に好ましくは10~30%である。
後述する液質調整装置(2)の構成物品として使用する場合、気体放出孔(121)から放出される際の放出圧力を確保する観点から、気体放出路(12)は、分岐孔(122)から気体放出孔(121)にかけて円換算断面直径が小さくなっている先細形状であることが好ましい。
気体放出路(12)が先細形状である場合、気体の円滑な放出の観点から、気体放出路(12)の内壁面(123)はテーバー状に平滑に成型されていることが好ましい。
気体放出路(12)が先細形状である場合、気体放出孔(121)の円換算断面直径は、放出気体が液体中での気泡の形成性の観点から、好ましくは0.1~100mm、より好ましくは0.2~50mm、更に好ましくは0.3~10mm、更に好ましくは0.5~5mm、更に好ましくは0.7~2mmである。
気体放出路(12)が先細形状である場合、分岐孔(122)の円換算断面直径は、放出気体が液体中での気泡の形成性の観点から、気体放出孔(121)の円換算断面直径よりも大きく、気体放出孔(121)の円換算断面直径の、好ましくは150~2000%、より好ましくは200~1000%、更に好ましくは300~700%である。
気体放出路(12)の長さは、分岐孔(122)側の末端断面の円換算断面直径に対して、好ましくは1~10000%、より好ましくは50~1000%、更に好ましくは200~500%である。
気体流通路(11)の軸から気体放出路(12)の軸の気体流通管(1)の外部側の末端までの距離である気体放出路(12)の突出長は、気体を分岐孔(122)から最短距離で所定の角度で放出できるようにする観点から、好ましくは1~1000mm、より好ましくは2~500mm、更に好ましくは5~200mm、更に好ましくは10~50mm、更に好ましくは10~20mmである。
気体放出路(12)は気体流通路(11)の内壁面(111)に形成された分岐孔(122)から分岐するが、気体流通路(11)の長さ方向に対して、0超180°未満、好ましくは30°~150°、より好ましくは60°~120°、更に好ましくは75°~105°、更に好ましくは80°~100°の角度の方向に気体が放出できるように分岐する。
気体放出路(12)は、気体流通路(11)の内壁面(111)から、長さ方向に少なくとも1本、気体流通路(11)の内壁面(111)の内周に沿って少なくとも1本、合計で2本以上分岐することが好ましく、平面視で、気体流通路(11)の軸に垂直な断面の輪郭に沿って互いに等角度をなすように分岐することがより好ましい。
従って、気体放出路(12)は、例えば、気体流通路(11)の軸に垂直な断面の輪郭に沿って、平面視で互いに180°をなして(互いに反対向きに)2本が分岐していてよく、互いに120°をなして(3方向に)3本が接続されてよく、互いに90°をなして(4方向に)4本が分岐していてよく、互いに60°をなして(6方向に)6本が分岐していてよく、互いに30°をなして(12方向に)12本が分岐していてよく、気泡の放出効率と成形性を考慮すると、互いに90°をなして(4方向に)4本が分岐していることが好ましい。
気体放出路(12)は、気体の放出効率の観点から、気体流通路(11)の内壁面(111)から、長さ方向に、1cm当り、好ましくは0.01~30本、より好ましくは0.1~20本、更に好ましくは0.5~10本、更に好ましくは1~5本分岐することが好ましい。
気体流通管(1)の末端は閉塞されていてよいが、末端部からも気体放出路(12)が分岐し、該末端部の気体放出路(12)からも気体が放出できるように構成されていてもよい。
気体放出路(12)の内壁面(123)の好適材質は、気体流通路(11)の内壁面(111)の好適材質と同様であるが気体流通管(1)の成形性の観点から、気体流通路(11)の内壁面(111)と同一の材質であることが好ましい。
(気体導入孔)
本発明1は、気体を導入するための気体導入孔(13)を備える。
気体導入孔(13)は、気体流通管(1)の任意の部分に設けることができ、気体流通管(1)の内壁の任意の部分に気体流通路(11)と直接連通するように設けてよいが、気体流通管(1)内に気体を効率よく充満させる観点から、気体流通管(1)の末端に設けることが好ましい。
本発明1は、気体を導入するための気体導入孔(13)を備える。
気体導入孔(13)は、気体流通管(1)の任意の部分に設けることができ、気体流通管(1)の内壁の任意の部分に気体流通路(11)と直接連通するように設けてよいが、気体流通管(1)内に気体を効率よく充満させる観点から、気体流通管(1)の末端に設けることが好ましい。
気体導入孔(13)は、後述する気体導入機構と接続できるように構成されていればよく、例えば、気体導入機構の送気管と接続できるように、気体流通管(1)の外壁面に突出した接続ノズル状であってよい。
(気体流通管の形状)
気体流通管(1)は、気体流通路(11)を内部空間とする一定の肉厚の筒状体の側面に、気体放出路(12)を内部空間とする一定の肉厚の側部筒状体が接続して、筒状体の側部に複数の側部筒状体が突出している形状であることができる。
気体流通管(1)は、気体流通路(11)を内部空間とする一定の肉厚の筒状体の側面に、気体放出路(12)を内部空間とする一定の肉厚の側部筒状体が接続して、筒状体の側部に複数の側部筒状体が突出している形状であることができる。
気体流通管(1)の肉厚とは、気体流通路(1)の内壁面(111)から筒状体の側面までの距離であるが、筒状体の側部に複数の側部筒状体が突出している形状である場合、気体流通管(1)の強度の観点から、好ましくは1~1000mm、より好ましくは2~500mm、更に好ましくは3~100mm、更に好ましくは4~50mm、更に好ましくは5~30mm、更に好ましくは5~20mmである。
筒状体の側部に複数の側部筒状体が突出している形状である場合、気体放出路(12)の外形は、気体放出路(12)の筒状空間と同様の形態となるが、意匠性を考慮すると、円筒、三角錐、多角錐等の1軸回転対称形状であることが好ましい。
気体流通管(1)が設置された環境において、筒状体の側面に側部筒状体が突出して、環境内の他の物体と側部筒状体が接触し、互いに損傷することを回避する観点から、筒状体の肉厚が十分に大きく、気体放出路(12)が筒状体の肉厚内に配置されている(以下、包埋されているともいう)ことが好ましい。この場合、筒状体の肉厚は気体放出路(12)の突出長と同程度であることが好ましい。
気体放出路(12)が、筒状体の肉厚に包埋されている場合、筒状体の側部は突出のない面となり、気体放出孔(121)が同じ面内に設けられている形状であることが好ましい。
気体流通管(1)は、直線状の気体流通管(1)同士をL字、T字、U字、三又等の接続管で接続して、全体が折り畳まれてコンパクトに配置できるような形態であってもよい。
(気体流通管の成形)
(1)例えば、図1及び2に示す気体流通管(1)は以下のようにして成形できる。
例えばプラスチック又は金属製で、気体流通路(11)と同程度の長さの円筒体の平面視での中央部を長さ方向にくり抜いて円筒管とし、
円筒管の一方の端を、開孔を有するキャップで封鎖し、
円筒管の他方の端を、開孔を有さないキャップで封鎖して、
キャップの開孔を気体導入孔(13)、両端が封鎖された円筒管を気体流通路(11)とする。
(1)例えば、図1及び2に示す気体流通管(1)は以下のようにして成形できる。
例えばプラスチック又は金属製で、気体流通路(11)と同程度の長さの円筒体の平面視での中央部を長さ方向にくり抜いて円筒管とし、
円筒管の一方の端を、開孔を有するキャップで封鎖し、
円筒管の他方の端を、開孔を有さないキャップで封鎖して、
キャップの開孔を気体導入孔(13)、両端が封鎖された円筒管を気体流通路(11)とする。
円筒管の側面に外部から気体流通路(11)に連通する気体放出路(12)の分岐孔(122)の断面直径を有する円筒孔をくり抜く。
円筒孔の断面直径と同等以上の断面直径を有し、円筒孔の肉厚の8割程度の高さの円筒管バーに、底面の直径が円筒孔の断面直径と同等以下で、上面の直径が気体放出孔(121)と同じである円筒管バーと同軸の円錐状内部空間を成形した円筒管ピースを製造する。
円筒管ピースを、円錐状内部空間の底面が円筒孔に同軸に接続するように、円筒管の外部から円筒孔に圧入すると、円筒孔と円錐状内部空間とが結合した空間が気体放出路となり、円筒孔の気体流通路(11)側の開孔が分岐孔(122)、円錐状内部空間の円筒管の外部に連通する開孔が気体放出孔(121)となる。
気体放出孔(121)を設ける部分に円筒孔をくり抜いて同様の作業をして所望の数の気体放出孔(121)を、気体流通路(11)に接続すれば、気体導入孔(13)、気体流通路(11)及び気体放出路(12)を備える気体流通管(1)を製造できる。
(2)例えば、別の成形方法として以下が考えられる。
両末端が開放された短い円筒管の側面に円筒孔をくり抜き、円筒孔に円錐状チップ(124)を接続した複数のユニット管を製造する。
両末端が開放された短い円筒管の側面に円筒孔をくり抜き、円筒孔に円錐状チップ(124)を接続した複数のユニット管を製造する。
複数のユニット管の両末端を、嵌合する、接着剤により接着する、溶接により溶着する等して接続して成形して所望の長さの気体流通管(1)とし、気体流通管(1)の一端を、開孔を有するキャップで封鎖し、気体流通管(1)の他端を、開孔を有さないキャップで封鎖して、キャップの開孔を気体導入孔(13)とする気体流通管(1)を成形できる。
(3)例えば、別の成形方法として、気体流通管(1)全体を真空成形、3Dプリンター等で一体成形したり、長さ方向の分割体を真空成型、射出成型、鋳造、3Dプリンター等で製造し、分割体同士を嵌合させる、接着剤により接着する、溶接により溶着する等して接合したり張合わせたりすることが考えられる。
〔本発明2〕
本発明2は、本発明1の気体流通管(1)と、気体流通管(1)の気体導入孔(13)から気体流通路(11)に気体を導入する気体導入機構(以下、気体導入機構という)とを備えた気体放出装置である。
本発明2は、本発明1の気体流通管(1)と、気体流通管(1)の気体導入孔(13)から気体流通路(11)に気体を導入する気体導入機構(以下、気体導入機構という)とを備えた気体放出装置である。
気体導入機構としては、エア・コンプレッサー等の高圧気体発生装置から高圧気体を、例えば気体流通管(1)の末端の気体導入孔(13)から、チューブ等の送気管を接続して流入させる気体導入機構が考えられる。
また、高圧に圧縮した気体を充填した圧縮気体ボンベから、例えば気体流通管(1)の末端の気体流入孔から、チューブ等の送気管を接続して流入させる気体導入機構が考えられる。
また、高圧に圧縮した気体を充填した圧縮気体ボンベから、例えば気体流通管(1)の末端の気体流入孔から、チューブ等の送気管を接続して流入させる気体導入機構が考えられる。
本発明2によれば、気体流通路(11)に導入された気体は、気体流通路(11)に沿って流通移動すると共に、気体放出路(12)に流入して気体放出孔(121)から気体流通管(1)の外部に放出される。
本発明2によれば、気体流通路(11)に導入された気体は、多数の気体放出孔(121)から気体流通路(11)の所定の方向に放出されるため、気体流通管(1)の置かれた環境に効率よく気体を放出することができる。
本発明2で使用できる気体としては、空気、水素、酸素、窒素、塩素、二酸化炭素、ヘリウム等の希ガス、メタンガス、ブタンガス、天然ガス等、必要に応じて選択することができる。
本発明2は、気体流通管(1)を、所定の気体を所定量充満することが要求される室内空間、所定の気体を液体中に放出して液質を調整することが要求される湖;池;気-液体、気-気等の反応槽;液体貯蔵タンク、金魚鉢、水族館等の水生生物槽、養魚池・養魚槽、藻類培養槽、菌類培養槽、発酵槽、浄化槽、風呂釜等の液体槽(21)に充填された液体中に置いて使用することができる。
〔本発明3〕
本発明3は、本発明2の気体放出装置と、液体槽(21)とを備え、液体槽(21)に液体を充填すると、気体流通管(1)の気体放出孔(121)が液体の中に浸漬し、気体流通管(1)に気体を導入すると、気体放出路(12)から気体が液体の中に、好ましくは気体泡となって放出されるように構成される液質調整装置(2)である。
本発明3は、本発明2の気体放出装置と、液体槽(21)とを備え、液体槽(21)に液体を充填すると、気体流通管(1)の気体放出孔(121)が液体の中に浸漬し、気体流通管(1)に気体を導入すると、気体放出路(12)から気体が液体の中に、好ましくは気体泡となって放出されるように構成される液質調整装置(2)である。
気体放出路(12)から気体を液体の中に気体泡として放出する観点から、本発明2の気体放出路(12)は先細形状であることが好ましく、上記した好適な先細形状であることがより好ましい。
本発明3における液体槽(21)は、液体を充填すると、気体流通管(1)の気体放出孔(121)が液体の中に浸漬できる、好ましくは気体流通管(1)のすべての気体放出孔(121)が液体中に没するだけの十分な容積を有する。
液体槽(21)の材質は、液体や気体に対して要求される防漏性、耐食性、耐久性等があればよく、プラスチック、繊維強化プラスチック、セラミックス、金属等を使用できる。
同様の観点から、プラスチックとしてはポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、非結晶ポリエチレンテレフタレート(A-PET)、ポリ乳酸(PLA)等の熱可塑性樹脂が好ましい。
同様の観点から、金属としてはステンレス、鉄、アルミニウム、真鍮、炭素鋼、チタン、銅等を使用できるが、環境衛生の観点から、ステンレス又はチタンが好ましく、ステンレスがより好ましい。
〔本発明4〕
本発明4は、本発明3において、さらに、さらに、気液透過性のセラミックス粒子ホルダー(22)を備え、セラミックス粒子をセラミックス粒子ホルダー(22)に収納すると、液体の中で、気体放出路(12)から放出された気体がセラミックス粒子に衝突等して接触するように構成される液質調整装置(2)である。
本発明4は、本発明3において、さらに、さらに、気液透過性のセラミックス粒子ホルダー(22)を備え、セラミックス粒子をセラミックス粒子ホルダー(22)に収納すると、液体の中で、気体放出路(12)から放出された気体がセラミックス粒子に衝突等して接触するように構成される液質調整装置(2)である。
従来、水やアルコール等の水性液体にセラミックス粒子を浸漬して、セラミックス粒子からの溶出成分と水性液体の混合組成物を製造し、該混合組成物を食品や化粧品の原料として使用することが行われている(例えば、特開2008-23520号公報)。
しかし、水やアルコール等の水性液体にセラミックス粒子を浸漬しているだけでは、溶出成分の溶出効率を向上することができない場合がある。
本発明4は、液体槽(21)の液体中で、セラミックス粒子に本発明3で発生させた気体を衝突して接触させて、溶出成分の溶出効率を向上させ、あるいは、併せて、気体、セラミックス粒子及び溶出成分の間の相互作用によって、従来の溶出成分の混合だけでは得られない液質の調整水を得ることができる。
本発明4において、本発明3の液質調整装置(2)を使用すると、液体中で放出された気泡がセラミックス粒子に接触することで、例えば、セラミックス粒子からマイナスに荷電したイオンが液体中に解離して液質が調整されることが考えられる。
セラミックス粒子は、セラミックス粒子の輪郭線で切り取られる線分の最大長(以下、最大径という)がcmオーダーのセラミックス塊状体でもよいし、μmからmmオーダーのセラミックス粉末であってよい。
セラミックス粒子ホルダー(22)は、例えば、セラミックス粒子を収納したメッシュ型パック形状で、液体槽(21)中に、取り付け取り外し自在につるして配置できるようにした構成でもよいし、液体槽(21)中に、固定されたネット型セラミックス粒子収納スペースとして構成されてもよい。
セラミックスの収納ホルダー(32)は、例えば、図3に示すような、気体流通管(1)も内部に配置できる、ネット型容器で、気体流通管(1)の側面とネット型容器の内周面の間(以下、セラミックス粒子収納部(224)という)に、セラミックス粒子を充填できるような構成(以下、気体流通管一体型ホルダー(32)という)であってよい。
気体流通管一体型ホルダー(32)は、例えば、ネット型外筒(222)と気体流通管スタンドプレート(222)で構成され、気体流通管スタンドプレート(222)の中央部に気体流通管(1)を固定し、ネット型外筒(222)にセラミックス粒子収納部(225)を設けて気体流通管一体型ホルダー(32)全体を搬送できるようにしておく態様が考えられる。
気体流通管一体型ホルダー(32)のセラミックス粒子収納部(224)は、
気体流通管(1)が物理的なダメージを受けないように、充填したセラミックス粒子が気体流通管(1)の側面と直接接触できないように、気体流通管(1)の側面をネット等の気液透過性シートで被覆するように構成してもよいし、
気体流通管(1)から放出される気体の、充填されたセラミックス粒子への到達が阻害されないように、充填したセラミックス粒子が気体流通管(1)の側面と直接接触できるように気液透過性シートで被覆しない構成にしてもよい。
気体流通管(1)が物理的なダメージを受けないように、充填したセラミックス粒子が気体流通管(1)の側面と直接接触できないように、気体流通管(1)の側面をネット等の気液透過性シートで被覆するように構成してもよいし、
気体流通管(1)から放出される気体の、充填されたセラミックス粒子への到達が阻害されないように、充填したセラミックス粒子が気体流通管(1)の側面と直接接触できるように気液透過性シートで被覆しない構成にしてもよい。
セラミックス粒子を充填した気体流通管一体型ホルダー(32)を液体中に浸漬して、気体流通管(1)から気体を放出すると、放出された気体は隣接して配置されたセラミックス粒子に衝突して接触できるので、セラミックス粒子からの溶出成分を効率よく溶出できる。
気体流通管一体型ホルダー(32)を使用すると、気体流通管一体型ホルダー(32)自体を持ち運びできるので、液体層を別に準備して、気体流通管一体型ホルダー(32)を液体層中に置くだけで発明4を簡易に組み立てることができる。
気体流通管(1)とセラミックス粒子ホルダー(22)とは液体槽(21)中で相対的に回転できるようにしておいてもよい。例えば、セラミックス粒子ホルダー(22)を気体流通管(1)な周りで回転できるようにして、収納されたセラミックス粒子が、1つの気体放出孔(121)から放出される気体と交代で接触できるようにしてもよい。
液体槽(21)中の本発明3の気体放出装置の周囲を、セラミックス粒子で形成したセラミックスネット型容器で被覆して、気体放出路(12)から放出される気体がセラミックスネット型容器に衝突して接触するようにしてもよい。セラミックスネット型容器は、例えばセラミックス粒子を接着剤で接着したり熱風で溶着したりして、本発明3の気体放出装置が内側に配置できるような円筒状物品として製造することができる。
〔実施態様例〕
図1~3を用いて、本発明4の好適な実施態様を説明する。
図1~3を用いて、本発明4の好適な実施態様を説明する。
(気体流通管)
気体流通管(1)は、平均直径45mm、長さが約1100mmのステンレス製直円筒バーに、以下に説明する気体流通路(11)、気体放出路(12)及び気体導入孔(13)を設けたステンレス製直円筒管である。
気体流通管(1)は、平均直径45mm、長さが約1100mmのステンレス製直円筒バーに、以下に説明する気体流通路(11)、気体放出路(12)及び気体導入孔(13)を設けたステンレス製直円筒管である。
(1)気体流通路(11)は、ステンレス製直円筒バーの長さ方向に、ステンレス製直円筒バーと同軸の平均直径が20mmの円筒孔をくり抜いて形成された直円筒空間であり、その結果、気体流通路(11)の肉厚は12.5mmとなる。
(2)気体放出路(12)は、ステンレス製直円筒管の側面にステンレス製直円筒管の軸に垂直に、気体流通路(11)側から直径7mm、長さ2.5mmの直円筒空間と、直径7mm超8mm以下、長さ10mmの直円筒空間を同軸に接続した側面貫通孔を設け、この側面貫通孔に同軸に、以下に説明する直円筒ピースを、直円筒ピースに設けた円錐状空間の下面を気体流通路(11)に対向させて圧入しで形成される。
直円筒ピースは直径8mm、長さ10mmのステンレス製直円筒バーに、下面が直径5mmの円、上面が直径1mmの円錐状空間を穿孔して成形されたものである。
このように形成された気体放出路(12)は、分岐孔(122)が直径7mmの円、気体放出孔が直径1mmの円、突出長dが10mmである円錐状のテーバー内壁を有する円筒空間である。
(3)気体流通管(1)の肉厚は気体放出路(12)の突出長と同じで、気体放出路(12)は肉厚に包埋されている。
(4)気体放出路(12)は、気体流通路(11)の長さ方向に対して90°の方向に突出し、気体流通路の長さ方向に対して90°の方向に気体を放出できるようになっている。
気体放出路(12)は、平面視において、気体流通路(11)の軸に垂直な断面の輪郭に沿って、互いに90°をなして(4方向に)4本が分岐している(以下、この4本の分岐を含む気体流通管の管状部分を単位ユニット管という)。
従って、単位ユニット管は、気体放出路の回転対称軸の長さ方向に隣接して119段積層しており、隣接する単位ユニット管は45°ずつ回転して積層しており、隣接する気体放出路(12)は互いに45°をなす。
従って、単位ユニット管は、気体放出路の回転対称軸の長さ方向に隣接して119段積層しており、隣接する単位ユニット管は45°ずつ回転して積層しており、隣接する気体放出路(12)は互いに45°をなす。
(5)気体流通管(1)の一方の末端には直径13mmの気体導入孔(13)が設けてあるキャップ(14)で、気体流通管(1)の他方の末端は開孔のないキャップ(15)で封鎖されている。
(気体放出装置)
エア・コンプレッサーとエア・コンプレッサーから排出される高圧気体を送気する送気管からなる気体導入機構を使用し、送気管を気体流通管(1)の気体導入孔(13)に接続して気体放出装置とする。
エア・コンプレッサーとエア・コンプレッサーから排出される高圧気体を送気する送気管からなる気体導入機構を使用し、送気管を気体流通管(1)の気体導入孔(13)に接続して気体放出装置とする。
気体流通管(1)を立てて使用する場合、気体流通管(1)を立てたときに、例えば、比重が空気以上の重い気体を使用する場合は、キャップ(14)を上端に設けて、気体を気体流通管(1)の上から下に流通させ、比重が空気未満の軽い気体を使用する場合は、キャップ(14)を下端に設けて、気体を気体流通管(1)の下から上に流通させることが好ましい。
いずれの場合も、気体流通管(1)の下端のキャップに、気体流通管(1)を設置するための固定用ネジを設けておくことができ、図3ではキャップ(15)に固定用雄ネジ(16)が設けてある。
以上の気体流通管(1)を構成する全ての部位を、プラスチック及び/又はステンレス等の金属で構成できる。
(セラミックス粒子収納ホルダー)
(1)セラミックス粒子収納ホルダーは、例えば、図3に示すような、径200mm、気体流通管(1)の長さよりも大きい高さ1050mmの容量を有する円筒状のネット型外筒(222)と底面の気体流通管スタンドプレート(222)で構成することができる。
(1)セラミックス粒子収納ホルダーは、例えば、図3に示すような、径200mm、気体流通管(1)の長さよりも大きい高さ1050mmの容量を有する円筒状のネット型外筒(222)と底面の気体流通管スタンドプレート(222)で構成することができる。
ネット型外筒(222)は、例えば、目開きが好ましくは0.05~150mm、より好ましくは0.1mm~100mm、更に好ましくは0.5~10mm、更に好ましくは1~5mmのステンレス製ネットで構成することができる。
(2)気体流通管スタンドプレート(222)は、ネット型外筒(222)の末端と接続し、気体流通管(1)を載置できるだけの強度が必要であり、プラスチック及び/又はステンレス等の金属で構成できる。
(3)気体流通管スタンドプレート(222)には、気体流通管(1)のキャップ(15)に設けた雄ネジと咬合する雌ネジを設け、気体流通管スタンドプレート(222)には、気体流通管(1)のキャップ(15)に設けた雄ネジと咬合する雌ネジを設け、気体流通管(1)をネジによって気体流通管スタンドプレート(222)に固定して気体流通管一体型ホルダー(32)を形成できる。
(4)図3における気体流通管一体型ホルダー(32)では、気体流通管(1)の側面とネット型外筒(222)の間の空間がセラミックス粒子収納部(224)となる。
図3におけるセラミックス粒子収納部(224)は、好ましくは平均直径0.01~50mmのセラミックス粒子を1~100kg、より好ましくは平均直径0.1~40mmのセラミックス粒子を10~90kg、更に好ましくは平均直径1~30mmのセラミックス粒子を30~80kg、更に好ましくは平均直径5~20mmのセラミックス粒子を50~70kgを充填できる。
図3における気体流通管一体型ホルダー(32)には、ネット型外筒(321)の内周に沿って気体流通管支持フレーム(223)が設けられている。図3では、気体流通管支持フレーム(223)は、ネット型外筒(222)の内周から気体流通管(1)の長さ方向に垂直方向に、気体流通管(1)の側面の近傍に末端が到達する、ネット型外筒(222)の内周に固定するプレートであり、その気体流通管(1)の側面側の末端は、気体流通管(1)の側面の周囲を囲って、気体流通管スタンドプレート(222)に固定して立てられた気体流通管(1)を安定に支持する。
(5)図3における気体流通管一体型ホルダー(32)には、ネット型外筒の開放端側にセラミックス粒子収納部(225)が設けられ、気体流通管一体型ホルダー(32)全体を搬送し易くしている。
(6)気体流通管一体型ホルダー(32)を液体槽(21)の中央部に載置し、セラミックス粒子収納部(224)にセラミックス粒子(図示されていない)を充填し、気体流通管(1)が全部液没するまで液体槽(21)に液体(図示されていない)を充填する。
(7)気体流通管(1)の気体導入孔(13)から、エア・コンプレッサー等で高圧気体を導入し、気体を気体流通路(11)に流通させると、気体は分岐孔(122)から気体放出路を流通して気体放出孔(121)から、液体中に気体泡が放出され、放出された気体泡が近傍に配置されているセラミックス粒子に衝突して接触し、セラミックス粒子からの溶出成分が液体中に拡散して、充填した液体の液質が調整される。
〔本発明5〕
本発明5は、本発明4の液質調整装置(2)を使用して、
液体の中で、気体放出路(12)から放出された気体をセラミックス粒子に衝突させて、液体の液質を調整して調整液を得る調整液の製造方法である。
本発明5は、本発明4の液質調整装置(2)を使用して、
液体の中で、気体放出路(12)から放出された気体をセラミックス粒子に衝突させて、液体の液質を調整して調整液を得る調整液の製造方法である。
液質を調整しうるセラミックス粒子としては、
砂岩、泥岩、粘板岩等の堆積岩、
溶岩、蛇紋石、玄武岩、菊花石、黒曜石、大谷石等の火成岩、
麦飯石(好ましくは岐阜県産)、医王石、貴陽石(好ましくは群馬県産)、ブラックシリカ(神明石、黒鉛珪石、好ましくは北海道産)、ホワイトシリカ(石英変岩)、松鉱石、菫青石、緑泥石、御影石、結晶片岩、千枚岩、寒水石等の変成岩、
トルマリン(電気石、好ましくは標高5000m以上のヒマラヤ産)、ゼオライト、クリノプチロライト、北投石、竜王石(昇竜石)、快悠石(貴宝石)、光明石、天照石、シリカ、アルミナ、チタニア、ソーダ灰、トロナ鉱石、滑石、長石、苦灰石(白雲石、ドロマイト)、紅柱石、珪線石、方解石、角閃石、角モン石、硅石、重晶石、水晶(石英)・紫水晶、祖母聖光石(天照石)、美水石、緑泥石、ゼノタイム石、サマルスキー石、モナズ石、雲母、ラジウム鉱石等の鉱石及び隕石からなる群から選ばれる少なくとも1種以上の原料石を焼結して製造して得られるセラミックス粒子が好ましく、
麦飯石、医王石、貴陽石、ブラックシリカ(神明石、黒鉛珪石)、ホワイトシリカ(石英変岩)、松鉱石、菫青石、緑泥石、御影石、結晶片岩、千枚岩及び寒水石からなる群から選ばれる少なくとも1種以上の原料石を焼結して製造して得られるセラミックス粒子がより好ましく、
麦飯石、医王石、貴陽石及びブラックシリカ(神明石、黒鉛珪石)からなる群から選ばれる少なくとも1種以上の原料石を焼結して製造して得られるセラミックス粒子がさらに好ましい。
砂岩、泥岩、粘板岩等の堆積岩、
溶岩、蛇紋石、玄武岩、菊花石、黒曜石、大谷石等の火成岩、
麦飯石(好ましくは岐阜県産)、医王石、貴陽石(好ましくは群馬県産)、ブラックシリカ(神明石、黒鉛珪石、好ましくは北海道産)、ホワイトシリカ(石英変岩)、松鉱石、菫青石、緑泥石、御影石、結晶片岩、千枚岩、寒水石等の変成岩、
トルマリン(電気石、好ましくは標高5000m以上のヒマラヤ産)、ゼオライト、クリノプチロライト、北投石、竜王石(昇竜石)、快悠石(貴宝石)、光明石、天照石、シリカ、アルミナ、チタニア、ソーダ灰、トロナ鉱石、滑石、長石、苦灰石(白雲石、ドロマイト)、紅柱石、珪線石、方解石、角閃石、角モン石、硅石、重晶石、水晶(石英)・紫水晶、祖母聖光石(天照石)、美水石、緑泥石、ゼノタイム石、サマルスキー石、モナズ石、雲母、ラジウム鉱石等の鉱石及び隕石からなる群から選ばれる少なくとも1種以上の原料石を焼結して製造して得られるセラミックス粒子が好ましく、
麦飯石、医王石、貴陽石、ブラックシリカ(神明石、黒鉛珪石)、ホワイトシリカ(石英変岩)、松鉱石、菫青石、緑泥石、御影石、結晶片岩、千枚岩及び寒水石からなる群から選ばれる少なくとも1種以上の原料石を焼結して製造して得られるセラミックス粒子がより好ましく、
麦飯石、医王石、貴陽石及びブラックシリカ(神明石、黒鉛珪石)からなる群から選ばれる少なくとも1種以上の原料石を焼結して製造して得られるセラミックス粒子がさらに好ましい。
セラミックス粒子を製造する際には、液質調整の必要に応じて、好ましくは金、銀、銅、プラチナ等の貴金属、炭素・ケイ素・ゲルマニウム・スズ・鉛・フレロビウム等の炭素属元素を混合して焼結することができ、より好ましくは金、銀、銅、プラチナ及び錫からなる群から選ばれる少なくとも1種以上の金属を混合することができる。
セラミックス粒子収納部(224)には、その他の添加物として、目的に応じた不要の有機物や臭い成分の吸着性や調整水の効果の補強の観点から、貝殻、貝化石、骨、骨化石、植物炭、動物炭、活性炭、珊瑚、珊瑚化石、ベントナイト、珪藻土、珪酸土、ドロマイト、黄土、石炭、泥炭、シラス、火山灰又はこれらの粉砕物やこれらを適当な形状及び大きさに成型したものを、セラミックス粒子に混合したり、メッシュ袋や容器に詰めて配置したりすることができる。
セラミックス粒子は、例えば、原料石を粉砕した粉末状のものを必要な添加剤と共に、各原料石に応じて500~2000℃で焼成して得ることができる。
例えば、トルマリンは500~800℃、麦飯石、貴陽石、医王石等は1300℃で焼成するとよい。
例えば、トルマリンは500~800℃、麦飯石、貴陽石、医王石等は1300℃で焼成するとよい。
例えば、トルマリンを原料石とするセラミックス粒子Xは、ネパール国内のヒマラヤ山脈の3000m付近で採取されたトルマリンの粉砕物と陶土を50:50(質量比)で混合し直径約1cmの球状にしたものを600℃前後で焼結して得ることができる。
例えば、岩盤浴の盤石として使用される麦飯石、貴陽石、医王石、神明石などを、麦飯石を主成分(40~60質量%)として適当な割合の混合物と陶土を50:50(質量比)で混合し直径約1cmの球状にしたものを1300℃前後で焼結してセラミックス粒子Yを得ることができる。
液質が調整されうる液体としては、調整液の食品、化粧品等の原料液体の用途を考慮すると、環境衛生の観点から、水及びエタノール、水溶性カルボン酸等の水溶性有機物が挙げられ、水としては、水道水だけでなく、井戸水、地下水、河川水、湖沼水、湧水、海水、温泉水等の天然水が挙げられる。
セラミックス粒子への、気体の接触と液体の接触による溶出成分の溶出効率の観点から、セラミックス粒子の大きさは、平均粒径が、好ましくは0.01~50cm、より好ましくは0.1~20cm、更に好ましくは0.2~10cm、更に好ましくは0.5~3cmである。
セラミックス粒子の平均粒径は、セラミックス粒子集合物からセラミックス粒子を無作為に100粒選び、セラミックス粒子1つが全て視野に入り、セラミックス粒子2つは全てが視野の入らない倍率で撮影された各セラミックス粒子の顕微鏡写真によって、そのセラミックス粒子の最大径を求め、100粒のセラミックス粒子の最大径を算術平均した値を用いる。
セラミックス粒子への気体の衝突等による接触と液体の接触とによる溶出成分の溶出効率の観点から、気体放出路(12)から放出される気体は、液体中で気泡となることが好ましく、気泡の平均径は、好ましくは0.001μm~100mm、より好ましくは0.01~10mm、更に好ましくは0.1~1000μm、0.5~100μm、更に好ましくは0.5~10μmである。
セラミックス粒子への気体の衝突等による接触と液体との接触による溶出成分の溶出効率の観点から、気体放出量は、気体放出路(12)当り、好ましくは0.1~100ml/分、より好ましくは1~50ml/分、更に好ましくは5~25ml/分である。
セラミックス粒子への気体の衝突等による接触と液体との接触による溶出成分の溶出効率の観点から、気体放出時間は、〔T/気体放出路(12)の数〕時間を目安とし、この場合、Tは、好ましくは100~10000、より好ましくは500~7000、更に好ましくは1000~3000である。
セラミックス粒子への気体の衝突等による接触と液体との接触による溶出成分の溶出効率の観点から、液体温は液体の沸点よりも10℃以上低く設定することが好ましく、水であれば、好ましくは10~95℃、より好ましくは30~90℃、更に好ましくは50~85℃、更に好ましくは60~80℃である。
セラミックス粒子への気体の衝突等による接触と液体との接触による溶出成分の溶出効率の観点から、セラミックス粒子1cm2当りの液体の容積は、好ましくは0.1~100ml/cm2、より好ましくは1~50ml/cm2、更に好ましくは5~30ml/cm2、更に好ましくは10~20ml/cm2である。
〔発明6〕
本発明6は、本発明5の調整液の製造方法で得られる調整液である。
本発明6は、本発明5の調整液の製造方法で得られる調整液である。
例えば、本発明5において、セラミクス粒子としてセラミックス粒子Xを使用し、液体として温泉水を使用すると、水中で、本発明3の気体放出装置から放出された空気泡がセラミックス粒子と衝突して接触し、空気泡と水とセラミックスからの溶出成分が混合して、酸化還元電位の低い性状の調整液が得られ、これを化粧水用の原料として使用すると、化粧品成分の吸収が高まり、また、アンチエイジング効果が期待できるなどの好ましい効果を奏する。
温泉水としては、
単純温泉(アルカリ性)、塩化物泉(ナトリウム塩化物泉、ナトリウム・マグネシウム塩化物泉、ナトリウム・カルシウム塩化物泉)、炭酸水素塩泉(カルシウム(・マグネシウム)炭酸水素塩、ナトリウム炭酸水素塩泉)、硫酸塩泉(硫酸塩泉、マグネシウム硫酸塩泉、ナトリウム硫酸塩泉、カルシウム硫酸塩泉)、二酸化炭素泉(単純二酸化炭素泉)、含鉄泉(鉄泉、鉄(II)炭酸水素塩泉、鉄(II)硫酸塩泉)、酸性泉(単純酸性泉)、含よう素泉(含よう素ナトリウム塩化物泉)、硫黄泉(硫黄泉、硫黄泉(硫化水素型))、放射能泉等が使用できる。
単純温泉(アルカリ性)、塩化物泉(ナトリウム塩化物泉、ナトリウム・マグネシウム塩化物泉、ナトリウム・カルシウム塩化物泉)、炭酸水素塩泉(カルシウム(・マグネシウム)炭酸水素塩、ナトリウム炭酸水素塩泉)、硫酸塩泉(硫酸塩泉、マグネシウム硫酸塩泉、ナトリウム硫酸塩泉、カルシウム硫酸塩泉)、二酸化炭素泉(単純二酸化炭素泉)、含鉄泉(鉄泉、鉄(II)炭酸水素塩泉、鉄(II)硫酸塩泉)、酸性泉(単純酸性泉)、含よう素泉(含よう素ナトリウム塩化物泉)、硫黄泉(硫黄泉、硫黄泉(硫化水素型))、放射能泉等が使用できる。
本発明6が食品用及び/又は化粧品用(例えば化粧水)、好ましくは化粧品用(例えば化粧水)の場合、温泉水はそのまま摂取できる程度に弱酸性から弱アルカリ性(好ましくは弱アルカリ性)で軟水であることが好ましく、さらに塩素、硫黄等の塩味、臭味の要因となる成分の含有量が低いことがより好ましい。
即ち、本発明6が食品用及び/又は化粧品用(例えば化粧水)、好ましくは化粧品用(例えば化粧水)の場合、温泉水は原水で、
pHは、好ましくは5~9・5、より好ましくは6~9、更に好ましくは7~9、更に好ましくは8~9であり、
硬度は、好ましくは0~120mg/L、より好ましくは20~100mg/L、更に好ましくは30~80mg/Lであり、
硫黄化合物の含有量は、好ましくは10mg/L以下、より好ましくは1mg/L以下、より好ましくは0.1mg/L以下、更に好ましくは0.01mg/L以下である。
即ち、本発明6が食品用及び/又は化粧品用(例えば化粧水)、好ましくは化粧品用(例えば化粧水)の場合、温泉水は原水で、
pHは、好ましくは5~9・5、より好ましくは6~9、更に好ましくは7~9、更に好ましくは8~9であり、
硬度は、好ましくは0~120mg/L、より好ましくは20~100mg/L、更に好ましくは30~80mg/Lであり、
硫黄化合物の含有量は、好ましくは10mg/L以下、より好ましくは1mg/L以下、より好ましくは0.1mg/L以下、更に好ましくは0.01mg/L以下である。
例えば上記の好適な温泉を使用して、
pHが、好ましくは5~9・5、より好ましくは6~9、更に好ましくは7~9、更に好ましくは8~9で、
電気電導度が、好ましくは30~200、より好ましくは50~150、更に好ましくは70~100で、
酸化還元電位が、好ましくは50~300、より好ましくは100~250、更に好ましくは150~200であるような本発明6を製造することが好ましい。
pHが、好ましくは5~9・5、より好ましくは6~9、更に好ましくは7~9、更に好ましくは8~9で、
電気電導度が、好ましくは30~200、より好ましくは50~150、更に好ましくは70~100で、
酸化還元電位が、好ましくは50~300、より好ましくは100~250、更に好ましくは150~200であるような本発明6を製造することが好ましい。
例えば、本発明5において、セラミクス粒子としてセラミックス粒子Yを使用し、液体として水(好ましくは温泉水)を使用すると、水中で、本発明3の気体放出装置から放出された空気泡がセラミックス粒子と衝突して接触し、気泡と水とセラミックスからの溶出成分が混合して、酸化還元電位の低い性状の調整液が得られ、これを化粧水用の原料として使用すると、アンチエイジング効果が期待できるなどの好ましい効果を奏する。
本発明6の調整液は、上述した温泉水を使用すると酸化還元電位が低く、弱アルカリ性であることから、例えば、以下のような用途で効果を奏することが期待される。
(1)土壌中に存在する微生物であるトーマス菌、硝化菌、人工的なEM菌(好ましくはトーマス菌)などをそのまま、又は、さらにこれらにオルガ菌及び/又は放線菌などを添加したものを使用した肥料を本発明6の温泉水を使用した調整液と混合して植物を育成するための土壌に肥料として使用すると、植物組織への栄養成分の浸透が効率的で迅速に植物を育成することが期待される。
(2)本発明6の温泉水を使用した調整液を、餌に混ぜて動物に食させると、動物の健康・発育を促し、良質な食用肉源又は食用魚類源となることが期待される。
(3)本発明6の温泉水を使用した調整液を、コンクリート又はモルタル等の水硬性組成物に練り水として配合して得た水硬化物は、例えばテトラポットにして海底に沈めたり、マングローブ等が育成するような河川の護岸壁にしたりすると、水硬化物表面が植物に被覆される等し易くなり、水硬化物表面と接触する水環境に対して水硬化物由来の汚染を抑制することが期待される。
(4)本発明6の温泉水を使用した調整液を、室内を形成する建材を接着固定する接着剤に配合すると、室内の居住環境が改善され喘息等を抑制することが期待される。
(5)本発明6の温泉水を使用した調整液を、水道水に配合することで、塩素臭が低減し、飲料やプール用水として適性が改善する。
そのほか、セラミックス粒子と液体種を選ぶと、得られる調整液は、例えば、化粧品、食品、飲料、調理、薬品等の原料液体;入浴や洗濯等で使用する生活用水:植物栽培等で使用する植物育成水;養魚用水;水生生物飼育用水;藻類、菌類や単離細胞の培養用水;発酵用水;医療・工業用洗浄水;コンクリート等の水硬性組成物に使用する機能性工業用水などの様々の用途に使用することができる。
〔実施例〕
(1)液質調整装置
(1)液質調整装置
(気体流通管)
気体流通管(1)は、平均直径45mm、長さが1100mmのステンレス製直円筒バーに、以下に説明する気体流通路(11)、気体放出路(12)及び気体導入孔(13)を設けたステンレス製直円筒管を使用した。
気体流通管(1)は、平均直径45mm、長さが1100mmのステンレス製直円筒バーに、以下に説明する気体流通路(11)、気体放出路(12)及び気体導入孔(13)を設けたステンレス製直円筒管を使用した。
気体流通路(11)は、ステンレス製直円筒バーの長さ方向に平均直径が20mmの円筒孔をくり抜いて形成された肉厚12.5mmの直円筒空間を気体流通路(11)とした。
ステンレス製直円筒管の側面にステンレス製直円筒管の軸に垂直に、気体流通路(11)側から直径7mm、長さ2.5mmの直円筒空間と、直径7mm超8mm以下、長さ10mmの直円筒空間を同軸に接続した側面貫通孔を設け、この側面貫通孔に同軸に、以下に説明する直円筒ピースを、直円筒ピースに設けた円錐状空間の下面を気体流通路(11)に対向させて圧入しで気体放出路(12)を形成した。
直円筒ピースは直径8mm、長さ10mmのステンレス製直円筒バーに、下面が直径5mmの円、上面が直径1mmの円錐状空間を穿孔して成形した。
このように形成された気体放出路(12)は、分岐孔(122)が直径7mmの円、気体放出孔が直径1mmの円、突出長dが10mmである円錐状のテーバー内壁を有する円筒空間である。
気体流通管(1)の肉厚は気体放出路(12)の突出長と同じで、気体放出路(12)は肉厚に包埋されている。
気体放出路(12)は、気体流通路(11)の長さ方向に対して90°の方向に突出し、気体流通路の長さ方向に対して90°の方向に気体を放出できるようにした。
気体放出路(12)は、平面視において、気体流通路(11)の軸に垂直な断面の輪郭に沿って、互いに90°をなして(4方向に)4本が分岐している単位ユニット管が、気体放出路の回転対称軸の長さ方向に隣接して119段積層しており、隣接する単位ユニット管は45°ずつ回転して積層しており、隣接する気体放出路(12)は互いに45°をなす。
(5)気体流通管(1)の一方の末端には直径13mmの気体導入孔(13)が設けてあるキャップ(14)で、気体流通管(1)の他方の末端は開孔のないキャップ(15)で封鎖されている。
(気体放出装置)
エア・コンプレッサー(HITACHI社製OSP-15M5A)とエア・コンプレッサーから排出される高圧空気を送気する送気管(ポリウレタン樹脂製チューブ)からなる気体導入機構を使用し、送気管を気体流通管(1)の気体導入孔(13)に接続して気体放出装置とした。
エア・コンプレッサー(HITACHI社製OSP-15M5A)とエア・コンプレッサーから排出される高圧空気を送気する送気管(ポリウレタン樹脂製チューブ)からなる気体導入機構を使用し、送気管を気体流通管(1)の気体導入孔(13)に接続して気体放出装置とした。
気体流通管(1)は立てて使用し、キャップ(14)を上端に設けて、空気を気体流通管(1)の上から下に流通させた。
(セラミックス粒子収納ホルダー)
セラミックス粒子収納ホルダーは、内径200mm、気体流通管(1)の長さよりも大きい高さ1050mmの容量を有する円筒状のネット型外筒(222)と底面の気体流通管スタンドプレート(222)で構成した。
セラミックス粒子収納ホルダーは、内径200mm、気体流通管(1)の長さよりも大きい高さ1050mmの容量を有する円筒状のネット型外筒(222)と底面の気体流通管スタンドプレート(222)で構成した。
ネット型外筒(222)は、目開きが5mmのステンレス製ネットで構成した。
ステンレス製気体流通管スタンドプレート(222)は、ネット型外筒(222)の末端と接続した。
気体流通管スタンドプレート(222)には、気体流通管(1)のキャップ(15)に設けた雄ネジと咬合する雌ネジを設け、気体流通管スタンドプレート(222)には、気体流通管(1)のキャップ(15)に設けた雄ネジと咬合する雌ネジを設け、気体流通管(1)をネジによって気体流通管スタンドプレート(222)に固定して気体流通管一体型ホルダー(32)を形成した。
気体流通管一体型ホルダー(32)における、気体流通管(1)の側面とネット型外筒(222)の間をセラミックス粒子収納部(224)とした。
気体流通管一体型ホルダー(32)には、ネット型外筒(321)の内周に沿って気体流通管支持フレーム(223)を設けた。気体流通管支持フレーム(223)は、ネット型外筒(222)の内周から気体流通管(1)の長さ方向に垂直方向に、気体流通管(1)の側面の近傍に末端が到達する、ネット型外筒(222)の内周に固定するプレートであり、その気体流通管(1)の側面側の末端は、気体流通管(1)の側面の周囲を囲って、気体流通管スタンドプレート(222)に固定して立てられた気体流通管(1)を安定に支持した。
(2)実施調整液と比較調整液
(セラミックス粒子)
下記3種類の岩石について、それぞれを、粉砕し400メッシュ通過粒径とし、1300℃で焼成してセラミックス粉末とし、撹拌混合した:
麦飯石(岐阜県産)5.3kg;
ブラックシリカ(北海道産)4.0kg;及び
貴陽石(群馬県産)6.2kg。
(セラミックス粒子)
下記3種類の岩石について、それぞれを、粉砕し400メッシュ通過粒径とし、1300℃で焼成してセラミックス粉末とし、撹拌混合した:
麦飯石(岐阜県産)5.3kg;
ブラックシリカ(北海道産)4.0kg;及び
貴陽石(群馬県産)6.2kg。
(液体)
栃木県日光市で湧出する塩味、硫黄臭のない温泉水600Lを採取し、そのうち400Lを使用した。
栃木県日光市で湧出する塩味、硫黄臭のない温泉水600Lを採取し、そのうち400Lを使用した。
(液質調整条件)
気体流通管一体型ホルダー(32)を液体槽(21)(内径1010mm、深さ800mmのステンレス製円筒層)の中央部に載置し
セラミックス粒子収納部(224)にセラミックス粒子を充填し、液体槽(21)の深さ一杯に液体を充填した。なお、加温による液体の蒸発を防ぐために、気体流通管の頭部まで被覆できる金属製の蓋を液体槽(21)にした。
気体流通管一体型ホルダー(32)を液体槽(21)(内径1010mm、深さ800mmのステンレス製円筒層)の中央部に載置し
セラミックス粒子収納部(224)にセラミックス粒子を充填し、液体槽(21)の深さ一杯に液体を充填した。なお、加温による液体の蒸発を防ぐために、気体流通管の頭部まで被覆できる金属製の蓋を液体槽(21)にした。
液体の温度を80℃に加温したまま、気体流通管(1)の気体導入孔(13)から、エア・コンプレッサー等で高圧空気(圧力0.05~0.1m.Pa)を導入し、空気を気体流通路(11)に流通させて分岐孔(122)から気体放出路を流通して気体放出孔(121)から、液体中に空気泡(9m3/時間)を4日間放出し続けて得た調整液を実施調整液とした。
セラミックス粒子収納部(224)にセラミックス粒子を充填し、気体流通管(1)が全部液没する程度まで液体槽(21)に液体を充填して、液体の温度を80℃に加温したまま、空気泡を放出させずに4日間静置したものを比較調整液とした。
(3)液体物性
実施調整液と比較調整液について、以下の物性を測定して結果を表1にまとめた。
pH:HORIBA社 Model D-52で測定した。
酸化還元電位:HORIBA社 Model D-52で測定した。
電気伝導度:HORIBA社 Model ES-71で測定した。
各測定機の電極を試料に浸け、数値が安定する1時間後に出た値を測定値とした。
結果を表1にまとめた。
実施調整液と比較調整液について、以下の物性を測定して結果を表1にまとめた。
pH:HORIBA社 Model D-52で測定した。
酸化還元電位:HORIBA社 Model D-52で測定した。
電気伝導度:HORIBA社 Model ES-71で測定した。
各測定機の電極を試料に浸け、数値が安定する1時間後に出た値を測定値とした。
結果を表1にまとめた。
(4)官能試験
実施調整液1Lと比較調整液1Lを化粧水として採取し、以下の要領で使用した官能試験を行った結果を表1にまとめた。
実施調整液1Lと比較調整液1Lを化粧水として採取し、以下の要領で使用した官能試験を行った結果を表1にまとめた。
(4-1)試験条件
(4-1-1)モニター
20代女性1名;30代女性1名;40代女性3名;50代女性2名;及び60代女性1名の合計8名。
(4-1-1)モニター
20代女性1名;30代女性1名;40代女性3名;50代女性2名;及び60代女性1名の合計8名。
(4-1-2)塗付条件
各モニターに実施調整液10g及び比較調整液10gをそれぞれ10mL容器に入れて配布し、配布した10gずつを、
(1)半顔ずつを同時に、同量を塗布し、
(2)左右の手の甲もしくは、前腕部内側にて同量を塗布し、以下の基準で官能評価した。
結果を表2にまとめた。
各モニターに実施調整液10g及び比較調整液10gをそれぞれ10mL容器に入れて配布し、配布した10gずつを、
(1)半顔ずつを同時に、同量を塗布し、
(2)左右の手の甲もしくは、前腕部内側にて同量を塗布し、以下の基準で官能評価した。
結果を表2にまとめた。
本発明1~4の装置を使用して本発明5の製造方法で得た本発明6の調整液である実施調整液は、本発明の製造方法の適用前に比べて、電気伝導度及びpHが増大し、酸化還元電位の低下が大きく、本発明5の製造方法によれば、液体中へのセラミックス粒子からのイオン放出効率が高く、液質調整効果が大きいと考えられる。
得られた本発明の調整液を化粧水として使用すると、顔、手又は腕に塗布した際に、浸透力、保湿力の感触がよく、化粧水としてキメ、化粧のノリがよいという評価結果を得た。
また、得られた本発明の調整液を化粧水として使用しても、匂いが認められないことから、そのままでも化粧水として使用できる他、香料を配合しても、配合した香料の香りを阻害しないと考えられる。
1 気体流通管
11 気体流通路
111 気体流通路の内壁面
12 気体放出路
121 気体放出孔
122 分岐孔
123 気体放出路の内壁面
124 円錐状チップ
13 気体導入孔
14 気体導入孔が設けてあるキャップ
15 気体流通管スタンドプレートとの固定ネジが設けてあるキャップ
16 固定用雄ネジ
2 液質調整装置
21 液体槽
22 セラミックス粒子ホルダー(ネット型容器(気体流通管一体型ホルダー))
221 ネット型外筒
222 気体流通管スタンドプレート
223 気体流通管支持フレーム
224 セラミックス粒子収納部
225 手提げハンドル
11 気体流通路
111 気体流通路の内壁面
12 気体放出路
121 気体放出孔
122 分岐孔
123 気体放出路の内壁面
124 円錐状チップ
13 気体導入孔
14 気体導入孔が設けてあるキャップ
15 気体流通管スタンドプレートとの固定ネジが設けてあるキャップ
16 固定用雄ネジ
2 液質調整装置
21 液体槽
22 セラミックス粒子ホルダー(ネット型容器(気体流通管一体型ホルダー))
221 ネット型外筒
222 気体流通管スタンドプレート
223 気体流通管支持フレーム
224 セラミックス粒子収納部
225 手提げハンドル
Claims (7)
- 気体を導入するための気体導入孔を備え、前記気体導入孔から導入された前記気体が流通する気体流通路と、前記気体流通路から分岐して前記気体流通路と連通する複数の気体放出路とを備える気体流通管であって、
前記気体放出路は、前記気体流通管の外部と連通して、前記気体流通管の外部に、前記気体流通路の長さ方向に対して0超180°未満の角度の方向に前記気体を放出できる気体放出孔を有する気体流通管。 - 前記気体放出路の円換算断面直径が、前記気体放出路の前記気体流通路から気体が流入する分岐孔の方が、前記気体放出孔よりも大きい請求項1記載の気体流通管。
- 請求項1又は2記載の気体流通管と、前記気体導入孔から前記気体を導入する気体導入機構とを備えた気体放出装置。
- 請求項3記載の気体放出装置と、液体槽とを備え、
前記液体槽に液体を充填すると、前記気体流通管の前記気体放出孔が前記液体の中に浸漬し、
前記気体導入孔から前記気体を導入すると、前記気体放出路から前記気体が前記液体の中に放出されるように構成される液質調整装置。 - さらに、気液透過性のセラミックス粒子ホルダーを備え、
前記セラミックス粒子を前記セラミックス粒子ホルダーに収納すると、
前記液体の中で、前記気体放出路から放出された前記気体が前記セラミックス粒子に接触するように構成される、請求項4記載の液質調整装置。 - 請求項5記載の液質調整装置を使用して、
前記液体の中で、前記気体放出路から放出された前記気体を前記セラミックス粒子に接触させて、前記液体の液質を調整した調整液を得る調整液の製造方法。 - 請求項6記載の調整液の製造方法で得られる調整液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018520884A JP6650645B2 (ja) | 2016-05-31 | 2017-05-29 | 気体流通管、気体放出装置、液質調整装置、調整液の製造方法及び調整液 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016107998 | 2016-05-31 | ||
JP2016-107998 | 2016-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017209025A1 true WO2017209025A1 (ja) | 2017-12-07 |
Family
ID=60477731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019843 WO2017209025A1 (ja) | 2016-05-31 | 2017-05-29 | 気体流通管、気体放出装置、液質調整装置、調整液の製造方法及び調整液 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6650645B2 (ja) |
WO (1) | WO2017209025A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021058584A (ja) * | 2019-10-04 | 2021-04-15 | イ、ウジョンLEE, UJong | 貴蛇紋石入りセラミックを含むマルチイオナイザーシャワー器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06218381A (ja) * | 1993-01-28 | 1994-08-09 | Takashi Suzuki | 浄水・活性水生成器 |
JPH09253685A (ja) * | 1996-03-22 | 1997-09-30 | Toto Ltd | 散気装置 |
JPH10277538A (ja) * | 1997-02-07 | 1998-10-20 | Sanwa Bosai Setsubi Kk | 大型備蓄水槽用水質活性化装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513439Y2 (ja) * | 1989-07-04 | 1993-04-08 | ||
JPH08196882A (ja) * | 1995-01-26 | 1996-08-06 | Nippon Gijutsu Kaihatsu Center:Kk | 微細気泡液の生成方法 |
US20040240315A1 (en) * | 2003-06-02 | 2004-12-02 | Balan Prakash G. | Slotted draft tube mixing systems |
JP4505560B2 (ja) * | 2003-12-15 | 2010-07-21 | 宮崎県 | 単分散気泡の生成方法 |
JP2007278003A (ja) * | 2006-04-11 | 2007-10-25 | Kubota Corp | 下水圧送管路系の浄化処理方法および装置 |
US8066873B2 (en) * | 2010-03-26 | 2011-11-29 | Kaw Eros G | Floating bioreactor system |
-
2017
- 2017-05-29 JP JP2018520884A patent/JP6650645B2/ja active Active
- 2017-05-29 WO PCT/JP2017/019843 patent/WO2017209025A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06218381A (ja) * | 1993-01-28 | 1994-08-09 | Takashi Suzuki | 浄水・活性水生成器 |
JPH09253685A (ja) * | 1996-03-22 | 1997-09-30 | Toto Ltd | 散気装置 |
JPH10277538A (ja) * | 1997-02-07 | 1998-10-20 | Sanwa Bosai Setsubi Kk | 大型備蓄水槽用水質活性化装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021058584A (ja) * | 2019-10-04 | 2021-04-15 | イ、ウジョンLEE, UJong | 貴蛇紋石入りセラミックを含むマルチイオナイザーシャワー器 |
JP7006983B2 (ja) | 2019-10-04 | 2022-01-24 | イ、ウジョン | 貴蛇紋石入りセラミックを含むマルチイオナイザーシャワー器 |
Also Published As
Publication number | Publication date |
---|---|
JP6650645B2 (ja) | 2020-02-19 |
JPWO2017209025A1 (ja) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4080440B2 (ja) | 酸素ナノバブル水およびその製造方法 | |
Wang et al. | Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment | |
JP6762467B2 (ja) | 曝気装置 | |
KR101893186B1 (ko) | 융합형 전기분해를 통한 수소의 다목적 용도로 이용 가능한 전기분해장치 | |
CN1535248A (zh) | 流体处理装置 | |
CN103562142A (zh) | 带有正电荷的微细气泡发生装置及利用其的水处理装置 | |
WO2017209025A1 (ja) | 気体流通管、気体放出装置、液質調整装置、調整液の製造方法及び調整液 | |
JP6345951B2 (ja) | 珪藻の増殖促進用の培養液、及び珪藻の増殖促進方法 | |
JP2022000303A (ja) | 微細気泡形成装置 | |
KR101620388B1 (ko) | 광물의 미네랄을 용출하기 위한 미네랄 용출장치 | |
CN206940528U (zh) | 生物除臭多种高效组合填料 | |
JPWO2006008997A1 (ja) | 天然鉱石を使用した還元水の製造方法 | |
CN202232562U (zh) | 一种水产养殖专用的药物缓释笼 | |
KR101000779B1 (ko) | 산소수 발생장치 | |
CN207254236U (zh) | 一种高效水粉混合设备 | |
CN203754504U (zh) | 复合生化球 | |
JP2005152874A (ja) | 低放射能及び育成光線高率放出の鉱石又はセラミックス混合して作成する複合セラミックスの製法と使用方法。 | |
CN202287540U (zh) | 麦饭石多功能棒 | |
ES2225990T3 (es) | Material de coral hermatipico disgregado. | |
ES2827874A2 (es) | Máquina y procesos de fabricación de insumos biológicos basados en té de compost y sus derivados con tecnología biodinámica simplificada | |
JP3167226U (ja) | 水改質用バブリング装置 | |
JP2007307559A (ja) | アルカリイオン水の製造方法及び水改質器 | |
TWI359795B (ja) | ||
CN102616870A (zh) | 六环石小分子团水及其制备方法 | |
CN103621446B (zh) | 一种用于克氏原螯虾养殖的人工基质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018520884 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806580 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806580 Country of ref document: EP Kind code of ref document: A1 |