CN102431966B - 一种管状多孔微米马达及其制备方法和应用 - Google Patents

一种管状多孔微米马达及其制备方法和应用 Download PDF

Info

Publication number
CN102431966B
CN102431966B CN201110443627.0A CN201110443627A CN102431966B CN 102431966 B CN102431966 B CN 102431966B CN 201110443627 A CN201110443627 A CN 201110443627A CN 102431966 B CN102431966 B CN 102431966B
Authority
CN
China
Prior art keywords
micron
pore
motor
preparation
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110443627.0A
Other languages
English (en)
Other versions
CN102431966A (zh
Inventor
李金星
刘照乾
黄高山
梅永丰
刘冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201110443627.0A priority Critical patent/CN102431966B/zh
Publication of CN102431966A publication Critical patent/CN102431966A/zh
Application granted granted Critical
Publication of CN102431966B publication Critical patent/CN102431966B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明属于微纳器件技术领域,具体为一种管状多孔微米马达及其制备方法和应用。本发明多孔微米马达的制备步骤为:阳极氧化制备表面具有纳米孔阵列的氧化铝膜;在阳极氧化铝膜上沉积具有预应力梯度多层薄膜;对多层薄膜进行图形化处理;选择性地腐蚀多层薄膜下的多孔阳极氧化铝,多层薄膜自卷曲成为管壁具有纳米孔洞的微米管;将多孔微米管转移到溶液中,成为微米马达;这种特殊结构的多孔微米马达具有大的表面积、更高的催化效率以及更快的运动速度;利用磁场可以对微米马达的运动方向进行控制以用于微纳级别物体的输运。这种高速运动微米马达在药物输运、生物探测和分离、单细胞分析等方面具有巨大的应用前景。

Description

一种管状多孔微米马达及其制备方法和应用
技术领域
本发明属于微纳器件技术领域,具体涉及一种管状多孔微米马达及其制备方法及其应用。
背景技术
制作微米或者纳米马达对微米、亚微米以及纳米级的物体进行驱动和输运是微纳器件的一个重要研究目标。实现这一目标所面临的最大挑战之一就是制作能够高速运动的具有较大动力的微纳马达。微纳马达一般采用纳米材料制造,通过原位化学反应产生的能量来提供动力。传统的纳米生物分子马达的合成和制备极为困难,而基于催化反应作为驱动力的新型微纳马达自2000年以来已经受到了科学界的强烈关注。2002年美国哈佛大学的Whitesides以Pt薄膜催化分解过氧化氢溶液产生的氧气气泡作为推动力,对厘米级别漂浮物体实现了自推进与自组装。随后,美国宾夕法尼亚州立大学以及加拿大多伦多大学将这种驱动模式应用于纳米级别的物体,制作出了能够持续自推进的各种双金属(Au/Pt, Au/Ni)纳米线,实现了纳米尺度的非布朗运动。美国亚利桑那大学以及加利福尼亚州圣地亚哥大学通过改变微纳马达材料以及“燃料”溶液的构成使得纳米马达的运动速度大大增加。随后,一些独特设计的微纳马达不断被制作出来,如非对称镀铂的硅微米球、多孔的双金属纳米线等等。采用微纳马达来对其他微纳物体进行捕获并运送的可能性已经成为现实。这些催化微纳马达在药物输送、纳米组装、细胞生物学、纳米手术、微流体物体传输、微型机器人等领域具有巨大的应用潜力。然而,提高这些微纳马达的运动速度和动力仍然是一个急需解决的问题。
发明内容
本发明的目的在于提供一种驱动力大、运动速度快的管状微米马达及其制备方法和应用。
本发明提供的管状微米马达,其管壁具有高密度纳米孔,因而有高的表面积,和高的催化效率。
本发明提供的管状多孔微米马达,其制备方法包括以下几个步骤(见附图1):
(1)采用阳极氧化方法制备表面具有高密度周期性纳米孔阵列的多孔氧化铝膜,用以作为牺牲层模板;
(2)采用物理气相沉积方法在多孔氧化铝膜上面沉积具有预应力梯度的多层薄膜;所述内应力梯度来自于多层薄膜不同层之间的不同的热膨胀系数及不同的生长速率;所述多层薄膜中,有一层薄膜的材料为铁、钴或者镍等磁性材料,最上层薄膜的材料为催化材料,其余各层薄膜的材料可以是相同,也可以不同;
(3)采用金刚刀将多孔氧化铝上的多层薄膜划成大小为10-2000 μm大小的方形;
(4)选择性地除去多孔氧化铝牺牲层,上层方形多层薄膜自卷成微米管状结构,其管壁呈多孔状;
(5)将所得到的多孔微米管转移到溶液中,微米管内壁的催化材料催化溶液分解产生气体并形成微米气泡,气泡从多孔微米管末端排出,反推微米管向前运动,成为微米马达。
上述管状微米马达的运动方向可利用磁场进行控制,将物体搬运到所指定的位置。
本发明中,所得到的管状多孔微米马达的几何参数,如管壁纳米孔直径,孔与孔之间的间距以及微米管直径等,根据设计要求确定。
本发明中,步骤(1)采用阳极氧化制备多孔氧化铝膜时,可通过采取不同的电解液如磷酸、草酸或者硫酸,以及采取不同的电解电压和时间,获得不同的纳米孔径,并可以对孔与孔之间的间距进行调制。纳米孔的孔径可以在20-200 nm范围内实行调制。
本发明中,步骤(2)的薄膜沉积过程会在薄膜中形成预应力梯度,从而实现最终的自卷曲。预应力梯度的大小可通过控制物理气相沉积过程中的沉积参数来调节。这些沉积参数包括:沉积厚度控制为5-100 nm,沉积速率控制为0.2-20 Å/s,衬底温度控制为25-300 oC,以及沉积压强控制为10-3-10-4 Pa。其中,物理气相沉积的方法包括磁控溅射,热蒸发,或电子束蒸发等。
本发明中,多孔氧化铝膜上沉积的多层薄膜可以是一种材料或几种材料的组合。多层薄膜中,最上层必须为催化剂材料,中间层必须有一层为铁、钴或者镍等磁性材料。多孔微米管的直径可以在1-100 μm范围实行调制。
本发明中,所述催化材料可为Pt或者Ag。
本发明中,步骤(5)所述溶液为可被所述催化材料分解产生气体的溶液,如稀H2O2
本发明中,所述的牺牲层与模板均为多孔阳极氧化铝。
本发明中,在步骤(2)的沉积过程中,由于被沉积材料会进入氧化铝纳米孔,最终氧化铝膜被腐蚀以后,进入氧化铝纳米孔的材料形成纳米管结构。因而,对于相同长度和直径的管状微米马达来说,多孔微米马达相比于管壁光滑的微米马达,有更高的表面积,可提高催化效率。
本发明中,多孔微米马达采用液体燃料,在液体中实现自驱动。
本发明中,多孔微米马达相比于管壁光滑的微米马达,有更快的运动速度。其具体证实方式如下:
采用光学显微镜观察微米马达在溶液中的运动,并对其运动进行录像,然后可以对拍摄的微米马达的运动录像进行分析和计算。对多个一定长度和直径的多孔微米马达在某一溶液中的运动速度进行统计,并计算其平均速度。同时,制作相同长度和直径的管壁光滑的微米马达,统计多个光滑的微米马达在相同浓度的溶液中的运动速度,并计算其平均速度。比较上述两个平均速度,就可以知道多孔微米马达能够获得多大的加速。
这种特殊结构的多孔微米马达具有大的表面积、更高的催化效率以及更快的运动速度;利用磁场可以对微米马达的运动方向进行控制以用于微纳级别物体的输运。这种高速运动微米马达在药物输运、生物探测和分离、单细胞分析等方面具有巨大的应用前景。
附图说明
图1为本发明制备多孔微米马达的流程图。其中,(a)为纯铝片;(b)表示通过阳极氧化形成的多孔阳极氧化铝模板;(c)表示利用物理气相沉积方法在模板上制备具有预应力梯度的多层薄膜,被沉积材料会沉积进入纳米孔一段距离;(d)表示将多孔阳极氧化铝牺牲层去除,上层多层薄膜自卷曲成为多孔微米管。
图2为多孔微米管在双氧水中作为微米马达运动的示意图。
图3为多孔微米马达催化反应质量输运过程的示意图。
图4 为多孔微米马达(管壁纳米孔径为50 nm)的电子显微镜照片。
图5 为A)光滑的微米马达,B)管壁纳米孔径为50 nm的多孔微米马达,C)管壁纳米孔径为200 nm的多孔微米马达在浓度为7 %的双氧水溶液中运动的平均速度比较。平均值的统计偏差也相应标出。
图6为采用多孔微米马达进行微米级别的物体搬运的示意图。
图中标号:1. 纯铝衬底,2. 阳极多孔氧化铝膜,3. 多层金属薄膜,4. 多孔微米马达,5. 微米马达管壁的纳米管(孔),6. 氧气微米气泡,7. 待运送物体。
具体实施方式
下面结合附图及具体实例,对制备多孔微米管以及高速运动、物体输运应用作进一步说明。
图1为利用本发明的方法制备多孔微米管的示意图。其中,(a)为纯净的铝片1。(b)表示,利用阳极氧化形成的有序多孔氧化铝膜2,它同时作为卷曲过程中的牺牲层。阳极氧化铝表面的纳米孔阵列的几何结构可以通过阳极氧化的电解液成分浓度和电压来控制。(c)表明采用物理气相沉积的方法在多孔阳极氧化铝膜上沉积多层金属薄膜3,最上层为铂薄膜,用以催化双氧水分解。可通过改变沉积参数,如沉积厚度、沉积速率、衬底温度以及沉积压强等,对最终的卷曲的管状微米马达的管径进行控制。(d)利用质量百分比为20 %的氢氧化钾溶液将多孔阳极氧化铝牺牲层去除,被释放的多层金属薄膜自卷曲成为多孔微米管5。
图2示意多孔微米管在双氧水溶液中催化双氧水分解产生气泡运动的过程,微米管内产生的气泡会从微米管的一端喷出,从而推动微米管反向运动。
图3示意多孔微米马达催化双氧水分解的质量输运过程,由于管壁纳米孔的存在,双氧水可以从纳米孔进入管腔,被管腔内壁的铂催化分解。大大加速了双氧水的分解速度,从而加快微米马达的速度。
实施例 1
其中,所述的多孔阳极氧化铝膜是在0.5 M的草酸溶液中加40 V电压对纯净的铝片进行阳极氧化得到的,其孔径大小在50 nm左右,孔密度为~1014 m-2
多孔氧化铝膜上所沉积的的多层金属薄膜从下到上分别为钛、铬、钴、铂,厚度分别为5 nm、5 nm、5 nm、 5 nm。物理气相沉积过程采用电子束蒸发方式,沉积速率分别0.5 Å/s。
采用金刚刀对上述多孔氧化铝表面沉积的金属薄膜进行横向和纵向的划刻,所得的方块面积为 20×20 μm2
所述的多孔氧化铝的腐蚀过程是上述样品放入质量百分比为20 %的氢氧化钾溶液中。被释放的多层金属膜卷曲成为直径约为3.8 μm的管状结构,其中管壁上周期排列的孔的直径比多孔阳极氧化铝模板上的孔径小,约为20 nm,如附图4中电子显微镜照片所示。
多层金属在电子束蒸发沉积过程中进入纳米孔的深度约为200 nm,最后得到的多孔微米管表面多孔处连接长度为200 nm左右的纳米管,如附图4中电子显微镜照片所示。
所述多孔微米管得表面积为相同长度和直径的光滑微米管的表面积的3.9倍。
将所述的多孔微米马达放于7 % 的双氧水溶液中,微米管内壁的铂催化双氧水溶液分解产生氧气并形成微米气泡,气泡从多孔微米管末端排出,反推微米管向前运动,成为微米马达(附图2)。多孔结构加快了双氧水分解,从而加快了管状多孔马达的运动速度(附图3)。
采用光学显微镜拍摄其运动录像进行分析计算,最终对二十个多孔微米马达的速度进行统计得到平均速度为613 μm/s(见附图5中B), 是相同直径和长度的管壁光滑微米马达速度的2.3倍(见附图5中A)。
实施例 2
其中,所述的多孔阳极氧化铝膜是在质量分数为6 %的磷酸中加80 V电压对纯净的铝片进行阳极氧化得到的,其孔径大小在200 nm左右,孔密度为 ~4×1013 m-2
多孔氧化铝膜上所沉积的多层金属薄膜从下到上分别为钛、铬、钴、铂,厚度分别为5 nm、5 nm、5 nm、 5 nm。物理气相沉积过程采用电子束蒸发方式,沉积速率分别0.5 Å/s。
采用金刚刀对上述多孔氧化铝表面沉积的金属薄膜进行横向和纵向的划刻,所得的方块面积为20×20 μm2
所述的多孔氧化铝的腐蚀过程是上述样品放入质量百分比为20 %的氢氧化钾溶液中。被释放的多层金属膜卷曲成为直径约为3.8 μm的管状结构,其中管壁上周期排列的孔的直径与多孔阳极氧化铝模板上的孔径相近但略小,约为180 nm。
多层金属在电子束蒸发沉积过程中进入纳米孔的深度约为500 nm,最后得到的多孔微米管表面多孔处连接长度为500 nm左右的纳米管。
所述多孔微米管得表面积为相同长度和直径的光滑微米管的表面积的9.7倍。
将所述的多孔微米马达放于7 %的双氧水溶液中,采用光学显微镜拍摄其运动录像进行分析计算,最终对二十个多孔微米马达的速度进行统计得到平均速度为1077 μm/s(见附图5中C), 是相同直径和长度的管壁光滑微米马达速度的4.1倍(见附图5中A)。
实施例 3
其中,类似前实施例2,制备出管径大小约为3.8 μm,管壁纳米孔直径约为200 nm的管状多孔结构。
将所述管状多孔结构放置于7 % 的双氧水溶液中,构成管状多孔微米马达。
采用外加磁场来控制微米马达的运动,微米马达的运动方向与磁场方向保持一致,可以很方便的对微米马达的运动进行控制。
在上述溶液中放置50×50×10 μm3方块,利用磁场控制微米马达的运动,使其对方块进行搬运。在磁场的操控下,微米马达能够准确的找到所需要搬运的方块,并推动其按照磁场控制的方向运动(附图6)。
在所述的货物搬运过程中,微米马达的速度由~1200μm/s下降为 ~150μm/s。

Claims (8)

1.一种管状多孔微米马达的制备方法,其特征在于具体步骤为:
(1)采用阳极氧化方法制备表面具有高密度周期性纳米孔阵列的多孔氧化铝膜,用以作为牺牲层模板;
(2)采用物理气相沉积方法在多孔氧化铝膜上面沉积具有预应力梯度的多层薄膜;所述预应力梯度来自于多层薄膜不同层之间的不同的热膨胀系数及不同的生长速率;所述多层薄膜中,有一层薄膜的材料为铁、钴或者镍磁性材料,最上层薄膜的材料为催化材料,其余各层薄膜的材料相同,或不同;
(3)采用金刚刀将多孔氧化铝上的多层薄膜划成大小为10-2000 μm大小的方形;
(4)选择性地除去多孔氧化铝牺牲层,上层方形多层薄膜自卷成微米管状结构,其管壁呈多孔状;
(5)将所得到的多孔微米管转移到溶液中,微米管内壁的催化材料催化溶液分解产生气体并形成微米气泡,气泡从多孔微米管末端排出,反推微米管向前运动,成为管状多孔微米马达。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述多孔氧化铝膜的孔径为20-200 nm 。
3.根据权利要求1所述的制备方法,其特征在于所述催化材料为Pt或者Ag。
4.根据权利要求1所述的制备方法,其特征在于步骤(2)物理气相沉积过程中控制沉积参数为:沉积厚度5-100 nm,沉积速率0.2-20 Å/s,衬底温度25-300 oC,沉积压强10-3-10-4 Pa。
5.根据权利要求3所述的制备方法,其特征在于步骤(4)中多孔微米管直径为1-100 μm。
6.如权利要求1—4之一所述方法制备得到的管状多孔微米马达。
7.如权利要求6所述的管状多孔微米马达,其特征在于该马达的运动受磁场控制。
8.如权利要求6所述的管状多孔微米马达在药物输运、生物探测和分离、单细胞分析方面的应用。
CN201110443627.0A 2011-12-27 2011-12-27 一种管状多孔微米马达及其制备方法和应用 Expired - Fee Related CN102431966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110443627.0A CN102431966B (zh) 2011-12-27 2011-12-27 一种管状多孔微米马达及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110443627.0A CN102431966B (zh) 2011-12-27 2011-12-27 一种管状多孔微米马达及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN102431966A CN102431966A (zh) 2012-05-02
CN102431966B true CN102431966B (zh) 2014-10-29

Family

ID=45980380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110443627.0A Expired - Fee Related CN102431966B (zh) 2011-12-27 2011-12-27 一种管状多孔微米马达及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN102431966B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701135A (zh) * 2012-05-17 2012-10-03 华东师范大学 一种多孔硅微米管及其制备方法
CN102925933B (zh) * 2012-11-05 2015-03-04 福州大学 一种Au-FeNi两段式合金纳米马达及其制备方法
CN104020152B (zh) * 2014-06-02 2017-04-05 复旦大学 一种三明治结构微米管及其制备方法和应用
CN104591079B (zh) * 2014-12-04 2019-11-12 复旦大学 一种微米管道的加工方法
CN105041593B (zh) * 2015-07-15 2017-12-29 武汉理工大学 双面神结构的光驱动纳米马达
CN106006756B (zh) * 2016-05-19 2017-07-04 青岛大学 一种Fe2O3纳米薄膜卷曲管的制备方法
US20190136172A1 (en) * 2016-05-24 2019-05-09 Nippon Telegraph And Telephone Corporation Three-dimensional thin film structure having microparticles enclosed therein and method for manufacturing same
CN106311340B (zh) * 2016-09-28 2018-11-13 济南大学 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法
CN109867338B (zh) * 2017-02-16 2021-10-01 三峡大学 一种使用磁驱微米马达进行净水的方法
CN106927418A (zh) * 2017-03-29 2017-07-07 广东工业大学 一种微纳米发动机及其制备方法
CN109420241A (zh) * 2017-08-27 2019-03-05 南京乐朋电子科技有限公司 一种生物细胞仿真的纳米机器人
CN109504953A (zh) * 2018-12-10 2019-03-22 华南师范大学 一种ZnO-Ni光驱动微管马达及其制备方法
CN109650483B (zh) * 2018-12-25 2022-02-22 四川大学 具有微米/纳米分级式多孔结构的气泡推进型微驱动器及其制备方法
CN110611455B (zh) * 2019-09-23 2021-05-14 南京工业大学 立方Ag纳米颗粒内表面的中空管状MnO2基微米马达及其制备
CN110863962B (zh) * 2019-11-13 2020-10-27 西安交通大学 纳米颗粒团聚型纳米多孔电化学驱动器及其制备和测试方法
CN112208052B (zh) * 2020-09-29 2021-12-28 西安交通大学 一种基于磁性微粒导向的微型机器人及其制备方法
CN114425043B (zh) * 2021-12-08 2023-06-27 深圳先进技术研究院 一种基于巨噬细胞的活细胞载药系统及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716529A (zh) * 2009-12-11 2010-06-02 北京工业大学 一种高负载量催化剂Pt/CNTs的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050276743A1 (en) * 2004-01-13 2005-12-15 Jeff Lacombe Method for fabrication of porous metal templates and growth of carbon nanotubes and utilization thereof
KR100747074B1 (ko) * 2006-10-25 2007-08-07 금오공과대학교 산학협력단 양극 산화 알루미늄 템플레이트(AAOTemplate)를 이용한 나노 로드의 제조 방법 및이를 이용하여 얻어진 나노 로드
WO2011031463A2 (en) * 2009-08-25 2011-03-17 The Regents Of The University Of California Nanomotor-based patterning of surface microstructures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716529A (zh) * 2009-12-11 2010-06-02 北京工业大学 一种高负载量催化剂Pt/CNTs的制备方法

Also Published As

Publication number Publication date
CN102431966A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
CN102431966B (zh) 一种管状多孔微米马达及其制备方法和应用
Deng et al. Development of solid-state nanopore fabrication technologies
Saji Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation
Momotenko et al. Write–read 3D patterning with a dual-channel nanopipette
Poinern et al. Progress in nano-engineered anodic aluminum oxide membrane development
Xu et al. A review: development of the maskless localized electrochemical deposition technology
Mei et al. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines
JP5767100B2 (ja) ナノワイヤ及びナノワイヤを製造する方法
Li et al. Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties
Huang et al. Material considerations and locomotive capability in catalytic tubular microengines
Gibbs et al. Catalytic nanomotors: fabrication, mechanism, and applications
JP2014523382A (ja) 階層的カーボンからなるナノまたはマイクロ構造体
Zhang et al. Fabrication of nanochannels
CN101117726B (zh) 一种基于铝阳极氧化膜的复型纳米孔掩模板及其制备方法和应用
CN103606499B (zh) 卫星场致发射电推进器的发射体制备方法
Zaraska et al. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays
CN103241728A (zh) 利用多孔阳极氧化铝为模板化学气相沉积制备石墨烯纳米孔阵列的方法
Schneider et al. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors
Sulka et al. AAO templates with different patterns and channel shapes
Noh et al. Guided nanostructures using anodized aluminum oxide templates
Lin et al. Fabrication of solid-state nanopores
CN100457958C (zh) 一种金属氧化物纳米反阵列薄膜的制备方法
Yue et al. Electrochemical synthesis and hydrophilicity of micro-pored aluminum foil
JP2010085337A (ja) ナノワイヤを用いた微細流路の製造方法
Lei et al. Controllable Shrinking Fabrication of Solid-State Nanopores

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20161227