CN106311340B - 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法 - Google Patents

一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法 Download PDF

Info

Publication number
CN106311340B
CN106311340B CN201610855664.5A CN201610855664A CN106311340B CN 106311340 B CN106311340 B CN 106311340B CN 201610855664 A CN201610855664 A CN 201610855664A CN 106311340 B CN106311340 B CN 106311340B
Authority
CN
China
Prior art keywords
small ball
porous small
pmma
added
polydivinylbenezene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610855664.5A
Other languages
English (en)
Other versions
CN106311340A (zh
Inventor
丁诗扬
国伟林
王瑞芹
韩凤
卫静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610855664.5A priority Critical patent/CN106311340B/zh
Publication of CN106311340A publication Critical patent/CN106311340A/zh
Application granted granted Critical
Publication of CN106311340B publication Critical patent/CN106311340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/32Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法。首先,将一定量的聚二乙烯基苯多孔小球分散于含有过渡金属离子的溶液中吸附过渡金属离子,然后在其表面一侧镀银,最后得到自驱动Ag@PDVB‑Mn+微米马达催化剂。该自驱动微米马达催化剂催化活性高,环境友好,易于回收,可重复利用,并且该方法设备简单,操作方便,具有很大应用前景。

Description

一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法
技术领域
本发明属于微纳器件技术领域,具体涉及一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法。
背景技术
生物难降解有机废水的环境影响已经引起人们的高度关注,这些废水很难通过传统的生物法和物理化学法处理。高级氧化技术是一种高效的处理生物难降解有机废水的技术,其中Fenton和类Fenton技术应用最为广泛。
随着纳米技术的快速发展,纳米材料和纳米技术大量应用于环境保护特别是废水处理中。目前,自驱动微纳马达的研究属于微纳米科学技术研究的前沿。在生物医学、环境科学和自然资源领域中,自驱动微纳马达表现出了极大的发展空间,并在物体运输、生物传感、污水净化等领域展现出广阔的应用前景。大多自驱动系统是通过将化学能转化为机械能实现的,也可以通过电磁场、电场、温度梯度、光照以及超声波等方法实现微纳马达的自驱动。目前,人们已经制备了多种自驱动微纳马达用于去除水中的污染物。
本发明采用聚二乙烯基苯(PDVB)多孔小球作为载体,首先在其孔道中负载过渡金属离子(Mn+),然后在其表面一侧镀银,最后得到自驱动Ag@PDVB-Mn+微米马达。在无需外界提供能源的情况下,微米马达表面的Ag催化分解水中过氧化氢为氧气,产生的氧气气泡产生反作用力,推动其在溶液中运动;同时,在PDVB中负载的过渡金属离子与水溶液中的过氧化氢组成类Fenton体系,通过形成羟基自由基氧化降解水中有机污染物;此外,PDVB多孔小球具有良好吸附性,能高效富集水中有机污染物,利于有机污染物的去除。因此,本发明为处理有机废水提供广阔的应用前景。
发明内容
本发明的目的是为解决现有技术的不足,提供一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法。本发明所制备催化剂具有催化性能良好、有机物去除率高、操作方便、无选择性、易回收利用、能耗低和成本低等优点。
本发明的技术方案是:将一定量的聚二乙烯基苯多孔小球分散于含有过渡金属离子的溶液中吸附过渡金属离子,然后在其表面一侧镀银,最后得到自驱动Ag@PDVB-Mn+微米马达催化剂。
所述一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法,包括以下步骤:
(1)PDVB-Mn+多孔小球制备:配制浓度为0.2~10.0 mmol/L的含有过渡金属离子Fe3 +、Fe2+、Co2+、Mn2+或Ag+中一种的溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24 h。
(2)Ag@PDVB-Mn+微米马达催化剂制备:将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Mn+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Mn+微米马达催化剂。
所述一种基于聚二乙烯基苯多孔小球的微米马达催化剂降解水中有机污染物的具体过程为:在常温下,向有机废水中加入过氧化氢作为氧化剂,同时加入微米马达催化剂,并进行搅拌,在反应体系中产生强氧化性的自由基,对水中有机污染物进行氧化降解。
本发明的有益之处主要体现在:
(1)采用有机聚合物微球作为载体,具有成本低、易于成型、易于功能化等优点。
(2)聚二乙烯基苯多孔小球吸附的过渡金属离子可与水中过氧化氢形成类Fenton体系,产生具有强氧化性的羟基自由基,对水中有机污染物进行降解;同时,由于聚二乙烯基苯多孔小球比表面积大,对有机污染物具有良好吸附性。
(3)该反应体系无需外界提供能源,过氧化氢不仅能产生高活性自由基,而且充当自驱动微米马达催化剂的燃料,小球表面包覆的银能够催化H2O2分解产生大量氧气,推动微米马达在溶液中运动,使得有机污染物、催化剂和过氧化氢三者充分接触,从而有利于有机污染物的氧化降解和反应产物的传质,所以,该污水处理方法具有环境友好、能耗低和成本低等优点。
(4)本发明合成工艺流程简单,可操作性强,具有广阔应用前景。
附图说明
图1是实施例1中微米马达催化剂的扫描电子显微镜照片。
具体实施方式
下面对本发明的具体实施方式作进一步的解释说明,但是本发明要求保护的范围并不仅限于此。
实施例1
(1)微米马达催化剂制备
配制浓度为2.0 mmol/L的含有Co2+的溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24 h,即得PDVB-Co2+多孔小球。
将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10 mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Co2+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Co2+微米马达催化剂。
(2)催化剂性能评价
选择有机染料罗丹明B(RhB)溶液作为对象研究所制备催化剂的性能。配制浓度为20 mg/L的RhB溶液2 mL,加入8 mL过氧化氢溶液和5 mg催化剂,使过氧化氢浓度为20%,对水中有机污染物进行降解;间隔一定时间取样,水样经离心后,于波长554 nm下测其吸光度,最后计算RhB的降解率。
在RhB废水中加入微米马达催化剂,反应150min后,RhB去除率为98.05%。
实施例2
(1)微米马达催化剂制备
配制浓度为0.2 mmol/L的含有Fe3+溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24 h,即得PDVB-Fe3+多孔小球。
将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10 mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Fe3+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Fe3+微米马达催化剂。
(2)催化剂性能评价
同实施例1。
在RhB废水中加入微米马达催化剂,反应150min后,RhB去除率为93.56%。
实施例3
(1)微米马达催化剂制备
配制浓度为1.0 mmol/L的含有Fe2+的溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24 h,即得PDVB-Fe2+多孔小球。
将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10 mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Fe2+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Fe2+微米马达催化剂。
(2)催化剂性能评价
同实施例1。
在RhB废水中加入微米马达催化剂,反应150min后,RhB去除率为98.91%。
实施例4
(1)微米马达催化剂制备
配制浓度为2.0 mmol/L的含有Mn2+的溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24 h,即得PDVB-Mn2+多孔小球。
将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10 mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Mn2+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Mn2+微米马达催化剂。
(2)催化剂性能评价
同实施例1。
在RhB废水中加入微米马达催化剂,反应150min后,RhB去除率为84.53%。
实施例5
(1)微米马达催化剂制备
配制浓度为10.0 mmol/L的含有Ag+的溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24 h,即得PDVB-Ag+多孔小球。
将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10 mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Ag+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Ag+微米马达催化剂。
(2)催化剂性能评价
同实施例1。
在RhB废水中加入微米马达催化剂,反应150min后,RhB去除率为78.24%。

Claims (1)

1.一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法,其特征在于:按以下步骤进行,
(1)PDVB-Mn+多孔小球制备:配制浓度为0.2~10.0 mmol/L的含有过渡金属离子Fe3+、Fe2 +、Co2+、Mn2+或Ag+中一种的溶液30 mL,加入20 mg聚二乙烯基苯多孔小球,磁力搅拌12~24h;
(2)Ag@PDVB-Mn+微米马达催化剂制备:将1.0 g聚甲基丙烯酸甲酯(PMMA)溶于10 mL乙酸乙酯中,配制PMMA乙酸乙酯溶液;将PDVB-Mn+多孔小球加入水中,待其在水面静止成层后,吸取PMMA乙酸乙酯溶液慢慢滴加到其中,静置30 min,观察到水面上形成了一层透明PMMA薄膜,此时,多孔小球的一半部分便固定于该薄膜中;将10 mL摩尔浓度为1.0 mol/L的氨水慢慢滴加到20 mL摩尔浓度为0.1 mol/L的硝酸银溶液中,边滴加边振荡,直至生成的沉淀恰好消失,即制成银氨溶液;将PMMA薄膜小心的浸入银氨溶液中,逐滴加入0.4 mL质量浓度为2.0%的甲醛溶液,静置2 h后,取出PMMA薄膜浸入乙酸乙酯中,静置1~2 h,直至PMMA薄膜溶解,离心分离,收集多孔小球,并用乙酸乙酯洗涤,60 ℃下真空干燥,即得半球面镀银的自驱动Ag@PDVB-Mn+微米马达催化剂;
所述一种基于聚二乙烯基苯多孔小球的微米马达催化剂降解水中有机污染物的具体过程为:在常温下,向有机废水中加入过氧化氢作为氧化剂,同时加入微米马达催化剂,并进行搅拌,在反应体系中产生强氧化性的自由基,对水中有机污染物进行氧化降解。
CN201610855664.5A 2016-09-28 2016-09-28 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法 Active CN106311340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610855664.5A CN106311340B (zh) 2016-09-28 2016-09-28 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610855664.5A CN106311340B (zh) 2016-09-28 2016-09-28 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法

Publications (2)

Publication Number Publication Date
CN106311340A CN106311340A (zh) 2017-01-11
CN106311340B true CN106311340B (zh) 2018-11-13

Family

ID=57820732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610855664.5A Active CN106311340B (zh) 2016-09-28 2016-09-28 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法

Country Status (1)

Country Link
CN (1) CN106311340B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101912A (zh) * 2017-05-23 2017-08-29 西安建筑科技大学 一种利用自驱动Janus颗粒测定过氧化氢浓度的方法
CN109847749A (zh) * 2018-12-29 2019-06-07 西北工业大学 室温下硝基芳烃还原用的高性能催化剂及其制备方法
CN111908549B (zh) * 2020-07-09 2021-11-19 西安交通大学 一种基于Mg颗粒的微型电动机及净水方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431966A (zh) * 2011-12-27 2012-05-02 复旦大学 一种管状多孔微米马达及其制备方法和应用
CN104528891A (zh) * 2015-01-05 2015-04-22 同济大学 一种三维有序大孔Fe2O3/碳气凝胶电极的制备方法及其应用
CN105709740A (zh) * 2016-03-15 2016-06-29 华东理工大学 一种可见光光助芬顿催化剂及其制备方法
CN105833912A (zh) * 2016-04-05 2016-08-10 济南大学 一种基于金属有机骨架材料的微米马达催化剂制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431966A (zh) * 2011-12-27 2012-05-02 复旦大学 一种管状多孔微米马达及其制备方法和应用
CN104528891A (zh) * 2015-01-05 2015-04-22 同济大学 一种三维有序大孔Fe2O3/碳气凝胶电极的制备方法及其应用
CN105709740A (zh) * 2016-03-15 2016-06-29 华东理工大学 一种可见光光助芬顿催化剂及其制备方法
CN105833912A (zh) * 2016-04-05 2016-08-10 济南大学 一种基于金属有机骨架材料的微米马达催化剂制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
直接接触转移法制备石墨烯基透明导电薄膜的研究;高永丽;《中国优秀硕士学位论文全文数据库》;20160215(第02期);第B020-486页 *

Also Published As

Publication number Publication date
CN106311340A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN104310565B (zh) 一种基于铁基有机-骨架材料的类Fenton反应处理有机废水的方法
Beladi-Mousavi et al. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics
Yan et al. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism
CN105833912B (zh) 一种基于金属有机骨架材料的微米马达催化剂制备方法
Kumar et al. Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@ calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin
CN102600905B (zh) 一种半导体异质结/导电聚合物纤维膜复合光催化剂及其制备方法
CN106311340B (zh) 一种基于聚二乙烯基苯多孔小球的微米马达催化剂制备方法
CN105214613B (zh) 一种核壳结构Fe3O4@MIL(Fe)复合材料的制备方法及应用
Yang et al. Three-dimensional hierarchical HRP-MIL-100 (Fe)@ TiO2@ Fe3O4 Janus magnetic micromotor as a smart active platform for detection and degradation of hydroquinone
CN108393097A (zh) 一种含有氧化还原介体的铁基金属-有机骨架材料类Fenton催化剂制备方法
CN102716722A (zh) 基于石墨烯的纳米磁性生物吸附材料的制备方法
CN107519934A (zh) 一种二茂铁修饰的铁基金属‑有机骨架材料类Fenton催化剂制备方法
CN102000573B (zh) 一种改性活性炭及其应用
CN101485985A (zh) 一种新型高效多相光芬顿催化剂CuOx-FeOOH的研制方法
CN101947441A (zh) 一种石墨烯复合光催化剂及其制备方法和用途
CN108722445B (zh) 一种超薄卤氧化铋基固溶体光催化剂及其制备方法和应用
CN107175112A (zh) 一种微马达光催化剂及其制备方法和应用
CN102974305A (zh) 一种高效去除水中重金属离子的方法
CN105566400B (zh) 非均相钴金属-有机骨架及制备与在废水处理领域中的应用
CN105461043B (zh) 一种用于处理邻苯二甲酸酯废水的高级催化氧化方法
Zhou et al. Highly efficient degradation of tartrazine with a benzoic acid/TiO2 system
CN109054034B (zh) 双金属铜/钴金属-有机骨架材料及其制备方法和应用
CN115487864B (zh) 一种催化型GOx@Fe-MOF@HNTs管状微纳马达及其制备方法和应用
Yu et al. Self-templated synthesis of core-shell Fe3O4@ ZnO@ ZIF-8 as an efficient visible-light-driven photocatalyst
CN103861564B (zh) 基于树枝状高分子修饰的氧化石墨烯吸附材料的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant