WO2015010305A1 - 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法 - Google Patents

一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法 Download PDF

Info

Publication number
WO2015010305A1
WO2015010305A1 PCT/CN2013/080131 CN2013080131W WO2015010305A1 WO 2015010305 A1 WO2015010305 A1 WO 2015010305A1 CN 2013080131 W CN2013080131 W CN 2013080131W WO 2015010305 A1 WO2015010305 A1 WO 2015010305A1
Authority
WO
WIPO (PCT)
Prior art keywords
microns
microspheres
pdms
nerve cells
elastic layer
Prior art date
Application number
PCT/CN2013/080131
Other languages
English (en)
French (fr)
Inventor
蒋兴宇
黄卓
刘文文
孙一
郑文富
Original Assignee
国家纳米科学中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家纳米科学中心 filed Critical 国家纳米科学中心
Priority to PCT/CN2013/080131 priority Critical patent/WO2015010305A1/zh
Publication of WO2015010305A1 publication Critical patent/WO2015010305A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates
    • C12N2533/12Glass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography

Definitions

  • the present invention relates to the field of biomedicine, and more particularly to a method of constructing a three-dimensional neural network model in vitro.
  • the nervous system Under the direct or indirect regulation of the system, they are connected, interacted, and closely cooperated to become a complete and unified organism to achieve and maintain normal life activities.
  • the nervous system is constantly and rapidly adjusted to various functions in the body to adapt the organism to changes in the internal and external environment. Therefore, the nervous system is an important functional regulation system that plays a leading role in living organisms.
  • the nervous system In higher animals, especially in mammals, the nervous system is a multi-level three-dimensional network formed by the interconnection of thousands of nerve cells. The study of its organization and working principle for biology, medicine, pharmacy, organization Engineering and so on are very important. Current methods of constructing in vitro neural networks include ordered patterning of nerve cells and controllable induction of neurites.
  • the Chinese invention patent discloses a device for establishing a single cell horizontal connection between nerve cells and a growth connection method, and placing a polydimethylene having a microgroove unit on a substrate coated with a protein strip for promoting nerve cell adhesion.
  • the siloxane (PDMS) seal which sends nerve cells into the micro-groove unit and adheres to the protein strip, and the protrusions are oriented along the protein strip without branching.
  • a single-line connection at the single cell level of the neural cells is obtained.
  • this can simulate the composition of the three-dimensional neural network in vivo to a certain extent, this is only a low-level neural network, the network structure is uncontrollable and the cell type distribution is relatively disordered, while the real neural network in the body is multi-level and different levels.
  • the network has specific cell subtypes that are interconnected by a low-level neural network in a highly ordered pattern and have iconic axonal dendritic polarization, excitatory inhibitory differentiation, and triceps formation, while varying Significant neural activity can be measured on a level network.
  • the invention provides a device for culturing a three-dimensional neural network in vitro and a preparation method thereof, and uses the device to construct a three-dimensional neural network with good structure and function development, and can detect a representative axonal dendritic pole in a neural network.
  • Chemotherapy, excitatory inhibitory differentiation and synapse development, and significant neural activity can be measured on different levels of networks, and possible applications in neural tissue engineering, brain-computer interface, drug screening platform construction.
  • a device for culturing a three-dimensional neural network in vitro comprising a microfluidic chip, a microsphere for adhering nerve cells, and a substrate
  • the microfluidic chip comprises a layer Or a multilayer PDMS elastic layer and having a through hole, the PDMS elastic layer having a microfluidic tube for extending a nerve cell protrusion, the through hole and the substrate forming a chamber for accommodating the microsphere;
  • the microsphere preferably having a uniform diameter
  • the chamber is preferably circular, rectangular or beaded; and the substrate is preferably a glass substrate, a PDMS substrate or a polystyrene substrate.
  • the microspheres may have a diameter of 30 to 140 ⁇ m, preferably 40 to 100 ⁇ m, more preferably 40 to 70 ⁇ m.
  • the microspheres are any one of silicon borosilicate glass microspheres and hydrogel microspheres.
  • the side length or diameter of the cross section of the through hole is 10 Q - 10 2 times, preferably 20 to 80 times, more preferably 40 to 60 times the diameter of the microsphere;
  • the microfluidic conduit may have a height of from 3 micrometers to 10 micrometers, preferably from 4 to 8 micrometers, and most preferably 5 micrometers.
  • the microfluidic conduit width is preferably from 5 to 50 microns, more preferably from 10 to 40 Micron, most preferably 20-30 microns.
  • the thickness of the lower PDMS elastic layer is 40-80 micrometers, preferably 50-70 micrometers, more preferably 60 micrometers, and the total thickness is 200 micrometers to 3 millimeters, preferably From 500 microns to 2.5 mm, more preferably from 1 mm to 1.5 mm; in some embodiments, the total thickness can be 500 microns, 600 microns, 700 microns, 800 microns, 900 microns, 1 mm, 1.1 mm, 1.2 mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm, 2.7mm, 2.8mm, 2.9mm Or 3.0 mm.
  • the thickness is from 150 microns to 3 mm, preferably from 500 microns to 2.5 mm, more preferably from 1 mm to 1.5 mm; in some embodiments, the thickness can be 150 microns, 200 microns, 250 microns, 300 microns, 350 microns, 400 microns, 450 microns, 500 microns, 600 microns, 700 microns, 800 microns, 900 microns, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm , 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2.0 mm, 2.1 mm, 2.2 mm, 2.3 mm, 2.4 mm, 2.5 mm, 2.6 mm, 2.7 mm, 2.8 mm, 2.9 mm or 3.0 mm
  • the present invention provides a method of fabricating a device according to the first aspect, characterized in that the method comprises: (a) obtaining a template by photolithography, and using a PDMS to pattern a pattern on the template, Obtaining the PDMS elastic layer having a microfluidic conduit; (b) optionally, laminating the plurality of PDMS elastic layers in the same direction, bonding the adjacent two layers by oxygen plasma treatment, and causing the phases
  • the direction of the microfluidic tube in the two adjacent layers is at an angle of 30 to 90 degrees, preferably an angle of 90 degrees;
  • One side of the pattern is attached to the substrate, and the through hole forms a small chamber with the substrate.
  • the invention provides a method of using the device according to the first aspect, characterized in that the method comprises self-assembly of microspheres, planting nerve cells on the surface of the microspheres and adhering The microspheres of the nerve cells are placed in a chamber for culture.
  • the glial cells are planted before the nerve cells are implanted, and the adhesion of the nerve cells is improved.
  • the nerve cells implanted on the surface of the microspheres are primary nerve cells
  • the invention provides the use of the device according to the first aspect in neural cell and molecular biology, neural tissue engineering, brain-computer interface and drug screening.
  • Beneficial effects :
  • Three-dimensional neural networks formed by the apparatus of the present invention have multi-level structures, highly ordered and interconnected features, and form landmark axonal dendritic polarization, excitatory inhibitory differentiation, and synaptogenesis. Significant neural activity was measured in both lower-level self-assembled three-dimensional networks and in ordered high-level neural networks.
  • the neural network formed by the device of the present invention is closer to the real situation in the body than the existing method, and the cell observation is convenient.
  • Figure 1 shows the self-assembly of borosilicate glass microspheres and the growth of nerve cells on borosilicate glass.
  • Figure 1A is a schematic illustration of the self-assembly process of a borosilicate glass microsphere.
  • Figures 1B-1E are scanning electron micrographs of nerve cells adhering and growing on borosilicate glass microspheres.
  • Figure 2 shows the formation of a three-dimensional neural network and a three-dimensional neural network on a self-assembled borosilicate glass microsphere scaffold. Functional differentiation in the network.
  • Figure 2A is a fluorescent photograph of a three-dimensional neural network grown on a stent.
  • Figure 2B is a statistical diagram of neuronal excitatory and inhibitory functional differentiation in a three-dimensional neural network.
  • Figure 3 shows a three-dimensional neural network generated by a glial-encapsulated hydrogel microsphere self-assembled scaffold.
  • Figure 4 shows the geometrical limitations of the microfluidic chamber in the device of the present invention aiding the assembly of the borosilicate glass microsphere scaffold, and the ordered connection between the three dimensional neural networks in the two chambers guided by the microfluidic chip and the multilevel neural network. Growing in the chip.
  • Figure 4A is a schematic diagram of the assembly of an ordered three-dimensional neural network in two chambers under the guidance of a microfluidic chip, and an ordered connection between the two.
  • Figure 4B is a fluorescent photograph of a multi-level three-dimensional neural network generated in a microfluidic chip.
  • Figure 4C is a fluorescent photograph of a three-dimensional neural network in a chamber projecting a protrusion into another chamber to form a connection.
  • Figure 5 shows the multi-layer, multi-directional interconnection of the preparation process of the apparatus of the present invention and the multi-stage three-dimensional neural network prepared by the apparatus of the present invention.
  • Figure 5A is a schematic illustration of the fabrication process of a multilayer microfluidic chip.
  • Figure 5B is a multi-level, multi-directional connected fluorescent photograph of a multi-level three-dimensional neural network in the apparatus of the present invention.
  • Figure 6 shows an example of a neural network growth on a three-dimensional scaffold in two small chambers of a microfluidic chip in the apparatus of the present invention.
  • Figure 6A is a photograph of a frame in the fluorescence sequence of the calcium signal.
  • Figure 6B is a sequence of the calcium signal of nerve cells Nos. 9 and 12 in Figure 6A.
  • Figure 6C is a matrix of correlation coefficients in the time domain between all of the neural cells in Figure 6A.
  • Figure 6D is a normalized distance matrix between two of the neural cells in Figure 6A.
  • Example 1 Acquisition and culture of primary nerve cells and glial cells (a) primary nerve cells
  • the anatomical solution was a calcium and magnesium-free hanks buffer pre-cooled on ice.
  • the tissue taken out in the step 2 taken out was cut with an ophthalmic scissors, and phenol red-free trypsin was added thereto, and the mixture was digested in a water bath at 37 ° C for 15 minutes to disrupt the connection between the cells.
  • the trypsin solution was worked at a concentration of 0.25%.
  • the obtained cell suspension can be used for primary nerve cell culture.
  • step 1 Preparation of cell suspension.
  • the SD rats of the second day of birth were taken out and referenced to "primary nerve cells" steps 1-4. A more uniform cell suspension is obtained.
  • the tissue isolated in step 2 is the cerebral cortex.
  • the cells in the six-well plate were changed. Change the liquid every 3 days. After the cells are substantially confluent on the bottom surface of the six-well plate, trypsin is added to the well plate and then quickly aspirated to remove some of the mixed nerve cells. After the cells were reattached, the six-well plate was shaken at 37 ° C for 10 hours at a speed of 220 rpm, and then rapidly exchanged to remove nerve cells and oligodendrocytes. Repeat the shaker processing step to leave only astrocytes in the six-well plate.
  • the purified cells were washed once with pre-warmed phosphate buffer, added with pre-warmed trypsin and digested at 37 ° C for 5 minutes, and the solution was added to terminate the digestion.
  • the cells in the well plate were evenly pipetted with a pipette, and the cell suspension was collected and centrifuged for 2 minutes at a rate of 1100 rpm. Discard the supernatant, add a proper amount of planting solution, and use the cell suspension to prepare the primary astrocyte.
  • the suspension of the microspheres is dropped on the surface of the glass piece, and the microspheres are assembled from the substrate under the driving of gravity. After the bottom layer is assembled, the upper layer is assembled layer by layer, and the calculation of the substrate size and the total volume of the microspheres can be adjusted. The number of layers (see Figure 1A).
  • the diameter of the above silicon boron glass microspheres may also be 45 micrometers, 90 micrometers, and 125 micrometers. 2
  • the PDL suspension of the glass microspheres is dropped on the glass piece by a straw, and the microspheres are assembled from the base by gravity to form a compact single layer structure.
  • Primary astrocytes or nerve cell suspensions are planted on a single layer assembly of microspheres.
  • microspheres adhering to cells After the cells are attached, the microspheres adhering to the cells are collected and re-spread in a chamber of a geometrically restricted microfluidic chip, so that the microspheres carry cells to form a three-dimensional self-assembled structure.
  • the number of layers of the three-dimensional structure is controlled by adjusting the number of microspheres.
  • the cell shape of the geometrically restricted microfluidic chip may be any one of a circular shape, a rectangular shape, and a bead shape.
  • the side length or diameter of the geometric limit should be between 10 Q - 10 2 times the diameter of the microsphere. It is most effective for forming a regular assembly structure of the microsphere. If the size is exactly an integral multiple of the diameter of the microsphere, it can be theoretically realized. Perfect assembly.
  • Hydrogel microspheres can be purchased from commercial products. It can also be prepared by microfluidic chip. For details, refer to [Lab on a Chip, 2008, 8, 2, 198-220.].
  • the size range is referred to in Embodiment 2.
  • the difference lies in the first step: The dose of sterilized alcohol needs to be increased to prevent it from falling below the effective sterilization concentration range under the influence of high water content in the hydrogel microspheres. After the alcohol sterilization, the washing time is extended to more than 1 hour each time to ensure that the alcohol in the hydrogel is fully diffused. Before planting the cells after poly-lysine incubation, incubate with the planting solution for more than 5 hours and replace the planting solution to ensure that the liquid in the hydrogel is an osmotic pressure suitable for cell survival.
  • Figure 3 shows a fluorescent photograph of a three-dimensional neural network formed on a hydrogel microsphere scaffold.
  • Hydrogel microspheres After self-assembly to form a three-dimensional scaffold, a layer of primary glial cells is implanted on the surface of the scaffold. After the glial cells grow to the surface of most of the scaffolds, the nerve cells are implanted and cultured to form a three-dimensional neural network.
  • GFAP is a glial cell-specific antibody
  • Tujl is a neuro-specific antibody.
  • the main process is photolithography, that is, the photoresist can be changed under ultraviolet irradiation to produce a photoresist which is completely consistent with the designed mask.
  • the silicon wafer template the specific preparation method can be prepared by referring to [Y. Xia, G. Whitesides, Annual Review of Materials Science, 1998, 28, 15], and preparing a micro convex on a single crystal silicon wafer having a commercial crystal plane of ⁇ 111>.
  • the preparation material is polydimethylsiloxane, 184 silicone elastomer, available from Dow Corning), which is a transparent and viscous liquid under normal conditions, is cured by reaction with a curing agent (184 silicone elastomer curing agent, available from Dow Corning) and heated.
  • the PDMS can be used to convert the protrusion pattern on the silicon wafer template into a corresponding concave pattern, thereby obtaining a polydimethylsiloxane chip corresponding to the convex strip microstructure, and the height of the microgroove on the lower surface thereof. It is 5 micrometers, the width is selected in the range of 5-50 micrometers, and the pitch is selected in the range of 30-50 micrometers.
  • the patterned side of the chip is attached to the glass sheet, and the through hole forms a small chamber with the glass substrate.
  • the shape of the through hole may be any one of a circular shape, a rectangular shape, and a bead shape.
  • Multilayer microchannel connected neural network (see Figure 5)
  • the film has a microfluidic channel on one side, wherein the height of the channel can be selected in the range of 5-10 micrometers, the width can be selected in the range of 5-50 micrometers, and the number of channels on each chip is 10 2 -10 3 Level.
  • the two PDMS films are subjected to an oxygen plasma treatment to form a multi-layer microchannel chip, and one patterned side is bonded to the other unpatterned side, and the upper and lower channels are perpendicular to each other;
  • punching holes in the PDMS chip wherein the number of through holes is more than 2, the diameter of the through holes is between 10 Q - 10 2 times the diameter of the microspheres, and the closest distance of the edge of the through holes can be between 500 and 2000 microns Adjustment.
  • the patterned side of the chip is attached to the glass sheet, and the through hole forms a small chamber with the glass substrate.
  • the shape of the through hole may be any one of a circular shape, a rectangular shape, and a bead shape.
  • Multi-level neural network on microchannel chip simulates different brain interval interactions
  • Different subtypes of nerve cells are implanted in different chambers of the chip to induce a connection between the low-level neural networks of each chamber, and to construct different cell types.
  • a high-level three-dimensional neural network that mimics the connections and interactions of nerve cells between different brain regions under physiological and pathological conditions.
  • microspheres adhering to the nerve cells were washed once with D-PBS at 37 ° C, and then fixed with a 2.5% aqueous solution of glutaraldehyde at room temperature for 4 hours.
  • the samples were sequentially dehydrated in 25%, 50%, 70%, 85%, 95% and 100% alcohol for 30 minutes each.
  • CPD 030 Critical Point Dryer, Bal-Tec critical point drying
  • the adhesion and growth of nerve cells on single and multiple microspheres were observed by scanning electron microscopy (FEI quanta 200) (see Figure 1B-1E).
  • the sample was washed once with D-PBS at 37 ° C and then fixed with 4% paraformaldehyde for 30 minutes. Cell membranes were permeated with 0.3% Triton X-100 for 15 minutes. After 1 hour of non-specific blocking with 10% goat serum, nerve cells and glial cell-specific antibodies (antibody against nerve cells have Tujl) (Sigma), smi-312 (Covance), MAP2 (Millipore), CaMKII (Invitrogen), GABA (Sigma), glial cell antibody with GFAP (Sigma), incubated overnight at 4 °C, followed by the corresponding secondary antibody Staining was used for observation (Alexa Fluor 488, 633 or 555 (sigma)).
  • the invention also characterizes the functional differentiation of neural cells in a neural network.
  • Figure 2B shows the statistical results for four batches of cells, 60-110 nerve cells per batch. The results showed that the proportion of excitatory and inhibitory neurons in the population was about 70% and 30%, respectively, which was consistent with the in vivo neural network and in vitro two-dimensional neural network research literature, indicating that the three-dimensional neural network formed a good functional differentiation and Excitement - inhibit balance.
  • Three-dimensional neural networks in different chambers are labeled with different fluorescent dyes to observe the way in which the connections between the various low-level neural networks form a high-level neural network and the interactions between the various neural networks.
  • Figure 4B shows the green fluorescent cell dye Tubulin tracker Green (Molecular Probes), which marks microtubules in the cytoskeleton of living nerve cells.
  • the specific experimental steps are as follows:
  • Figure 4C shows the cells of a fat-soluble red fluorescent dye Dil (Molecular Probes) labeled nerve cells.
  • Dil Molecular Probes
  • Figure 4A illustrates that the neural cells of the microsphere self-assembly in two low-level networks are interconnected by a microfluidic channel.
  • Example 10
  • Example 5 The structure of the three-dimensional neural network in Example 5 was observed by a laser confocal microscope.
  • Figure 5A illustrates the construction of a three-dimensional neural network on a multi-layer chip.
  • the green fluorescence in Figure 5B is
  • Tubulin Tracker Green microtubules labeled with nerve cells (same as in Example 9).
  • Neural activity was characterized by calcium imaging.
  • the principle of calcium imaging is that when nerve activity is released, the calcium ions stored in the calcium pool of the nerve cells will enter the cytoplasm in a large amount. At the end of the activity release, the excess calcium ions in the cytoplasm return to the calcium pool, so the concentration of calcium ions and the nerves The activity process is coupled.
  • the calcium ion dye Fluo 4 is fluorescently labeled with calcium ions, so the increase or decrease in fluorescence intensity reflects the concentration of calcium ions, which in turn reflects the process of neural activity.
  • the same position is shot at equal intervals along the time axis, with a shooting interval of less than 1 second and a duration of 10 minutes.
  • Figure 6A is one of the sequences.
  • the circle in the figure marks all nerve cells with varying fluorescence intensities, using numbers It is labeled by humans to facilitate subsequent statistics.
  • the shadows mark the two sets of nerve cells, respectively, and the distribution of nerve cell activity within each group is well consistent in the frequency domain.
  • Two randomly selected from all nerve cells are indicated for their activity release curves (Fig. 6B).
  • the vertical axis is the fluorescence intensity of the calcium signal, and the horizontal axis is time.
  • the correlation between the distribution curves between the two nerve cells Fig. 6C
  • the normalized distance Fig. 6D

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Neurology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Neurosurgery (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法。所述装置包括微流控芯片、用于黏附神经细胞的微球和基底,其中所述微流控芯片包括一层或多层PDMS弹性层并具有通孔,所述PDMS弹性层具有供神经细胞突起延伸的微流管道,所述通孔与基底形成用于容纳微球的小室。

Description

一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法 技术领域 本发明属于生物医学领域, 更具体地涉及在体外构建三维神经网络模型的 方法。
背景技术 在具有神经系统的生物体内, 各器官、 系统的功能和各种生理过程都在神 书
经系统的直接或间接调节控制下, 互相联系、 相互影响、 密切配合成为一个完 整统一的有机体, 实现和维持正常的生命活动。 此外, 神经系统还要对体内各 种功能不断进行迅速而完善的调整从而使生物体适应体内外环境的变化。 因 此, 神经系统是生物体内起主导作用的重要功能调节系统。 在高等动物, 尤其 是在哺乳动物中, 神经系统是一个由成千上万个神经细胞相互连接形成的多级 三维网络, 对其组织结构和工作原理的研究对于生物学、 医学、 药学、 组织工 程学等来说都非常重要。 目前存在的体外神经网络的构建方法包括神经细胞的 有序图案化和神经突的可控诱导。 微流控技术已发展为研究细胞生物学的有用工具, 其可以精确的控制、 监 控和操纵细胞外微环境, 从而实现神经细胞在二维平面上的图案化以及神经突 的诱导。 中国发明专利(CN101748061A)公开了一种建立神经细胞之间单细胞水平 连接的装置和生长连接方法, 在覆有促神经细胞黏附的蛋白质条带的基底上放 置具有微凹槽单元的聚二甲基硅氧垸(PDMS)印章, 将神经细胞送入微凹槽单 元并黏附在蛋白质条带上, 其突起则沿蛋白条带定向生长而不发生分支, 从而 获得神经细胞单细胞水平的单线连接。
Nature Methods (NATURE METHODS, AUGUST 2005, VOL.2 NO.8, 599) 曾报道过利用微流控装置长期培养和局限原代中枢神经细胞。 所用的微流控装 置由 PDMS芯片和玻璃片基底组成, 构建了两个细胞培养区域以及连接它们的 微槽。 将神经细胞种在其中一个区域后, 由于微槽的局限性, 只有神经轴突会 伸展到另一个区域中, 这种装置可以用于构建中枢神经轴突损伤和再生模型。 这项技术可以在二维的平面可控诱导神经突的连接, 但这并不能真实反应体内 神经网络的组织和功能。 因为真实的神经网络不可能是二维的, 而是在三维空 间存在的。
目前己有的在体外构建三维神经网络的方法有利用 direct-write assembly技 术制备的光聚合水凝胶三维支架, 神经细胞在这种支架内形成分支网络 (Adv. Funct. Mater. 2011, 21, 47-54) 。 还有使用硅硼玻璃微球自组装的基底支持神经 细胞生长的技术( Ehud Y Isacoff, NATURE METHODS, AUGUST 2008, VOL.5 NO.8, 735 ), 可形成三维的毫米级神经网络, 为了提高神经细胞在硅硼玻璃微 球上的黏附性, 在其表面包覆了一层多聚赖氨酸。 虽然这样可以在一定程度上 模拟体内三维神经网络的构成, 但这只是低级别的神经网络, 网络结构不可控 且细胞类型分布相对杂乱, 而体内真实的神经网络是多级别的, 且不同级别的 网络上具有特定的细胞亚型, 由低级别的神经网络按照高度有序的模式相互连 接组成, 并且具有标志性的轴突树突极化、 兴奋性抑制性分化以及突角虫发生, 同时不同级别的网络上都可测得明显的神经活动。
因此, 本领域中需要可以在体外构建具有多级结构的、 高度有序且相互连 通的三维神经网络的装置, 其可实现体外神经网络结构与功能的高度统一, 最 大可能的模拟体内神经网络的真实组织构成。 发明内容
本发明提供一种体外培养三维神经网络的装置及其制备方法, 并利用这种 装置构建具有良好的结构和功能发育的三维神经网络, 可以检测到神经网络中 具有标志性的轴突树突极化、 兴奋性抑制性分化以及突触发生, 而且可在不同 级别的网络上都测得明显的神经活动, 同时提出了在神经组织工程、 脑机接 口、 药物筛选平台构建上的可能应用。
本发明的技术方案如下:
在本发明的第一方面, 提供了一种体外培养三维神经网络的装置, 所述装 置包括微流控芯片、 用于黏附神经细胞的微球和基底, 其中所述微流控芯片包 括一层或多层 PDMS弹性层并具有通孔, 所述 PDMS弹性层具有供神经细胞突 起延伸的微流管道, 所述通孔与基底形成用于容纳微球的小室; 所述微球优选 为均一直径; 所述小室优选为圆形、 长方形或串珠形; 以及所述基底优选为玻 璃基底、 PDMS基底或聚苯乙烯基底。
在本发明的装置中, 所述微球的直径可以为 30-140微米, 优选为 40-100微 米, 更优选为 40-70微米。
在本发明的装置中, 所述微球是硅硼玻璃微球和水凝胶微球中的任意一 种。
在本发明的装置中, 所述通孔横截面的边长或直径为微球直径的 10Q-102 倍, 优选 20-80倍, 更优选 40-60倍;
在本发明的装置中, 所述微流管道高度可以为 3微米 -10微米, 优选为 4-8 微米, 最优选为 5微米。
在本发明的装置中, 所述微流管道宽度优选为 5-50微米, 更优选为 10-40 微米, 最优选为 20-30微米。
在本发明的装置中, 当采用多层 PDMS弹性层时, 下层 PDMS弹性层的厚 度为 40-80微米, 优选 50-70微米, 更优选 60微米, 且总厚度为 200微米至 3 毫米, 优选为 500微米至 2.5毫米, 更优选为 1毫米至 1.5毫米; 在一些实施方 案中, 总厚度可以为 500微米、 600微米、 700微米、 800微米、 900微米、 1毫 米、 1.1毫米、 1.2毫米、 1.3毫米、 1.4毫米、 1.5毫米、 1.6毫米、 1.7毫米、 1.8 毫米、 1.9毫米、 2.0毫米、 2.1毫米、 2.2毫米、 2.3毫米、 2.4毫米、 2.5毫米、 2.6毫米、 2.7毫米、 2.8毫米、 2.9毫米或 3.0毫米。
在本发明的装置中, 当采用单层 PDMS弹性层时, 厚度为 150微米至 3毫 米, 优选为 500微米至 2.5毫米, 更优选为 1毫米至 1.5毫米; 在一些实施方案 中, 厚度可以为 150微米、 200微米、 250微米、 300微米、 350微米、 400微米、 450微米、 500微米、 600微米、 700微米、 800微米、 900微米、 1毫米、 1.1毫 米、 1.2毫米、 1.3毫米、 1.4毫米、 1.5毫米、 1.6毫米、 1.7毫米、 1.8毫米、 1.9 毫米、 2.0毫米、 2.1毫米、 2.2毫米、 2.3毫米、 2.4毫米、 2.5毫米、 2.6毫米、 2.7毫米、 2.8毫米、 2.9毫米或 3.0毫米
在第二方面, 本发明提供了根据第一方面所述的装置的制备方法, 其特征 在于, 所述方法包括(a)经光刻方法得到模板, 用 PDMS对模板上的图案进行 翻模, 得到具有微流管道的所述 PDMS弹性层; (b)任选地, 将多层所述 PDMS 弹性层同向叠合, 通过氧等离子体处理使相邻两层之间键合, 并使相邻两层中 所述微流管道的方向成 30~90度夹角, 优选为 90度夹角; (c) 在所述 PDMS 弹性层上打通孔; 和(d)将所述 PDMS弹性层有图案的一面与基底贴合, 通孔 与基底形成所述小室。
其中同向是指每层 PDMS弹性层上有图案的一面均朝向同一方向。 在第三方面, 本发明提供了根据第一方面所述的装置的使用方法, 其特征 在于, 所述方法包括微球的自组装、 将神经细胞种植在所述微球的表面和将黏 附有神经细胞的微球放入小室中进行培养。
优选地, 为了保证微球和神经细胞组成的结构的稳定性, 在种植神经细胞 之前先种植胶质细胞, 提高神经细胞的黏附性。
优选地, 种植在所述微球的表面的神经细胞为原代神经细胞
在第四方面, 本发明提供了根据第一方面所述的装置在神经细胞和分子生 物学、 神经组织工程、 脑机接口和药物筛选中的应用。 有益效果:
( 1 ) 本发明的装置制备和使用方法都简单易行, 便于推广应用。
(2)采用本发明的装置形成的三维神经网络具有多级结构、 高度有序且相 互连通的特征, 并且形成了标志性的轴突树突极化、 兴奋性抑制性分化以及突 触发生, 并且在较低级别的自组装三维网络中和有序连接的高级别神经网络中 均测得明显的神经活动。
(3 )采用本发明的装置形成的神经网络较现有方法更接近体内真实情况, 且细胞观察方便。 附图说明
图 1显示硅硼玻璃微球的自组装以及神经细胞在硅硼玻璃上生长。图 1A是 硅硼玻璃微球自组装过程的示意图。 图 1B-1E是神经细胞在硅硼玻璃微球上粘 附并生长的扫描电镜照片。
图 2显示在自组装的硅硼玻璃微球支架上形成三维神经网络及三维神经网 络中的功能分化。 图 2A是支架上生长的三维神经网络的荧光照片。 图 2B是三 维神经网络中神经细胞兴奋性和抑制性功能分化的统计图。
图 3显示胶质细胞包裹的水凝胶微球自组装支架上, 生成三维神经网络。 图 4显示本发明的装置中微流控小室的几何限制帮助硅硼玻璃微球支架的 组装, 以及微流控芯片引导下的两个小室中三维神经网络间的有序连接以及多 级别神经网络在芯片中生长。 图 4A是微流控芯片引导下, 两个小室中分别组装 成有序三维神经网络, 并在两者间生成有序连接的示意图。 图 4B是在微流控芯 片中生成的多级别三维神经网络的荧光照片。图 4C是一个小室中的三维神经网 络向另一个小室中伸出突起以形成连接的荧光照片。
图 5显示本发明的装置的制备过程以及采用本发明的装置所制备的多级三 维神经网络中多层、 多方向的相互连接。 图 5A 是多层微流控芯片制备过程的 示意图。 图 5B是在本发明装置中多级三维神经网络多层、多方向连接的荧光照 片。
图 6显示本发明的装置中, 微流控芯片两个小室内三维支架上生长的神经 网络可进行钙信号测量的实例。 图 6A是钙信号荧光序列中的一帧照片。 图 6B 是图 6A中 9号和 12号神经细胞钙信号的序列。 图 6C是图 6A中所有神经细胞 两两之间在时域上的相关系数矩阵。 图 6D是图 6A中所有神经细胞两两之间的 归一化距离矩阵。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例 1 原代神经细胞和胶质细胞的获取和培养 (一) 原代神经细胞
1. 分离全脑。 取怀孕 16-18天的 SD大鼠的胚胎。 用眼科镊剥除胎鼠头部皮 肤和头盖软骨, 取出全脑, 置于解剖液中。 解剖液为无钙、 镁的 hanks 缓冲 液, 提前置于冰上预冷。
2.分离特定组织,如大脑皮层或海马组织。 于解剖镜下用尖头镊划断大脑两 个半球间的胼胝体, 去除蛛网膜。 若需分离大脑皮层, 则将两个大脑半球的皮 层部分剥离, 置于冰上的解剖液中。 若需分离取海马组织, 则在去除蛛网膜后, 将两个大脑半球内的海马分别剥离, 置于冰上的解剖液中。
3. 消化。 用眼科剪将取出的步骤 2中取出的组织剪碎, 加入不含酚红的胰 蛋白酶, 在 37°C水浴消化 15分钟, 以破坏细胞之间的连接。 胰蛋白酶溶液工作 浓度为 0.25%。
4. 制备细胞悬液。 消化结束后, 用预热的含血清的种植液终止消化。 种植 液为 DMEM/F12培养基混合 10%胎牛血清。 用种植液洗 2-3遍, 以彻底去除胰 酶。 用移液器吹打, 使细胞成为较为均勾的悬液。
5. 离心。 将细胞悬液静置约 2分钟, 使未能消化完全的细小组织块沉淀。 取上层细胞悬液离心 3分钟, 转速为 1300转 /分钟。
6. 重悬。 弃上清液, 加入适量种植液, 用移液器吹打均匀, 得到的细胞悬 液可用于原代神经细胞培养。
7. 培养。 置于 37°C, 5%二氧化碳的无菌培养箱中培养。 在显微镜下观 察, 待细胞贴壁后, 将种植液置换为预热的培养液。 培养液为 neurobasal 培养 基混合 2%B27因子和 l%GlutaMAX-l。 长期培养时, 每 3天用预热的培养液半 (二) 原代星形胶质细胞
1. 细胞悬液制备。 取出生第二天的 SD大鼠, 参照"原代神经细胞 "1-4步。 得到较为均匀的细胞悬液。 其中第 2步中分离的组织为大脑皮层。
2. 过滤、 离心。 将细胞悬液静置约 2分钟, 使未能消化完全的细小组织块 沉淀。 取上层细胞悬液, 用 200 目的滤网过滤, 过滤后得到的细胞悬液离心 2 分钟, 转速为 1100转 /分钟。
3. 重悬。 弃上清液, 加入适量种植液, 用移液器吹打均勾, 得到的细胞悬 液加入六孔板中, 置于 37°C, 5%二氧化碳的无菌培养箱中培养。
4. 梯度贴壁。 将六孔板中的细胞悬液移入另一个六孔板中, 六孔板提前用 多聚赖氨酸孵育两小时以上。 注意避免絮状物。
5. 纯化。 24小时后, 给六孔板中的细胞换液。 之后每 3天换一次液。 待细 胞在六孔板底面基本铺满后, 将胰酶加入孔板, 然后迅速吸出, 以除去部分混 杂的神经细胞。 待细胞重新贴壁后, 将六孔板置于 37°C摇床震荡 10小时, 转速 为 220转 /分钟, 之后迅速换液, 可除去神经细胞和少突胶质细胞。 重复摇床处 理步骤至六孔板中只剩下星形胶质细胞。
6. 种植。 纯化后的细胞, 需使用时, 用预热的磷酸盐缓冲液洗一遍, 加入 预热的胰酶于 37°C下消化 5分钟, 加入种植液终止消化。 用移液器将孔板中的 细胞吹打均匀, 将细胞悬液收集至离心管中离心 2分钟, 转速为 1100转 /分钟。 弃上清, 加入适量种植液吹打均勾, 所得细胞悬液即可用于原代星形胶质细胞 种植。
7. 培养。 纯化后的细胞或种植后的细胞需长期培养时, 每 3天用预热的种 植液换一次液。 实施例 2玻璃微球的自组装以及细胞的种植
微球的自组装
将微球的悬浮液滴在玻璃片的表面, 微球在重力驱动下从基底开始组装, 组装满底层后再逐层组装上层, 通过对基底大小和微球总体积的计算, 可以调 控组装的层数 (见图 1A) 。
具体为:
1 玻璃微球的前处理: 将 63微米硅硼玻璃微球 (MO-SCI Specialty Products) 放到 75%的乙醇溶液中过夜灭菌, 并用蒸馏水洗涤三次除去乙醇。 然后将微球 放入多聚赖氨酸 (PDL) 溶液中孵育过夜, 用蒸熘水洗涤三次备用。
其中, 上述硅硼玻璃微球的直径也可以是 45微米、 90微米、 125微米。 2用吸管将玻璃微球的 PDL悬浮液滴在玻璃片上, 微球在重力驱动下从基 底开始组装, 成为紧致的单层结构。 将原代星形胶质细胞或神经细胞悬液种植 于微球的单层组装结构上。
3. 粘附细胞的微球的组装。 待细胞贴壁后将粘附了细胞的微球收集, 重新 撒在具有几何限制的微流控芯片的小室中, 使微球携带细胞形成三维自组装结 构。 通过调控微球的数量来控制三维结构的层数。
其中, 上述几何限制的微流控芯片的小室形状可以是圆形、 长方形、 串珠 形其中任意一种。 几何限制的边长或直径应在微球直径的 10Q-102倍之间, 对于 微球形成规则的组装结构最为有效, 若该尺寸恰为微球直径的整数倍, 则理论 上可实现完美组装。
4. 载有细胞的三维结构的长期培养。 根据细胞的不同种类, 参照原代细胞 培养的条件选择培养基和换液。 实施例 3水凝胶微球的自组装及细胞的种植 (见图 3 )
实验步骤参照实施例 2。 水凝胶微球可购买商品化产品。 也可由微流控芯 片制备 > 具体方法可参照 [Lab on a Chip, 2008, 8, 2, 198-220.]。 其尺寸范围参照 实施例 2。 区别在于第一步: 灭菌的酒精剂量需增大, 防止在水凝胶微球中含 水量较高的影响下, 低于有效灭菌浓度范围。 酒精灭菌后水洗时间每遍延长至 1 小时以上, 保证水凝胶内的酒精充分扩散出来。 多聚赖氨酸孵育后种植细胞 前, 用种植液孵育 5 小时以上并更换一次种植液, 保证水凝胶内的液体为适于 细胞生存的渗透压。
图 3 显示水凝胶微球支架上形成的三维神经网络的荧光照片。 水凝胶微球 自组装形成三维支架后, 在支架表面种植一层原代胶质细胞, 待胶质细胞生长 至包裹大部分支架表面后, 种植神经细胞, 并培养至形成三维神经网络。 GFAP 为胶质细胞特异性抗体, Tujl为神经 ¾胞特异性抗体。 实施例 4
单层微通道连接的神经网络
1 微流控芯片的制备
1 )聚二甲基硅氧烷芯片模板的制备, 主要过程为光刻, 即利用光刻胶在紫 外线照射下可改变性质的特点制作与设计好的掩模上的图案完全一致的光刻胶 硅片模板, 具体制备方法可参照 [Y. Xia, G. Whitesides, Annual Review of Materials Science, 1998, 28, 15], 在商用晶面为 <111>的单晶硅片上制备具有一 个微凸型结构;
2)聚二甲基硅氧烷芯片的制备, 方法为软刻蚀技术, 制备材料为聚二甲基 娃氧焼 ( PDMS, polydimethylsiloxane , 184 silicone elastomer, 购自 Dow Corning) , 其在普通状态下是透明而粘稠的液体, 经与固化剂反应( 184 silicone elastomer curing agent, 购自 Dow Corning)并加热后可固化。 利用 PDMS可以将 硅片模板上的突起图形转换为对应的凹型图形, 从而得到一与所述凸型条微结 构相对应的聚二甲基硅氧垸芯片, 其下表面的微凹槽的高度为 5微米, 宽度在 5-50微米范围内选取, 间距在 30-50微米范围内选取。
3 )在 PDMS芯片上打通孔, 其中通孔的数目为 2个或以上, 通孔直径为微 球直径的 10G-102倍之间, 通孔边缘的最近距离可在 500-2000微米之间调节。 之 后将芯片有图案的一面贴合在玻璃片上, 通孔与玻璃基底形成小室。
其中, 通孔的形状可以是圆形、 长方形、 串珠形其中的任意一种。
2 细胞培养
在神经细胞黏附在微球上后, 我们小心的收集黏附有神经细胞的微球, 并 把它们加入微流芯片的小室内 (见图 4A) 。 用含 2% B27和 l% Glutamax-l的 Neurobasal神经培养基 (GIBCO) , 每四天替换一半。 实施例 5
多层微通道连接神经网络 (见图 5 )
1 多层微通道芯片的制备
1 )通过光刻的方法获得翻模模板, 模板基底为硅片, 凸起图案由光刻胶构 成;
2)将模板放到匀胶机上, 倒入液态的 PDMS, 转速为 1200-2000转 /分钟, 之后将载有 PDMS的模板放入烘箱中, 加热固化后得到相应厚度为 80-40微米 的 PDMS薄膜, 薄膜的一面具有微流通道, 其中通道的高度可以在 5-10微米范 围内选择, 宽度可在 5-50微米范围内选择, 每片芯片上通道数量在 102-103数量 级。
3 )将两片上述 PDMS薄膜经过氧等离子体处理后键合成一个多层微通道芯 片, 一片有图案的一面与另一片无图案的一面贴合, 并且上下两层通道方向相 互垂直;
4)在 PDMS芯片上打通孔, 其中通孔的数目为 2个以上, 通孔直径为微球 直径的 10Q-102倍之间, 通孔边缘的最近距离可在 500-2000微米之间调节。 之后 将芯片有图案的一面贴合在玻璃片上, 通孔与玻璃基底形成小室。
其中, 通孔的形状可以是圆形、 长方形、 串珠形其中的任意一种。
2细胞培养
在神经细胞黏附在微球上后, 我们小心的收集黏附有神经细胞的微球, 并 把它们加入微流芯片的小室内。 用含 2% B27和 1% Glutamax-1的 Neurobasal 神经培养基 (GIBCO) , 每四天替换一半。 实施例 6
微通道芯片上多级别神经网络模拟不同脑区间相互作用
在芯片内不同小室种植不同亚型的神经细胞 (如海马区中的椎体神经细胞 和大脑皮层中的神经细胞等), 诱导各小室的低级神经网络之间形成连接, 构建 含不同细胞类型的高级别三维神经网络, 从而模拟生理和病理状态下不同脑区 之间的神经细胞的连接和相互作用。
具体为:
1 微通道芯片的制备
参照实施例 4和实施例 5中微流控芯片制备和多层微通道芯片制备的步骤。 根据需要选择芯片层数。 2细胞培养
1 )细胞选取和分离。 根据具体研究内容选定脑区, 分离细胞的步骤参照实 施例 1中原代神经细胞部分。
2)在神经细胞黏附在微球上后, 我们小心的收集黏附有神经细胞的微球, 并把它们加入微流芯片的小室内。 用含 2% B27 和 1% Glutamax-1 的 Neurobasal神经培养基 (GIBCO) , 每四天替换一半。 实施例 Ί
扫描电子显微镜表征实施例 2中神经细胞在自组装结构单元上生长情况 具体步骤:
在 37 °C将黏附着神经细胞的微球用 D-PBS洗涤一次, 之后用 2.5%戊二醛 水溶液在室温条件下固定 4小时。 样品依次在 25%, 50%, 70%, 85%, 95%和 100%酒精中梯度脱水, 每个浓度 30 分钟。 经过临界点干燥 (CPD 030 Critical Point Dryer, Bal-Tec), 通过扫描电子显微镜(FEI quanta 200)观察单个和多个微 球上神经细胞的粘附和生长情况 (见图 1B-1E) 。 实施例 8
激光共聚焦显微镜观察实施例 2 中几何限制微球自组装体上形成的三维神 经网络
具体步骤:
在 37°C将样品用 D-PBS洗涤一次, 之后用 4%多聚甲醛固定 30分钟。 细胞 膜用 0.3%Triton X-100渗透 15分钟。 在用 10%山羊血清进行非特异性封闭 1小 时后, 用神经细胞和胶质细胞特异性抗体 (作用于神经细胞的抗体有 Tujl (Sigma), smi-312 (Covance), MAP2 (Millipore), CaMKII (Invitrogen) , GABA (Sigma),胶质细胞抗体有 GFAP (Sigma))在 4°C下孵育过夜, 之后用相应的二抗 染色用于观察 (Alexa Fluor 488, 633或 555 (sigma) ) 。
图 2A中, 用神经细胞特异性抗体 Tujl标记了形成的三维神经网络, 显示 了自组装多层支架上神经网络的生长情况。 '
本发明还表征了神经网络中神经细胞的功能分化情况。 图 2B给出了四批细 胞的统计结果, 每批 60-110个神经细胞。 结果显示兴奋性和抑制性神经细胞占 总体的比例大约分别为 70%和 30%, 与体内神经网络和体外二维神经网络研究 文献报道相符, 说明三维神经网络形成了很好的功能性分化和兴奋 -抑制平衡。 实施例 9
激光共聚焦显微镜观察实施例 4中三维神经网络的结构
以不同的荧光染料标记不同小室中的三维神经网络, 从而观察各低级别神 经网络之间的连接形成高级别神经网络的方式和各神经网络之间的相互作用。
图 4B为绿色荧光活细胞染料 Tubulin tracker Green (Molecular Probes), 标记 活的神经细胞的细胞骨架中的微管。 具体实验步骤如下:
1. 将样品用预热的无钙镁的 hanks缓冲溶液洗一次;
2. 用 DMSO溶解 Tubulin tracker Green和等体积的 20%浓度的 F127, 其中 Tubulin tracker Green的最终工作浓度为 250 nM;
3. 将样品在 37°C, 5%C02培养箱中避光孵育 30分钟;
4. 用 hanks缓冲液洗去没有结合的染料, 在荧光显微镜下用 488nm激发光 观察。
图 4C为脂溶性红色荧光染料 Dil (Molecular Probes) 标记神经细胞的细胞 膜。 将分离的神经细胞悬液与 Dil染料混合, 其中 Dil工作浓度为 1〜5 nM, 将 染色后的细胞种植与微球上培养成三维神经网络。
图 4A示意了两个低级别网络中即微球自组装体的神经细胞通过微流控通 道相互连接。 实施例 10
激光共聚焦显微镜观察实施例 5中三维神经网络的结构。
图 5A示意了多层芯片上三维神经网络的构建过程。 图 5B 中绿色荧光为
Tubulin Tracker Green, 标记神经细胞的微管 (同实施例 9) 。
结果显示, 微球支架上自组装的低级别神经网络定位在小室中, 随着神经 细胞生长, 网络中伸出突起, 在上下两层微流控通道的调控下沿通道内生长, 并进入其他自组装神经网络的区域, 从而形成更高级别的多方向连接的更复杂 的三维神经网络。 实施例 11
三维神经网络的信号检测 (图 6)
用钙成像的方法对神经活动进行表征。
钙成像的原理是神经活动发放时, 神经细胞钙库内储存的钙离子会大量进 入胞浆, 活动发放结束时, 胞浆内过量的钙离子重新回到钙库, 因此钙离子的 浓度与神经活动过程相偶联。 钙离子染料 Fluo 4用荧光标记了钙离子, 因此荧 光强度的增减反映了钙离子的浓度, 进而反映了神经活动的过程。 沿时间轴对 同一位置进行等间隔拍摄, 拍摄间隔小于 1秒, 持续时间为 10分钟。 图 6A为 该序列中的一张。 图中的圆圈标记了所有荧光强度有变化的神经细胞, 用数字 人为对其进行标号, 方便后续统计。 阴影分别标记了两组神经细胞, 每组内的 神经细胞活动发放在频域上具有很好的一致性。 从所有神经细胞中随机选取两 个, 示意了其活动发放曲线(图 6B)。 纵轴是钙信号的荧光强度, 横轴是时间。 随后对两两神经细胞之间发放曲线的相关性(图 6C)和归一化距离(图 6D)进 行统计, 分别得出一个沿对角线对称的矩阵。 横轴和纵轴都是按序号排列的神 经细胞。 最后, 对两两神经细胞活动的相关性和距离再次做相关性分析, 发现 随着神经细胞之间距离的增大, 活动相关性减小。 这与著名的 Hebb 定律相吻 合, 即连接在一起的神经细胞活动一致。 申请人声明, 本发明通过上述实施例来说明本发明的详细结构特征以及方 法, 但本发明并不局限于上述详细结构特征以及方法, 即不意味着本发明必须 依赖上述详细结构特征以及方法才能实施。 所属技术领域的技术人员应该明 了, 对本发明的任何改进, 对本发明所选用部件的等效替换以及辅助部件的增 加、 具体方式的选择等, 均落在本发明的保护范围和公开范围之内。

Claims

权 利 要 求 书
1、 一种体外培养三维神经网络的装置, 其特征在于, 所述装置包括微流 控芯片、 用于黏附神经细胞的微球和基底, 其中所述微流控芯片包括一层或多 层聚二甲基硅氧垸 (PDMS) 弹性层并具有通孔, 所述 PDMS弹性层具有供神 经细胞突起延伸的微流管道, 所述通孔与基底形成用于容纳微球的小室; 所述 微球优选为均一直径; 所述小室优选为圆形、 长方形或串珠形; 以及所述基底 优选为玻璃基底、 PDMS基底或聚苯乙烯 (PS) 基底。
2、 根据权利要求 1 所述的装置, 其特征在于, 所述微球的直径为 30-140 微米, 优选为 40-100微米, 更优选为 40-70微米。
3、 根据权利要求 1或 2所述的装置, 其特征在于, 所述微球是硅硼玻璃微 球和水凝胶微球中的任意一种。
4、 根据权利要求 1至 3中任一项所述的装置, 其特征在于, 所述通孔横截 面的边长或直径为微球直径的 10Q-102倍, 优选 20-80倍, 更优选 40-60倍;
5、 根据权利要求 1至 4中任一项所述的装置, 其特征在于, 所述微流管道 高度为 3微米 -10微米, 优选为 4-8微米, 最优选为 5微米。
6、 根据权利要求 1至 5中任一项所述的装置, 其特征在于, 所述微流管道 宽度优选为 5-50微米, 更优选为 10-40微米, 最优选为 20-30微米。
7、 根据权利要求 1 至 6 中任一项所述的装置, 其特征在于, 当采用多层 PDMS弹性层时, 下层 PDMS弹性层的厚度为 40-80微米, 优选 50-70微米, 更优选 60微米, 且总厚度为 200微米至 3毫米, 优选为 500微米至 2.5毫米, 更优选为 1毫米至 1.5毫米; 当采用单层 PDMS弹性层时, 厚度为 150微米至 3毫米, 优选为 500微米至 2.5毫米, 更优选为 1毫米至 1.5毫米。
8、 根据权利要求 1至 7中任一项所述的装置的制备方法, 其特征在于, 所 述方法包括(a)经光刻方法得到模板, 用 PDMS对模板上的图案进行翻模, 得 到具有微流管道的所述 PDMS弹性层; (b) 任选地, 将多层所述 PDMS弹性 层同向叠合, 通过氧等离子体处理使相邻两层之间键合, 并使相邻两层中所述 微流管道的方向为 30~90度夹角, 优选为 90度夹角; (c) 在所述 PDMS弹性 层上打通孔; 和 (d) 将所述 PDMS 弹性层有图案的一面与基底贴合, 通孔与 基底形成所述小室。
9、 根据权利要求 1至 7中任一项所述的装置的使用方法, 其特征在于, 所 述方法包括微球的自组装、 将神经细胞种植在所述微球的表面和将黏附有神经 细胞的微球放入小室中进行培养; 其中在种植神经细胞之前优选地先种植胶质 细胞; 所述神经细胞优选为原代神经细胞。
10、 根据权利要求 1至 7中任一项所述的装置在神经细胞和分子生物学、 神经组织工程、 脑机接口和药物筛选中的应用。
PCT/CN2013/080131 2013-07-25 2013-07-25 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法 WO2015010305A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080131 WO2015010305A1 (zh) 2013-07-25 2013-07-25 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080131 WO2015010305A1 (zh) 2013-07-25 2013-07-25 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法

Publications (1)

Publication Number Publication Date
WO2015010305A1 true WO2015010305A1 (zh) 2015-01-29

Family

ID=52392617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080131 WO2015010305A1 (zh) 2013-07-25 2013-07-25 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法

Country Status (1)

Country Link
WO (1) WO2015010305A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3494877A1 (en) * 2017-12-11 2019-06-12 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen Device for the examination of neurons
CN111269831A (zh) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 一种透明多层夹膜微流控芯片及其制备方法和应用
CN111665235A (zh) * 2019-03-08 2020-09-15 上海索昕生物科技有限公司 一种化学发光微阵列芯片及其应用
WO2022098895A1 (en) * 2020-11-04 2022-05-12 The Regents Of The University Of Michigan Microfluidic devices and methods for the development of neural tube-like tissues or neural spheroids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110213743A1 (en) * 2008-11-04 2011-09-01 Electronics And Telecommunications Research Institute Apparatus for realizing three-dimensional neural network
US20130101991A1 (en) * 2009-11-04 2013-04-25 Cfd Research Corporation Microfluidic assay in idealized microvascular network for selection and optimization of drug delivery vehicles to simulated tumors
CN103146650A (zh) * 2013-02-23 2013-06-12 大连理工大学 基于微流控技术的两步构建三维神经干细胞模型的方法
CN103173353A (zh) * 2011-12-23 2013-06-26 国家纳米科学中心 多层管状结构细胞培养支架及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110213743A1 (en) * 2008-11-04 2011-09-01 Electronics And Telecommunications Research Institute Apparatus for realizing three-dimensional neural network
US20130101991A1 (en) * 2009-11-04 2013-04-25 Cfd Research Corporation Microfluidic assay in idealized microvascular network for selection and optimization of drug delivery vehicles to simulated tumors
CN103173353A (zh) * 2011-12-23 2013-06-26 国家纳米科学中心 多层管状结构细胞培养支架及其制备方法和用途
CN103146650A (zh) * 2013-02-23 2013-06-12 大连理工大学 基于微流控技术的两步构建三维神经干细胞模型的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3494877A1 (en) * 2017-12-11 2019-06-12 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen Device for the examination of neurons
WO2019115320A1 (en) * 2017-12-11 2019-06-20 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen Device for the examination of neurons
CN111269831A (zh) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 一种透明多层夹膜微流控芯片及其制备方法和应用
CN111665235A (zh) * 2019-03-08 2020-09-15 上海索昕生物科技有限公司 一种化学发光微阵列芯片及其应用
WO2022098895A1 (en) * 2020-11-04 2022-05-12 The Regents Of The University Of Michigan Microfluidic devices and methods for the development of neural tube-like tissues or neural spheroids

Similar Documents

Publication Publication Date Title
US20220089989A1 (en) Devices for simulating a function of a tissue and methods of use and manufacturing thereof
Millet et al. Over a century of neuron culture: from the hanging drop to microfluidic devices
Kato-Negishi et al. A neurospheroid network-stamping method for neural transplantation to the brain
ES2619564T3 (es) Un método de inducción de diferenciación de células madre cultivadas
CN104342369B (zh) 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法
Park et al. Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology
US20110004304A1 (en) Culturing retinal cells and tissues
US20060141617A1 (en) Multilayered microcultures
Wallin et al. A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications
US20230416665A1 (en) Three-Dimensional Thin Film Structure Having Microparticles Enclosed Therein And Method For Manufacturing Same
WO2015010305A1 (zh) 一种采用微流控芯片构建三维神经网络的装置及其制备和使用方法
Wang et al. Microfluidic engineering of neural stem cell niches for fate determination
Malkoc et al. Controlled neuronal cell patterning and guided neurite growth on micropatterned nanofiber platforms
US11821893B2 (en) Screen printing tissue models
Lopez et al. Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells
KR20190039283A (ko) 세포 조직의 제조 방법, 및 다공 필름
TW202128977A (zh) 細胞層片製造裝置及細胞層片
Jiang et al. Microfluidic-based biomimetic models for life science research
Luo et al. Development of an axon-guiding aligned nanofiber-integrated compartmentalized microfluidic neuron culture system
Erdman et al. Microfluidics-based laser cell-micropatterning system
WO2011052281A1 (ja) 神経スフェロイドネットワークの構築方法
KR102209346B1 (ko) 미세관통막 기반의 수화젤 마이크로웰 어레이 및 이를 이용한 3차원 단일세포 분리 및 배양방법
CN108165475A (zh) 一种高通量单细胞捕获和排列芯片及方法
Yang et al. A microfluidic chip for growth and characterization of adult rat hippocampal progenitor cell neurospheroids
RU2521194C2 (ru) Матрица для клеточной трансплантологии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04/04/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13889815

Country of ref document: EP

Kind code of ref document: A1