WO2017204235A1 - 微小粒子を内包する三次元薄膜構造体およびその製造方法 - Google Patents

微小粒子を内包する三次元薄膜構造体およびその製造方法 Download PDF

Info

Publication number
WO2017204235A1
WO2017204235A1 PCT/JP2017/019302 JP2017019302W WO2017204235A1 WO 2017204235 A1 WO2017204235 A1 WO 2017204235A1 JP 2017019302 W JP2017019302 W JP 2017019302W WO 2017204235 A1 WO2017204235 A1 WO 2017204235A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional structure
thin film
cells
layer
polymer
Prior art date
Application number
PCT/JP2017/019302
Other languages
English (en)
French (fr)
Inventor
哲彦 手島
祐子 上野
智 佐々木
信吾 塚田
中島 寛
東一郎 後藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP17802821.3A priority Critical patent/EP3447120B1/en
Priority to US16/090,976 priority patent/US20190136172A1/en
Priority to CN201780031444.3A priority patent/CN109153961B/zh
Priority to JP2018519572A priority patent/JP6714080B2/ja
Publication of WO2017204235A1 publication Critical patent/WO2017204235A1/ja
Priority to US18/367,260 priority patent/US20230416665A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/30Constructional details, e.g. recesses, hinges biodegradable
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a three-dimensional thin film structure in which fine particles are encapsulated in a polymer thin film structure and a method for producing the same.
  • the present invention relates to a cylindrical structure capable of isolating and culturing adherent cells and transporting them by encapsulating adherent cells, and a method for producing the same.
  • the technology for manipulating cells derived from living tissues at the single cell level is required not only for basic research in cell biology, but also in a wide range of fields such as regenerative medicine and drug discovery screening.
  • the technology for manipulating adhesive cells such as epithelial cells, nerve cells, and hepatocytes that make up tissues in vivo is not only a cell sorter for cell sorting / analysis, but also by assembling cells in vitro to create a pseudo three-dimensional It is also used to construct living tissue. By constructing a pseudo three-dimensional living tissue, it becomes possible to analyze the dynamics of the target living tissue, test the sensitivity to drugs, and prepare a carrier for organ reconstitution and cell transplantation.
  • Non-patent Document 1 a technique of manufacturing a minute dynamic substrate to which adherent cells can adhere using a microfabrication technique and culturing and manipulating cells on the surface.
  • Non-patent Document 2 By manufacturing a cylindrical structure using self-organizing force and allowing cells to adhere to the inside, it is possible to operate the cells while maintaining the adhesiveness of the cells.
  • Non-Patent Document 2 By manufacturing a cylindrical structure using self-organizing force and allowing cells to adhere to the inside, it is possible to operate the cells while maintaining the adhesiveness of the cells.
  • Non-Patent Document 2 The cylindrical structure as described above is manufactured using a microfabrication process such as a photolithography technique.
  • a thin film of an inorganic substance such as a metal or a silicon compound formed by crystal growth or vapor deposition is generally used as the material of the substrate or the material of the sacrificial layer used when releasing the substrate.
  • Such a thin film of an inorganic substance has a structure in which thin film layers made of plural kinds of elements are in close contact with each other. Therefore, a stress distribution is generated in the planar film due to the gradient of the lattice constant in the thickness direction, and the thin film is bent to form a three-dimensional shape.
  • a metal thin film generally has low biocompatibility, it is difficult to contact cells for a long period of time, and it is not suitable as a cell adhesion substrate.
  • an etching solution having high cytotoxicity is used in the processing process and the lift-off process, it is necessary to clean the substrate thoroughly after manufacturing the three-dimensional structure, and the cells are introduced into the interior after the cleaning. Therefore, it is difficult to operate with the substrate isolated.
  • the introduction of cells into the cylindrical structure depends on the accidental invasion of cells into the cylindrical structure, there is a problem that the success rate of cell encapsulation is low.
  • an object of the present invention is to provide a three-dimensional thin film structure that has high introduction efficiency of microparticles such as cells and that can culture cells and the like in the internal space for a long period of time. .
  • the present invention includes the following aspects.
  • a three-dimensional structure composed of a plurality of polymer films, wherein microparticles are encapsulated in the internal space of the three-dimensional structure, and the layers of the plurality of polymer films are different from each other.
  • (3) Of the layers of the plurality of polymer films, the layer in contact with the outside of the three-dimensional structure is made of a polymer material having the largest swelling rate. (1) or (2) The three-dimensional structure described.
  • each layer of the plurality of polymer films is made of a polymer material having high biocompatibility.
  • the microparticle is a cell.
  • the three-dimensional structure according to any one of (5) to (7), wherein the cells are adherent cells and are adhered to the polymer film.
  • Three-dimensional structure. (10) A cell comprising the three-dimensional structure according to any one of (5) to (9) and a cell existing outside the three-dimensional structure, and being encapsulated in the three-dimensional structure Forming a structure extending to the outside of the three-dimensional structure, and between cells contained in the three-dimensional structure and cells existing outside the three-dimensional structure.
  • a method for producing a three-dimensional structure in which fine particles are encapsulated the step (a) of forming a multi-layered polymer film, and microparticles on the surface of the multi-layered polymer film And (c) a step of generating a stress distribution in the thickness direction in the plurality of polymer films to form a three-dimensional structure in a self-organized manner in the plurality of polymer films. And a method for manufacturing a three-dimensional structure.
  • the method further includes a step of forming a sacrificial layer on the substrate, wherein the step (a) includes laminating polymer materials having different swelling ratios on the sacrificial layer to form a plurality of polymer films.
  • the step (b) is a step of adding a suspension containing the microparticles to the multi-layered polymer film, and the step (c) decomposes the sacrificial layer.
  • the manufacturing method of the three-dimensional structure as described in (11) which is the process of releasing the said polymer film from the said board
  • a three-dimensional thin film structure and a method for producing the same which have a high efficiency of introducing microparticles such as cells and can cultivate cells and the like in the internal space for a long period of time.
  • An example of a process diagram for forming a three-dimensional thin film structure including fine particles An example of a process diagram for forming a three-dimensional thin film structure including fine particles. An example of a process diagram for forming a three-dimensional thin film structure including fine particles. An example of a process diagram for forming a three-dimensional thin film structure including fine particles. An example of a process diagram for forming a three-dimensional thin film structure including fine particles. An example of a process diagram for forming a three-dimensional thin film structure including fine particles. An example of a process diagram for forming a three-dimensional thin film structure including fine particles. The electron microscope image of a thin film layer is shown. It is an electron microscope (SEM) image of the thin film pattern formed using the lithography technique.
  • SEM electron microscope
  • the electron microscope image of a thin film layer is shown. It is an electron microscope (SEM) image of the thin film pattern formed using the lithography technique. The electron microscope image of a thin film layer is shown. It is a SEM image of a section after cutting a thin film layer with a focused ion beam. The result of the energy dispersive X-ray analysis of a thin film layer is shown. It is a result of the energy dispersive X-ray analysis of each layer of the thin film layer and the substrate 13.
  • Figure 3 shows self-assembly of a rectangular thin film into a cylindrical structure after addition of an ethylenediaminetetraacetic acid (EDTA) solution.
  • EDTA ethylenediaminetetraacetic acid
  • Figure 3 shows self-assembly of a rectangular thin film into a cylindrical structure after addition of an ethylenediaminetetraacetic acid (EDTA) solution. It is a phase-contrast microscope image which shows the mode of the self-assembly to a cylindrical structure. This is the case when there are cells on the thin film.
  • Figure 3 shows self-assembly of a rectangular thin film into a cylindrical structure after addition of an ethylenediaminetetraacetic acid (EDTA) solution.
  • EDTA ethylenediaminetetraacetic acid
  • the correlation with the curvature radius of a cylindrical structure and the thickness of a parylene layer is shown.
  • the microscope image of the cylindrical structure which included the cell is shown. It is a phase-contrast microscope image of the cylindrical structure which included the Chinese hamster origin ovary (CHO) cell.
  • the microscope image of the cylindrical structure which included the cell is shown.
  • the microscope image of the cylindrical structure which included the cell is shown.
  • the microscope image of the cylindrical structure which included the cell is shown.
  • An example of producing a cylindrical structure including primary neurons is shown. It is a phase-contrast microscope image of the culture
  • An example of producing a cylindrical structure including primary neurons is shown. It is the confocal microscope image which observed the change of the fluorescence intensity of the cell inside and outside the cylindrical structure at the time of performing cell stimulation by adding potassium chloride.
  • An example of producing a cylindrical structure containing primary cardiomyocytes is shown. It is a phase-contrast microscope image of the fiber-like structure produced by culture
  • An example of producing a cylindrical structure containing primary cardiomyocytes is shown. The upper figure is a phase-contrast microscope image (upper) of the cylindrical structure containing the primary cardiomyocytes, and an image (lower) showing the amount of change of the primary cardiomyocytes with respect to the rest when pulsating.
  • the image was created using the image processing program ImageJ provided by National Institute of Health (NIH).
  • the lower graph is a graph showing the change over time of the amount of change (intensity) detected in the upper diagram.
  • An example of producing a cylindrical structure containing primary cardiomyocytes is shown.
  • the upper figure is a confocal microscope image in which changes in the fluorescence intensity of cells inside and outside the cylindrical structure are observed when potassium chloride is added to stimulate the cells.
  • the lower graph is a graph showing the change over time of the fluorescence intensity detected in the upper graph. This is an example of manufacturing a three-dimensional structure manufactured using thin films having various two-dimensional shapes.
  • a three-dimensional structure having a spherical gripping gripper structure is formed from a thin film having a radial flower pattern.
  • a three-dimensional structure having a T-shaped structure is produced from a thin film having a cross shape by bending only in one direction of the cross shape.
  • a cross-shaped thin film is connected to a rectangular thin film to produce a three-dimensional structure having a three-dimensional human structure via a joint portion that is not bent like a human mold.
  • the radius of curvature of the tubular structure [rho, diagrams thickness t p, the thickness t s of the silk fibroin gel layer, illustrating a lateral width w, and the long axis direction of the thin film length l of a thin film of parylene layer. It shows the radius of curvature of the tubular structure [rho, the correlation between the thickness t p of the parylene layer. It shows the radius of curvature of the tubular structure [rho, the correlation between the thickness t p of the parylene layer.
  • Black square shows the case where the thickness t s of the silk fibroin gel layer and 100 nm
  • black circles indicate the case of a 210nm thickness t s of the silk fibroin gel layer.
  • the correlation between the curvature radius ⁇ of the cylindrical structure and the lateral width w of the thin film is shown.
  • the correlation between the radius of curvature ⁇ of the cylindrical structure and the length l in the major axis direction of the thin film is shown.
  • the three-dimensional structure of the present invention is a three-dimensional structure formed by enclosing fine particles in the internal space of a three-dimensional structure composed of a plurality of polymer films. Further, in one aspect, the three-dimensional structure of the present invention is a three-dimensional structure composed of a plurality of polymer films, and microparticles are included in the internal space of the three-dimensional structure, Each layer of the multi-layer polymer film is a three-dimensional structure having different mechanical strengths.
  • the three-dimensional structure of the present invention will be described below with reference to the drawings showing a preferred embodiment of the present invention.
  • FIG. 1 is a perspective view of a three-dimensional structure that is one embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the three-dimensional structure that is one embodiment of the present invention.
  • 100 is a three-dimensional structure
  • 1 is a thin film
  • 10 is a first thin film layer
  • 11 is a second thin film layer
  • 20 is a microparticle such as a cell
  • 21 is an adhesion protein.
  • the three-dimensional structure 100 has a structure in which microparticles 20 are included in the internal space of the three-dimensional structure formed by the thin film 1.
  • the three-dimensional structure 100 is a cylindrical structure, but the three-dimensional structure of the present invention is not limited to the cylindrical structure.
  • various three-dimensional structures such as a structure for living tissue can be used.
  • the thin film 1 includes a first thin film layer 10 and a second thin film layer 11.
  • the thin film 1 is not limited to what consists of two layers, You may consist of three or more thin film layers.
  • the number of thin film layers constituting the thin film 1 is not particularly limited, but is preferably within 5 layers, more preferably within 3 layers, and even more preferably 2 layers.
  • the thin film layer 10 and the thin film layer 11 constituting the thin film 1 are made of a polymer material having high biocompatibility.
  • the polymer material constituting the thin film layer 10 and the thin film layer 11 is not particularly limited as long as it has high biocompatibility, and either a synthetic polymer or a biopolymer can be used.
  • Synthetic polymers include, for example, polyethylene glycol (PEG), polyacrylamide, polydimethylsiloxane (PDMS), (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonic acid) (PEDOT-PSS), polypyrrole -Based polymers, polyaniline-based polymers, polyparaxylene (parylene), and the like.
  • the biopolymer include polysaccharides; proteins such as gelatin and silk fibroin; extracellular matrices such as chitosan and collagen.
  • a highly transparent polymer material may be used for the thin film layer 10 and the thin film layer 11. If a highly transparent polymer material is used for the thin film layer 10 and the thin film layer 11, the optical path is not blocked during observation with a microscope, so that the structure can be used in all types of microscopes, upright and inverted types. The inside can be observed. In addition, if a super-resolution microscope is used, it becomes possible to observe the behavior of finer cells and the activity of proteins in the cells with fluorescence. When the microparticle 20 is an adhesive cell, it is preferable to use a cell-adhesive polymer material for the thin film layer 11.
  • the thin film layer 10 and the thin film layer 11 have different mechanical strengths. Examples of the mechanical strength include elastic modulus. Therefore, the thin film layer 10 and the thin film layer 11 are preferably formed using polymer materials having different swelling rates. For example, when the three-dimensional structure 100 is a cylindrical structure, it is preferable to use a thin film layer 10 with a high swelling rate and a thin film layer 11 with a low swelling rate. Examples of such a combination of thin film layers include those in which the thin film layer 10 is made of silk fibroin gel and the thin film layer 11 is made of parylene. The present invention is not limited to this, and conversely, a thin film having a low swelling ratio may be used for the thin film layer 10 and a thin film layer 11 having a high swelling ratio may be used. Further, when the thin film 1 is composed of three or more thin film layers, each thin film layer is preferably composed of polymer materials having different swelling rates.
  • the thickness of the thin film 1 formed by a plurality of thin film layers is not particularly limited, but it is preferable to have a thickness that does not hinder the permeability of oxygen and substances to the internal space of the three-dimensional structure.
  • the thickness of the thin film 1 can be preferably 15 to 400 nm, more preferably 20 to 300 nm, and still more preferably 20 to 200 nm.
  • a cell having a diameter of 10 ⁇ m can be suitably included, and the bending of the thin film 1 is not hindered.
  • the thickness of the thin film layer 10 can be preferably 10 to 350 nm, more preferably 15 to 250 nm, still more preferably 50 to 200 nm.
  • the thickness of the layer 11 is preferably 5 to 200 nm, more preferably 10 to 150 nm, and still more preferably 20 to 100 nm.
  • the surface of the thin film 1 may be formed with an arbitrary two-dimensional plane pattern.
  • an arbitrary two-dimensional shape can be formed by patterning using a lithography technique.
  • the size of the pattern is preferably 50 ⁇ m or more.
  • an arbitrary two-dimensional pattern may be formed on the surface of the thin film 1 according to the cell type and the number of cells to be included.
  • a pattern is formed on the surface of the thin film 1 so that the internal space shape of the three-dimensional structure 100 becomes a biological tissue-like structure according to the type of cell. May be formed.
  • a pattern can be formed on the surface of the thin film 1 so as to have an internal space shape imitating a biological tissue such as a hollow vascular tissue or a fiber-like nerve tissue composed of epithelial cells.
  • the fine particles 20 included in the three-dimensional structure 100 are not particularly limited, and may be fine particles having a size of 1 ⁇ m or less.
  • the microparticle 20 include animal and plant cells, bacteria, parasites, microbeads, microbubbles, spherical lipid bilayers (liposomes), and nanoparticles.
  • animal and plant cells preferable examples include adherent cells.
  • adhesive cells include, but are not limited to, nerve cells, cardiomyocytes, and the like.
  • the microparticles 20 are adhered to the thin film 1 by the modified protein layer 21.
  • the surface of the thin film layer 11 may be modified with a material having high affinity with the fine particles 20.
  • the surface modification of the thin film layer 11 can be performed using an extracellular matrix such as fibronectin, collagen, laminin, and the like. By applying such surface modification to the thin film layer 11, cell adhesion can be maintained for a longer period of time.
  • the extracellular matrix or the like used for surface modification of the thin film layer 11 is not particularly limited, and an appropriate extracellular matrix or the like can be appropriately selected according to the type of adhesive cells.
  • fibronectin or the like can be suitably used for cell lines of cultured cells, and laminin or the like can be suitably used for nerve cells.
  • the amount of the fine particles 20 to be included in the three-dimensional structure 100 is not particularly limited, and an appropriate amount can be appropriately included depending on the application.
  • the microparticles 20 are cells
  • the cells encapsulated in the three-dimensional structure 100 grow according to the internal space shape of the three-dimensional structure 100. Therefore, by making the internal space shape of the three-dimensional structure 100 a biological tissue-like structure, the encapsulated cells grow and form a biological tissue-like structure.
  • the thin film constituting the three-dimensional structure is formed of a high biocompatible polymer material, long-term cell culture can be performed.
  • the three-dimensional structure 100 in which cells are encapsulated as the microparticles 20 is moved and cultured on a culture substrate in which cells have been cultured in advance, the three-dimensional structure from the inside of the three-dimensional structure 100 is obtained.
  • Cell projections, axons, cell bodies, etc. extend outside the 100. Through these cell processes, axons, cell bodies, etc., cell-cell interactions can occur between cells encapsulated in the three-dimensional structure 100 and cells existing outside the three-dimensional structure. .
  • the constituent thin film is made of a polymer material having high biocompatibility
  • cells can be cultured on the thin film.
  • a conventional thin film three-dimensional structure in that it can be systematically included in a three-dimensional thin film structure, and (iii) when the cells are included, the included cells can function as a biological tissue. Is different.
  • the three-dimensional structure of the present invention can cause the encapsulated cells to function as a living tissue, and can form a living tissue-like structure in the encapsulated cells.
  • Cells inside the three-dimensional structure can also interact with cells outside the three-dimensional structure. Therefore, the three-dimensional structure encapsulating cells is a living tissue-like structure, a transplanted tissue (graft) for repairing nerve tissue such as hemorrhoids and spinal cord injury, repair of myocardial tissue damaged by myocardial infarction, etc. It can be applied to a transplanted tissue (graft) for the purpose. Further, it can be applied to drug screening and the like as a pseudo biological tissue for testing drug response.
  • graft transplanted tissue
  • the target cell can be captured, the target cell can be adsorbed on the tissue surface, and the actuator function can be used to hold the target cell. It is also possible to obtain a three-dimensional structure. Furthermore, the three-dimensional structure of the present invention can be applied as an element for an in-vivo implant device.
  • the three-dimensional structure of the present invention is made of a polymer material. Although a polymer material can form a thin film because of its low rigidity, it is difficult to process the formed thin film and form a strength distribution. For this reason, there are still few reports on techniques for producing three-dimensional shapes using polymer thin films.
  • the polymer thin film is self-organized by forming a polymer thin film composed of a plurality of layers by using a lithographic technique or the like and creating a structure that generates a stress distribution in the thickness direction inside the polymer thin film.
  • the phenomenon of being assembled into a three-dimensional shape was used. That is, one embodiment of the present invention is a method for manufacturing a three-dimensional structure including fine particles, which includes a step of forming a multi-layer polymer film, and a surface of the multi-layer polymer film. A step of floating fine particles, and a step of generating a stress distribution in a thickness direction in the plurality of polymer films to form a three-dimensional structure in a self-organized manner in the plurality of polymer films. Including a three-dimensional structure manufacturing method.
  • the method for producing a three-dimensional structure according to the present invention will be described with reference to the drawings showing a preferred embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of bending due to a laminated structure of two polymer thin films having different swelling rates.
  • the reference numerals in the figure are the same as those in FIGS.
  • FIG. 3 the assembly of a self-organized three-dimensional shape using a plurality of polymer thin films having different swelling rates in each layer will be described.
  • the thin film layer 10 and the thin film layer 11 are formed of polymer materials having different swelling rates.
  • the swelling rate of the thin film layer 10 is larger than the swelling rate of the thin film layer 11. Therefore, when the thin film 1 composed of the thin film layer 10 and the thin film layer 11 is immersed in an aqueous solution, each layer absorbs water and swells, but the amount of change in volume due to swelling is smaller in the thin film layer 10 than in the thin film layer 11. growing.
  • the thin film 1 is bent so that the thin film layer 11 is an internal layer and the thin film layer 10 is an external layer, thereby forming a three-dimensional structure.
  • FIG. 4 is a conceptual diagram showing one mode of self-assembly into a three-dimensional shape using a thin film having a two-layer structure and embedding of microparticles.
  • 5A to 5J are examples of a process diagram for forming a three-dimensional structure including fine particles.
  • 12 is a sacrificial layer
  • 13 is a substrate
  • 30 is a photoresist film.
  • Other reference numerals are the same as those in FIGS. 1 and 2.
  • the sacrificial layer 12 formed between the thin film 1 and the substrate 13 is used to release the thin film 1 from the substrate 13 to form a three-dimensional structure. Therefore, first, the sacrificial layer 12 is formed on the substrate 13 as shown in FIG. 5A.
  • the method for forming the sacrificial layer 12 is not particularly limited, and spin coating, chemical vapor deposition (CVD), ink jet printing, vapor deposition, electrospray, and the like can be used.
  • the material of the substrate 13 is not particularly limited, but a material having a high surface flatness is preferably used. Further, when the three-dimensional structure 100 containing cells is observed on the substrate 13 with a fluorescence microscope, it is preferable to use a material that does not interfere with the fluorescence intensity of the cells with the fluorescence microscope. Moreover, it is preferable that the absorption band of the wavelength in a spectrophotometer and an infrared spectrometer does not overlap with the thin film layer 10. Examples of such a material include silicon, soda glass, quartz, magnesium oxide, and sapphire. In the example of FIGS. 5A to 5J, a glass substrate is used as the substrate 13.
  • the thickness of the substrate 13 is not particularly limited, and can be, for example, 50 to 200 ⁇ m.
  • the surface of the substrate 13 may be modified with PEG, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, or the like for the purpose of suppressing nonspecific adsorption of cells.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • the material of the sacrificial layer 12 is not particularly limited, but it is preferable to use a physical gel capable of gel-sol transition. Moreover, it is preferable that the stimulus used for the gel-sol transition or light does not exhibit cytotoxicity.
  • gels include gels that are decomposed by changes in light, heat, and pH. Specific examples include poly (N-isopropylacrylamide) (PNIPAM) and azobenzene modified polymer gel.
  • action of a chelating agent or an enzyme can also be used. Examples of such a gel include calcium alginate gel. In the example of FIGS. 5A to 5J, calcium alginate gel is used as the sacrificial layer 12.
  • the thickness of the sacrificial layer 12 is not particularly limited, and can be, for example, 20 to 200 nm.
  • the thin film layer 10 is formed on the sacrificial layer 12.
  • the method for forming the thin film layer 10 is not particularly limited, and spin coating, CVD, ink jet printing, vapor deposition, electrospray, and the like can be used.
  • the material and thickness of the thin film layer 10 may be as described above.
  • the material of the thin film layer 10 is preferably a polymer material that swells and induces a volume change when immersed in a solution, for example. 5A to 5J, silk fibroin gel is used as the thin film layer 10.
  • a thin film layer 11 is formed on the thin film layer 10.
  • the method for forming the thin film layer 11 is not particularly limited, and CVD, spin coating, ink jet printing, vapor deposition, electrospray, and the like can be used.
  • the material and thickness of the thin film layer 11 may be as described above.
  • a polymer material that does not induce a large volume change compared to the thin film layer 10 when immersed in a solution is preferable.
  • a polymer material that induces a volume change opposite to that of the thin film layer 10 is preferable.
  • parylene is used as the thin film layer 11 in the examples of FIGS. 5A to 5J.
  • a pattern is formed on the thin film 1 as necessary.
  • a fine processing technique such as a photolithography method, an electron beam lithography method, a dry etching method, or the like can be applied.
  • a photoresist film 30 is formed on the thin film layer 11, and ultraviolet rays are irradiated through a photomask having an arbitrary shape to pattern the physical mask.
  • etching is performed as shown in FIG. 5E, and the photomask is removed as shown in FIG. 5F. The etching may be performed until reaching the substrate 13 or until reaching the sacrificial layer 12.
  • Pattern formation on the thin film 1 is arbitrary, but by designing a two-dimensional plane pattern on the thin film 1, the three-dimensional shape assembled in a self-organized manner can be freely changed. For example, by forming a pattern so that the internal space of the three-dimensional structure after assembly becomes a biological tissue-like structure, when cells are encapsulated in the three-dimensional structure, the cells proliferate along the biological tissue-like structure. It becomes possible to make it.
  • a hollow vascular tissue composed of epithelial cells, a fiber-like neural tissue composed of neural cells, and a heart-shaped myocardial tissue composed of cardiomyocytes. Is possible.
  • the surface of the thin film layer 11 may be modified with a material having a high affinity with the fine particles 20 as necessary.
  • the modified protein layer 21 is formed on the surface of the thin film layer 11.
  • the material used for the modification may be as described above.
  • modification is performed with fibronectin or laminin.
  • a suspension of microparticles 20 is added onto the thin film layer 11, and the microparticles 20 are suspended on the thin film layer 11.
  • the concentration of the microparticles 20 in the suspension the number of microparticles 20 included in the assembled three-dimensional structure can be controlled.
  • the sacrificial layer 12 is decomposed.
  • an appropriate method may be employed depending on the material of the sacrificial layer 12.
  • the sacrificial layer 12 is a gel that is decomposed by changes in light, heat, and pH
  • the sacrificial layer 12 can be decomposed by changing the light, heat, and pH.
  • the sacrificial layer 12 is a gel that decomposes by the action of a chelating agent or an enzyme
  • the sacrificial layer 12 can be decomposed by the action of the chelating agent or the enzyme.
  • a sacrificial layer 12 is added by adding a chelating agent such as sodium citrate or EDTA, an enzyme called arginase that specifically decomposes the calcium alginate gel, and the like. Can be disassembled.
  • a chelating agent such as sodium citrate or EDTA
  • arginase an enzyme called arginase that specifically decomposes the calcium alginate gel
  • the thin film 1 is released from the substrate 13 and takes a three-dimensional structure of an arbitrary shape. At that time, the fine particles 20 existing on the thin film 1 are included in the internal space of the three-dimensional structure.
  • the cells are used as the microparticles 20 by decomposing the sacrificial layer 12 with a stimulus having no cytotoxicity, the cells are added on the thin film 1 immediately before the sacrificial layer 12 is decomposed. It becomes possible. At this time, the number of cells contained in the three-dimensional structure can be controlled by changing the cell concentration of the cell suspension on the thin film 1.
  • the cells are encapsulated in the three-dimensional structure simultaneously with the assembly of the three-dimensional structure, many cells can be encapsulated in the three-dimensional structure at once. Therefore, the introduction efficiency of the cells into the three-dimensional structure can be significantly improved as compared with the conventional method that relies on the accidental invasion of cells into the three-dimensional structure.
  • Example 1 Production of a thin film self-assembled into a three-dimensional structure was produced according to the process shown in FIGS. 5A to 5F.
  • a glass substrate was used for the substrate 13 and a calcium alginate gel was used for the sacrificial layer 12.
  • a sodium alginate solution was spin-coated on the substrate 13 which is a glass substrate.
  • the sacrificial layer 12 made of a physical gel of calcium alginate was formed by immersing the spin-coated substrate 13 in a 100 mM calcium chloride solution (FIG. 5A).
  • the thickness of the calcium alginate gel can be controlled by changing the concentration of the sodium alginate solution and the speed of the spin coating. In this example, by spin coating a 2 wt% sodium alginate solution at 3000 rpm, A gel layer was formed.
  • the thin film layer 10 was formed on the sacrificial layer 12.
  • Silk fibroin gel was used as the gel constituting the thin film layer 10.
  • Silk fibroin dissolved in water and using a filter to remove molecules larger than 200 nm was used.
  • the silk fibroin solution prepared as described above was spin-coated on the surface of the sacrificial layer 12, and then immersed in a methanol solution to form a thin film layer 10 made of silk fibroin gel (FIG. 5B).
  • the thickness of the silk fibroin gel can be controlled by changing the concentration of the silk fibroin solution and the speed of the spin coating. In this example, the thickness of the silk fibroin gel was about 200 nm by spin coating a 40 mg / mL silk fibroin solution at 1000 rpm. The gel layer was formed.
  • a thin film layer 11 was formed on the thin film layer 10.
  • a paraxylene dimer was grown on the surface of the thin film layer 10 by CVD to form a thin film layer 11 made of a parylene thin film (FIG. 5C).
  • the thickness of the thin film layer 11 can be controlled by the input weight of the paraxylene dimer.
  • a parylene layer having a thickness of about 50 nm was formed by growing 50 mg of paraxylene dimer on the thin film layer 10 by CVD. .
  • a positive photoresist S1813 was spin coated on the thin film layer 11, and a physical mask was patterned on the thin film layer 11 by irradiating ultraviolet light through the photomask (FIG. 5D). Thereafter, etching was performed with oxygen plasma in the asher (FIG. 5E). The etching was performed until it reached the substrate 13. Finally, the photomask was removed with acetone to expose the thin film layer 11 as a parylene layer (FIG. 5F).
  • FIGS. 6A and 6B show electron microscope (SEM) images of the thin film pattern formed as described above.
  • FIG. 6B is an enlarged image of a region surrounded by a dotted line in FIG. 6A. From the SEM images in FIGS. 6A and 6B, it was confirmed that the thin film layer 10, the thin film layer 11, and the sacrificial layer 12 were laminated in a planar shape. Further, although each layer was cut by the etching operation, it was confirmed that minute particles were present on the substrate 13. This is considered that the calcium alginate gel which could not be removed by the etching operation remained.
  • FIG. 6C shows an SEM image of a cross section after the thin film layer is cut by the focused ion beam (FIB).
  • FIB focused ion beam
  • confirmation and identification of the localization of specific elements constituting each thin film layer, the substrate 13 and the microparticles on the substrate 13 are performed using energy dispersive X-ray analysis (EDX).
  • EDX energy dispersive X-ray analysis
  • FIG. 6D shows an SEM image of a cross section after the thin film layer is cut by the focused ion beam
  • the presence of gold (Au) sputtered for SEM observation is confirmed in the thin film layer 11 and the substrate 13 after etching, and the fine particles on the substrate 13 after etching include calcium (a calcium specific to calcium alginate gel). The presence of Ca) was observed.
  • Example 2 Self-assembly of a three-dimensional structure using a thin film Self-assembly of a three-dimensional structure containing cells was performed according to the processes shown in FIGS. 5G to 5J.
  • the substrate 13 to which the thin film 1 and the sacrificial layer 12 produced in Example 1 were bonded was immersed in a protein solution, and protein modification was performed on the parylene film surface of the thin film layer 11 (FIG. 5G).
  • the type of protein modification is appropriately selected according to the type of cells to be encapsulated.
  • the thin film layer 11 was modified using a 1 mg / mL fibronectin solution in order to induce adhesion of the established cultured cells.
  • a 1 mg / mL fibronectin solution was added to the culture solution at the same time as the established cultured cells were seeded to prepare a final concentration of 1 ⁇ g / mL. Further, in order to induce adhesion of primary neurons, the thin film layer 11 was modified using a 1 mg / mL laminin solution. A 1 mg / mL laminin solution was added to the culture solution at the same time as the seeding of primary neurons, and the final concentration was adjusted to 1 mg / mL. The cell culture solution prepared as described above was seeded on the thin film 1, and the cells were suspended on the surface of the thin film layer 11 (FIG. 5H). In addition, before performing the self-assembly of the thin film 1, the number of cells to be included can be controlled by changing the number of cells to be seeded.
  • a chelating agent was added to dissolve the calcium alginate gel layer of the sacrificial layer 12 (FIG. 5I).
  • the chelating agent needs to have no cytotoxicity, but in this example, an EDTA solution was used as the chelating agent.
  • a 0.05 mol / mL EDTA solution was added to a final concentration of 0.001 mol / L to dissolve the sacrificial layer 12 and release the thin film 1 from the substrate 13.
  • FIG. 5J When the sacrificial layer 12 was dissolved by adding the EDTA solution, the thin film 1 was released from the substrate 13 and self-assembled into a cylindrical structure (FIG. 5J).
  • 7A and 7B are phase contrast microscopic images showing the state of self-assembly of the thin film 1.
  • FIG. 7A In the case where there was no cell (FIG. 7A) and the case where there was a cell (FIG. 7B), the thin film 1 was gradually peeled off from the substrate 13 after the addition of the EDTA solution and gradually moved to the center. It was observed that the reaction proceeded.
  • the time from the addition of the EDTA solution to the completion of the cylindrical structure can be controlled by the final concentration of the EDTA solution to be added and the type of solution in which the substrate is immersed.
  • the sacrificial layer 12 made of calcium alginate gel having a length of 200 ⁇ m, a width of 400 ⁇ m, and a thickness of 40 nm was immersed in 200 ⁇ L of pure water, and a 0.5 M EDTA solution was added within about 20 seconds.
  • the sacrificial layer 12 could be removed (FIG. 7A). Further, with the bending of the thin film 1, cells floating on the thin film 1 were taken into the internal space of the cylindrical structure (FIG. 7B). It was confirmed that the cells encapsulated in the cylindrical structure did not change the position in the internal space of the cylindrical structure even if the subsequent operations such as solution exchange and handling of the structure were performed.
  • FIG. 7C shows the correlation between the radius of curvature of the thin film 1 and the thickness of the thin film layer 11 made of a parylene layer. It was observed that when the thickness of the parylene layer of the thin film layer 11 is increased, the cross-sectional second moment of the structure is increased under a certain stress, which makes it more difficult to bend.
  • the cylindrical structure manufactured as described above is completely released from the substrate 13. As a result, handling such as collection and movement by pipette operation becomes possible. Furthermore, it becomes possible to bring a plurality of cylindrical structures closer using a glass capillary. Therefore, a cylindrical structure containing cells can be used as a graft and applied to transportation or transplantation to a target biological tissue.
  • Example 3 Cultivation of adherent cells encapsulated in a cylindrical structure
  • Chinese hamster-derived ovary (CHO) cells which are established cultured cells, and human fetuses Origin kidney (HEK) cells were used. Both cells were cultured using Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS) as a culture solution. Both cells were cultured in a humid environment with a temperature of 37 ° C. and a carbon dioxide concentration of 5%.
  • DMEM Dulbecco's modified Eagle medium
  • FBS fetal bovine serum
  • Example 1 and Example 2 The production of the cylindrical structure and the encapsulation of the cells were performed as in Example 1 and Example 2. One week after the inclusion in the tubular structure, cell viability was determined, and both CHO cells and HEK cells were confirmed to survive in the tubular structure. In addition, in CHO cells and HEK cells, which are established cell lines that proliferate indefinitely, it was observed that the space inside the cylindrical structure was filled with cells as the cells grew, forming a cell mass. Moreover, the structure of the cell mass formed differed with the kind of cell. In CHO cells, the cells adhered only to the surface of the thin film layer 11 and exhibited a hollow tissue-like structure (FIG. 8A).
  • FIG. 8B shows a confocal microscope image of a cylindrical structure containing CHO cells. In this image, the cells are fluorescently labeled with Calcein-AM, and the entire cytoplasm is stained. From this image, it was observed that the cell body adhered to the thin film wall surface and was localized on the wall surface.
  • the cylindrical structure of the present embodiment can be made to have a longer biological tissue-like structure by making the long axis direction longer.
  • the cylindrical structure shown in FIG. 8D is an example in which a large biological tissue-like structure having a size of 1 cm or more is produced.
  • many studies have been made to produce cell clusters and apply them to regenerative medicine.
  • cell aggregates exceed 200 ⁇ m, the permeability of oxygen and nutrients deteriorates, leading to cell death from within the aggregates. It has been reported that In the three-dimensional structure of the present invention, since the thickness of the thin film 1 can be controlled, the permeability of oxygen and nutrients can be properly maintained.
  • the diameter can be controlled without causing the structure of the biological tissue-like structure to be randomly enlarged, cells can be cultured for a long time inside the three-dimensional structure.
  • the cell body was encapsulated inside the cylindrical structure during the culture period, and could be operated while maintaining that state. Further, the three-dimensional shape of the thin film 1 encapsulating cells did not collapse even when the culture was continued at a temperature of 37 ° C. in the DMEM medium.
  • the cell mass contained in the three-dimensional structure can be moved to the xy plane without changing the three-dimensional structure, and the cells are contained in the three-dimensional structure. The transplantation to a place where different cell groups existed was also possible.
  • Example 4 Culture of primary neurons encapsulated in a cylindrical structure
  • hippocampal cells and cerebral cortical cells which are primary neurons isolated from rat brain tissue.
  • FIG. 9A when a large number of cells were encapsulated in a single cylindrical structure, the association between the cells was started together with the culture, and a cell mass was formed.
  • primary neurons cell-to-cell adhesion is induced with long-term culture, but at the same time, adhesion to the inner surface of the cylindrical structure is also maintained, and the state is maintained while the inside of the cylindrical structure is maintained.
  • Neurite or axonal extension in space only was observed (FIG. 9B).
  • hippocampal cells and cerebral cortical cells stable cell body morphology and axon extension are maintained inside the tubular structure during the culture period of one month or more, and tubular It was confirmed that cell death was not induced inside the structure.
  • Primary cerebral cortex cells and hippocampal cells have a slow cell growth rate, so the cells do not protrude from the cylindrical structure and can be cultured for longer than one month compared to established cultured cells. .
  • primary neurons extend nerve axons for nerve information transmission, after cells form a cell mass inside the cylindrical structure, they extend the nerve axon to the outside of the cylindrical structure. It was also confirmed.
  • the three-dimensional structure has a cylindrical shape, and only two end points thereof are open to the culture medium space, and thus the nerve axon extends from the end points to the outside of the cylindrical structure.
  • the three-dimensional structure of the present embodiment including primary neurons can assemble a microstructure like a nerve tissue, but also unidirectionally transmit electrical signals of cells in the long axis direction. It shows that application as an electrical wiring element for transmission is also possible.
  • the nerve tissue-like cell cluster of this example could be moved without disrupting the tissue by handling the cylindrical structure. It was confirmed from the phase contrast microscope image (FIG. 9C) and the SEM image of the lyophilized sample (FIG. 9D) that the axon extends from the cylindrical structure on the surface of the substrate on which the cylindrical structure was moved. It was. Furthermore, by moving the cylindrical structure of this example onto a culture substrate on which different types of cells have been cultured in advance, the axon extends from the cylindrical structure onto the substrate surface in the same manner as described above. As a result, it was confirmed that cell-cell interactions were generated by binding to cell bodies that had previously existed on the substrate.
  • Example 5 Culture of primary cardiomyocytes encapsulated in a cylindrical structure
  • primary cardiomyocytes isolated from rat heart tissue were used.
  • FIG. 10A when cardiomyocytes were encapsulated in a single cylindrical structure, cell-cell associations were initiated with culture as in the case of primary neurons, and cell clusters were formed. The cell mass was formed in one direction in a fiber shape, and the direction had the same direction as the cylindrical structure.
  • primary cardiomyocytes cell-cell adhesion is induced with long-term culture, but at the same time, adhesion to the inner surface of the cylindrical structure is maintained, and the internal space of the cylindrical structure is maintained while maintaining this state. Only cell mass formation was observed.
  • cardiomyocytes it was confirmed that a stable cell mass morphology was maintained inside the cylindrical structure and that cell death was not induced inside the cylindrical structure during a culture period of one month or longer.
  • FIG. 10B in the encapsulated primary cardiomyocytes, it was confirmed that the cell mass started to pulsate, and that the pulsation was synchronized in cells anywhere in the cylindrical structure. As a result, it was confirmed that micro heart tissue was successfully reconstructed.
  • Cardiomyocytes like primary neurons, have a difference in ion concentration between the inside and outside of the cell membrane, and the membrane is negatively polarized in a quiescent state.
  • the cell has a function of adjusting the opening and closing of the ion permeation hole according to a change in the biomembrane potential. It is known that the pulsation of myocardial tissue causes calcium ions to flow into the cell when the cell receives an electrical signal. Therefore, calcium was labeled with Fluo-4, a calcium fluorescent probe, and the penetration of calcium ions in the myocardial extracellular fluid into the myocardial cells was observed with a fluorescence microscope. As shown in FIG.
  • FIG. 11A shows three-dimensional structures that are self-assembled from thin films of various two-dimensional shapes.
  • the thin film having the shape of a radial flower pattern formed a three-dimensional structure having a spherical gripper structure (FIG. 11A).
  • FIG. 11C a three-dimensional human-shaped structure via a joint portion that does not bend like a human mold was formed.
  • FIGS. 11D and 11E the same three-dimensional structure as that of the thin film having no pores was formed. Therefore, by forming pores in the thin film, a three-dimensional structure that induces the supply of substances from the outside can be produced.
  • the thin film having a wavy shape formed a three-dimensional structure having a spiral structure (FIG. 11F).
  • the thin film having a lattice shape formed a three-dimensional structure having a net-like net structure (FIG. 11G). From these results, it was shown that a three-dimensional structure having various structures can be manufactured by controlling the shape of the thin film.
  • Example 7 Control of Curvature Radius of Cylindrical Structure
  • the thin film 1 has a strain distribution due to buckling in the in-plane direction resulting from a difference in mechanical strength between the thin film layer 10 and the thin film layer 11. It was confirmed that it can be assembled into a three-dimensional shape in a self-organizing manner. Furthermore, it has been found that the radius of curvature of the cylindrical structure in a steady state after completion of self-assembly depends only on the ratio of thickness between two thin film layers and the ratio of mechanical strength. 12A to 12E show the curvature radius ⁇ of the thin film 1, the thickness t p of the thin film layer 11 made of parylene (FIGS.
  • the curvature radius ⁇ of the thin film 1 is substantially linearly proportional to the length (width w) in the minor axis direction (FIG. 12D).
  • the length l in the major axis direction was hardly affected (FIG. 12E).
  • the silk fibroin gel layer has an elastic modulus of 1 to 100 MPa and the parylene layer has an elastic modulus of 1 to 10 GPa.
  • the ratio of the elastic modulus of the two layers can take a value from 0.0001 to 0.1.
  • the ratio of elastic modulus is not particularly limited.
  • the elastic modulus measurement method is not particularly limited as long as the same measurement method is used for the polymer material used for the thin film layer 10 and the polymer material used for the thin film layer 11.
  • methods for measuring elastic modulus include Jiang et al. (Jiang C et al., Adv. Funct. Mater. 2007, 17, 2229-2237) and Hu et al. (Hu X et al., Biomacromolecules. 2011 May 9; 12 (5): 1686-96).
  • the cylindrical structure of the present embodiment has mobility, it is placed on an existing microelectrode array (MEA) substrate for measuring the extracellular potential by controlling the position with a capillary, and any cell can be arbitrarily selected. It can be applied to highly efficient measurement of extracellular potential in the time.
  • MEA microelectrode array
  • the present invention since cells are encapsulated in a thin-film three-dimensional structure formed of a soft material with high biocompatibility, it becomes possible to produce a biodevice or artificial tissue with high biocompatibility.
  • the present invention can be used in the entire field of using a tissue-like structure, including regenerative medical technology and drug screening.
  • the present invention can also be applied to a biological implant device element and an extracellular potential measurement element.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

複数層の高分子膜からなる三次元構造体であって、前記三次元構造体の内部空間に、微小粒子が内包されており、前記複数層の高分子膜の各層が、互いに異なる機械的強度を有する、三次元構造体。

Description

微小粒子を内包する三次元薄膜構造体およびその製造方法
 本発明は、高分子薄膜構造体の内部に微粒子を内包した三次元薄膜構造体およびその製造方法に関する。特に、本発明は、接着性細胞を内包化させることにより、接着性細胞の単離培養と輸送操作を可能にした筒状構造体およびその製造方法に関する。
 本願は、2016年5月24日に、日本に出願された特願2016-103362号に基づき優先権を主張し、その内容をここに援用する。
 生体組織由来の細胞を単一細胞レベルで操作する技術は、細胞生物学の基礎的な研究だけでなく、再生医療や創薬スクリーニングなどの幅広い分野で必要とされている。生体内の組織を構成する上皮細胞や神経細胞、肝細胞などの接着性細胞を操作する技術は、セルソータによる細胞の選別・解析だけでなく、生体外において細胞をアセンブルして擬似的な三次元生体組織を構築することにも役立てられている。疑似的な三次元生体組織の構築により、目的の生体組織の動態解析や薬物に対する感受性試験、さらには臓器の再構成や細胞移植のための担体の調製が可能となる。
 従来、血球細胞などの浮遊性(非接着性)細胞は、それらが持つ浮遊性という特徴から、マイクロピペットやマイクロ流体デバイスなどの操作技術により、一つ一つ個別の細胞を比較的容易に選別・回収することが可能であった。一方、接着性細胞は、細胞同士または培養基板に接着しなければ生育できないという性質から、一度トリプシンなどの酵素で化学的に細胞を遊離させるか、または物理的に細胞と基板との接着を破壊して遊離させてから操作することが通常行われる。しかし、これらの化学的または物理的な遊離操作により、細胞膜表面マーカの喪失や骨格系の崩壊、および細胞死が誘導されてしまうため、細胞本来の活性を観察し、解析することが困難であった。そのため、細胞の接着状態を維持したまま操作を行うことができる、細胞へのダメージがより少ない操作方法の確立が必要不可欠であった。
 近年、微細加工技術を用いて接着性細胞が接着できる微小な動的な基板を製作し、その表面上で細胞を培養して操作する技術が注目されている(非特許文献1)。自己組織的な力を用いて筒状構造体を製作し、その内部に細胞を接着させることにより、細胞の持つ接着性を維持した状態で操作することが可能となった。また、組織のような三次元環境下で細胞の振る舞いを観察することが可能となった(非特許文献2)。上記のような筒状構造体は、フォトリソグラフィ技術などの微細加工プロセスを用いて製作される。そのため、基板の材料や、基板を遊離させる際に用いられる犠牲層の材料には、一般的に、結晶成長や蒸着により形成された金属やシリコン化合物などの無機物質の薄膜が用いられている。このような無機物質の薄膜では、薄膜内に複数種類の元素からなる薄膜層が互いに密着した構造を取っている。そのため、厚み方向の格子定数の勾配により平面膜内に応力分布が発生し、薄膜が屈曲して三次元形状を形成する。
B. Radha, M. Arif, R. Datta, T. K. Kundu, G. U. Kulkarni, Nano Research 2010, 3, 738. W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, O. G. Schmidt, Nano Letters, 2014, 14, 4197.
 しかしながら、金属薄膜は一般的に生体適合性が低いため、細胞を長期間接触させることは困難であり、細胞の接着基板としては好適ではない。また、加工プロセスやリフトオフプロセスにおいて細胞毒性の高いエッチング溶液を用いるため、三次元構造の製作後、基板をよく洗浄する必要があり、洗浄後にその内部に細胞を導入している。そのため、基板を単離した状態で操作することが困難である。加えて、筒状構造体内部への細胞の導入は、筒状構造体内部への細胞の偶発的な侵入に依存しているため、細胞の内包化の成功率が低いという問題があった。
 上記事情に鑑み、本発明は、細胞等の微小粒子の導入効率が高く、かつその内部空間で細胞等を長期間培養することが可能な、三次元薄膜構造体を提供することを目的としている。
 本発明は、以下の態様を含む。
(1)複数層の高分子膜からなる三次元構造体であって、前記三次元構造体の内部空間に、微小粒子が内包されており、前記複数層の高分子膜の各層が、互いに異なる機械的強度を有する、三次元構造体。
(2)前記複数層の高分子膜の各層が、互いに異なる膨潤率を有する高分子材料で構成されている、(1)に記載の三次元構造体。
(3)前記複数層の高分子膜の各層のうち、前記三次元構造体の外部に接する層が、最も大きい膨潤率を有する高分子材料で構成されている、(1)又は(2)に記載の三次元構造体。
(4)前記複数層の高分子膜の各層が、生体適合性の高い高分子材料で構成されている、(1)~(3)のいずれか一項に記載の三次元構造体。
(5)前記微小粒子が細胞である、(1)~(4)のいずれか一項に記載の三次元構造体。
(6)前記高分子膜の表面に、さらに、細胞外マトリクスで構成される層を有する、(1)~(5)のいずれか一項に記載の三次元構造体。
(7)前記高分子膜の厚さが15~400nmである、(1)~(6)のいずれか一項に記載の三次元構造体。
(8)前記細胞が、接着性細胞であり、前記高分子膜に接着している、(5)~(7)のいずれか一項に記載の三次元構造体。
(9)前記三次元構造体が生体組織様構造を有しており、前記細胞が生体組織様構造の細胞塊を形成している、(5)~(8)のいずれか一項に記載の三次元構造体。
(10)(5)~(9)のいずれか一項に記載の三次元構造体と、前記三次元構造体の外部に存在する細胞と、を含み、前記三次元構造体に内包される細胞が、前記三次元構造体の外部へと伸展する構造を形成しており、前記三次元構造体に内包される細胞と前記三次元構造体の外部に存在する細胞との間で、細胞間相互作用が発生し得る、生体組織様構造体。
(11)微小粒子が内包された三次元構造体を製造する方法であって、複数層の高分子膜を形成する工程(a)と、前記複数層の高分子膜の表面上に、微小粒子を浮遊させる工程(b)と、前記複数層の高分子膜に、厚み方向の応力分布を発生させて、前記複数層の高分子膜に自己組織的に三次元構造を形成させる工程(c)と、を含む、三次元構造体の製造方法。
(12)基板上に犠牲層を形成する工程を、さらに含み、前記工程(a)が、前記犠牲層上に、互いに異なる膨潤率を有する高分子材料を積層して、複数層の高分子膜を形成する工程であり、前記工程(b)が、前記複数層の高分子膜に、前記微小粒子を含む懸濁液を添加する工程であり、前記工程(c)が、前記犠牲層を分解して、前記高分子膜を前記基板から遊離させる工程である、(11)に記載の三次元構造体の製造方法。
(13)前記微小粒子が細胞である、(11)又は(12)に記載の三次元構造体の製造方法。
(14)さらに、前記高分子膜の表面に、細胞外マトリクスで構成される層を形成する工程を含む、(11)~(13)のいずれか一項に記載の三次元構造体の製造方法。
(15)前記高分子膜の厚さが15~400nmである、(11)~(14)のいずれか一項に記載の三次元構造体の製造方法。
(16)基板と、前記基板上に積層された犠牲層と、前記犠牲層上に積層された複数層の高分子膜とを含み、前記複数層の高分子膜の各層が、前記犠牲層を分解して前記高分子膜を前記基板から遊離させた際に、前記高分子膜に厚み方向の応力分布が発生し得る高分子材料で構成されている、積層体。
(17)前記複数層の高分子膜の各層が、互いに異なる膨潤率を有する高分子材料で構成されている、(16)に記載の積層体。
(18)前記高分子膜上に積層された細胞外マトリクスで構成される層を、さらに含む、(16)又は(17)に記載の積層体。
(19)前記高分子膜の厚さが15~400nmである、(16)~(18)のいずれか一項に記載の積層体。
 本発明により、細胞等の微小粒子の導入効率が高く、かつその内部空間で細胞等を長期間培養することが可能な、三次元薄膜構造体およびその製造方法が提供される。
本発明の一態様である三次元構造体の斜視図。 本発明の一態様である三次元構造体の断面図。 膨潤率の異なる二層の高分子薄膜の積層構造による屈曲の概念図。 二層構造の薄膜を用いた三次元形状への自己組立てと、細胞の内包化の一態様を示す概念図。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 微小粒子を内包した三次元薄膜構造体形成のプロセス図の一例。 薄膜層の電子顕微鏡像を示す。リソグラフィ技術を用いて形成した薄膜パターンの電子顕微鏡(SEM)像である。 薄膜層の電子顕微鏡像を示す。リソグラフィ技術を用いて形成した薄膜パターンの電子顕微鏡(SEM)像である。 薄膜層の電子顕微鏡像を示す。薄膜層を集束イオンビームにより切断加工した後の断面のSEM像である。 薄膜層のエネルギー分散型X線分析の結果を示す。薄膜層の各層および基板13のエネルギー分散型X線分析の結果である。 エチレンジアミン四酢酸(EDTA)溶液添加後の長方形型薄膜の筒状構造への自己組立てを示す。筒状構造への自己組立ての様子を示す位相差顕微鏡像である。薄膜上に細胞がない場合である。 エチレンジアミン四酢酸(EDTA)溶液添加後の長方形型薄膜の筒状構造への自己組立てを示す。筒状構造への自己組立ての様子を示す位相差顕微鏡像である。薄膜上に細胞がある場合である。 エチレンジアミン四酢酸(EDTA)溶液添加後の長方形型薄膜の筒状構造への自己組立てを示す。筒状構造の曲率半径と、パリレン層の厚みとの相関関係を示す。 細胞を内包した筒状構造体の顕微鏡像を示す。チャイニーズハムスター由来卵巣(CHO)細胞を内包した筒状構造体の位相差顕微鏡像である。 細胞を内包した筒状構造体の顕微鏡像を示す。ヒト胎児由来腎臓(HEK)細胞を内包した筒状構造体の位相差顕微鏡像である。 細胞を内包した筒状構造体の顕微鏡像を示す。CHO細胞を内包した筒状構造体の共焦点顕微鏡像である。 細胞を内包した筒状構造体の顕微鏡像を示す。長軸方向の長さが1cm以上の生体組織様構造体を作製した例である。 初代神経細胞を内包した筒状構造体の作製例を示す。初代神経細胞を内包した筒状構造体の培養初期の位相差顕微鏡像である。 初代神経細胞を内包した筒状構造体の作製例を示す。初代神経細胞を内包した筒状構造体を長期培養した後の位相差顕微鏡像である。 初代神経細胞を内包した筒状構造体の作製例を示す。基板上に移動させた筒状構造体の位相差顕微鏡像である。 初代神経細胞を内包した筒状構造体の作製例を示す。基板上に移動させた筒状構造体のSEM像である。 初代神経細胞を内包した筒状構造体の作製例を示す。塩化カリウムを添加して細胞刺激を行った際の筒状構造体の内部と外部の細胞の蛍光強度の変化を観察した共焦点顕微鏡像である。 初代心筋細胞を内包した筒状構造体の作製例を示す。初代心筋細胞を内包した筒状構造体を培養して作製されたファイバ状構造体の位相差顕微鏡像である。 初代心筋細胞を内包した筒状構造体の作製例を示す。上図は、初代心筋細胞を内包した筒状構造体の位相差顕微鏡像(上)と、初代心筋細胞の拍動時における静止時に対する変化量を示す画像(下)である。画像は、National Institute of Health(NIH)が提供する画像処理プログラムImageJを用いて作成した。下図は、上図で検出された変化量(強度)の経時的変化を示すグラフである。 初代心筋細胞を内包した筒状構造体の作製例を示す。上図は、塩化カリウムを添加して細胞刺激を行った際の筒状構造体の内部と外部の細胞の蛍光強度の変化を観察した共焦点顕微鏡像である。下図は、上図で検出された蛍光強度の経時的変化を示すグラフである。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例をである。放射状の花型模様の形状を有する薄膜から、球体状の把持用グリッパ構造を有する三次元構造体を形成したを作製した例である。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例である。十字形状を有する薄膜から、十字形状の一方向のみが屈曲してT字構造を有する三次元構造体を作製した例である。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例である。長方形型の薄膜に十字形状の薄膜を繋ぎ合せることによって、ヒト型を模したような屈曲しない関節部位を介した三次元ヒト型構造を有する三次元構造体を作製した例である。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例である。内部に細孔を形成した薄膜から三次元構造体を作製した例である。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例である。内部に細孔を形成したヒト型の薄膜から三次元構造体を作製した例である。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例である。波状形状を有する薄膜から、螺旋構造を有する三次元構造体を作製した例である。 様々な二次元形状の薄膜を用いて作製した三次元構造体の作製例である。格子形状を有する薄膜から、網目状ネット構造を有する三次元構造体を作製した例である。 筒状構造体の曲率半径ρ、パリレン層の厚みt、シルクフィブロインゲル層の厚みt、薄膜の横幅w、および薄膜の長軸方向の長さlを説明する図である。 筒状構造体の曲率半径ρと、パリレン層の厚みtとの相関関係を示す。 筒状構造体の曲率半径ρと、パリレン層の厚みtとの相関関係を示す。黒四角はシルクフィブロインゲル層の厚みtを100nmとした場合を示し、黒丸はシルクフィブロインゲル層の厚みtを210nmとした場合を示す。 筒状構造体の曲率半径ρと、薄膜の横幅wとの相関関係を示す。 筒状構造体の曲率半径ρと、薄膜の長軸方向の長さlとの相関関係を示す。
<三次元構造体>
 本発明の三次元構造体は、複数層の高分子膜からなる三次元構造体の内部空間に、微小粒子を内包してなる、三次元構造体である。また、一態様において、本発明の三次元構造体は、複数層の高分子膜からなる三次元構造体であって、前記三次元構造体の内部空間に、微小粒子が内包されており、前記複数層の高分子膜の各層が、互いに異なる機械的強度を有する、三次元構造体である。以下に、本発明の好ましい一態様を示す図面を挙げ、本発明の三次元構造体について説明する。
 図1は、本発明の一態様である三次元構造体の斜視図であり、図2は、本発明の一態様である三次元構造体の断面図である。図中、100は三次元構造体、1は薄膜、10は第1の薄膜層、11は第2の薄膜層、20は細胞等の微小粒子、21は接着タンパク質をそれぞれ示す。
 図1および図2に示すように、三次元構造体100は、薄膜1により形成される三次元構造体の内部空間に、微小粒子20が内包された構造となっている。本実施態様においては、三次元構造体100は、筒状構造体であるが、本発明の三次元構造体は筒状構造体に限定されない。例えば、生体組織用構造など様々な三次元構造とすることができる。
 図1および図2に示すように、本実施態様においては、薄膜1は第1の薄膜層10と第2の薄膜層11とから構成される。本発明において、薄膜1は、2層からなるものに限定されず、3層以上の薄膜層からなるものであってもよい。薄膜1を構成する薄膜層の数は、特に限定されないが、5層以内であることが好ましく、3層以内であることがより好ましく、2層であることがさらに好ましい。
 薄膜1を構成する薄膜層10と薄膜層11は、生体適合性の高い高分子材料により構成される。薄膜層10と薄膜層11を構成する高分子材料は、生体適合性の高いものであれば、特に限定されず、合成高分子と生体高分子のいずれも用いることができる。合成高分子としては、例えば、ポリエチレングリコール(PEG)、ポリアクリルアミド、ポリジメチルシロキサン(PDMS)、(3,4-エチレンジオキシチオフェン)/ポリ(4-スチレンスルホン酸)(PEDOT-PSS)、ポリピロール系高分子、ポリアニリン系高分子、ポリパラキシレン(パリレン)などを挙げることができる。生体高分子としては、例えば、多糖類;ゼラチン、シルクフィブロインなどのタンパク質;キトサン、コラーゲンなどの細胞外マトリクスなどを挙げることができる。
 また、薄膜層10と薄膜層11には、透明性の高い高分子材料を用いてもよい。薄膜層10と薄膜層11とに透明性の高い高分子材料を用いれば、顕微鏡での観察時に光路を遮断することがないため、正立型・倒立型を問わずあらゆる種類の顕微鏡において構造体内部の観察が可能となる。また、超解像度顕微鏡を使用すれば、より微細な細胞の挙動や細胞中のタンパク質の活性を蛍光で観察することも可能となる。微小粒子20が接着性細胞である場合には、薄膜層11には、細胞接着性の高分子材料を用いることが好ましい。
 薄膜層10と薄膜層11とは、互いに異なる機械的強度を有している。機械的強度としては、例えば、弾性率が挙げられる。そのために、薄膜層10と薄膜層11は、互いに膨潤率が異なる高分子材料を用いて形成することが好ましい。例えば、三次元構造体100が筒状構造体である場合には、薄膜層10に膨潤率の大きいものを用い、薄膜層11には膨潤率の小さいものを用いることが好ましい。そのような薄膜層の組み合わせとしては、例えば、薄膜層10をシルクフィブロインゲルで構成し、薄膜層11をパリレンで構成したもの等が挙げられる。本発明は、これに限定されず、逆に、薄膜層10に膨潤率の小さいものを用い、薄膜層11に膨潤率の大きいものを用いてもよい。また、薄膜1を3層以上の薄膜層により構成する場合も、各薄膜層は、互いに膨潤率の異なる高分子材料で構成することが好ましい。
 複数の薄膜層により形成される薄膜1の厚さは、特に限定されないが、三次元構造体の内部空間への酸素や物質の透過性が妨げられない程度の厚さとすることが好ましい。例えば、薄膜1の厚さは、好ましくは15~400nm、より好ましくは20~300nm、さらに好ましくは20~200nmとすることができる。この場合、直径が10μmスケールの細胞を好適に内包することができ、また薄膜1の屈曲を妨げることがない。薄膜1の厚さを上記のようにするために、例えば、薄膜層10の厚さを、好ましくは10~350nm、より好ましくは15~250nm、さらに好ましくは50~200nmとすることができ、薄膜層11の厚さを好ましくは5~200nm、より好ましくは10~150nm、さらに好ましくは20~100nmとすることができる。
 また、薄膜1の表面は、任意の二次元平面パターンを形成したものであってもよい。例えば、リソグラフィ技術を用いて、パターニングすることで任意の二次元形状を形成することができる。パターンの大きさは、50μm以上であることが好ましい。例えば、内包させる細胞種や細胞数に応じて、薄膜1の表面に、任意の二次元形状のパターンを形成してもよい。また、三次元構造体100に微小粒子20として細胞を内包させる場合、細胞の種類に応じて、三次元構造体100の内部空間形状が生体組織様構造となるように、薄膜1の表面にパターンを形成してもよい。例えば、上皮細胞から構成される中空状の血管組織やファイバ状の神経組織などの生体組織を模した内部空間形状となるように、薄膜1の表面にパターンを形成することができる。
 三次元構造体100に内包される微小粒子20は、特に限定されず、1μm以下のサイズの微小粒子であればよい。微小粒子20の例としては、動植物細胞、細菌、寄生虫体、マイクロビーズ、マイクロバブル、球形脂質二重膜(リポソーム)、ナノパーティクルなどが挙げられる。動植物細胞のうち、好ましいものとしては、例えば、接着性細胞などが挙げられる。接着性細胞の例としては、神経細胞、心筋細胞などが挙げられるが、これらに限定されない。
 図2に示す実施態様では、微小粒子20が、修飾タンパク質層21により薄膜1に接着されている。このように、微小粒子20を薄膜層11の表面に接着させる場合には、微小粒子20との親和性の高い材料により、薄膜層11の表面を修飾してもよい。例えば、微小粒子20が接着性細胞である場合には、フィブロネクチン、コラーゲン、ラミニンなどの細胞外マトリクスを用いて、薄膜層11の表面修飾を行うことができる。薄膜層11にこのような表面修飾を施すことにより、より長期的に細胞接着性を維持することができる。薄膜層11の表面修飾に用いる細胞外マトリクス等は、特に限定されず、接着性細胞の種類に応じて、適宜適切な細胞外マトリクス等を選択することができる。例えば、株化培養細胞であれば、フィブロネクチン等を好適に用いることができ、神経細胞であれば、ラミニン等を好適に用いることができる。
 三次元構造体100に内包させる微小粒子20の量は特に限定されず、用途に応じて適宜適切な量を内包させることができる。微小粒子20が細胞である場合、三次元構造体100に内包された細胞は、三次元構造体100の内部空間形状に従って増殖する。そのため、三次元構造体100の内部空間形状を生体組織様構造とすることにより、内包された細胞が増殖して生体組織様構造を形成する。本発明の三次元構造体では、三次元構造体を構成する薄膜が生体適合性の高い高分子材料により形成されているため、長期間の細胞培養を行うことができる。
 また、微小粒子20として細胞を内包させた三次元構造体100を、あらかじめ細胞を培養しておいた培養基板上に移動させて培養を行うと、三次元構造体100の内部から三次元構造体100の外部へと細胞突起、軸索、細胞体等が伸展する。これらの細胞突起、軸索、細胞体等の構造を介して、三次元構造体100に内包された細胞と三次元構造体外部に存在する細胞との間で、細胞間相互作用が発生し得る。
 本発明の三次元構造体は、(i)構成する薄膜が生体適合性の高い高分子材料で構成されている点、(ii)薄膜上で細胞を培養することができるため、培養細胞を自己組織化的に三次元薄膜構造体に内包させることができる点、および(iii)細胞を内包させた場合に、内包させた細胞が生体組織として機能し得る点において、従来の薄膜三次元構造体とは異なる。
 このように、本発明の三次元構造体は、細胞を内包させた場合に、内包細胞を生体組織として機能させることができ、内包細胞に生体組織様構造を形成させることができる。三次元構造体内部の細胞は、三次元構造体外部の細胞との相互作用も可能である。そのため、細胞を内包させた三次元構造体は、生体組織様構造体として、癲癇や脊髄損傷のような神経組織の修復のための移植組織(グラフト)、心筋梗塞などにより損傷した心筋組織の修復のための移植組織(グラフト)等に応用することができる。また、薬物応答を試験する疑似的な生体組織として、薬剤スクリーニング等に応用することができる。また、屈曲するヒンジ構造を有する三次元構造体を設計することにより、目的とする細胞の捕捉、目的とする細胞の組織表面への吸着、目的とする細胞を把持するためのアクチュエータ機能などを実現する三次元構造体を得ることも可能である。さらに、本発明の三次元構造体は、生体内埋め込みデバイスのための素子としても応用できる。
<三次元構造体の製造方法>
 本発明の三次元構造体は、高分子材料により構成されている。高分子材料は、その剛性の低さから、薄膜の形成は可能なものの、形成した薄膜の加工や強度分布を形成することは難しい。そのため、高分子薄膜を用いて三次元形状を製作する技術に関する報告例は未だ少ない。
 そこで、本発明においては、リソグラフ技術等を用いて複数層からなる高分子薄膜を形成し、高分子薄膜内部に厚さ方向の応力分布を発生させる構造を作ることで、高分子薄膜が自己組織的に三次元形状に組み立てられる現象を利用した。すなわち、本発明の一態様は、微小粒子が内包された三次元構造体を製造する方法であって、複数層の高分子膜を形成する工程と、前記複数層の高分子膜の表面上に、微小粒子を浮遊させる工程と、前記複数層の高分子膜に、厚み方向の応力分布を発生させて、前記複数層の高分子膜に自己組織的に三次元構造を形成させる工程と、を含む、三次元構造体の製造方法である。以下に、本発明の好ましい一態様を示す図面を挙げ、本発明の三次元構造体の製造方法について説明する。
 図3は、膨潤率の異なる二層の高分子薄膜の積層構造による屈曲の概念図である。図中の符号は、図1および図2と同じである。まず、図3により、各層の膨潤率が異なる複数層の高分子薄膜による自己組織的な三次元形状の組立について説明する。
 図3に例示する構造体においては、薄膜層10と薄膜層11とは、互いに異なる膨潤率を有する高分子材料により形成されている。薄膜層10の膨潤率は薄膜層11の膨潤率よりも大きい。そのため、薄膜層10と薄膜層11とからなる薄膜1を水溶液に浸漬すると、各層は水を吸収して膨潤するが、膨潤による体積の変化量は、薄膜層11よりも薄膜層10の方が大きくなる。この体積の変化量の差を駆動力として、薄膜1は、薄膜層11が内部層、薄膜層10が外部層となるように屈曲し、三次元構造体を形成する。
 次に、図4および図5A~5Jを用いて、本発明の三次元構造体の製造方法の一態様を説明する。図4は、二層構造の薄膜を用いた三次元形状への自己組立てと、微小粒子の内包化の一態様を示す概念図である。また、図5A~5Jは、微小粒子を内包した三次元構造体形成のプロセス図の一例である。図中、12は犠牲層、13は基板、30はフォトレジスト膜をそれぞれ示す。その他の符号は、図1および図2と同じである。
 図4および図5A~5Jに示す実施態様では、薄膜1を基板13から遊離させて三次元構造を形成させるために、薄膜1と基板13との間に形成した犠牲層12を利用する。そのため、まず、図5Aに示すように、基板13上に犠牲層12を形成する。犠牲層12を形成する方法は、特に限定されず、スピンコーティング、化学気相成長(CVD)、インクジェットプリンティング、蒸着法、エレクトロスプレイ法などが利用可能である。
 基板13の材質は、特に限定されないが、表面の平坦性が高い材質のものを用いることが好ましい。また、基板13上で、細胞を内包する三次元構造体100の蛍光顕微鏡による観察を行う場合には、蛍光顕微鏡による細胞の蛍光強度を妨げない材質のものを用いることが好ましい。また、分光光度計と赤外分光計での波長の吸収帯が、薄膜層10に重複しないことが好ましい。そのような材料としては、例えば、シリコン、ソーダガラス、石英、酸化マグネシウム、サファイアなどが挙げられる。なお、図5A~5Jの例では、基板13としてガラス基板を用いている。
 基板13の厚みは、特に限定されず、例えば、50~200μmとすることができる。また、基板13の表面は、細胞の非特異的吸着の抑制を目的として、PEGや2-メタクリロイルオキシエチルホスホリルコリン(MPC)ポリマ等で修飾してもよい。
 犠牲層12の材質は、特に限定されないが、ゲル-ゾル転移可能な物理ゲルを用いることが好ましい。また、ゲル-ゾル転移のために使用される溶液や光等の刺激が、細胞毒性を示さないものであることが好ましい。そのようなゲルとしては、例えば、光や熱、pHの変化により分解されるゲル等が挙げられる。具体例としては、ポリ(N-イソプロピルアクリルアミド)(PNIPAM)やアゾベンゼン修飾ポリマゲルなどを挙げることができる。また、キレート剤や酵素の作用により分解するゲル等も用いることができる。そのようなゲルとしては、例えば、アルギン酸カルシウムゲル等が挙げられる。なお、図5A~5Jの例では、犠牲層12としてアルギン酸カルシウムゲルを用いている。犠牲層12の厚みは、特に限定されず、例えば、20~200nmとすることができる。
 次に、図5Bに示すように、犠牲層12上に、薄膜層10を形成する。薄膜層10の形成方法は、特に限定されず、スピンコーティング、CVD、インクジェットプリンティング、蒸着法、エレクトロスプレイ法などが利用可能である。薄膜層10の材質および厚みは、上記のとおりとすればよい。薄膜層10の材質としては、例えば、溶液中に浸漬された際に膨潤し体積変化が誘導される高分子材料が好ましい。なお、図5A~5Jの例では、薄膜層10としてシルクフィブロインゲルを用いている。
 次に、図5Cに示すように、薄膜層10上に、薄膜層11を形成する。薄膜層11の形成方法は、特に限定されず、CVD、スピンコーティング、インクジェットプリンティング、蒸着法、エレクトロスプレイ法などが利用可能である。薄膜層11の材質および厚みは、上記のとおりとすればよい。薄膜層11の材質としては、例えば、溶液中に浸漬された際に、薄膜層10と比較して、大きな体積変化が誘導されない高分子材料が好ましい。または、薄膜層10とは逆の体積変化が誘導される高分子材料が好ましい。なお、図5A~5Jの例では、薄膜層11としてパリレンを用いている。
 上記のように、薄膜層10と薄膜層11とに、膨潤率の異なる高分子材料を使用することにより、溶液中に浸漬された際に、薄膜層10と薄膜層11とで膨潤による体積変化に差が生じ、厚み方向に応力分布が発生する。この応力分布が駆動力となり、後の工程で犠牲層12を分解して基板13から遊離させた際に、薄膜1は自己組織的に三次元形状を形成する。
 次に、図5D~5Fに示すように、必要に応じて、薄膜1上にパターン形成を行う。パターン形成方法としては、例えば、フォトリソグラフィ法、電子ビームリソグラフィ法、ドライエッチング法等の微細加工技術を適用することができる。図5Dの例では、薄膜層11上にフォトレジスト膜30を形成し、任意の形状のフォトマスクを通して紫外線を照射し、物理マスクをパターニングしている。その後は、図5Eに示すように、エッチングを行い、図5Fに示すようにフォトマスクを除去すればよい。なお、前記エッチングは、基板13に届くまで行ってもよく、犠牲層12に届くまで行ってもよい。薄膜1上のパターン形成は任意であるが、薄膜1上に二次元平面パターンを設計することにより、自己組織的に組み立てられる三次元形状を自在に変化させることができる。例えば、組み立て後の三次元構造体の内部空間が生体組織様構造となるようにパターン形成することにより、三次元構造体に細胞を内包させた場合に、生体組織様構造に沿って細胞を増殖させることが可能となる。例えば、上皮細胞から構成される中空状の血管組織、神経性細胞から構成されるファイバ状の神経組織、心筋細胞から構成される心臓形状の心筋組織など、実際の生体組織の形状に応じた設計が可能となる。
 次に、図5Gに示すように、必要に応じて、微小粒子20との親和性の高い材料により、薄膜層11の表面を修飾してもよい。図5Gの例では、薄膜層11の表面上に修飾タンパク質層21を形成している。修飾に用いる材料等は、上記のとおりとすればよい。なお、図5Gの例では、フィブロネクチン又はラミニンにより修飾を行っている。
 次に、図5Hに示すように、微小粒子20の懸濁液を薄膜層11上に添加し、薄膜層11上に微小粒子20を浮遊させる。このとき、懸濁液中の微小粒子20の濃度を調整することにより、組み立て後の三次元構造体に内包される微小粒子20の数を制御することができる。
 次に、図5Iに示すように、犠牲層12を分解する。犠牲層12の分解は、犠牲層12の材質に応じて、適切な方法を採用すればよい。例えば、犠牲層12が、光や熱、pHの変化により分解されるゲルであれば、光や熱、pHを変化させることにより、犠牲層12を分解することができる。また、犠牲層12が、キレート剤や酵素の作用により分解するゲルであれば、キレート剤や酵素を作用させることにより、犠牲層12を分解することができる。なお、犠牲層12がアルギン酸カルシウムゲルである図5Iの例では、クエン酸ナトリウムやEDTAなどのキレート剤、アルギン酸カルシウムゲルを特異的に分解するアルギナーゼと呼ばれる酵素などを添加することにより、犠牲層12を分解することができる。
 上記のように犠牲層12を分解することにより、図5Jに示すように、薄膜1が基板13から遊離し、任意の形状の三次元構造をとる。その際に、薄膜1上に存在していた微小粒子20は、三次元構造体の内部空間に内包される。
 細胞毒性を有さない刺激により犠牲層12の分解を行うことにより、微小粒子20として細胞を使用する場合であっても、犠牲層12の分解操作の直前に、薄膜1上に細胞を添加することが可能となる。このとき、薄膜1上の細胞懸濁液の細胞濃度を変化させることにより、三次元構造体に内包される細胞数を制御することができる。また、三次元構造体の組立と同時に細胞が三次元構造体に内包されるため、多くの細胞を一括して三次元構造体に内包させることができる。そのため、三次元構造体内への偶発的な細胞の侵入に依存していた従来の方法と比較して、三次元構造体内への細胞の導入効率を格段に向上させることができる。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
[実施例1]三次元構造体に自己組立て可能な薄膜の作製
 三次元構造体に自己組立て可能な薄膜の作製を、図5A~5Fに示すプロセスに従って行った。本実施例では、基板13にガラス基板を用い、犠牲層12にはアルギン酸カルシウムゲルを用いた。まず、ガラス基板である基板13上で、アルギン酸ナトリウム溶液をスピンコーティングした。その後、スピンコーティングした基板13を100mMの塩化カルシウム溶液中に浸漬することにより、アルギン酸カルシウムの物理ゲルからなる犠牲層12を形成した(図5A)。アルギン酸カルシウムゲルの厚みは、アルギン酸ナトリウム溶液の濃度とスピンコーティングの速度を変化させることで制御可能であり、本実施例では、2 wt%のアルギン酸ナトリウム溶液を3000rpmでスピンコーティングすることで、40nmのゲル層を形成した。
 次に、犠牲層12上に薄膜層10を形成した。薄膜層10を構成するゲルとして、シルクフィブロインゲルを用いた。シルクフィブロインは、水に溶解し、フィルタを用いて200nmよりも大きな分子を除去したものを使用した。上記のように調製したシルクフィブロイン溶液を、犠牲層12の表面上にスピンコーティングし、その後メタノール溶液に浸漬することにより、シルクフィブロインゲルからなる薄膜層10を形成した(図5B)。シルクフィブロインゲルの厚みは、シルクフィブロイン溶液の濃度とスピンコーティングの速度を変化させることで制御可能であり、本実施例では、40mg/mLのシルクフィブロイン溶液を1000rpmでスピンコーティングすることで、約200nmのゲル層を形成した。
 次に、薄膜層10上に薄膜層11を形成した。薄膜層10の表面上に、パラキシレンのダイマをCVDにより成長していくことで、パリレン薄膜からなる薄膜層11を形成した(図5C)。薄膜層11の厚みは、パラキシレンダイマの投入重量により制御可能であり、本実施例では、50mgのパラキシレンダイマをCVDにより薄膜層10上で成長させることで、約50nmのパリレン層を形成した。
 次に、薄膜層11上にポジ型フォトレジスト(S1813)をスピンコーティングし、フォトマスクを通して紫外光を照射することにより、薄膜層11上に物理マスクをパターニングした(図5D)。その後、アッシャ内で酸素プラズマによりエッチングを行った(図5E)。エッチングは、基板13に届くまで行った。最後に、アセトンによりフォトマスクを除去してパリレン層である薄膜層11を露出させた(図5F)。
 図6Aおよび図6Bに、上記のとおりに形成した薄膜パターンの電子顕微鏡(SEM)像を示す。図6Bは、図6Aの点線で囲んだ領域の拡大像である。図6Aおよび図6BのSEM像から、薄膜層10、薄膜層11および犠牲層12の各層が、平面状に積層されていることが確認された。また、エッチング操作により各層が切削されているが、基板13上に、微小な粒子が存在していることが確認された。これは、エッチング操作でも除去できなかったアルギン酸カルシウムゲルが残存したものと考えられる。
 集束イオンビーム(FIB)により、薄膜層を切断加工した後の断面のSEM像を、図6Cに示す。また、前記断面において、エネルギー分散型X線分析(EDX)を用いて、各薄膜層、基板13および基板13上の微小粒子について、これらを構成する特異的な元素の局在の確認と同定を行った(図6D)。その結果、薄膜層11にはパリレン特有の塩素(Cl)が、犠牲層12にはアルギン酸カルシウムゲル特有のカルシウム(Ca)が、基板13にはケイ素(Si)がそれぞれ確認された。また、薄膜層11およびエッチング後の基板13には、SEM観察のためにスパッタリングした金(Au)の存在が確認され、エッチング後の基板13上の微小粒子には、アルギン酸カルシウムゲル特有のカルシウム(Ca)の存在が観察された。
[実施例2]薄膜による三次元構造体の自己組立て
 細胞を内包する三次元構造体の自己組立てを、図5G~5Jに示すプロセスに従って行った。実施例1で作製した薄膜1と犠牲層12が接着した基板13を、タンパク質溶液に浸漬し、薄膜層11のパリレン膜表面にタンパク質修飾を行った(図5G)。タンパク質修飾の種類は、内包させる細胞の種類に応じて、適宜選択する。本実施例では、株化培養細胞の接着を誘導するために、1mg/mLのフィブロネクチン溶液を用いて薄膜層11の修飾を行った。1mg/mLのフィブロネクチン溶液を、株化培養細胞を播種する際に同時に培養液中に添加し、最終濃度が1μg/mLとなるように調製した。また、初代神経細胞の接着を誘導するために、1mg/mLのラミニン溶液を用いて薄膜層11の修飾を行った。1mg/mLのラミニン溶液を、初代神経細胞を播種する際に同時に培養液中に添加し、最終濃度が1mg/mLとなるように調製した。上記のように調製した細胞培養液を薄膜1上に播種し、薄膜層11表面上に細胞を浮遊させた(図5H)。なお、薄膜1の自己組立てを行う前に、播種する細胞数を変化させることで、内包させる細胞数を制御することが可能である。
 次に、キレート剤を添加して、犠牲層12のアルギン酸カルシウムゲル層を溶解した(図5I)。キレート剤は、細胞毒性を有さないものである必要があるが、本実施例では、キレート剤としてEDTA溶液を用いた。0.05mol/mLのEDTA溶液を最終濃度が0.001mol/Lとなるように添加して、犠牲層12を溶解し、薄膜1を基板13から遊離させた。
 EDTA溶液の添加により犠牲層12を溶解すると、薄膜1が基板13から遊離して、筒状構造へと自己組立てが起こった(図5J)。図7Aおよび図7Bは、薄膜1の自己組立ての様子を示す位相差顕微鏡像である。細胞がない場合(図7A)および細胞がある場合(図7B)で観察を行ったが、いずれの場合も、EDTA溶液の添加後、薄膜1が徐々に基板13から剥離され、次第に中心部へと反応が進むことが観察された。この時、反応は等方的に進行するため、長軸方向よりも短軸方向への反応の方がより早く完了し、短軸方向への薄膜の屈曲が誘導されることが観察された。これにより、長軸方向の長さを維持した状態の筒状構造が得られた。
 EDTA溶液を添加してから筒状構造体が完成するまでの時間は、添加するEDTA溶液の最終濃度と基板を浸漬している溶液の種類により制御が可能である。本実施例では、縦200μm、横400μm、厚さ40nmのアルギン酸カルシウムゲルからなる犠牲層12を、200μLの純水中に浸漬し、0.5MのEDTA溶液を添加することで、約20秒以内に犠牲層12を除去することができた(図7A)。また、薄膜1の屈曲に伴い、薄膜1上を浮遊する細胞は筒状構造体の内部空間に取り込まれた(図7B)。筒状構造体に内包された細胞は、その後の溶液交換作業や構造体のハンドリングなどの操作を行っても、筒状構造体の内部空間における位置を変化させないことが確認された。
 薄膜1の屈曲現象は薄膜1の厚み方向の応力分布に起因しているため、薄膜1を構成する薄膜層10と薄膜層11の体積を変化させることにより、薄膜1の屈曲の際の曲率を制御可能である。図7Cは、薄膜1の曲率半径と、パリレン層からなる薄膜層11の厚みとの相関関係を示したものである。薄膜層11のパリレン層の厚みが増加することによって、一定の応力下において構造体の断面二次モーメントが増加し、より屈曲しにくくなることが観察された。
 上記のようにして作製された筒状構造体は、基板13から完全に遊離した状態となる。これにより、ピペット操作による回収や移動などのハンドリングが可能になる。さらに、ガラスキャピラリを用いて複数の筒状構造体を近接化することも可能となる。そのため、細胞を内包させた筒状構造体をグラフトとして用い、目的の生体組織などへの輸送や移植に応用可能である。
[実施例3]筒状構造体に内包された接着性細胞の培養
 本実施例では、筒状構造体に内包させる細胞として、株化培養細胞であるチャイニーズハムスター由来卵巣(CHO)細胞とヒト胎児由来腎臓(HEK)細胞を用いた。両細胞ともに、培養液としてウシ胎児血清(Fetal bovine serum,FBS)を10%含むダルベッコ改変イーグル培地(DMEM)を用いて培養した。37℃の温度を保ち、二酸化炭素濃度を5%に保持した湿潤環境下で、両細胞の培養を行った。
 筒状構造体の作製と細胞の内包化は、実施例1および実施例2のとおりに行った。筒状構造体への内包から一週間経過後に、細胞の生死判定を行い、CHO細胞とHEK細胞のいずれも、筒状構造体内での生存を確認した。また、増殖を無限に繰り返す株化培養細胞であるCHO細胞とHEK細胞では、細胞の増殖とともに筒状構造体の空間内部が細胞で満たされ、細胞塊を形成することが観察された。また、細胞の種類によって、形成される細胞塊の構造は異なっていた。CHO細胞では、細胞は薄膜層11の表面のみに接着し、中空構造の生体組織様構造を示した(図8A)。一方、細胞同士の接着が強いHEK細胞では、薄膜層11表面への接着よりも細胞同士での接着が強く、筒状構造体の構造を維持しながらも、細胞が凝集した細胞塊(スフェロイド)が形成された(図8B)。HEK細胞において形成された細胞塊は、培養と共に体積を増加し、筒状構造の外部へと増殖が進行し、基板13へと伸展していくことが観察された(図8B矢印)。また、図8Cに、CHO細胞を内包した筒状構造の共焦点顕微鏡像を示す。本画像において、細胞はCalcein-AMにより蛍光ラベル化されており、細胞質全体が染色されている。本画像により、細胞体が薄膜壁面と接着し、壁面に局在していることが観察された。
 また、本実施例の筒状構造体は、長軸方向をより長くすることで、より長い生体組織様構造体も作製可能である。図8Dに示した筒状構造体は、1cm以上の大きな生体組織様構造体を作製した例である。近年、細胞塊を作製して再生医療に応用しようという研究が多くなされているが、細胞の凝集体が200μm以上になると、酸素や栄養分の透過性が悪くなり、凝集体内部より細胞死が誘導されることが報告されている。本発明の三次元構造体では、薄膜1の厚さを制御できるため、酸素や栄養分の透過性を適正に維持することができる。また、生体組織様構造体の構造を無秩序に肥大化させず、直径の制御が可能であるため、三次元構造体内部での細胞の長期培養が可能になった。
 本実施例において、細胞体は、培養期間中、筒状構造体の内部に内包されており、その状態を維持したまま操作することができた。また、細胞を内包する薄膜1は、DMEM培地中で37℃の温度で培養を続けても、三次元形状が崩壊することはなかった。ガラスキャピラリを用いることにより、三次元構造を変化させることなく、三次元構造体に内包された細胞塊をx-y平面に移動させることができ、また、三次元構造体に細胞を内包させたまま、異なる細胞群が存在する場所への移植も可能であった。さらに、筒状構造体に内包させたまま細胞塊を短軸方向に回したり、z軸での角度制御(傾斜)を行ったりすることも可能であり、細胞の多角度観察にも応用可能であることが確認された。
[実施例4]筒状構造体に内包された初代神経細胞の培養
 本実施例では、ラット脳組織より単離した初代神経細胞である海馬細胞と大脳皮質細胞を用いた。図9Aに示すように、単一の筒状構造体に多数の細胞を内包すると、培養とともに細胞同士の会合が開始され、細胞塊が形成された。初代神経細胞の場合、長期培養に伴い細胞同士の接着が誘導されるが、それと同時に筒状構造体の内部表面への接着も維持され、その状態が維持されたまま、筒状構造体の内部空間のみでの神経突起または軸索の伸長が観察された(図9B)。海馬細胞と大脳皮質細胞のいずれの細胞においても、一ヶ月以上の培養期間中、筒状構造体の内部で安定的な細胞体の形態と軸索の伸展状態が維持されること、および筒状構造体内部で細胞死が誘導されないことを確認した。
 初代大脳皮質細胞および海馬細胞は、細胞の増殖速度が遅いため、筒状構造体から細胞がはみ出すことはなく、株化培養細胞に比べて一か月以上のより長期の培養が可能であった。また、初代神経細胞は、神経情報伝達のために神経軸索を伸長するため、細胞が細胞塊を筒状構造体の内部で形成した後、筒状構造体外部へと神経軸索を伸長することも確認された。本実施例においては、三次元構造体は筒状であり、その二つの端点のみが培養液空間に開放されているため、その端点から筒状構造体外部へと神経軸索が伸長した。このことは、初代神経細胞を内包した本実施例の三次元構造体により、神経組織様の微小構造の組立てが可能となるだけではなく、長軸方向の一方向的に細胞の電気的信号を伝達する電気配線素子としての応用も可能であることを示している。
 本実施例の神経組織様細胞塊は、筒状構造体をハンドリングすることで、組織を崩壊させずに移動させることが可能であった。筒状構造体を移動させた基板表面上に、筒状構造体から軸索が伸長していくことが、位相差顕微鏡画像(図9C)と凍結乾燥試料のSEM画像(図9D)から確認された。さらに、あらかじめ異なる種類の細胞を培養していた培養基板上に本実施例の筒状構造体を移動することにより、上記と同様に、筒状構造体から基板表面上に軸索が伸長していき、基板上にあらかじめ存在していた細胞体と結合して細胞間相互作用が発生することが確認された。
 初代神経細胞では、細胞膜の内側と外側とでイオン濃度に差があり、静止状態で膜内が負に分極している。細胞は生体膜電位の変化に応じてイオン透過孔の開閉を調節する機能を有するため、塩化カリウム(KCl)溶液を用いて細胞の脱分極を誘導することで、強制的に電位依存性カルシウムイオンチャネルを活性化させ、カルシウムイオンを細胞内に流入させることができる。そこで、初代神経細胞を筒状構造体に内包して培養した後、KCl溶液を添加して脱分極を誘導した。その結果、筒状構造体の外部に存在する神経細胞だけでなく、筒状構造体に内包された細胞も、細胞の刺激が可能であることが実証された。さらに、カルシウム蛍光プローブであるFluo-4でカルシウムをラベル化し、細胞外液中のカルシウムイオンの細胞内への透過を共焦点顕微鏡により観察した。KCl溶液を添加して細胞刺激を行ったところ、図9Eに示すように、筒状構造体の外部の細胞だけでなく、筒状構造体に内包された細胞でも蛍光強度の変化が観察された。また、筒状構造体に内包された細胞と外部の細胞との接合点および軸索上においても、蛍光強度の変化が観察された。さらに、これらの蛍光強度の変化が同期していることを共焦点顕微鏡により確認した。また、KCl溶液による刺激後も、筒状構造体に内包された細胞の発火が同期して誘導されていることが観察され、筒状構造体内部に形成された微小神経様組織内での細胞間の持続的な接着と、細胞相互間での電気的信号のやりとりが確認された。
 [実施例5]筒状構造体に内包された初代心筋細胞の培養
 本実施例では、ラットの心臓組織より単離した初代心筋細胞を用いた。図10Aに示すように、単一の筒状構造体に心筋細胞を内包すると、初代神経細胞と同様に培養とともに細胞同士の会合が開始され、細胞塊が形成された。細胞塊は繊維状に一方向に形成され、その方向は筒状構造体と同一の方向を有していた。初代心筋細胞の場合、長期培養に伴い細胞同士の接着が誘導されるが、それと同時に筒状構造の内部表面への接着も維持され、その状態が維持されたまま、筒状構造体の内部空間のみでの細胞塊形成が観察された。
 心筋細胞では、一ヶ月以上の培養期間中、筒状構造体の内部で安定的な細胞塊の形態が維持されること、および筒状構造体内部で細胞死が誘導されないことを確認した。図10Bに示すように、内包化された初代心筋細胞では、細胞塊が拍動を開始し、その拍動が、筒状構造体内部のどの場所の細胞においても同期することを確認した。これにより微小な心臓組織の再構築に成功したことが確認された。
 心筋細胞は、初代神経細胞と同様に、細胞膜の内側と外側とでイオン濃度に差があり、静止状態で膜内が負に分極している。細胞は生体膜電位の変化に応じてイオン透過孔の開閉を調節する機能を有する。心筋組織の拍動は、電気的なシグナルを細胞が受け取る際に、カルシウムイオンを細胞内に流入させることが知られている。そこで、カルシウム蛍光プローブであるFluo-4でカルシウムをラベル化し、心筋細胞外液中のカルシウムイオンの心筋細胞内への透過を蛍光顕微鏡により観察した。図10Cに示すように、拍動と同期する形で、蛍光強度の変化も筒状構造体内部のどの場所の細胞においても同期することが観察された。また、蛍光強度の変化も、筒状構造体内部においてのみ同期することが観察された。
[実施例6]様々な形状の三次元構造体の作製
 長方形型の薄膜が筒状構造体に自己組立てされることに限らず、薄膜の二次元形状を任意に決定することで、様々な三次元構造を作製できることを確認した。図11A~11Gに、様々な二次元形状の薄膜から自己組立された三次元構造体を示す。放射状の花型模様の形状を有する薄膜は、球体状の把持用グリッパ構造を有する三次元構造体を形成した(図11A)。十字形状を有する薄膜は、十字形状の一方向のみが屈曲してT字構造を有する三次元構造体を形成した(図11B)。さらに、長方形型の薄膜に十字形状の薄膜を繋ぎ合せることによって、ヒト型を模したような屈曲しない関節部位を介した三次元ヒト型構造が形成された(図11C)。また、薄膜の内部に細孔を形成しても、細孔が形成されていない薄膜と同様の三次元構造をとることが観察された(図11D、11E)。したがって、薄膜に細孔を形成することにより、外部からの物質の供給を誘導するような三次元構造体も作製できる。さらに、波状形状を有する薄膜は、螺旋構造を有する三次元構造体を形成した(図11F)。また、格子形状を有する薄膜は、網目状ネット構造を有する三次元構造体を形成した(図11G)。これらの結果から、薄膜の形状を制御することにより、様々な構造を有する三次元構造体を製造できることが示された。
[実施例7]筒状構造体の曲率半径の制御
 実施例2において、薄膜1は、薄膜層10と薄膜層11との間の機械的強度の差から生じる面内方向の座屈による歪み分布を利用して、自己組織的に三次元形状に組立てられることを確認した。さらに、自己組立てが完了した後の、定常状態での筒状構造体の曲率半径は、2つの薄膜層間の厚みの比率と機械的強度の比率にのみ依存することを見出した。図12A~12Eは、薄膜1の曲率半径ρと、パリレンからなる薄膜層11の厚みt(図12B、12C)、薄膜1の横幅w(図12D)、および薄膜1の長軸方向の長さl(図12E)との相関関係を示したものである。薄膜1を構成する2つの薄膜層のうち、薄膜層11の厚みtのみを増加させると、それに伴い薄膜1の曲率半径ρも増加した(図12B)。また、薄膜層10の厚みtを減少させると、それに伴い薄膜1の曲率半径ρが増加する傾向が観察された(図12C)。さらに、薄膜1の厚みを一定にした場合、長方形型の薄膜1では、薄膜1の曲率半径ρは、短軸方向の長さ(幅w)にほぼ線形に比例する(図12D)のに対して、長軸方向の長さlにはほとんど影響を受けない(図12E)ことが観察された。薄膜層10としてのシルクフィブロインゲル層と薄膜層11としてのパリレン層からなる薄膜1では、シルクフィブロインゲル層が1~100MPaの弾性率を、パリレン層が1~10GPaの弾性率を有しているため、2つの層の弾性率の比率(シルクフィブロインゲル層の弾性率/パリレン層の弾性率)として、0.0001~0.1までの値を取ることができる。ただし、2つの薄膜層間で弾性率に差異が生じれば、弾性率の比率は特に限定されない。弾性率の測定方法は、薄膜層10に用いる高分子材料と薄膜層11に用いる高分子材料とで同じ測定方法を用いれば、特に限定されない。例えば、弾性率の測定方法としては、Jiangら(Jiang C et al., Adv. Funct. Mater. 2007, 17, 2229-2237)やHuら(Hu X et al., Biomacromolecules. 2011 May 9;12(5):1686-96)に記載の方法等を挙げることができる。
 本実施例の筒状構造体は可動性を有するため、キャピラリにより位置制御を行うことで、既存の細胞外電位を計測する微小電極アレイ(MEA)基板の上に配置し、任意の細胞の任意の時間における高効率な細胞外電位の計測に応用可能である。
 本発明によれば、生体適合性の高いソフトマテリアルで形成した薄膜三次元構造に細胞を内包化させるため、生体適合性の高い生体デバイスや人工組織の作製が可能になる。本発明は、再生医療技術や薬剤スクリーニングをはじめとする、生体組織様構造体を使用する分野全般で利用可能である。また、本発明は、生体埋め込みデバイス素子や細胞外電位計測素子にも応用可能である。
 1   薄膜
 10  第1の薄膜層
 11  第2の薄膜層
 12  犠牲層
 13  基板
 20  微小粒子
 21  修飾タンパク質層
 30  フォトレジスト膜

Claims (19)

  1.  複数層の高分子膜からなる三次元構造体であって、
     前記三次元構造体の内部空間に、微小粒子が内包されており、
     前記複数層の高分子膜の各層が、互いに異なる機械的強度を有する、三次元構造体。
  2.  前記複数層の高分子膜の各層が、互いに異なる膨潤率を有する高分子材料で構成されている、請求項1に記載の三次元構造体。
  3.  前記複数層の高分子膜の各層のうち、前記三次元構造体の外部に接する層が、最も大きい膨潤率を有する高分子材料で構成されている、請求項1又は2に記載の三次元構造体。
  4.  前記複数層の高分子膜の各層が、生体適合性の高い高分子材料で構成されている、請求項1~3のいずれか一項に記載の三次元構造体。
  5.  前記微小粒子が細胞である、請求項1~4のいずれか一項に記載の三次元構造体。
  6.  前記高分子膜の表面に、さらに、細胞外マトリクスで構成される層を有する、請求項1~5のいずれか一項に記載の三次元構造体。
  7.  前記高分子膜の厚さが15~400nmである、請求項1~6のいずれか一項に記載の三次元構造体。
  8.  前記細胞が、接着性細胞であり、前記高分子膜に接着している、請求項5~7のいずれか一項に記載の三次元構造体。
  9.  前記三次元構造体が生体組織様構造を有しており、前記細胞が生体組織様構造の細胞塊を形成している、請求項5~8のいずれか一項に記載の三次元構造体。
  10.  請求項5~9のいずれか一項に記載の三次元構造体と、前記三次元構造体の外部に存在する細胞と、を含み、
     前記三次元構造体に内包される細胞が、前記三次元構造体の外部へと伸展する構造を形成しており、前記三次元構造体に内包される細胞と前記三次元構造体の外部に存在する細胞との間で、細胞間相互作用が発生し得る、生体組織様構造体。
  11.  微小粒子が内包された三次元構造体を製造する方法であって、
     複数層の高分子膜を形成する工程(a)と、
     前記複数層の高分子膜の表面上に、微小粒子を浮遊させる工程(b)と、
     前記複数層の高分子膜に、厚み方向の応力分布を発生させて、前記複数層の高分子膜に自己組織的に三次元構造を形成させる工程(c)と、
     を含む、三次元構造体の製造方法。
  12.  基板上に犠牲層を形成する工程を、さらに含み、
     前記工程(a)が、前記犠牲層上に、互いに異なる膨潤率を有する高分子材料を積層して、複数層の高分子膜を形成する工程であり、
     前記工程(b)が、前記複数層の高分子膜に、前記微小粒子を含む懸濁液を添加する工程であり、
     前記工程(c)が、前記犠牲層を分解して、前記高分子膜を前記基板から遊離させる工程である、
     請求項11に記載の三次元構造体の製造方法。
  13.  前記微小粒子が細胞である、請求項11又は12に記載の三次元構造体の製造方法。
  14.  さらに、前記高分子膜の表面に、細胞外マトリクスで構成される層を形成する工程を含む、請求項11~13のいずれか一項に記載の三次元構造体の製造方法。
  15.  前記高分子膜の厚さが15~400nmである、請求項11~14のいずれか一項に記載の三次元構造体の製造方法。
  16.  基板と、前記基板上に積層された犠牲層と、前記犠牲層上に積層された複数層の高分子膜とを含み、 前記複数層の高分子膜の各層が、前記犠牲層を分解して前記高分子膜を前記基板から遊離させた際に、前記高分子膜に厚み方向の応力分布が発生し得る高分子材料で構成されている、
     積層体。
  17.  前記複数層の高分子膜の各層が、互いに異なる膨潤率を有する高分子材料で構成されている、請求項16に記載の積層体。
  18.  前記高分子膜上に積層された細胞外マトリクスで構成される層を、さらに含む、請求項16又は17に記載の積層体。
  19.  前記高分子膜の厚さが15~400nmである、請求項16~18のいずれか一項に記載の積層体。
PCT/JP2017/019302 2016-05-24 2017-05-24 微小粒子を内包する三次元薄膜構造体およびその製造方法 WO2017204235A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17802821.3A EP3447120B1 (en) 2016-05-24 2017-05-24 Three-dimensional thin film structure having microparticles enclosed therein and method for manufacturing same
US16/090,976 US20190136172A1 (en) 2016-05-24 2017-05-24 Three-dimensional thin film structure having microparticles enclosed therein and method for manufacturing same
CN201780031444.3A CN109153961B (zh) 2016-05-24 2017-05-24 内包微小颗粒的三维薄膜结构体和其制造方法
JP2018519572A JP6714080B2 (ja) 2016-05-24 2017-05-24 微小粒子を内包する三次元薄膜構造体およびその製造方法
US18/367,260 US20230416665A1 (en) 2016-05-24 2023-09-12 Three-Dimensional Thin Film Structure Having Microparticles Enclosed Therein And Method For Manufacturing Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-103362 2016-05-24
JP2016103362 2016-05-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/090,976 A-371-Of-International US20190136172A1 (en) 2016-05-24 2017-05-24 Three-dimensional thin film structure having microparticles enclosed therein and method for manufacturing same
US18/367,260 Division US20230416665A1 (en) 2016-05-24 2023-09-12 Three-Dimensional Thin Film Structure Having Microparticles Enclosed Therein And Method For Manufacturing Same

Publications (1)

Publication Number Publication Date
WO2017204235A1 true WO2017204235A1 (ja) 2017-11-30

Family

ID=60412378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019302 WO2017204235A1 (ja) 2016-05-24 2017-05-24 微小粒子を内包する三次元薄膜構造体およびその製造方法

Country Status (5)

Country Link
US (2) US20190136172A1 (ja)
EP (1) EP3447120B1 (ja)
JP (1) JP6714080B2 (ja)
CN (1) CN109153961B (ja)
WO (1) WO2017204235A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025510A (ja) * 2018-08-14 2020-02-20 日本電信電話株式会社 電極及びその製造方法、並びに積層体
CN112955532A (zh) * 2018-09-24 2021-06-11 西南研究院 三维生物反应器
WO2021130815A1 (ja) * 2019-12-23 2021-07-01 日本電信電話株式会社 三次元構造体及び三次元構造体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349597A (zh) * 2020-03-10 2020-06-30 郑州大学 一种集结磁标定物形成团簇的磁性卷曲结构及其应用
WO2023062268A1 (en) * 2021-10-13 2023-04-20 Tampere University Foundation Sr A system for cell culturing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029468A (ja) * 2013-08-02 2015-02-16 大日本印刷株式会社 細胞管状組織の作製方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642338B2 (en) * 2003-02-06 2014-02-04 Cellseed Inc. Anterior ocular segment related cell sheets, three-dimensional structures, and processes for producing the same
US7358082B2 (en) * 2003-07-16 2008-04-15 Fujifilm Corporation Device and method for culturing cells
WO2010008905A2 (en) * 2008-06-24 2010-01-21 The Curators Of The University Of Missouri Self-assembling multicellular bodies and methods of producing a three-dimensional biological structure using the same
EP2423162B1 (en) * 2010-08-24 2016-10-12 Leibniz-Institut für Polymerforschung Dresden e.V. Fabrication of carbon nano- or microtubes by using a self-rolling process
EP2620128A4 (en) * 2010-09-22 2017-03-22 Terumo Kabushiki Kaisha Biological adhesive sheet and device for bonding sheet
US8877489B2 (en) * 2011-12-05 2014-11-04 California Institute Of Technology Ultrathin parylene-C semipermeable membranes for biomedical applications
CN102431966B (zh) * 2011-12-27 2014-10-29 复旦大学 一种管状多孔微米马达及其制备方法和应用
US11376329B2 (en) * 2013-03-15 2022-07-05 Trustees Of Tufts College Low molecular weight silk compositions and stabilizing silk compositions
CN104020152B (zh) * 2014-06-02 2017-04-05 复旦大学 一种三明治结构微米管及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029468A (ja) * 2013-08-02 2015-02-16 大日本印刷株式会社 細胞管状組織の作製方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ARAYANARAKOOL, RERNGCHAI ET AL.: "Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures", LAB CHIP, vol. 15, 2015, pages 2981 - 2989, XP055444747, ISSN: 1473-0189 *
HUANG, GAOSHAN ET AL.: "Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells", LAB CHIP, vol. 9, 2009, pages 263 - 268, XP055444745, ISSN: 1473-0189 *
LIU, LU ET AL.: "Redox-triggered self-rolling robust hydrogel tubes for cell encapsulation", MACROMOL. RAPID COMMUN., vol. 35, 2014, pages 344 - 349, XP055444752, ISSN: 1521-3927 *
LUCHNIKOV, VALERIY ET AL.: "Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems", MACROMOL. RAPID COMMUN., vol. 32, 2011, pages 1943 - 1952, XP055444742, ISSN: 1521-3927 *
STROGANOV, VLADISLAV ET AL.: "Biodegradable Self-Folding Polymer Films with Controlled Thermo-Triggered Folding", ADVANCED FUNCTIONAL MATERIALS, vol. 24, 2014, pages 4357 - 4363, XP055444738, ISSN: 1616-3028 *
XI, WANG ET AL.: "Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies", NANO LETT., vol. 14, 2014, pages 4197 - 4204, XP055444734, ISSN: 1530-6984 *
ZAKHARCHENKO, SVETLANA ET AL.: "Stimuli- responsive hierarchically self-assembled 3D porous polymer-based structures with aligned pores", J. MATER. CHEM. B, vol. 1, 2013, pages 1786 - 1793, XP055444749, ISSN: 2050-7518 *
ZAKHARCHENKO, SVETLANA: "Encapsulation of particles and cells using stimuli-responsive self-rolling polymer films", DISSERTATION, DOCTOR RERUM NATURALIUM, 2014, pages 1 - 149, XP055444733 *
ZAKHARCHENKO, SVETLANA: "Fully Biodegradable Self-Rolled Polymer Tubes: A Candidate for Tissue Engineering Scaffolds", BIOMACROMOLECULES, vol. 12, 2011, pages 2211 - 2215, XP055346278, ISSN: 1525-7797 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025510A (ja) * 2018-08-14 2020-02-20 日本電信電話株式会社 電極及びその製造方法、並びに積層体
WO2020036104A1 (ja) * 2018-08-14 2020-02-20 日本電信電話株式会社 電極及びその製造方法、並びに積層体
JP7065433B2 (ja) 2018-08-14 2022-05-12 日本電信電話株式会社 電極及びその製造方法、並びに積層体
CN112955532A (zh) * 2018-09-24 2021-06-11 西南研究院 三维生物反应器
JP2022513563A (ja) * 2018-09-24 2022-02-09 サウスウェスト リサーチ インスティテュート 三次元バイオリアクター
AU2019346419B2 (en) * 2018-09-24 2023-08-17 Southwest Research Institute Three-dimensional bioreactors
JP7376576B2 (ja) 2018-09-24 2023-11-08 サウスウェスト リサーチ インスティテュート 三次元バイオリアクター
US11912971B2 (en) 2018-09-24 2024-02-27 Southwest Research Institute Three-dimensional bioreactors
WO2021130815A1 (ja) * 2019-12-23 2021-07-01 日本電信電話株式会社 三次元構造体及び三次元構造体の製造方法
JPWO2021130815A1 (ja) * 2019-12-23 2021-07-01

Also Published As

Publication number Publication date
CN109153961A (zh) 2019-01-04
JP6714080B2 (ja) 2020-06-24
EP3447120A1 (en) 2019-02-27
CN109153961B (zh) 2022-07-12
EP3447120B1 (en) 2021-06-23
US20230416665A1 (en) 2023-12-28
EP3447120A4 (en) 2020-01-08
US20190136172A1 (en) 2019-05-09
JPWO2017204235A1 (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
US20230416665A1 (en) Three-Dimensional Thin Film Structure Having Microparticles Enclosed Therein And Method For Manufacturing Same
Lima et al. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview
US20060141617A1 (en) Multilayered microcultures
KR101578936B1 (ko) 미세패턴된 나노섬유 스캐폴드
CN104328050B (zh) 具有微通道的器官模仿装置及其使用和制造方法
JP2012509663A (ja) 細胞培養のための、突起間隔を開けた基板および装置
JP6628416B2 (ja) 細胞培養方法
US10758902B2 (en) Method of fabricating semipermeable ultrathin polymer membranes
Vikram Singh et al. Three‐dimensional patterning in biomedicine: Importance and applications in neuropharmacology
WO2017222065A1 (ja) 三次元培養皮膚シート、その製造に使用するための細胞培養容器及びその製造方法
Deuerling et al. A Perspective on Bio‐Mediated Material Structuring
Zheng et al. Synthesizing living tissues with microfluidics
Wen et al. Applications of nanotechnology in tissue engineering
Yang et al. Recent advance in cell patterning techniques: Approaches, applications and future prospects
Wang et al. Acoustic fabrication of living cardiomyocyte-based hybrid biorobots
Liu et al. In vitro mimicking the morphology of hepatic lobule tissue based on Ca-alginate cell sheets
Luo et al. Development of an axon-guiding aligned nanofiber-integrated compartmentalized microfluidic neuron culture system
US20200190456A1 (en) Native Extracellular Matrix-Derived Membrane Inserts for Organs-On-Chips, Multilayer Microfluidics Microdevices, Bioreactors, Tissue Culture Inserts, and Two-dimensional and Three-dimensional Cell Culture Systems
KR20190088711A (ko) 폐 모방 칩 및 이의 제조방법
WO2020036104A1 (ja) 電極及びその製造方法、並びに積層体
WO2015010305A1 (zh) 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法
Bianco et al. Lab-on-a-brane for spheroid formation
KR20180049998A (ko) 온도감응성 하이드로겔을 이용한 3차원 세포 구상체의 제조방법
CN110177523A (zh) 血管移植物、制造其的方法及包含其的制品
JP6230091B2 (ja) マイクロアレイ、その製造方法、及びその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802821

Country of ref document: EP

Effective date: 20181119