WO2017208329A1 - 低温靭性に優れた高張力鋼板 - Google Patents

低温靭性に優れた高張力鋼板 Download PDF

Info

Publication number
WO2017208329A1
WO2017208329A1 PCT/JP2016/065982 JP2016065982W WO2017208329A1 WO 2017208329 A1 WO2017208329 A1 WO 2017208329A1 JP 2016065982 W JP2016065982 W JP 2016065982W WO 2017208329 A1 WO2017208329 A1 WO 2017208329A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
steel
steel sheet
less
low
Prior art date
Application number
PCT/JP2016/065982
Other languages
English (en)
French (fr)
Inventor
史寿 高峰
充 澤村
紀正 川端
寿明 難波
斎藤 直樹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187021618A priority Critical patent/KR102184966B1/ko
Priority to EP16903957.5A priority patent/EP3467130B1/en
Priority to JP2018520233A priority patent/JP6631702B2/ja
Priority to CN201680080661.7A priority patent/CN108603258B/zh
Priority to PCT/JP2016/065982 priority patent/WO2017208329A1/ja
Publication of WO2017208329A1 publication Critical patent/WO2017208329A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-tensile steel plate having excellent low-temperature toughness and a large plate thickness. More specifically, the present invention relates to a steel plate having a plate thickness of over 200 mm, a tensile strength of 780 MPa or more, and an absorbed energy at ⁇ 60 ° C. at the center of the plate thickness of 69 J or more.
  • This steel plate is suitably used for structures such as offshore structures, pressure vessels, penstocks, and large marine cranes.
  • the steel sheet used as a base material is generally required to have low temperature toughness in order to ensure the safety of the structure.
  • the scale of structures in recent years has been remarkably large, and steel plates having a large thickness and high strength tend to be used for such structures.
  • 780 MPa class high-tensile steel plates are generally used for the above structures.
  • this high-tensile steel sheet in order to obtain a tensile strength of 780 MPa or more, a structure mainly composed of low-temperature transformation products such as bainite and martensite is formed by quenching such as a direct quenching method.
  • quenching such as a direct quenching method.
  • the plate thickness increases, the cooling rate inside the steel plate during quenching decreases, so that it is difficult to form a low temperature transformation structure. Therefore, an appropriate amount of alloying elements such as C, Mn, Cr, Mo, and V, which improve hardenability, has been added to the steel so that sufficient low-temperature transformation products can be obtained even when the cooling rate is reduced.
  • Patent Document 1 Ceq is 0.80 or less, the C content, the P content, the Mn content, the Ni content, and the Mo content satisfy a predetermined formula, and the hardness of a certain region of the steel plate is A high-tensile steel sheet is disclosed in which the ratio of hardness (HVmax / HVave) of the central segregation part of the steel sheet to the average value of the thickness, the C content, and the sheet thickness satisfy a predetermined formula. Further, Patent Document 1 discloses that the thickness of the steel plate is 60 mm to 150 mm. Patent Document 2 discloses a high-tensile steel plate having a Ceq of CeqM or less and a plate thickness of 75 mm to 200 mm.
  • Patent Document 3 discloses a high-toughness high-tensile steel plate having a parameter x determined by the amount of chemical elements of 26 to 42 and a plate thickness of 75 to 200 mm. However, in these three patent documents, if the thickness of the steel sheet exceeds 200 mm, the intended effect cannot be exerted on the steel sheet.
  • Patent Document 4 discloses a high-tensile steel plate having a C content of 0.005 to 0.02% and a plate thickness of 50 to 200 mm.
  • Patent Document 5 discloses a high-tensile steel plate having a C content of 0.02 to 0.05% and a plate thickness of 75 to 200 mm.
  • Patent Document 4 and Patent Document 5 disclose a method that requires rapid cooling at a cooling rate of 1.1 ° C./s or more at the center of the plate thickness during quenching.
  • the thickness of the steel sheet exceeds 200 mm, it is industrially impossible to increase the cooling rate at the center of the thickness to 1.1 ° C./s or more. For this reason, if the thickness of the steel sheet exceeds 200 mm, the methods disclosed in Patent Document 4 and Patent Document 5 cannot be realized.
  • Patent Document 6 the cumulative rolling reduction is increased to 50% or more in the temperature range of Ar 3 point to 900 ° C. during hot rolling so that fine austenite grains are obtained, and the heating temperature for quenching is Ac 3.
  • a method of limiting to a temperature range from point to (Ac 3 points + 100 ° C.) is disclosed.
  • Patent Document 6 discloses a high-tensile steel plate having a plate thickness of 40 to 65 mm. However, as the plate thickness of the steel plate increases, the influence of rolling decreases at the center in the plate thickness direction of the steel plate. Therefore, when the plate thickness of the steel plate exceeds 100 mm, the effect of low temperature rolling on crystal grain refinement is small.
  • low temperature rolling even if it tried to refine
  • Low temperature rolling also increases deformation resistance and makes it difficult to fill the voids inside the steel sheet. Therefore, low temperature rolling is not suitable for manufacturing a steel sheet having a thickness of more than 200 mm.
  • Patent Document 7 Ceq is 0.50 to 0.80, parameter ⁇ determined by the amount of chemical element is 8.45 to 15.2, and the average crystal grain size at the center of the plate thickness of the steel sheet. Discloses a high-tensile steel plate having a thickness of 35 ⁇ m or less and a thickness of 25 to 200 mm. Patent Document 7 discloses a method of increasing the cumulative rolling reduction in the temperature range of 900 to 1150 ° C. to 50% or more so that the average crystal grain size is 35 ⁇ m or less. However, as described above, the greater the plate thickness of the steel plate, the lower the influence of rolling at the center in the plate thickness direction of the steel plate.
  • Patent Document 7 when the plate thickness of the steel plate exceeds 200 mm, the cooling rate at the central portion of the plate thickness is remarkably lowered, resulting in coarsening of crystal grains. Therefore, in Patent Document 7, if the thickness of the steel sheet exceeds 200 mm, the intended effect cannot be exerted on the steel sheet.
  • Patent Document 8 discloses a method in which quenching is performed twice or more so that fine and uniform austenite grains are obtained by recrystallization.
  • Patent Document 1 and Non-Patent Document 2 when the heating rate is reduced in low alloy steel, the effect of reheating on grain refinement is reduced.
  • Patent Document 8 discloses a high-tensile steel plate having a plate thickness of 50 mm.
  • the heating rate decreases as the plate thickness of the steel plate increases. For this reason, in the production of a steel sheet having a plate thickness exceeding 200 mm, the crystal grains are hardly refined even if the quenching process is performed twice or more, and only the production cost is increased. Therefore, in the method disclosed in Patent Document 8, if the thickness of the steel plate exceeds 200 mm, the intended effect cannot be exerted on the steel plate.
  • Patent Document 9 a high-tensile steel sheet having a plate thickness of 150 to 200 mm, an amount of retained austenite of 1 to 10%, and high properties of stopping the propagation of brittle fracture (crack).
  • these patent documents disclose a method of tempering a steel sheet to a temperature range (a temperature range higher than Ac1) that can be transformed into austenite so that fine retained austenite is formed.
  • Patent Document 9 discloses a method of limiting the temperature range of finish rolling to 700 to 850 ° C. and the cumulative rolling reduction in this temperature range to 25 to 75% so that fine austenite can be obtained. .
  • the method of patent document 9 since low temperature rolling is utilized, the method of patent document 9 is not suitable for manufacture of the steel plate exceeding 200 mm in plate thickness.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a steel sheet having a plate thickness exceeding 200 mm, excellent low-temperature toughness, and high strength.
  • the present inventors have found a new chemical composition and structure capable of imparting high strength and high low-temperature toughness to the central portion of the steel plate thickness even when the steel plate thickness exceeds 200 mm.
  • the present inventors are different from the chemical composition in which this new chemical composition has imparted high strength and high low temperature toughness to the conventional thick steel plate, and the conventional method is applied to steel having the new chemical composition. We have found that it is preferable to apply different new methods.
  • the present invention has been made based on these findings, and the gist thereof is as follows.
  • the steel sheet according to one embodiment of the present invention is, in mass%, C: 0.08% to 0.15%, Mn: 0.80% to 1.60%, Ni: 3.00% to 4 .50%, Cr: 0.50% to 1.00%, Mo: 0.50% to 1.00%, Al: 0.020% to 0.085%, N: 0.0020% to 0.0070 %, B: 0.0005% to 0.0020%, P: 0.000% to 0.010%, S: 0.000% to 0.003%, Si: 0.00% to 0.30%, Cu: 0.00% to 0.50%, V: 0.000% to 0.050%, Nb: 0.000% to 0.050%, Ti: 0.000% to 0.020%, Ca: Contains 0.0000% to 0.0030%, Mg: 0.0000% to 0.0030%, REM: 0.0000% to 0.0030%, the balance being Fe and impure
  • the thickness tmm is more than 200 mm and not more than 300 mm.
  • Ts defined by the following formula 1 is 380 to 430
  • Ceq defined by the following formula 2 is 0. .80 to 1.05
  • Ac1 defined by the following formula 3 is 580 to 647
  • x defined by the following formula 4 is 46 to 90
  • in area% the sum of martensite and bainite The amount is 99% to 100%
  • the tensile strength is 780 MPa to 930 MPa
  • the absorbed energy by the Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness is 69 J or more.
  • Ts 750-4240 ⁇ (t / 2) ⁇ 1.4 ⁇ (80 ⁇ C + 10 ⁇ Mn + 7 ⁇ Ni + 13 ⁇ Cr + 13 ⁇ Mo ⁇ 40 ⁇ Si) Equation 1
  • Ceq C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
  • x C1 / 2 * (1 + 0.64 * Si) * (1 + 4.10 * Mn) * (1 + 0.27 * Cu) * (1 + 0.52 * Ni) * (1 + 2.33 * Cr) * (1 + 3. 14 x Mo)
  • the chemical composition may further satisfy Ti / N ⁇ 3.4.
  • the chemical composition is further C: may satisfy 0.09% to 0.13%.
  • the chemical composition may further satisfy Mn: 0.80% to 1.30%.
  • the chemical composition may further satisfy Ni: 3.60% to 4.50%.
  • the chemical composition may further satisfy Cr: 0.75% to 1.00%.
  • the chemical composition may further satisfy Mo: 0.70% to 1.00%.
  • the chemical composition may further satisfy Si: 0.00% to 0.10%.
  • the chemical composition may further satisfy V: 0.020% to 0.050%.
  • the chemical composition may further satisfy Ti: 0.000% to 0.004%.
  • the chemical composition may further satisfy a condition that the Ts is 395 to 415.
  • the chemical composition may further satisfy a condition that the Ceq is 0.85 to 1.05.
  • the present invention it is possible to provide a steel plate having a plate thickness exceeding 200 mm, excellent low-temperature toughness, and high strength. Therefore, the safety of a larger-scale structure can be further increased.
  • C 0.08% to 0.15% C increases the hardness of the structure of the steel sheet after quenching, and is therefore effective for improving the strength. Therefore, the amount of C needs to be 0.08% or more. On the other hand, if the amount of C is excessive, the toughness is impaired, so that the amount of C needs to be 0.15% or less. Therefore, the amount of C is 0.08% to 0.15%. In order to further increase the strength, the amount of C is preferably 0.09% or more or 0.10% or more. Further, in order to further increase toughness, the amount of C is preferably 0.14% or less, and more preferably 0.13% or less or 0.12% or less.
  • Mn 0.80% to 1.60% Mn is effective for both deoxidation and improving hardenability.
  • the amount of Mn needs to be 0.80% or more.
  • the amount of Mn may be 0.85% or more, 0.90% or more, 0.95% or more, 1.00% or more, 1.05% or more, or 1.10% or more.
  • the amount of Mn is excessive, the hardenability is excessive and the structure becomes hard. Further, an excessive amount of Mn promotes temper brittleness, so that the toughness of the steel decreases due to the synergistic effect of the hard structure and temper brittleness. Therefore, the amount of Mn needs to be 1.60% or less.
  • the amount of Mn is 0.80% to 1.60%.
  • the amount of Mn is preferably 1.50% or less, more preferably 1.40% or less, and most preferably 1.35% or less or 1.30% or less. If necessary, the amount of Mn may be 1.25% or less or 1.20% or less.
  • Ni 3.00% to 4.50% Ni is effective in improving the strength and toughness of the steel, and the amount of Ni needs to be 3.00% or more. If the amount of Ni is excessive, it is necessary to lower the tempering temperature due to the decrease in Ac1, and therefore the tempering time becomes longer. Moreover, since Ni stabilizes austenite, residual austenite may remain. In addition, Ni is expensive. Therefore, when the amount of Ni is excessive, the manufacturing cost is deteriorated. Therefore, the amount of Ni needs to be 4.50% or less. Therefore, the amount of Ni is 3.00% to 4.50%.
  • the amount of Ni is preferably 3.15% or more, 3.30% or more, 3.40% or more, or 3.50% or more, and 3.60% or more. More preferably.
  • the amount of Ni may be 4.30% or less, 4.15% or less, 4.00% or less, 3.90% or less, or 3.80% or less.
  • Mo 0.50% to 1.00% Cr and Mo improve the hardenability of the steel and improve the strength.
  • the amount of Cr needs to be 0.50% or more, and the amount of Mo needs to be 0.50% or more.
  • the amount of Cr or the amount of Mo is excessive, the toughness decreases due to the formation of alloy carbides. Therefore, the amount of Cr needs to be 1.00% or less, and the amount of Mo needs to be 1.00% or less. Therefore, the amount of Cr is 0.50% to 1.00%, and the amount of Mo is 0.50% to 1.00%.
  • the amount of Cr is preferably 0.60% or more, 0.65% or more, 0.70% or more, 0.75% or more, or 0.80%.
  • the above is more preferable.
  • the amount of Cr may be 0.96% or less, 0.94% or less, or 0.91% or less.
  • the amount of Mo is preferably 0.60% or more, more preferably 0.70% or more, 0.75% or more, 0.80% or more, or 0.85% or more.
  • the amount of Mo may be 0.96% or less, 0.94% or less, 0.92% or less, or 0.90% or less.
  • Al 0.020% to 0.085% Al is effective for deoxidation and forms AlN in combination with solid solution N in steel.
  • This AlN makes the crystal grains fine, and the effect of B on the hardenability of the steel is stabilized by reducing the amount of solid solution N in the steel. Therefore, the amount of Al needs to be 0.020% or more.
  • the amount of Al is excessive, the size of AlN is too large, so that toughness is reduced and cracks occur in the slab. Therefore, the amount of AlN needs to be 0.085% or less. Therefore, the amount of Al is 0.020% to 0.085%.
  • the amount of Al may be 0.030% or more, 0.040% or more, or 0.045% or more.
  • the upper limit of the amount of Al may be 0.070%, 0.065%, or 0.060%.
  • N 0.0020% to 0.0070% N is combined with an alloy element to form a compound (nitride and carbonitride) to make crystal grains fine. Therefore, the amount of N needs to be 0.0020% or more. On the other hand, if the amount of N is excessive, the solid solution N becomes excessive in the steel or the compounds (nitrides and carbonitrides) become coarse, so that the toughness of the steel decreases. Therefore, the amount of N needs to be 0.0070% or less. Therefore, the amount of N is 0.0020% to 0.0070%. The amount of N may be 0.0025% or more, 0.0030% or more, or 0.0040% or more, and may be 0.0065% or less or 0.0060% or less.
  • B 0.0005% to 0.0020%
  • the amount of B needs to be 0.0005% or more.
  • the amount of B may be 0.0007% or more or 0.0008% or more.
  • the amount of B may be 0.0018% or less, 0.0016% or less, or 0.0014% or less.
  • the steel plate of the present embodiment contains the above eight chemical elements (C, Mn, Ni, Cr, Mo, Al, N, B) as essential chemical elements.
  • the steel may optionally contain the following chemical elements.
  • P 0.000% to 0.010%
  • P is an impurity in steel, promotes grain boundary embrittlement, and lowers toughness.
  • the amount of P is preferably as small as possible. Therefore, the amount of P needs to be 0.010% or less.
  • the amount of P may be 0.000%. Therefore, the amount of P is 0.000% to 0.010%.
  • the amount of P may be 0.007% or less or 0.005% or less. Note that if the amount of P is reduced, the refining cost increases or the productivity decreases, so the amount of P may be 0.0005% or more or 0.001% or more.
  • S 0.000% to 0.003%
  • S is an impurity in the steel, and segregation of S and sulfide reduce toughness. Therefore, the amount of S is preferably as small as possible. Therefore, the amount of S needs to be 0.003% or less.
  • the amount of S may be 0.000%. Therefore, the amount of S is 0.000% to 0.003%.
  • the amount of S may be 0.002% or less. Note that, if the amount of S is reduced, the refining cost increases or the productivity decreases, so the amount of S may be 0.0004% or more or 0.0006% or more.
  • the steel may optionally contain Si.
  • the amount of Si may be 0.01% or more, 0.02% or more, or 0.03% or more.
  • the amount of Si is preferably 0.25% or less, and more preferably 0.20% or less, 0.15%, or 0.10% or less.
  • Cu 0.00% to 0.50% If the amount of Cu is excessive, cracking occurs during hot working, and metal Cu is precipitated to lower toughness. Therefore, the amount of Cu needs to be 0.50% or less. If the amount of Cu is 0.50% or less, the strength of the steel can be increased without impairing the low temperature toughness. Moreover, since Ceq increases as the amount of Cu increases, it is possible to more stably suppress the formation of ferrite during quenching. Therefore, steel may optionally contain Cu. However, the effect of Cu on the strength and Ceq of steel can be obtained even if Cu is replaced with another alloy element. Therefore, the amount of Cu may be 0.00%. Therefore, the amount of Cu is 0.00% to 0.50%.
  • the amount of Cu is 0.01% or more, 0.02% or more, or It may be 0.06% or more.
  • the amount of Cu may be 0.45% or less, 0.40% or less, 0.35% or less, or 0.030% or less.
  • V 0.000% to 0.050% If the amount of V is excessive, the toughness decreases due to the formation of alloy carbides. Therefore, the amount of V needs to be 0.050% or less. On the other hand, V increases the strength of steel in order to form carbides and improve hardenability. Moreover, since Ceq increases as the amount of V increases, the generation of ferrite during quenching can be more stably suppressed. Therefore, steel may optionally contain V. However, the effect of V on the strength and Ceq of the steel can be obtained even if V is replaced with another alloy. Therefore, the amount of V may be 0.000%. Therefore, the amount of V is 0.000% to 0.050%.
  • the amount of V is set to 0.003% or more or 0.005% or more. Also good.
  • the amount of V is more preferably 0.010% or more, and the amount of V is most preferably 0.020% or more.
  • the upper limit of V may be 0.045%, 0.040%, or 0.035%.
  • Nb 0.000% to 0.050% Nb forms carbonitride and makes crystal grains inside the steel fine. Therefore, steel may optionally contain Nb.
  • the amount of Nb may be 0.000%.
  • the amount of Nb is 0.000%.
  • the upper limit of Nb may be 0.040%, 0.035%, 0.030%, or 0.025%.
  • Nb may not be intentionally added.
  • Ti forms stable nitrides and makes the crystal grains fine. Therefore, steel may optionally contain Ti.
  • the amount of Ti may be 0.000%. However, if the amount of Ti is excessive, the size of the nitride increases and the toughness decreases. Therefore, the amount of Ti needs to be 0.020% or less. Therefore, the amount of Ti is 0.000% to 0.020%. When the effect of Ti on grain refinement is imparted to steel, the amount of Ti may be 0.001% or more. Further, since grain refinement can also be achieved with AlN, the amount of Ti may be 0.010% or less, 0.004% or less, or 0.002% or less. It is good also as not performing intentional addition of Ti, when the grain refinement effect by Ti is unnecessary.
  • the steel may optionally include at least one selected from the group consisting of Ca, Mg, and REM.
  • the amount of Ca, the amount of Mg, and the amount of REM may all be 0.0000%. If the amount of these chemical elements is excessive, the refractory such as a casting nozzle will melt. Therefore, the amount of Ca, the amount of Mg, and the amount of REM are all required to be 0.0030% or less.
  • the amount of Ca, the amount of Mg, and the amount of REM are all 0.0000% to 0.0030%.
  • the amount of Ca, the amount of Mg, and the amount of REM are all preferably 0.0001% or more. This effect is saturated when the amount of these chemical elements reaches 0.0030%. It is good also as not performing intentional addition of Ca, Mg, and REM.
  • Some other chemical elements may be included in the steel plate of this embodiment as long as they do not substantially adversely affect the properties of the steel plate of this embodiment.
  • the amount of W is 0.00% to 0.10%
  • the amount of Co is 0.00% to 0.10%
  • the amount of Sb is 0.000% to 0%. 0.010%
  • the amount of As is 0.000% to 0.010%
  • the amount of Sn is 0.000% to 0.010%
  • the amount of Pb is 0.000% to 0.050. %.
  • These chemical elements may be mixed into molten steel from scrap or the like, for example.
  • the amount of W or the amount of Co may be 0.05% or less, 0.02% or less, 0.01% or less, or 0.005% or less, respectively.
  • the steel sheet of the present embodiment contains the above eight essential chemical elements, and the balance is selected from the chemical composition consisting of Fe and impurities, or the group consisting of the above eight essential chemical elements and the above arbitrary chemical elements. At least one selected from the group consisting of Fe and impurities.
  • this chemical composition further needs to satisfy the following conditions.
  • Ts 380 to 430
  • Ts is defined by the following formula 5 and has a relatively strong correlation with the structure of the steel plate after the steel plate having a plate thickness exceeding 200 mm is quenched by water cooling.
  • Ts is excessively low, the structure is mainly martensite, and the toughness of the steel sheet is reduced. Therefore, as shown in FIG. 1, Ts needs to be 380 or more.
  • Ts is excessively high, the structure is mainly composed of upper bainite, and the strength and toughness of the steel sheet are reduced. Therefore, as shown in FIG. 1, Ts needs to be 430 or less. Therefore, the range of Ts is 380 to 430.
  • Ts since the range of Ts is defined as 380 to 430, Ts itself is a dimensionless quantity. Therefore, there is no need to limit the unit of Ts. If a unit is given to Ts, the unit of Ts is mm ⁇ 1.4 ⁇ %. In order to increase the toughness of the steel sheet more stably, Ts is preferably 385 or more, 390 or more, 395 or more, or 400 or more. For the same reason, Ts is preferably 425 or less, 420 or less, 415 or less, or 412 or less.
  • Ts 750-4240 ⁇ (t / 2) ⁇ 1.4 ⁇ (80 ⁇ C + 10 ⁇ Mn + 7 ⁇ Ni + 13 ⁇ Cr + 13 ⁇ Mo ⁇ 40 ⁇ Si) Equation 5
  • t is the plate thickness mm of the steel plate, and each element symbol is the amount% of the corresponding chemical element.
  • Ceq 0.80 to 1.05 Ceq is defined by the following formula 6 and represents the hardenability of steel. When Ceq is too low, ferrite crystallizes, and the strength and low temperature toughness of the steel sheet are not sufficient. Therefore, as shown in FIG. 2, Ceq needs to be 0.80 or more. On the other hand, if Ceq is too high, the strength of the steel sheet becomes too high and the toughness of the steel sheet is significantly reduced. Therefore, as shown in FIG. 2, Ceq needs to be 1.05 or less. Therefore, the range of Ceq is 0.80 to 1.05. Thus, since the range of Ceq is defined as 0.80 to 1.05, Ceq itself is a dimensionless quantity. Therefore, it is not necessary to limit the unit of Ceq.
  • Ceq the unit of Ceq is%.
  • Ceq is preferably more than 0.80, and Ceq is more than 0.85, more than 0.86, more than 0.87, or more than 0.89. preferable.
  • the upper limit of Ceq may be 1.02, 0.99, 0.96, or 0.94.
  • Ceq C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 Equation 6
  • each element symbol is the amount% of the corresponding chemical element.
  • x 46 to 90 x is defined by the following formula 7 and represents the hardenability of steel.
  • x is required to be 46 or more as shown in FIG.
  • x is required to be 46 or more as shown in FIG.
  • x is 90 or less. Therefore, the range of x is 46-90.
  • the range of x is defined as 46 to 90, x itself is a dimensionless quantity. Therefore, it is not necessary to limit the unit of x.
  • x C1 / 2 * (1 + 0.64 * Si) * (1 + 4.10 * Mn) * (1 + 0.27 * Cu) * (1 + 0.52 * Ni) * (1 + 2.33 * Cr) * (1 + 3. 14 x Mo) ...
  • each element symbol is the amount% of the corresponding chemical element.
  • ⁇ ⁇ is defined by the following formula 8 and represents the hardenability of the steel. If ⁇ is too low, the quenched structure is mainly composed of upper bainite, and the strength and low temperature toughness of the steel sheet are not sufficient. Therefore, it is necessary that ⁇ is 22 or more. On the other hand, if ⁇ is too high, the quenched structure is mainly martensite, and the low-temperature toughness of the steel sheet is not sufficient. Therefore, it is necessary that ⁇ is 60 or less. Therefore, the range of ⁇ is 22-60. However, in this embodiment, since the amount of Si is 0.00% to 0.30% and x is 46 to 90, the range of ⁇ is always 22 to 60. Therefore, it is not necessary to limit the range of ⁇ .
  • 0.65 ⁇ C 1/2 ⁇ (1 + 0.27 ⁇ Si) ⁇ (1 + 4.10 ⁇ Mn) ⁇ (1 + 0.27 ⁇ Cu) ⁇ (1 + 0.52 ⁇ Ni) ⁇ (1 + 2.33 ⁇ Cr) ⁇ (1 + 3.14 ⁇ Mo) Equation 8
  • each element symbol is the amount% of the corresponding chemical element.
  • Ac1 indicates a temperature at which the austenite transformation starts when the steel is heated, and is defined by the following formula 9.
  • Ac1 needs to be 580 or more.
  • Ac1 is 647 or less. is there. Therefore, the range of Ac1 is 580 to 647.
  • the range of Ac1 is defined as 580 to 647, Ac1 itself is a dimensionless quantity. Therefore, it is not necessary to limit the unit of Ac1.
  • the unit of Ac1 is ° C.
  • the upper limit of Ac1 may be 640, 635, 630, or 625, and the lower limit may be 585, 590, or 595.
  • Ac1 720 ⁇ 25 ⁇ C + 22 ⁇ Si-40 ⁇ Mn-30 ⁇ Ni + 20 ⁇ Cr + 25 ⁇ Mo Equation 9
  • each element symbol is the amount% of the corresponding chemical element.
  • Ti / N When Ti is added to the steel, Ti is combined with N to produce TiN. If the ratio of Ti to N in this reaction is smaller than the stoichiometric ratio (3.4), Ti can be prevented from being combined with a chemical element other than N (for example, C). Therefore, the effect of TiN on crystal grain refinement can be stably obtained, and the low temperature toughness can be further increased. Therefore, it is preferable that the chemical composition of the steel satisfies Ti / N ⁇ 3.4.
  • Total amount of martensite and bainite 99% to 100% Martensite and bainite increase the strength of the steel sheet. Therefore, the total amount of martensite and bainite needs to be 99% to 100%.
  • the balance of the structure may contain ferrite, pearlite, and retained austenite. The remaining amount (total amount of ferrite, pearlite, and retained austenite) is 0% to 1%. The remaining amount may be 0.5% or less, 0.2% or less, or 0.1% or less. That is, the total amount of martensite and bainite may be 99.5% or more, 99.8% or more, or 99.9% or more. Most preferably, the balance is 0%, that is, the total amount of martensite and bainite is 100%.
  • the metal structure may contain martensite, bainite, pearlite, ferrite, and retained austenite.
  • the remaining amount that is, the total amount of ferrite, pearlite, and retained austenite is determined in advance by the following method. Thereafter, the total amount of martensite and bainite is calculated by subtracting the total amount of these three structures from 100%.
  • the amount of ferrite and the amount of pearlite are expressed by area fraction (area%), and are determined from photographs taken through an optical microscope at a magnification of 500 times.
  • the sample is taken from the center of the plate thickness at a position more than 100 mm away from the edge of the steel plate.
  • a longitudinal section of the sample (a plane including the thickness direction and the rolling direction; a plane perpendicular to the width direction) is etched by nital, and three views are photographed from the etched surface.
  • the three fields of view are determined so that there are no overlapping areas.
  • the amount of ferrite is determined by integrating the white area (ferrite area) in the optical micrograph, dividing the integrated area by the measured area, and averaging the resulting area fractions.
  • the amount of retained austenite is expressed by volume fraction (volume%) and is measured by X-ray diffraction method.
  • the sample is taken from the center of the plate thickness at a position more than 100 mm away from the edge of the steel plate. X-rays are incident on the longitudinal section of the sample (plane including the thickness direction and rolling direction; plane perpendicular to the width direction), and the volume fraction of retained austenite is determined from the obtained data.
  • the volume fraction (volume%) of this austenite is equated with the area fraction (area%) of retained austenite, and the area fraction of retained austenite is determined.
  • the amount of retained austenite is about a trace and cannot be quantified, it is regarded as 0%.
  • the total amount of martensite and bainite is also expressed by area fraction (area%).
  • area fraction area%.
  • a plate thickness center part means the position in the steel plate which is separated from the steel plate surface by half the plate thickness in the plate thickness direction. It is most difficult to generate martensite and bainite at the center of the plate thickness. Therefore, if the total amount of martensite and bainite is 99% to 100% in the center of the plate thickness, the martensite throughout the steel plate excluding the decarburized layer whose depth (thickness) from the steel plate surface is about 1 mm or less. And the total amount of bainite can be regarded as 99% to 100%. Therefore, it is sufficient to evaluate the structure only in the center portion of the plate thickness.
  • FIG. 1 An example of the structure of the steel sheet according to this embodiment is shown in FIG. In this figure, ferrite and pearlite are not observed.
  • the total amount of ferrite, pearlite, and retained austenite is 0%, so the total amount of martensite and bainite is 100%.
  • Tensile strength 780 MPa to 930 MPa
  • Absorption energy by Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness 69 J or more
  • the tensile strength of the steel plate is 780 MPa to 930 MPa, and absorption by the Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness.
  • the energy must be 69J or higher. The reason for this will be described below.
  • Tempered lower bainite most effectively increases the strength and low temperature toughness of the steel sheet. Tempered martensite also increases the strength and low temperature toughness of the steel sheet. However, tempered martensite increases the strength of the steel sheet more than the tempered lower bainite, but does not increase the low temperature toughness of the steel sheet as much as the tempered lower bainite. Therefore, it is most preferable that the steel sheet has a structure composed of tempered lower bainite or a structure composed of tempered lower bainite and tempered martensite. If the total amount of tempered lower bainite and tempered martensite is sufficient, the steel sheet may contain tempered upper bainite.
  • tempered upper bainite does not increase the strength and low temperature toughness of the steel sheet as tempered lower bainite and tempered martensite. Therefore, the amount of tempered upper bainite is preferably as small as possible.
  • martensite that is not tempered (virgin (untempered) martensite), upper bainite that is not tempered (virgin (untempered) upper ⁇ ⁇ bainite), and lower bainite that is not tempered (virgin (untempered) lower bainite) greatly reduces low temperature toughness. . Therefore, it is necessary to reduce as much as possible martensite that is not tempered, upper bainite that is not tempered, and lower bainite that is not tempered.
  • the steel sheet according to the present embodiment when the steel is tempered, there is no martensite that is not tempered, upper bainite that is not tempered, and lower bainite that is not tempered unless the tempering temperature described below exceeds Ac1. . That is, heat treatment (tempering) may be performed so that the tempering temperature described later does not exceed Ac1 in order not to generate martensite that is not tempered, upper bainite that is not tempered, and lower bainite that is not tempered.
  • the sum of martensite that is not tempered, upper bainite that is not tempered and lower bainite that is not tempered is preferably 0%.
  • tempered martensite tempered upper bainite, tempered lower bainite, tempered lower bainite, non-tempered martensite, non-tempered upper bainite and non-tempered lower bainite in the martensite and bainite.
  • Ts has a relatively strong correlation with the quenched structure, and as shown in FIG. 5, a considerable portion of the quenched structure (amount of martensite, lower bainite, upper bainite) is achieved by adjusting Ts.
  • the quenching structure is not completely expressed only by Ts, and the structure after tempering is not determined.
  • the chemical composition alone cannot express the form of precipitates (for example, carbides and nitrides) in the structure after tempering (final structure), but in this embodiment, the precipitates are very fine. In some cases, the particle size distribution may be very wide, so that the measurement of the precipitate is extremely difficult.
  • the amount of the above six structures and the form of precipitates are expressed by a combination of chemical composition, tensile strength, and Charpy impact test. Therefore, as described above, it is necessary that the tensile strength of the steel sheet is 780 MPa to 930 MPa, and the absorbed energy by the Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness is 69 J or more.
  • the upper limit of the absorbed energy by the Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness is not necessarily limited, and may be 400 J or less.
  • tempered martensite and non-tempered martensite are subordinate concepts of martensite
  • tempered upper bainite, tempered lower bainite, non-tempered upper bainite and non-tempered lower bainite are subordinate concepts of bainite.
  • the tensile strength of the steel sheet is less than 930 MPa.
  • the preferable upper limit of such tensile strength is 900 MPa, 880 MPa, and 870 MPa when arranged in order up to the most preferable one.
  • the yield strength of the steel sheet is preferably 880 MPa or less.
  • the preferable upper limit of such yield strength is 850 MPa, 830 MPa, and 810 MPa when arranged in order up to the most preferable one.
  • the yield strength of the steel sheet is preferably 665 MPa or more or 685 MPa or more.
  • the tensile strength is measured by a tensile test specified in JIS Z 2241.
  • a No. 14 tensile test piece defined in JIS Z 2201 is collected from t / 4 parts.
  • the longitudinal direction (tensile direction) of this No. 14 tensile test piece is the T direction (Transverse Direction), that is, the direction perpendicular to the rolling direction (C direction).
  • t / 4 part means the position in the steel plate away from the steel plate surface by 1 ⁇ 4 of the plate thickness in the plate thickness direction.
  • the absorbed energy by the Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness is measured by the Charpy impact test specified in JIS Z 2242.
  • a Charpy impact test piece defined in JIS Z 2242 is taken from the center of the plate thickness.
  • the longitudinal direction of this Charpy impact test piece is the T direction (Transverse Direction), that is, the direction perpendicular to the rolling direction (C direction).
  • the depth direction of the V notch is the rolling direction.
  • the absorbed energy by the Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness is sometimes abbreviated as vE ⁇ 60 ° C.
  • Plate thickness More than 200 mm and 300 mm or less
  • the plate thickness is as thick as possible as long as the steel plate can be manufactured and handled. Therefore, it is necessary that the plate thickness be more than 200 mm, and the preferable lower limit of the plate thickness is 210 mm, 215 mm, 220 mm, 225 mm, or 230 mm in order from the most preferable one.
  • the plate thickness becomes too thick, it becomes more difficult to produce a steel plate having high strength and excellent low temperature toughness, and the above-mentioned chemical composition has an effect on high strength and excellent low temperature toughness. Decreases.
  • the plate thickness is 300 mm or less, and the preferable upper limit of the plate thickness is 290 mm, 280 mm, 270 mm, and 260 mm in order from the most preferable one. For the above reason, it is necessary that the plate thickness is more than 200 mm and not more than 300 mm.
  • the steel plate according to this embodiment is preferably manufactured by the method for manufacturing a steel plate according to the following embodiment from the viewpoint of reducing manufacturing costs.
  • molten steel having the above chemical composition is cast to obtain a slab.
  • This slab may be obtained by continuous casting or by ingots being bunched with a bunker.
  • the slab is not soaked at a temperature of 1200 ° C. or higher before hot rolling, coarse AlN (1.5 ⁇ m or more AlN) remains in the steel, and this coarse AlN reduces the toughness of the steel sheet. Therefore, the slab is soaked at 1200 to 1380 ° C. before hot rolling.
  • the soaking temperature is 1250 ° C. or higher.
  • the soaking temperature is preferably 1300 ° C. or lower. Note that it is extremely difficult to determine that AlN of 1.5 ⁇ m or more is hardly present.
  • AlN of 1.5 ⁇ m or more Although it is possible to observe AlN of 1.5 ⁇ m or more using a transmission electron microscope, the area observed by the transmission electron microscope is very small. For this reason, it is impossible to determine that AlN having a size of 1.5 ⁇ m or more hardly exists in the actual number of measurements. On the other hand, the fact that AlN of 1.5 ⁇ m or more is hardly present can be confirmed by absorbed energy (69 J or more) by a Charpy impact test at ⁇ 60 ° C. at the center of the plate thickness.
  • the slab After soaking, the slab is hot-rolled to obtain a hot rolled steel sheet having a thickness of more than 200 mm and not more than 300 mm as an intermediate product.
  • the hot rolling conditions are not limited. In order to sufficiently add the effect of the reduction on the crystal grain size and the like to the center of the plate thickness while maintaining the quality of the steel plate surface, it is preferable to start the hot rolling from a temperature of 950 ° C to 1250 ° C.
  • the steel sheet in the quenching process, is reheated to a temperature of Ac 3 ° C. or higher and then water-cooled to a temperature of less than 300 ° C.
  • the structure of the steel sheet changes to an austenite single phase.
  • austenite single phase structure is quenched, austenite is transformed into martensite or bainite, and the structure of the steel sheet becomes uniform.
  • the average water cooling rate at the center of the plate thickness while the temperature at the center of the plate decreases from 800 ° C. to 500 ° C. is 0.4 ° C./s. It is necessary to set it to ⁇ 0.8 ° C / s. Note that the temperature and the water cooling rate at the center portion of the plate thickness can be determined by heat transfer calculation. Ac3 is defined by Equation 10 below.
  • the steel sheet after quenching is heated to a temperature of 580 ° C. to Ac 1 ° C., and then water-cooled from a temperature of 580 ° C. to Ac 1 ° C. to a temperature of less than 300 ° C.
  • the tempering temperature is less than 580 ° C., a sufficient amount of tempered structure cannot be obtained or temper embrittlement occurs. Therefore, the toughness of the steel sheet is not sufficient. Therefore, the tempering temperature needs to be 580 ° C. to Ac1 ° C. Ac1 is defined by Equation 9 described above.
  • the thickness of the hot-rolled steel sheet exceeds 200 mm, segregation progresses even during cooling in the tempering process, and embrittlement occurs.
  • the temperature range where this embrittlement occurs is mainly 300 ° C. to 500 ° C. Therefore, it is necessary for the steel sheet to pass through this temperature range as quickly as possible after hot rolling. Therefore, in the tempering process, it is necessary to set the average water cooling rate at the center portion of the sheet thickness to 0.3 ° C./s to 0.7 ° C./s while the temperature at the center portion of the sheet thickness decreases from 500 ° C. to 300 ° C. is there.
  • the temperature and the water cooling rate at the center portion of the plate thickness can be determined by heat transfer calculation.
  • the temperature of the steel sheet surface needs to be 580 ° C. or higher when water cooling is started. The surface temperature of the steel plate is measured with a radiation thermometer.
  • the steel pieces obtained by melting steels having the chemical compositions shown in Tables 1 to 3 are soaked at the soaking temperature shown in Table 5 and then hot-rolled and cooled to room temperature to produce hot rolled intermediate products.
  • a steel plate was obtained. Further, the steel sheet was heated again under the conditions shown in Table 5 and quenched to room temperature. Thereafter, the quenched steel sheet was tempered under the conditions shown in Table 6 and cooled to room temperature to obtain hot rolled steel sheets (Nos. 1 to 50) as final products.
  • Tables 5 to 6 show that the temperature at which the steel slab was soaked, the temperature at which the steel sheet was heated for quenching, the average water cooling rate from 800 ° C to 500 ° C during quenching, the tempering temperature, and water cooling immediately after tempering.
  • the temperature to be started temperature of the steel sheet surface
  • the average water cooling rate from 500 ° C. to 300 ° C. during water cooling immediately after tempering are shown.
  • the thickness of the hot-rolled steel sheet was 210 mm to 270
  • a test piece was taken from the center of the plate thickness, and this test piece was etched with nital.
  • the etched specimen was observed from the width direction orthogonal to the rolling direction using an optical microscope.
  • the magnification of the optical microscope was 500 times, and the measurement field of view was three.
  • the sample was moved only in the rolling direction so that the fields of view did not overlap, and optical microscope photographs of three fields of view were taken.
  • the area fraction of ferrite and pearlite was determined from these optical micrographs. As a result, no. In all of 1 to 50, pearlite was not detected, and the amount of pearlite was 0%. No. 12, 29, 35 and 41, the amount of ferrite is 0.5% or more and less than 1.0%. In 37 and 38, the amount of ferrite was 4.5% or more and less than 5.0%.
  • Table 4 shows the amount of ferrite rounded off to one decimal place.
  • a specimen was collected from the center of the plate thickness, and the volume fraction of austenite was measured by X-ray diffraction, and this volume fraction was assumed to be the same as the area fraction.
  • X-ray diffraction method X-rays were incident from the width direction of the test piece. No. Residual austenite was detected in all of 1 to 50, but the amount of retained austenite was about a trace and could not be quantified. Therefore, the amount of retained austenite is no. It was 0% in all of 1 to 50.
  • the final product had the chemical composition and structure of the present invention, and had excellent low temperature toughness and high strength. These No. As can be seen from 1 to 11, low temperature toughness can be further improved by reducing Ti / N to 3.4 or less.
  • a high-tensile steel sheet having excellent low-temperature toughness and a thickness of more than 200 mm is provided, so that the safety of a larger-scale structure can be further increased. Therefore, the industrial applicability of the present invention is great.

Abstract

 この高張力鋼板は、質量%にて、C:0.08%~0.15%、Mn:0.80%~1.60%、Ni:3.00%~4.50%、Cr:0.50%~1.00%、Mo:0.50%~1.00%、Al:0.020%~0.085%、N:0.0020%~0.0070%、B:0.0005%~0.0020%を含有し、板厚tmmが200mm超かつ300mm以下であり、前記化学組成では、Tsが380~430であり、Ceqが0.80~1.05であり、Ac1が580~647であり、xが46~90であり、面積%で、マルテンサイトとベイナイトとの合計量が99%~100%であり、引張強度が780MPa~930MPaであり、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーが69J以上である。

Description

低温靭性に優れた高張力鋼板
 本発明は、低温靭性に優れ、板厚が大きな高張力鋼板に関する。より詳しくは、板厚が200mm超であり、引張強さが780MPa以上であり、板厚中心部の-60℃での吸収エネルギーが69J以上である鋼板に関する。この鋼板は、海洋構造物、圧力容器、ペンストック、船舶用大型クレーンなどの構造物に好適に用いられる。
 上記の構造物に於いては、構造物の安全性を担保するために母材として使用される鋼板には低温靭性が要求されるのが一般的である。近年の構造物の規模は著しく大きくなっており、そのような構造物には、板厚が大きく強度が高い鋼板が用いられる傾向が有る。
 上記の構造物には一般的に780MPa級の高張力鋼板が使用されている。この高張力鋼板では、780MPa以上の引張強度を得るために、直接焼入れ法のような焼入れによってベイナイトやマルテンサイトのような低温変態生成物を主体とする組織が形成されている。しかしながら、板厚が増すほど、焼入れ時の鋼板内部の冷却速度が低下するため、低温変態組織を形成させるのは困難である。そこで、冷却速度が低下しても十分な低温変態生成物が得られるように、焼入れ性を向上させるC、Mn、Cr,Mo,Vなどの合金元素を適量鋼に添加してきた。結果として、板厚を約150mmまで大きくしても、780MPa以上の引張強度が達成されてきた。しかしながら、板厚が200mmを超える鋼板では、焼入れ時の実際の冷却速度に変態熱が与える影響が顕著であるため、高温で変態が進行し、低温変態生成物が十分に得られない。
 例えば、特許文献1には、Ceqが0.80以下であり、C含有量とP含有量とMn含有量とNi含有量とMo含有量とが所定の式を満たし、鋼板のある領域の硬さの平均値に対する鋼板の中心偏析部の硬さの割合(HVmax/HVave)とC含有量と板厚とが所定の式を満たす高張力鋼板が開示されている。また、この特許文献1では、鋼板の板厚が60mm~150mmであることが開示されている。特許文献2には、CeqがCeqM以下であり、板厚が75mm~200mmである高張力鋼板が開示されている。特許文献3には、化学元素の量によって決定されるパラメータxが26~42であり、板厚が75~200mmである靭性の高い高張力鋼板が開示されている。しかしながら、これら3つの特許文献では、鋼板の板厚が200mm超を超えてしまうと、鋼板に狙い通りの効果を及ぼすことができなかった。
 また、特許文献4には、C含有量が0.005~0.02%であり、板厚が50~200mmである高張力鋼板が開示されている。また、特許文献5には、C含有量が0.02~0.05%であり、板厚が75~200mmである高張力鋼板が開示されている。さらに、これら特許文献4及び特許文献5には、焼入れ処理時に板厚中心部の冷却速度が1.1℃/s以上の急冷を必須とする方法が開示されている。しかしながら、鋼板の板厚が200mm超を超えると、板厚中心部の冷却速度を1.1℃/s以上まで大きくするのは工業的に不可能である。そのため、鋼板の板厚が200mm超を超えてしまうと、特許文献4及び特許文献5に開示された方法は実現不可能である。
 特許文献6には、微細なオーステナイト粒が得られるように、熱間圧延時のAr点~900℃の温度域において累積圧下率を50%以上に高め、焼入れのための加熱温度をAc点~(Ac点+100℃)の温度範囲に制限する方法が開示されている。また、この特許文献6には、板厚が40~65mmである高張力鋼板が開示されている。しかしながら、鋼板の板厚が大きくなる程、鋼板の板厚方向における中心において圧延の影響が低下する。そのため、鋼板の板厚が100mmを超えると、低温圧延が結晶粒微細化に与える効果は小さい。そのため、低温圧延によって結晶粒を微細化しようと試みても、鋼板の板厚が200mm超を超えてしまうと鋼板に狙い通りの効果を及ぼすことができなかった。また、低温圧延は、変形抵抗を増大させ、鋼板内部の空隙を埋めるのを難しくする。そのため、低温圧延は、板厚200mmを超える鋼板の製造には適していない。
 特許文献7には、Ceqが0.50~0.80であり、化学元素の量によって決定されるパラメータβが8.45~15.2であり、鋼板の板厚中心部における平均結晶粒径が35μm以下であり、板厚が25~200mmである高張力鋼板が開示されている。また、この特許文献7には、平均結晶粒径が35μm以下となるように、900~1150℃の温度範囲における累積圧下率を50%以上まで高める方法が開示されている。しかしながら、上述のように、鋼板の板厚が大きくなる程、鋼板の板厚方向における中心において圧延の影響が低下する。加えて、特許文献7に開示されているように、鋼板の板厚が200mmを超えると、板厚中心部の冷却速度が著しく低下して結晶粒の粗大化が生じる。そのため、特許文献7では、鋼板の板厚が200mm超を超えてしまうと鋼板に狙い通りの効果を及ぼすことができない。
 特許文献8には、再結晶によって微細で均一なオーステナイト粒が得られるように、焼入れ処理を2回以上実施する方法が開示されている。しかしながら、非特許文献1及び非特許文献2に示されるように、低合金鋼に於いては加熱速度が低下すると再加熱が結晶粒微細化に与える効果が減じられる。また、特許文献8には、板厚が50mmである高張力鋼板が開示されている。しかしながら、鋼板の板厚が厚くなるほど加熱速度は低下する。そのため、板厚200mmを超える鋼板の製造に於いては、2回以上の焼入れ処理を実施しても結晶粒がほとんど微細化されず、製造コストが増えるだけである。したがって、特許文献8に開示された方法では、鋼板の板厚が200mm超を超えてしまうと鋼板に狙い通りの効果を及ぼすことができなかった。
 また、微細な残留オーステナイト粒にNiを濃化させて残留オーステナイトを安定化し、鋼板の靭性を高める方法が知られている。例えば、特許文献9及び特許文献10には、板厚が150~200mmであり、残留オーステナイトの量が1~10%であって、脆性破壊(亀裂)の伝播を停止する特性が高い高張力鋼板が開示されている。また、これらの特許文献には、微細な残留オーステナイトが形成されるように、オーステナイトに変態することができる温度範囲(Ac1よりも高い温度範囲)に鋼板を焼戻す方法が開示されている。しかしながら、鋼板の板厚が200mm超の場合には、鋼板の板厚中心部において、オーステナイトの粒径が粗大になったり、オーステナイトへのNiの濃化が不十分になったりする。そのため、残留オーステナイトの安定性が低下し、鋼板の板厚中心部における靭性が低下してしまう。また、残留オーステナイトの安定性を高めるためには、Niの量を増やす必要があるため、コストが高くなりがちである。さらに、特許文献9には、微細なオーステナイトが得られるように、仕上圧延の温度範囲を700~850℃に、この温度範囲における累積圧下率を25~75%に限定する方法が開示されている。このように、特許文献9では、低温圧延が利用されているので、特許文献9の方法は、板厚200mmを超える鋼板の製造には適していない。
 上述のように、従来の方法では、鋼板の板厚が200mmを超えると、引張強度が780MPa以上である低温靭性に優れた高張力鋼板を得ることができなかった。
日本国特開2013-91845号公報 日本国特開2011-202214号公報 日本国特許第2662409号 日本国特開2013-104065号公報 日本国特許第5552967号 日本国特開平6-240353号公報 日本国特許第5590271号 日本国特開平10-265846号公報 日本国特許第3336877号 日本国特許第3327065号
本間亮介 「Ni-Cr-Mo-V鋼のオーステナイト結晶粒の挙動におよぼすNiの影響」 鉄と鋼 Vol.58(1972) No.1 p.119 松田昭一ら 「低炭素低合金鋼の逆変態」 鉄と鋼 Vol.60(1974) No.2 p.60
 本発明は、上記問題点に鑑みてなされたものであり、板厚が200mm超であり、低温靭性に優れ、強度が高い鋼板を提供することを目的とする。
 本発明者らは、鋼板の板厚が200mm超であっても、鋼板の板厚中央部に高い強度と高い低温靭性とを付与できる新たな化学組成及び組織を見出した。また、本発明者らは、この新たな化学組成が従来の厚鋼板に高い強度と高い低温靭性とを付与してきた化学組成と異なっており、その新たな化学組成を有する鋼に従来法とは異なる新たな方法を適用することが好適であることを見出した。
 本発明は、これらの知見をもとになされたものであり、その要旨は、以下の通りである。
(1)本発明の一態様に係る鋼板は、質量%にて、C:0.08%~0.15%、Mn:0.80%~1.60%、Ni:3.00%~4.50%、Cr:0.50%~1.00%、Mo:0.50%~1.00%、Al:0.020%~0.085%、N:0.0020%~0.0070%、B:0.0005%~0.0020%、P:0.000%~0.010%、S:0.000%~0.003%、Si:0.00%~0.30%、Cu:0.00%~0.50%、V:0.000%~0.050%、Nb:0.000%~0.050%、Ti:0.000%~0.020%、Ca:0.0000%~0.0030%、Mg:0.0000%~0.0030%、REM:0.0000%~0.0030%を含有し、残部がFe及び不純物からなる化学組成を有し、板厚tmmが200mm超かつ300mm以下であり、前記化学組成では、下記式1で定義されるTsが380~430であり、下記式2で定義されるCeqが0.80~1.05であり、下記式3で定義されるAc1が580~647であり、下記式4で定義されるxが46~90であり、面積%で、マルテンサイトとベイナイトとの合計量が99%~100%であり、引張強度が780MPa~930MPaであり、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーが69J以上である。
Ts=750-4240×(t/2)-1.4×(80×C+10×Mn+7×Ni+13×Cr+13×Mo-40×Si)・・・式1
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・式2
Ac1=720-25×C+22×Si-40×Mn-30×Ni+20×Cr+25×Mo・・・式3
x=C1/2×(1+0.64×Si)×(1+4.10×Mn)×(1+0.27×Cu)×(1+0.52×Ni)×(1+2.33×Cr)×(1+3.14×Mo)・・・式4
(2)上記(1)に記載の鋼板では、前記化学組成が、さらに、Ti/N≦3.4を満たしてもよい。
(3)上記(1)または(2)に記載の鋼板では、前記化学組成が、さらに、
 C:0.09%~0.13%を満たしてもよい。
(4)上記(1)~(3)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、Mn:0.80%~1.30%を満たしてもよい。
(5)上記(1)~(4)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、Ni:3.60%~4.50%を満たしてもよい。
(6)上記(1)~(5)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、Cr:0.75%~1.00%を満たしてもよい。
(7)上記(1)~(6)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、Mo:0.70%~1.00%を満たしてもよい。
(8)上記(1)~(7)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、Si:0.00%~0.10%を満たしてもよい。
(9)上記(1)~(8)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、V:0.020%~0.050%を満たしてもよい。
(10)上記(1)~(9)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、Ti:0.000%~0.004%を満たしてもよい。
(11)上記(1)~(10)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、前記Tsが395~415であるという条件を満たしてもよい。
(12)上記(1)~(11)のいずれか一項に記載の鋼板では、前記化学組成が、さらに、前記Ceqが0.85~1.05であるという条件を満たしてもよい。
 本発明によれば、板厚が200mm超であり、低温靭性に優れ、強度が高い鋼板を提供することができる。そのため、より規模の大きな構造物の安全性をより高めることができる。
TsとvE-60℃との間の関係の一例を示す図である。 CeqとvE-60℃との間の関係の一例を示す図である。 xとvE-60℃との間の関係の一例を示す図である。 本発明の一実施形態に係る高強度鋼板の組織を示す写真である。 Tsが焼入れ組織に与える効果を一例として模式的に示す図である。
 以下、本発明の一実施形態に係る鋼板(高張力鋼板)について説明する。
 始めに、本実施形態に係る鋼板の化学組成について説明する。以下において、各化学元素の量(%)は質量%で示されている。
C:0.08%~0.15%
 Cは、焼き入れ後の鋼板の組織の硬さを高めるため、強度向上に有効である。そのため、Cの量が0.08%以上であることが必要である。一方で、Cの量が過剰であると靭性を損なうため、Cの量が0.15%以下であることが必要である。したがって、Cの量は、0.08%~0.15%である。強度をより高めるために、Cの量は、0.09%以上又は0.10%以上であると好ましい。また、靭性をより高めるために、Cの量は、0.14%以下であると好ましく、0.13%以下又は0.12%以下であるとより好ましい。
 Mn:0.80%~1.60%
  Mnは、脱酸にも焼入れ性の改善にも有効である。鋼の焼入れ性を高めて強度を向上させるために、Mnの量が0.80%以上であることが必要である。Mnの量を、0.85%以上、0.90%以上、0.95%以上、1.00%以上、1.05%以上又は1.10%以上としてもよい。一方で、Mnの量が過剰であると、焼入れ性が過剰であり、組織が硬質になる。また、過剰な量のMnは、焼戻し脆性を助長するので、硬質な組織と焼戻し脆性との相乗効果により鋼の靭性が低下する。そのため、Mnの量が1.60%以下であることが必要である。したがって、Mnの量は、0.80%~1.60%である。靭性をより高めるために、Mnの量は、1.50%以下であると好ましく、1.40%以下であるとより好ましく、1.35%以下又は1.30%以下であると最も好ましい。必要に応じて、Mnの量を1.25%以下又は1.20%以下としてもよい。
 Ni:3.00%~4.50%
 Niは、鋼の強度および靭性を向上するのに有効であり、Niの量が3.00%以上であることが必要である。Niの量が過度であると、Ac1の低下により焼戻し温度を低くする必要があるので、焼戻し時間が長くなる。また、Niは、オーステナイトを安定化させるので、残留オーステナイトが残存する虞がある。加えて、Niは、高価である。そのため、Niの量が過剰であると、製造コストが悪化する。そのため、Niの量が4.50%以下であることが必要である。したがって、Niの量は、3.00%~4.50%である。また、鋼の強度及び靭性をより高める場合、Niの量が3.15%以上、3.30%以上、3.40%以上又は3.50%以上であると好ましく、3.60%以上であるとより好ましい。Niの量は、4.30%以下、4.15%以下、4.00%以下、3.90%以下又は3.80%以下としてもよい。
 Cr:0.50%~1.00%
 Mo:0.50%~1.00%
 Cr及びMoは、鋼の焼入れ性を改善し強度を向上させる。Crの量は0.50%以上であることが必要であり、Moの量は0.50%以上であることが必要である。一方、Crの量もしくはMoの量が過剰であると、合金炭化物の形成により靭性が低下する。そのため、Crの量が1.00%以下であることが必要であり、Moの量が1.00%以下であることが必要である。したがって、Crの量は、0.50%~1.00%であり、Moの量は、0.50%~1.00%である。また、鋼の強度を安定的に高めるために、Crの量が、0.60%以上であると好ましく、0.65%以上、0.70%以上、0.75%以上又は0.80%以上であるとより好ましい。Crの量は、0.96%以下、0.94%以下又は0.91%以下としてもよい。同様に、Moの量が、0.60%以上であると好ましく、0.70%以上、0.75%以上、0.80%以上又は0.85%以上であるとより好ましい。Moの量は、0.96%以下、0.94%以下、0.92%以下又は0.90%以下としてもよい。
 Al:0.020%~0.085%
 Alは、脱酸に有効であり、鋼中の固溶Nと結びついてAlNを形成する。このAlNが結晶粒を細粒にし、鋼中の固溶Nの量の低下によって鋼の焼入れ性に与えるBの効果が安定化する。そのため、Alの量が0.020%以上であることが必要である。一方、Alの量が過剰であると、AlNのサイズが大きすぎるため、靭性が低下し、鋳片に割れが生じる。そのため、AlNの量が0.085%以下であることが必要である。したがって、Alの量は、0.020%~0.085%である。Bの焼入れ性向上効果をさらに高めるため、Alの量を0.030%以上、0.040%以上又は0.045%以上としてもよい。粗大なAlNが生成するのをより確実に防止するため、Alの量の上限を0.070%、0.065%又は0.060%としてもよい。
 N:0.0020%~0.0070%
 Nは、合金元素と結びついて化合物(窒化物及び炭窒化物)を形成し結晶粒を細粒にする。そのため、Nの量が0.0020%以上であることが必要である。一方で、Nの量が過剰であると、鋼中に固溶Nが過剰になったり、化合物(窒化物及び炭窒化物)が粗大になったりするため、鋼の靭性が低下する。そのため、Nの量が0.0070%以下であることが必要である。したがって、Nの量は、0.0020%~0.0070%である。Nの量を0.0025%以上、0.0030%以上又は0.0040%以上としてもよく、0.0065%以下又は0.0060%以下としてもよい。
 B:0.0005%~0.0020%
 鋼がBを微量含有すると、鋼の焼入れ性が改善し強度が向上する。そのため、Bの量が0.0005%以上であることが必要である。しかし、Bの量が過剰になった場合、金属の炭硼化物が形成され焼入れ性が低下する。そのため、Bの量が0.0020%以下であることが必要である。したがって、Bの量は、0.0005%~0.0020%である。焼入れ性をさらに高めるため、Bの量を0.0007%以上又は0.0008%以上としてもよい。焼入れ性をさらに最適化するために、Bの量を0.0018%以下、0.0016%以下又は0.0014%以下としてもよい。
 本実施形態の鋼板は、上記8種の化学元素(C、Mn、Ni、Cr、Mo、Al、N、B)を必須の化学元素として含む。これら必須の化学元素に加え、鋼が以下の化学元素を任意に含んでもよい。
 P:0.000%~0.010%
 Pは、鋼中の不純物であり、粒界脆化を助長し靭性を低下させる。このように、Pは鋼の靭性に対して有害であるため、Pの量は出来るだけ少ないことが好ましい。そのため、Pの量が0.010%以下であることが必要である。Pの量は、0.000%であっても構わない。したがって、Pの量は、0.000%~0.010%である。Pの量を0.007%以下又は0.005%以下としてもよい。なお、Pの量を減らすと、精錬コストが増大したり、生産性が低下したりするため、Pの量を0.0005%以上又は0.001%以上としてもよい。
 S:0.000%~0.003%
 Sは、鋼中の不純物であり、Sの偏析および硫化物が靭性を低下させる。そのため、Sの量は、出来るだけ少ないことが好ましい。よって、Sの量が0.003%以下であることが必要である。Sの量は、0.000%であっても構わない。したがって、Sの量は、0.000%~0.003%である。Sの量を0.002%以下としてもよい。なお、Sの量を減らすと、精錬コストが増大したり、生産性が低下したりするため、Sの量を0.0004%以上又は0.0006%以上としてもよい。
 Si:0.00%~0.30%
 Siの量が過剰であると、焼戻し脆性を助長し靭性を低下させる。そのため、Siの量が0.30%以下であることが必要である。一方、Siの量が0.00%でも構わない。したがって、Siの量は、0.00%~0.30%である。なお、Siは、脱酸にも強度改善にも有効であるので、鋼がSiを任意に含んでもよい。溶鋼を精錬する際の脱酸効率を高めるために、Siの量が0.01%以上、0.02%以上又は0.03%以上であってもよい。また、より安定的に靭性を高めるために、Siの量が0.25%以下であると好ましく、0.20%以下、0.15%又は0.10%以下であるとより好ましい。
 Cu:0.00%~0.50%
 Cuの量が過剰であると、熱間加工時に割れが生じるほか金属Cuが析出して靭性が低下する。そのため、Cuの量が0.50%以下であることが必要である。Cuの量が0.50%以下であれば、低温靭性を損なうことなく鋼の強度を高めることができる。また、Cuの量が増加するとCeqが大きくなるので、焼入れ時にフェライトが生成するのをより安定して抑制することができる。そのため、鋼がCuを任意に含んでもよい。但し、Cuが鋼の強度及びCeqに与える効果は、Cuを他の合金元素に代替しても得ることが可能である。そのため、Cuの量は、0.00%でも構わない。したがって、Cuの量は、0.00%~0.50%である。なお、原料として用いられる溶鋼にCuが含まれる場合、精錬によってCuの量を0.00%まで低減するのは困難であるため、Cuの量を0.01%以上、0.02%以上又は0.06%以上としてもよい。Cuの量を0.45%以下、0.40%以下、0.35%以下又は0.030%以下としてもよい。
 V:0.000%~0.050%
 Vの量が過剰であると、合金炭化物の形成により靭性が低下する。そのため、Vの量が0.050%以下であることが必要である。一方、Vは、炭化物を形成したり、焼入れ性を改善したりするため、鋼の強度を向上させる。また、Vの量が増加するとCeqが大きくなるので、焼入れ時にフェライトが生成するのをより安定して抑制することができる。そのため、鋼がVを任意に含んでもよい。但し、Vが鋼の強度及びCeqに与える効果は、Vを他の合金に代替しても得ることが可能である。そのため、Vの量は、0.000%でも構わない。したがって、Vの量は、0.000%~0.050%である。なお、原料として用いられる溶鋼にVが含まれる場合、精錬によってVの量を0.000%まで低減するのは困難であるため、Vの量を0.003%以上又は0.005%以上としてもよい。鋼の強度を安定的に高めるために、Vの量が0.010%以上であるとより好ましく、Vの量が0.020%以上であると最も好ましい。Vの上限を0.045%、0.040%又は0.035%としてもよい。
 Nb:0.000%~0.050%
 Nbは、炭窒化物を形成し、鋼内部の結晶粒を細粒にする。そのため、鋼がNbを任意に含んでもよい。一方で、Nbの量は0.000%であっても構わない。しかし、Nbの量が過剰であると、炭窒化物のサイズが大きくなり靭性が低下する。そのため、Nbの量が0.050%以下であることが必要である。したがって、Nbの量は、0.000%~0.050%である。Nbが結晶粒微細化に与える効果を鋼に付与する場合、Nbの量を0.001%としてもよい。この場合、Nbの上限を0.040%、0.035%、0.030%又は0.025%としてもよい。Nbによる結晶粒微細化効果が不要な場合など、Nbの意図的な添加を行わないこともできる。
 Ti:0.000%~0.020%
 Tiは、安定な窒化物を形成し、結晶粒を細粒にする。そのため、鋼がTiを任意に含んでもよい。一方で、Tiの量は0.000%であっても構わない。しかし、Tiの量が過剰であると、窒化物のサイズが大きくなり靭性が低下する。そのため、Tiの量が0.020%以下であることが必要である。したがって、Tiの量は、0.000%~0.020%である。Tiが結晶粒微細化に与える効果を鋼に付与する場合、Tiの量を0.001%以上としてもよい。また、AlNによっても結晶粒微細化を達成できるため、Tiの量は、0.010%以下であってもよく、0.004%以下又は0.002%以下であってもよい。Tiによる結晶粒微細化効果が不要な場合など、Tiの意図的な添加を行わないこととしてもよい。
 Ca:0.0000%~0.0030%
 Mg:0.0000%~0.0030%
 REM:0.0000%~0.0030%
 Ca、Mg、REMは、何れもSなどの有害不純物と結合し、無害な介在物を形成するため、鋼の機械的性質を改善する。そのため、鋼がCa、Mg、REMからなる群から選択される少なくとも1種を任意に含んでもよい。一方で、Caの量、Mgの量、REMの量は、何れも0.0000%であっても構わない。これら化学元素の量が過剰であると、鋳造ノズルなどの耐火物が溶損する。そのため、Caの量、Mgの量、REMの量は、何れも0.0030%以下であることが必要である。したがって、Caの量、Mgの量、REMの量は、何れも0.0000%~0.0030%である。Ca、Mg、REMが鋼の機械的性質に与える効果を鋼に付与する場合、Caの量、Mgの量、REMの量は、何れも0.0001%以上であると好ましい。この効果は、これら化学元素の量がそれぞれ0.0030%に達すると飽和する。Ca、Mg、REMの意図的な添加を行わないこととしてもよい。
 その他一部の化学元素は、本実施形態の鋼板の特性に実質的に不利な効果を与えない限りにおいて、本実施形態の鋼板に含まれてもよい。例えば、その許容量としては、Wの量が0.00%~0.10%であり、Coの量が0.00%~0.10%であり、Sbの量が0.000%~0.010%であり、Asの量が0.000%~0.010%であり、Snの量が0.000%~0.010%であり、Pbの量が0.000%~0.050%である。これらの化学元素は、例えば、スクラップ等から溶鋼に混入されることがある。Wの量又はCoの量は、それぞれ0.05%以下、0.02%以下、0.01%以下又は0.005%以下としてもよい。
 本実施形態の鋼板は、上記8種の必須の化学元素を含有し、残部がFe及び不純物からなる化学組成、もしくは、上記8種の必須の化学元素と上記任意の化学元素からなる群から選択される少なくとも1種とを含有し、残部がFe及び不純物からなる化学組成を有している。本実施形態に係る鋼板では、さらに、この化学組成が以下の条件を満たす必要がある。
 Ts:380~430
 Tsは、下記式5によって定義され、板厚が200mmを超える鋼板が水冷で焼入れされた後の鋼板の組織と比較的強い相関がある。Tsが過度に低い場合には、組織がマルテンサイト主体となり、鋼板の靭性が低下する。そのため、図1に示されるように、Tsが380以上であることが必要である。一方、Tsが過度に高い場合には、組織が上部ベイナイト主体となり、鋼板の強度及び靭性が低下する。そのため、図1に示されるように、Tsが430以下であることが必要である。したがって、Tsの範囲は、380~430である。このようにTsの範囲を380~430と定義しているため、Tsそれ自体は無次元量である。そのため、Tsの単位を限定する必要はない。仮にTsに単位を付与するとすれば、Tsの単位は、mm-1.4・%である。また、鋼板の靭性をより安定的に高めるために、Tsが385以上、390以上、395以上又は400以上であると好ましい。同様の理由で、Tsが425以下、420以下、415以下又は412以下であると好ましい。
Ts=750-4240×(t/2)-1.4
×(80×C+10×Mn+7×Ni+13×Cr+13×Mo-40×Si)  ‥‥式5
 ここで、tは、鋼板の板厚mmであり、各元素記号は、対応する化学元素の量%である。
 Ceq:0.80~1.05
 Ceqは、下記式6によって定義され、鋼の焼入れ性を表す。Ceqが低すぎると、フェライトが晶出し、鋼板の強度及び低温靭性が十分でない。そのため、図2に示されるように、Ceqが0.80以上であることが必要である。一方、Ceqが高すぎると、鋼板の強度が高くなりすぎるとともに鋼板の靭性が著しく低下する。そのため、図2に示されるように、Ceqが1.05以下であることが必要である。したがって、Ceqの範囲は、0.80~1.05である。このようにCeqの範囲を0.80~1.05と定義しているため、Ceqそれ自体は、無次元量である。そのため、Ceqの単位を限定する必要はない。仮にCeqに単位を付与するとすれば、Ceqの単位は、%である。また、鋼板の強度及び低温靭性をさらに高めるために、Ceqが0.80超であると好ましく、Ceqが0.85以上、0.86以上、0.87以上又は0.89以上であるとより好ましい。Ceqの上限は1.02、0.99、0.96又は0.94としてもよい。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5  ‥‥式6
 ここで、各元素記号は、対応する化学元素の量%である。
 x:46~90
 xは、下記式7によって定義され、鋼の焼入れ性を表す。xが低すぎると、上部ベイナイトの量が増加し、鋼板の低温靭性が十分でない。そのため、図3に示されるように、xが46以上であることが必要である。一方、xが高すぎると、マルテンサイトの量が多くなりすぎるため、鋼板の低温靭性が十分でない。そのため、図3に示されるように、xが90以下であることが必要である。したがって、xの範囲は、46~90である。このようにxの範囲を46~90と定義しているため、xそれ自体は、無次元量である。そのため、xの単位を限定する必要はない。仮にxに単位を付与するとすれば、xの単位は、%6.5である。xの下限を50,53、56、59、61又は63としてもよく、xの上限を85、82、79、76又は73としてもよい。
x=C1/2×(1+0.64×Si)×(1+4.10×Mn)×(1+0.27×Cu)×(1+0.52×Ni)×(1+2.33×Cr)×(1+3.14×Mo)・・・式7
 ここで、各元素記号は、対応する化学元素の量%である。
 β
 βは、下記式8によって定義され、鋼の焼入れ性を表す。βが低すぎると、焼入れ組織が上部ベイナイト主体となり、鋼板の強度及び低温靭性が十分でない。そのため、βが22以上であることが必要である。一方、βが高すぎると、焼入れ組織がマルテンサイト主体となり、鋼板の低温靭性が十分でない。そのため、βが60以下であることが必要である。したがって、βの範囲は、22~60である。但し、本実施形態では、Siの量が0.00%~0.30%であり、xが46~90であるため、βの範囲は、必ず22~60となる。したがって、βの範囲を限定する必要はない。なお、βの範囲を22~60と定義しているため、βそれ自体は、無次元量である。そのため、βの単位を限定する必要はない。仮にβに単位を付与するとすれば、βの単位は、%6.5である。βの下限を25、28、31又は34としてもよく、βの上限を56、53、50又は48としてもよい。
β=0.65×C1/2×(1+0.27×Si)×(1+4.10×Mn)×(1+0.27×Cu)×(1+0.52×Ni)×(1+2.33×Cr)×(1+3.14×Mo)・・・式8
 ここで、各元素記号は、対応する化学元素の量%である。
 Ac1:580~647
 Ac1は、鋼を加熱する際にオーステナイト変態が始まる温度を示し、下記式9により定義される。焼戻しマルテンサイト及び焼戻しベイナイトを含む組織を有する鋼では、Ac1が580よりも低いと、不純物が結晶粒界に偏析し、鋼の低温靭性が十分でない。そのため、Ac1が580以上であることが必要である。なお、本実施形態では、Cの量、Siの量、Mnの量、Niの量、Crの量及びMoの量が上述の範囲内であることが必要であるので、Ac1は、647以下である。したがって、Ac1の範囲は、580~647である。このようにAc1の範囲を580~647と定義しているため、Ac1それ自体は、無次元量である。そのため、Ac1の単位を限定する必要はない。Ac1に単位を付与する場合、Ac1の単位は、℃である。Ac1の上限を640、635、630又は625としてもよく、その下限を585、590又は595としてもよい。
Ac1=720-25×C+22×Si-40×Mn-30×Ni+20×Cr+25×Mo‥‥式9
 ここで、各元素記号は、対応する化学元素の量%である。
 Ti/N
 鋼にTiを添加する場合、TiがNと結びついてTiNが生成する。この反応においてNに対するTiの比率が化学量論比(3.4)よりも小さいと、TiがN以外の化学元素(例えば、C)と結びつくのを抑止することができる。そのため、TiNが結晶粒微細化に与える効果を安定的に得ることができ、より低温靭性を高めることができる。そのため、鋼の化学組成がTi/N≦3.4を満たすと好ましい。
 次に、本実施形態に係る鋼板の組織について説明する。
 マルテンサイトとベイナイトとの合計量:99%~100%
 マルテンサイト及びベイナイトは、鋼板の強度を高める。そのため、マルテンサイトとベイナイトとの合計量が99%~100%であることが必要である。組織の残部には、フェライト、パーライト、残留オーステナイトが含まれる場合がある。この残部の量(フェライトとパーライトと残留オーステナイトとの合計量)は、0%~1%である。この残部の量を0.5%以下、0.2%以下又は0.1%以下としてもよい。すなわち、マルテンサイトとベイナイトとの合計量を99.5%以上、99.8%以上又は99.9%以上としてもよい。この残部の量が0%つまりマルテンサイト及びベイナイトの合計量が100%であると最も好ましい。
 金属組織には、マルテンサイトとベイナイトとパーライトとフェライトと残留オーステナイトとが含まれる可能性がある。本実施形態では、マルテンサイトとベイナイトとの合計量が99%以上であるため、これら2つの組織の合計量を直接特定するのは極めて困難である。そこで、残部の量、すなわち、フェライトとパーライトと残留オーステナイトとの合計量を予め下記の方法によって決定する。その後、これら3つの組織の合計量を100%から差し引くことによりマルテンサイトとベイナイトとの合計量が計算される。
 フェライトの量及びパーライトの量は、面積分率(面積%)により表現され、500倍の倍率で光学顕微鏡を通じて撮影された写真から決定される。試料は、鋼板のエッジから100mm超離れた位置の板厚中心部から採取する。この試料の縦断面(板厚方向及び圧延方向を含む面;巾方向に垂直な面)がナイタールによりエッチングされ、このエッチングされた表面から3視野が撮影される。なお、この3つの視野は、互いに重複する領域がないように決定される。例えば、フェライトの量は、光学顕微鏡写真中の白い色の領域(フェライトの領域)を積算した後、積算された面積を測定面積で除し、得られた面積分率を平均することにより決定される。
 残留オーステナイトの量は、体積分率(体積%)により表現され、X線回折法により測定される。試料は、鋼板のエッジから100mm超離れた位置の板厚中心部から採取する。この試料の縦断面(板厚方向及び圧延方向を含む面;巾方向に垂直な面)に対してX線を入射させ、得られたデータから残留オーステナイトの体積分率を決定する。このオーステナイトの体積分率(体積%)を、残留オーステナイトの面積分率(面積%)と同一視し、残留オーステナイトの面積分率を決定する。なお、残留オーステナイトの量が、痕跡程度であり、定量できない場合には、0%であると見なす。このため、マルテンサイトとベイナイトとの合計量も、面積分率(面積%)により表現される。なお、本実施形態に係る鋼板では、採用可能な化学組成範囲の大部分において定量可能な量の残留オーステナイトが生じる可能性は殆どない。このような場合には、X線回折法による測定を省略することができる。
 なお、板厚中心部(t/2部)は、鋼板表面から板厚方向に板厚の半分だけ離れた鋼板内の位置を意味する。この板厚中心部では、マルテンサイト及びベイナイトを生成させるのが最も困難である。そのため、板厚中心部において、マルテンサイトとベイナイトとの合計量が99%~100%であれば、鋼板表面からの深さ(厚さ)が1mm程度以下の脱炭層を除く鋼板全体にわたってマルテンサイトとベイナイトとの合計量が99%~100%であると見なすことができる。そのため、板厚中心部についてのみ組織を評価すれば十分である。
 本実施形態に係る鋼板の組織の例を図4に示す。この図では、フェライト及びパーライトが観察されない。X線回折法で残留オーステナイトが定量できなかった場合、フェライトとパーライトと残留オーステナイトとの合計量が0%であるため、マルテンサイトとベイナイトとの合計量が100%である。
 引張強度:780MPa~930MPa
 板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギー:69J以上
 本実施形態では、鋼板の引張強度が780MPa~930MPaであり、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーが69J以上であることが必要である。この理由を以下に説明する。
 焼戻し下部ベイナイトは、鋼板の強度と低温靭性とを最も効果的に高める。焼戻しマルテンサイトも、鋼板の強度と低温靭性とを高める。但し、焼戻しマルテンサイトは、焼戻し下部ベイナイトよりも鋼板の強度を高めるが、焼戻し下部ベイナイトほど鋼板の低温靭性を高めない。そのため、鋼板が、焼戻し下部ベイナイトからなる組織、もしくは、焼戻し下部ベイナイトと焼戻しマルテンサイトとからなる組織を有すると最も好ましい。焼戻し下部ベイナイトと焼戻しマルテンサイトとの合計量が十分であれば、鋼板が焼戻し上部ベイナイトを含んでもよい。但し、焼戻し上部ベイナイトは、焼戻し下部ベイナイトや焼戻しマルテンサイトほど鋼板の強度及び低温靭性を高めない。そのため、焼戻し上部ベイナイトの量はできる限り少ないと好ましい。一方、焼戻されないマルテンサイト(virgin (untempered) martensite)、焼き戻されない上部ベイナイト(virgin (untempered) upper bainite)及び焼戻されない下部ベイナイト(virgin (untempered) lower bainite)は、低温靭性を大きく低下させる。そのため、焼戻されないマルテンサイト、焼き戻されない上部ベイナイト及び焼戻されない下部ベイナイトをできる限り減らす必要がある。なお、本実施形態に係る鋼板では、鋼が焼き戻された場合において、後述の焼戻し温度がAc1を超えない限り、焼戻されないマルテンサイト、焼き戻されない上部ベイナイト及び焼戻されない下部ベイナイトは存在しない。つまり、焼戻されないマルテンサイト、焼き戻されない上部ベイナイト及び焼戻されない下部ベイナイトを生じさせないようにするためには、後述の焼戻し温度がAc1を超えないように熱処理(焼戻し)をおこなえばよい。焼戻されないマルテンサイト、焼き戻されない上部ベイナイト及び焼戻されない下部ベイナイトの合計は、0%であることが好ましい。
 したがって、上記のマルテンサイト及びベイナイト中の焼戻しマルテンサイト、焼戻し上部ベイナイト、焼戻し下部ベイナイト、焼戻されないマルテンサイト、焼き戻されない上部ベイナイト、焼戻されない下部ベイナイトの量を適切に制御する必要がある。しかしながら、組織分率を測定するために通常用いられる光学顕微鏡によって焼戻しマルテンサイト、焼戻し上部ベイナイト、焼戻し下部ベイナイト、焼戻されないマルテンサイト、焼き戻されない上部ベイナイト及び焼戻されない下部ベイナイトを判別することは極めて困難である。そのため、焼戻しマルテンサイト、焼戻し上部ベイナイト、焼戻し下部ベイナイト、焼戻されないマルテンサイト、焼き戻されない上部ベイナイト、焼戻されない下部ベイナイトの量を適切に測定することは実質的に不可能である。但し、鋼板の化学組成が上記条件を満たし、鋼板の引張強度が780MPa~930MPaであり、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーが69J以上であれば、これら6つの組織の量が適切であると見なすことができる。
 例えば、Tsは、焼入れ組織と比較的強い相関があり、図5に示すように、Tsの調整によって焼入れ組織(マルテンサイト、下部ベイナイト、上部ベイナイトの量)のかなりの部分が達成される。しかしながら、Tsのみによって、完全に焼入れ組織が表現されるわけではないし、焼戻し後の組織が決定されるわけでもない。さらには、化学組成のみでは、焼戻し後の組織(最終組織)中の析出物(例えば、炭化物や窒化物)の形態を表現することができないが、本実施形態では、析出物が非常に微細であったり、粒径分布が非常に広い場合もあったりするため、析出物の測定は極めて困難である。したがって、化学組成と引張強度とシャルピー衝撃試験との組み合わせにより上記6つの組織の量及び析出物の形態を表現する。したがって、上述のように、鋼板の引張強度が780MPa~930MPaであり、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーが69J以上であることが必要である。なお、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーの上限は、限定する必要がなく、400J以下であってもよい。なお、焼戻しマルテンサイト及び焼戻されないマルテンサイトは、マルテンサイトの下位概念であり、焼戻し上部ベイナイト、焼戻し下部ベイナイト、焼き戻されない上部ベイナイト及び焼戻されない下部ベイナイトは、ベイナイトの下位概念である。
 鋼板中の上記6つの組織の量及び析出物の形態をさらに適切にするためには、鋼板の引張強度が、930MPa未満であると好ましい。このような引張強度の好ましい上限は、最も好ましいものまで順に並べると、900MPa、880MPa、870MPaである。同様に、鋼板の降伏強度が、880MPa以下であると好ましい。このような降伏強度の好ましい上限は、最も好ましいものまで順に並べると、850MPa、830MPa、810MPaである。また、鋼板の降伏強度は、665MPa以上又は685MPa以上であると好ましい。
 引張強度は、JIS Z 2241に規定される引張試験により測定される。この試験では、JIS Z 2201に規定される14号引張試験片がt/4部から採取される。この14号引張試験片の長手方向(引張方向)は、T方向(Transverse Direction)、すなわち、圧延方向に垂直な方向(C方向)である。なお、t/4部は、鋼板表面から板厚方向に板厚の1/4だけ離れた鋼板内の位置を意味する。
 板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーは、JIS Z 2242に規定されるシャルピー衝撃試験により測定される。この試験では、JIS Z 2242に規定されるシャルピー衝撃試験片が板厚中心部から採取される。このシャルピー衝撃試験片の長手方向は、T方向(Transverse Direction)、すなわち、圧延方向に垂直な方向(C方向)である。また、Vノッチの深さ方向は、圧延方向である。なお、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーは、vE-60℃と略すこともある。
 板厚:200mm超かつ300mm以下
 規模の大きな将来の構造物の安全性をより高めるには、鋼板を製造及び取扱い可能な限りにおいて板厚ができる限り厚いと好ましい。そのため、板厚が200mm超であることが必要であり、板厚の好ましい下限は、最も好ましいものまで順に並べると、210mm、215mm、220mm、225mm、または、230mmである。一方、板厚が厚くなりすぎると、高い強度及び優れた低温靭性を有する鋼板を製造するのがより困難になることに加え、上述の化学組成が高い強度及び優れた低温靭性に対して与える効果が低下する。そのため、板厚が300mm以下であることが必要であり、板厚の好ましい上限は、最も好ましいものまで順に並べると、290mm、280mm、270mm、260mmである。上記の理由より、板厚が、200mm超かつ300mm以下であることが必要である。
 本実施形態に係る鋼板は、製造コストを低減する観点から下記実施形態に係る鋼板の製造方法により製造すると好適である。
 次に、一実施形態に係る鋼板(高張力鋼板)の製造方法について述べる。
 まず、上記化学組成を有する溶鋼を鋳造してスラブを得る。このスラブは、連続鋳造することによってあるいはインゴットを分塊圧延機で分塊することによって得られてもよい。
 熱間圧延前にスラブを1200℃以上の温度で均熱しない場合、鋼中に粗大なAlN(1.5μm以上のAlN)が残存し、この粗大なAlNが鋼板の靭性を低下させる。そのため、熱間圧延前にスラブを1200℃~1380℃で均熱する。板厚中心部においてAlNの粒径の最大値をより低減するためには、この均熱温度が1250℃以上であると好ましい。また、生産性をより改善するためには、均熱温度が1300℃以下であると好ましい。なお、1.5μm以上のAlNがほとんど存在しないことを判断することは、極めて困難である。例えば、透過電子顕微鏡を用いて1.5μm以上のAlNを観察することはできるが、透過電子顕微鏡によって観察される領域は非常に小さい。そのため、現実的な測定回数では、1.5μm以上のAlNがほとんど存在しないことを判断することは不可能である。一方で、1.5μm以上のAlNがほとんど存在しないことは、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギー(69J以上)によって確認することができる。
 均熱後、スラブを熱間圧延し、200mm超かつ300mm以下の板厚を有する熱延鋼板を中間製品として得る。目標とする板厚を除き、熱間圧延の条件は限定されない。鋼板表面の品質を良好に保ちつつ圧下が結晶粒径等に与える効果を板厚中心部に対して十分に加えるためには、950℃~1250℃の温度から熱間圧延を開始すると好ましい。
 マルテンサイトとベイナイトとの合計量が99%以上である組織を得るために、焼入れ処理において、鋼板をAc3℃以上の温度まで再加熱後300℃未満の温度まで水冷する。この焼入れ処理において鋼板をAc3℃以上の温度まで再加熱すると、鋼板の組織がオーステナイト単相に変わる。このオーステナイト単相の組織が焼き入れられると、オーステナイトがマルテンサイトもしくはベイナイトに変態し、鋼板の組織が均一になる。焼入れ処理では、十分な量のマルテンサイト及び下部ベイナイトを得るために、板厚中心部の温度が800℃から500℃まで低下する間の板厚中心部における平均水冷速度を0.4℃/s~0.8℃/sとする必要がある。なお、この板厚中心部における温度及び水冷速度は、伝熱計算により決定することができる。Ac3は、下記式10によって定義される。
Ac3=937.2-476.2×C+56×Si-19.7×Mn-16.3×Cu-26.6×Ni-4.9×Cr+38.1×Mo+124.8×V+198.4×Al+3315×B-19.1×Nb+136.3×Ti   ‥‥式10
 ここで、各元素記号は、対応する化学元素の量%である。
 熱延鋼板の靭性を高めるために、焼戻し処理において、焼入れ後の鋼板を580℃~Ac1℃の温度まで加熱し、その後580℃~Ac1℃の温度から300℃未満の温度まで水冷する。Ac1℃を超える温度まで鋼板を加熱すると、鋼板中にオーステナイトが生じ、焼戻し処理後に焼戻しされないベイナイトが残存するため、鋼板の靭性が低下する。一方、焼戻し温度が580℃未満であると、十分な量の焼戻し組織が得られなかったり、焼戻し脆化が生じたりする。そのため、鋼板の靭性が十分でない。したがって、焼戻し温度は、580℃~Ac1℃であることが必要である。なお、Ac1は、前述の式9で定義される。
 本実施形態では、熱延鋼板の板厚が200mmを超えるため、焼戻し処理における冷却中にも偏析が進行して脆化が生じる。この脆化が生じる温度域は、主に300℃~500℃である。そのため、熱間圧延後に鋼板がこの温度域をできる限り急速に通過することが必要である。したがって、焼戻し処理においては、板厚中心部の温度が500℃から300℃まで低下する間の板厚中心部における平均水冷速度を0.3℃/s~0.7℃/sとする必要がある。なお、この板厚中心部における温度及び水冷速度は、伝熱計算により決定することができる。また、鋼板表面における脆化を防ぐために、水冷を開始する際に鋼板表面の温度を580℃以上とする必要がある。鋼板表面の温度は、放射温度計で実測する。
 表1~3に示す化学組成を有する鋼を溶製して得られた鋼片を表5に示す均熱温度で均熱後、熱間圧延し、室温まで冷却して中間製品としての熱延鋼板を得た。さらに、表5に示す条件で、この鋼板を再び加熱し、室温まで焼入れた。その後、表6に示す条件で、焼入れられた鋼板を焼戻し、室温まで冷却して最終製品としての熱延鋼板(No.1~50)を得た。表5~6に、鋼片を均熱した温度と、焼入れのために鋼板を加熱した温度と、焼入れ中の800℃から500℃までの平均水冷速度と、焼戻し温度と、焼戻し直後に水冷が開始される温度(鋼板表面の温度)と、焼戻し直後の水冷中の500℃から300℃までの平均水冷速度とを示す。熱延鋼板の板厚は、210mm~270mmであった。
 その後、全ての鋼板のt/4部からJIS Z 2201に規定される14号引張試験片を長手方向がT方向と一致するように採取し、JIS Z 2241に規定される引張試験を実施した。加えて、全ての鋼板の板厚中心部からJIS Z 2242に規定されるシャルピー衝撃試験片を長手方向がT方向と一致するように採取し、試験を実施した。この結果を表7に示す。
 さらに、板厚中心部から試験片を採取し、この試験片をナイタールによりエッチングした。このエッチングされた試験片を圧延方向に直交する巾方向から光学顕微鏡を用いて観察した。光学顕微鏡の倍率は、500倍であり、測定視野は、3つであった。なお、視野が重複しないように圧延方向にのみ試料を移動させて3つの視野の光学顕微鏡写真を撮影した。これらの光学顕微鏡写真からフェライトならびにパーライトの面積分率を決定した。その結果、No.1~50の全てにおいて、パーライトが検出されず、パーライトの量は、0%であった。また、No.12、29、35及び41において、フェライトの量は、0.5%以上かつ1.0%未満であり、No.37及び38において、フェライトの量は、4.5%以上かつ5.0%未満であった。表4に、小数点第1位以下を四捨五入したフェライトの量を示す。
 別途板厚中心部から試験片を採取し、X線回折法によってオーステナイトの体積分率を測定し、この体積分率を面積分率と同一であるとした。X線回折法では、試験片の巾方向からX線を入射させた。No.1~50の全てにおいて残留オーステナイトが検出されたが、残留オーステナイトの量は、痕跡程度であったため、定量できなかった。そのため、残留オーステナイトの量は、No.1~50の全てにおいて0%であった。
 以下の表に於いて下線が付与された欄は、本発明の必須条件を満足しないことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 No.1~11では、最終製品が本発明の化学組成ならびに組織を有しており、優れた低温靭性と高い強度とを備えていた。これらNo.1~11から分かるように、Ti/Nを3.4以下まで低減すると、低温靭性をさらに高めることができる。
 No.12では、Cの量が低かったため、引張強さ及び衝撃吸収エネルギーが低かった。一方、No.13では、Cの量が高かったため、衝撃吸収エネルギーが非常に低かった。No.14では、Siの量が高かったため、衝撃吸収エネルギーが低かった。
 No.15では、Mnの量が低かったため、引張強度及び衝撃吸収エネルギーが低かった。一方で、No.16では、Mnの量が高かったため、衝撃吸収エネルギーが非常に低かった。
 No.17では、Pの量が高かったため、衝撃吸収エネルギーが低かった。No.18では、Sの量が高かったため、衝撃吸収エネルギーが低かった。
 No.19では、Cuの量が高かったため、衝撃吸収エネルギーが低かった。No.20では、Niの量が低かったため、衝撃吸収エネルギーが低かった。
 No.21では、Crの量が低かったため、引張強度ならびに衝撃吸収エネルギーが低かった。一方で、No.22では、Crの量が高かったため、衝撃吸収エネルギーが低かった。No.23では、Moの量が低かったため、引張強度及び衝撃吸収エネルギーが低かった。一方で、No.24では、Moの量が高かったため、衝撃吸収エネルギーが低かった。No.25では、Vの量が高かったため、衝撃吸収エネルギーが低かった。
 No.26では、Alの量が低かったため、引張強さならびに衝撃吸収エネルギーが低かった。一方で、No.27では、Alの量が高かったため、衝撃吸収エネルギーが低かった。No.28では、Nの量が低かったため、衝撃吸収エネルギーが低かった。一方で、No.29では、Nの量が高かったため、引張強さならびに衝撃吸収エネルギーが低かった。No.30では、Bの量が低かったため、引張強さおよび衝撃吸収エネルギーが低かった。一方で、No.31では、Bの量が過剰であったため、引張強さおよび衝撃吸収エネルギーが低かった。
 No.32では、Ac1が低かったため、衝撃吸収エネルギーが低かった。No.34及び36では、Tsが低かったため、衝撃吸収エネルギーが低かった。No.33及び35では、Tsが高かったため、引張強さおよび衝撃吸収エネルギーが低かった。No.37及び38では、Ceqが低かったため、引張強さおよび衝撃吸収エネルギーが低かった。No.39では、Ceqが高かったため、引張強さが過剰に高く、衝撃吸収エネルギーが低かった。No.40では、Ac1が低かったため、衝撃吸収エネルギーが低かった。このNo.40では、鋼が2相域で焼き戻されないように低い焼戻し温度が用いられた。
 No.41では、xが低かったため、衝撃吸収エネルギーが低かった。No.42では、xが高かったため、衝撃吸収エネルギーが低かった。No.43では、xに加え、βも低かったため、引張強度および衝撃吸収エネルギーが低かった。No.44では、xに加え、βも高かったため、衝撃吸収エネルギーが低かった。
 No.45では、焼戻し温度が580℃未満であったため、衝撃吸収エネルギーが低かった。
 No.46では、Ac1℃を超える温度で焼戻しを行ったため、衝撃吸収エネルギーが低かった。No.47では、水冷を開始する際の鋼板表面の温度が580℃未満であったため、衝撃吸収エネルギーが低かった。
 No.48では、スラブの均熱温度が1200℃未満であったため、衝撃吸収エネルギーが低かった。No.49では、焼入れ時に板厚中心部の温度が800℃から500℃まで低下する間の板厚中心部における水冷速度が0.4℃/s未満であった。そのため、引張強度および衝撃吸収エネルギーが低かった。No.50では、焼戻し後に板厚中心部の温度が500℃から300℃まで低下する間の板厚中心部における水冷速度が0.3℃/s未満であった。そのため、衝撃吸収エネルギーが低かった。
 本発明によれば、低温靭性に優れ、板厚が200mmを超える高張力鋼板を提供するので、より規模の大きな構造物の安全性をより高めることができる。そのため、本発明の産業上の利用可能性は大きい。

Claims (12)

  1.  質量%にて、
    C:0.08%~0.15%、
    Mn:0.80%~1.60%、
    Ni:3.00%~4.50%、
    Cr:0.50%~1.00%、
    Mo:0.50%~1.00%、
    Al:0.020%~0.085%、
    N:0.0020%~0.0070%、
    B:0.0005%~0.0020%、
    P:0.000%~0.010%、
    S:0.000%~0.003%、
    Si:0.00%~0.30%、
    Cu:0.00%~0.50%、
    V:0.000%~0.050%、
    Nb:0.000%~0.050%、
    Ti:0.000%~0.020%、
    Ca:0.0000%~0.0030%、
    Mg:0.0000%~0.0030%、
    REM:0.0000%~0.0030%、
    を含有し、残部がFe及び不純物からなる化学組成を有し、
     板厚tmmが200mm超かつ300mm以下であり、
     前記化学組成では、下記式1で定義されるTsが380~430であり、下記式2で定義されるCeqが0.80~1.05であり、下記式3で定義されるAc1が580~647であり、下記式4で定義されるxが46~90であり、
     面積%で、マルテンサイトとベイナイトとの合計量が99%~100%であり、
     引張強度が780MPa~930MPaであり、板厚中心部の-60℃でのシャルピー衝撃試験による吸収エネルギーが69J以上である
    ことを特徴とする鋼板。
    Ts=750-4240×(t/2)-1.4×(80×C+10×Mn+7×Ni+13×Cr+13×Mo-40×Si)・・・式1
    Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・式2
    Ac1=720-25×C+22×Si-40×Mn-30×Ni+20×Cr+25×Mo・・・式3
    x=C1/2×(1+0.64×Si)×(1+4.10×Mn)×(1+0.27×Cu)×(1+0.52×Ni)×(1+2.33×Cr)×(1+3.14×Mo)・・・式4
  2.  前記化学組成が、さらに、
     Ti/N≦3.4
    を満たす
    ことを特徴とする請求項1に記載の鋼板。
  3.  前記化学組成が、さらに、
     C:0.09%~0.13%
    を満たすことを特徴とする請求項1または2に記載の鋼板。
  4.  前記化学組成が、さらに、
     Mn:0.80%~1.30%
    を満たすことを特徴とする請求項1~3のいずれか一項に記載の鋼板。
  5.  前記化学組成が、さらに、
     Ni:3.60%~4.50%
    を満たすことを特徴とする請求項1~4のいずれか一項に記載の鋼板。
  6.  前記化学組成が、さらに、
     Cr:0.75%~1.00%
    を満たすことを特徴とする請求項1~5のいずれか一項に記載の鋼板。
  7.  前記化学組成が、さらに、
     Mo:0.70%~1.00%
    を満たすことを特徴とする請求項1~6のいずれか一項に記載の鋼板。
  8.  前記化学組成が、さらに、
     Si:0.00%~0.10%
    を満たすことを特徴とする請求項1~7のいずれか一項に記載の鋼板。
  9.  前記化学組成が、さらに、
     V:0.020%~0.050%
    を満たすことを特徴とする請求項1~8のいずれか一項に記載の鋼板。
  10.  前記化学組成が、さらに、
     Ti:0.000%~0.004%
    を満たすことを特徴とする請求項1~9のいずれか一項に記載の鋼板。
  11.  前記化学組成が、さらに、
     前記Tsが395~415であるという条件
    を満たすことを特徴とする請求項1~10のいずれか一項に記載の鋼板。
  12.  前記化学組成が、さらに、
     前記Ceqが0.85~1.05であるという条件
    を満たすことを特徴とする請求項1~11のいずれか一項に記載の鋼板。
PCT/JP2016/065982 2016-05-31 2016-05-31 低温靭性に優れた高張力鋼板 WO2017208329A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187021618A KR102184966B1 (ko) 2016-05-31 2016-05-31 저온 인성이 우수한 고장력 강판
EP16903957.5A EP3467130B1 (en) 2016-05-31 2016-05-31 High tensile strength steel plate having excellent low temperature toughness
JP2018520233A JP6631702B2 (ja) 2016-05-31 2016-05-31 低温靭性に優れた高張力鋼板
CN201680080661.7A CN108603258B (zh) 2016-05-31 2016-05-31 低温韧性优异的高强度钢板
PCT/JP2016/065982 WO2017208329A1 (ja) 2016-05-31 2016-05-31 低温靭性に優れた高張力鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065982 WO2017208329A1 (ja) 2016-05-31 2016-05-31 低温靭性に優れた高張力鋼板

Publications (1)

Publication Number Publication Date
WO2017208329A1 true WO2017208329A1 (ja) 2017-12-07

Family

ID=60478167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065982 WO2017208329A1 (ja) 2016-05-31 2016-05-31 低温靭性に優れた高張力鋼板

Country Status (5)

Country Link
EP (1) EP3467130B1 (ja)
JP (1) JP6631702B2 (ja)
KR (1) KR102184966B1 (ja)
CN (1) CN108603258B (ja)
WO (1) WO2017208329A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200682B (zh) * 2022-12-14 2024-04-16 鞍钢股份有限公司 一种高强度高韧性低温海工钢板及其制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240353A (ja) 1993-02-16 1994-08-30 Sumitomo Metal Ind Ltd 溶接性と低温靱性に優れた780MPa級高張力鋼の製造方法
JPH08143955A (ja) * 1994-11-18 1996-06-04 Nippon Steel Corp 板厚方向に強度が均一な厚肉高張力鋼の製造方法
JP2662409B2 (ja) 1988-02-26 1997-10-15 新日本製鐵株式会社 低温靭性の優れた極厚調質高張力鋼板の製造方法
JPH10121131A (ja) * 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd 脆性破壊伝播停止特性と溶接性に優れた厚肉高張力鋼板の製造方法
JPH10265846A (ja) 1997-03-25 1998-10-06 Kawasaki Steel Corp 靱性に優れた連続鋳造製調質型高張力鋼板の製造方法
JP3327065B2 (ja) 1995-08-31 2002-09-24 住友金属工業株式会社 脆性亀裂伝播停止特性に優れた調質型高張力鋼板の製造方法
JP2011202214A (ja) 2010-03-25 2011-10-13 Jfe Steel Corp 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法
JP2013091845A (ja) 2011-10-03 2013-05-16 Jfe Steel Corp 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP2013104065A (ja) 2011-11-10 2013-05-30 Jfe Steel Corp 溶接部の低温靭性に優れる厚肉高張力鋼板およびその製造方法
JP5552967B2 (ja) 2010-08-30 2014-07-16 Jfeスチール株式会社 溶接部の低温靭性に優れる厚肉高張力鋼板およびその製造方法
JP5590271B1 (ja) 2012-12-28 2014-09-17 新日鐵住金株式会社 降伏強度670〜870N/mm2、及び引張強さ780〜940N/mm2を有する鋼板
WO2014141697A1 (ja) * 2013-03-15 2014-09-18 Jfeスチール株式会社 厚肉高靭性高張力鋼板およびその製造方法
WO2015162939A1 (ja) * 2014-04-24 2015-10-29 Jfeスチール株式会社 厚鋼板及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552967Y2 (ja) 1976-04-27 1980-12-09
US5545269A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
JP2010106287A (ja) * 2008-10-28 2010-05-13 Jfe Steel Corp 疲労特性に優れた高張力鋼材およびその製造方法
JP2010121191A (ja) * 2008-11-21 2010-06-03 Nippon Steel Corp 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
CN106102940B (zh) * 2014-03-20 2018-05-01 杰富意钢铁株式会社 厚壁高韧性高张力钢板及其制造方法
JP5979338B1 (ja) 2014-11-18 2016-08-24 Jfeスチール株式会社 材質均一性に優れた厚肉高靭性高張力鋼板およびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662409B2 (ja) 1988-02-26 1997-10-15 新日本製鐵株式会社 低温靭性の優れた極厚調質高張力鋼板の製造方法
JPH06240353A (ja) 1993-02-16 1994-08-30 Sumitomo Metal Ind Ltd 溶接性と低温靱性に優れた780MPa級高張力鋼の製造方法
JPH08143955A (ja) * 1994-11-18 1996-06-04 Nippon Steel Corp 板厚方向に強度が均一な厚肉高張力鋼の製造方法
JP3327065B2 (ja) 1995-08-31 2002-09-24 住友金属工業株式会社 脆性亀裂伝播停止特性に優れた調質型高張力鋼板の製造方法
JP3336877B2 (ja) 1996-10-11 2002-10-21 住友金属工業株式会社 脆性破壊伝播停止特性と溶接性に優れた厚肉高張力鋼板の製造方法
JPH10121131A (ja) * 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd 脆性破壊伝播停止特性と溶接性に優れた厚肉高張力鋼板の製造方法
JPH10265846A (ja) 1997-03-25 1998-10-06 Kawasaki Steel Corp 靱性に優れた連続鋳造製調質型高張力鋼板の製造方法
JP2011202214A (ja) 2010-03-25 2011-10-13 Jfe Steel Corp 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法
JP5552967B2 (ja) 2010-08-30 2014-07-16 Jfeスチール株式会社 溶接部の低温靭性に優れる厚肉高張力鋼板およびその製造方法
JP2013091845A (ja) 2011-10-03 2013-05-16 Jfe Steel Corp 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP2013104065A (ja) 2011-11-10 2013-05-30 Jfe Steel Corp 溶接部の低温靭性に優れる厚肉高張力鋼板およびその製造方法
JP5590271B1 (ja) 2012-12-28 2014-09-17 新日鐵住金株式会社 降伏強度670〜870N/mm2、及び引張強さ780〜940N/mm2を有する鋼板
WO2014141697A1 (ja) * 2013-03-15 2014-09-18 Jfeスチール株式会社 厚肉高靭性高張力鋼板およびその製造方法
WO2015162939A1 (ja) * 2014-04-24 2015-10-29 Jfeスチール株式会社 厚鋼板及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYOSUKE HONMA: "Effect of Ni on the Behavior of Austenite Grain in Ni-Cr-Mo-V Steels", TETSU-TO-HAGANE, vol. 58, no. 1, 1972, pages 119
SHOICHI MATSUDA ET AL.: "Reverse Transformation of Low-carbon Low Alloy Steels", TETSU-TO-HAGANE, vol. 60, no. 2, 1974, pages 60

Also Published As

Publication number Publication date
JP6631702B2 (ja) 2020-01-15
EP3467130A1 (en) 2019-04-10
CN108603258A (zh) 2018-09-28
EP3467130B1 (en) 2021-04-07
EP3467130A4 (en) 2019-10-30
KR102184966B1 (ko) 2020-12-01
JPWO2017208329A1 (ja) 2018-11-29
KR20180096782A (ko) 2018-08-29
CN108603258B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
KR101892839B1 (ko) 후강판 및 그 제조 방법
KR101828199B1 (ko) 내마모 강판 및 그 제조 방법
KR101033711B1 (ko) 고온 내마모성 및 굽힘 가공성이 우수한 내마모 강판 및 그 제조 방법
KR100920536B1 (ko) 용접성 및 가스 절단성이 우수한 고장력 내화강 및 그 제조방법
KR20160072099A (ko) 고경도 열간압연된 강 제품 및 이를 제조하는 방법
JP6540764B2 (ja) 耐摩耗鋼板およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
JP6135697B2 (ja) 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐摩耗鋼板およびその製造方法
TWI742812B (zh) 耐磨耗鋼板及其製造方法
JP5692305B2 (ja) 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法
WO2021241606A1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP5630321B2 (ja) 靭性に優れる高張力鋼板とその製造方法
JP6733269B2 (ja) 表層と板厚中心部の硬度に優れ、かつ表層と中心の硬度差の小さい板厚200mm超の厚鋼板およびその製造方法
CN108368589B (zh) 具有优异的韧性和耐切割开裂性的高硬度耐磨钢及其制造方法
JP6582590B2 (ja) Lpg貯蔵タンク用鋼板およびその製造方法
KR102115277B1 (ko) 강판 및 그 제조 방법
JPWO2019050010A1 (ja) 鋼板およびその製造方法
JP6631702B2 (ja) 低温靭性に優れた高張力鋼板
JP6838422B2 (ja) 高強度鋼板およびその製造方法
WO2021241605A1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
WO2021241604A1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2019173081A (ja) 板厚中心部の硬度および低温靭性に優れた板厚200mm超の高硬度鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018520233

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187021618

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021618

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016903957

Country of ref document: EP

Effective date: 20190102