WO2017204137A1 - 蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム - Google Patents

蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム Download PDF

Info

Publication number
WO2017204137A1
WO2017204137A1 PCT/JP2017/018973 JP2017018973W WO2017204137A1 WO 2017204137 A1 WO2017204137 A1 WO 2017204137A1 JP 2017018973 W JP2017018973 W JP 2017018973W WO 2017204137 A1 WO2017204137 A1 WO 2017204137A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power storage
case
electrode bodies
storage element
Prior art date
Application number
PCT/JP2017/018973
Other languages
English (en)
French (fr)
Inventor
澄男 森
健太 中井
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2018519521A priority Critical patent/JP7049603B2/ja
Publication of WO2017204137A1 publication Critical patent/WO2017204137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power storage element including a plurality of wound electrode bodies, a power storage device including the power storage element, a mobile body including the power storage element, and a power storage system including the power storage element.
  • the secondary battery includes a plurality of electrode assemblies 101, a first current collector plate 102, a case 103, and a cap assembly 104.
  • Each of the plurality of electrode assemblies 101 is formed by laminating and winding a first electrode plate, a separator, and a second electrode plate formed in a thin plate shape or a membrane shape.
  • the plurality of electrode assemblies 101 are arranged in parallel in one direction in the case 103. At this time, a gap is formed between the adjacent electrode assemblies 101.
  • a first current collecting plate 102 for being electrically connected to the first electrode plate is coupled to one end of the plurality of electrode assemblies 101 arranged in the one direction.
  • a case 103 having a polarity is in contact with the other end of the plurality of electrode assemblies 101 in order to be electrically connected to the second electrode plate.
  • the first current collector plate 102 and one side end portion (the first electrode plate) of the electrode assembly 101 are coupled by welding.
  • the case 103 and the other end portion (second electrode plate) of the electrode assembly 101 are also coupled by welding.
  • the case 103 includes a bottom portion 105 and a side wall portion 106 extended from the bottom portion 105 so that the electrolytic solution, the plurality of electrode assemblies 101, and the first current collector plate 102 are accommodated.
  • the case 103 is formed of a conductive metal and serves as an electrode having one polarity. That is, the case 103 is electrically connected to the other end (second electrode plate) of the plurality of electrode assemblies 101 and serves as a second current collecting plate.
  • the cap assembly 104 includes a cap plate 107 that seals the case 103, a first electrode terminal 108 that passes through the cap plate 107 and is connected to the first current collector plate 102, and a screw formed on the first electrode terminal 108. And a first nut 109 fastened along the mountain and fixing the first electrode terminal 108 to the cap plate 107.
  • the case 103 is disposed so that the winding center axis of each electrode assembly 101 is horizontal. More specifically, the electrode assembly at one end (for example, the left end in FIG. 18).
  • the case 103 is arranged so that the electrode 101 is positioned above the electrode assembly 101 at the other end (for example, the right end in FIG. 18), the electrolytic solution (only a part of the electrode assembly 101 is accumulated in the case 103). Do not touch excess electrolyte). For this reason, in the secondary battery 100, when charge and discharge are repeated in the above-described posture, the electrode assembly 101 that is not in contact with the surplus electrolyte solution among the plurality of electrode assemblies 101 is short of the electrolyte solution. As described above, when an electrolyte shortage occurs in a part of the plurality of electrode assemblies 101, the output of the secondary battery 100 as a whole is reduced.
  • the present embodiment includes a plurality of wound electrode bodies and a case for accommodating the plurality of electrode bodies together with the electrolyte solution in a state where the winding center axes are parallel to each other, and the winding center of each electrode body
  • An electricity storage element in which an electrolyte is supplied to the upper electrode body when the case is disposed such that the axis is horizontal and the electrode body at one end is positioned above the electrode body at the other end, and an electricity storage comprising the electricity storage element
  • the electricity storage device of this embodiment is A plurality of electrode bodies around which the electrodes are wound; An electrolyte, A case for accommodating the plurality of electrode bodies together with the electrolytic solution; An external terminal protruding from the outer surface of the case and electrically connected to the plurality of electrode bodies, The plurality of electrode bodies are arranged in a protruding direction of the external terminal in a state where the winding central axes are parallel to each other, Adjacent electrode bodies have liquid junctions between the outer peripheral surfaces of the electrode bodies.
  • FIG. 1 is a perspective view of a power storage device according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the power storage element.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a diagram for explaining the electrode body.
  • FIG. 5 is a diagram for explaining the amount of excess electrolyte in the electricity storage device.
  • FIG. 6 is an exploded perspective view of the energy storage device according to the second embodiment.
  • FIG. 7 is a perspective view in which a part of the power storage device according to the third embodiment is omitted.
  • FIG. 8 is an exploded perspective view in which a part of the power storage device is omitted.
  • FIG. 9 is an exploded perspective view of a power storage element included in the power storage device.
  • FIG. 9 is an exploded perspective view of a power storage element included in the power storage device.
  • FIG. 10 is a cross-sectional view of the power storage element.
  • FIG. 11 is a diagram for explaining an electrode body included in the power storage element.
  • FIG. 12 is a schematic diagram for explaining the moving body.
  • FIG. 13 is a schematic diagram for explaining the power storage system.
  • FIG. 14 is a diagram for explaining the arrangement of a plurality of electrode bodies in the electricity storage device of another embodiment.
  • FIG. 15 is a diagram for explaining the arrangement of a plurality of electrode bodies in the electricity storage device of another embodiment.
  • FIG. 16 is a schematic cross-sectional view for explaining the outer region of the electrode body.
  • FIG. 17 is a perspective view of a power storage device including the power storage element according to the first or second embodiment.
  • FIG. 18 is a cross-sectional view of a conventional secondary battery.
  • the electricity storage device of this embodiment is A plurality of electrode bodies having wound electrodes; An electrolyte, A case for accommodating the plurality of electrode bodies together with the electrolytic solution; An external terminal protruding from the outer surface of the case and electrically connected to the plurality of electrode bodies, The plurality of electrode bodies are arranged in a protruding direction of the external terminal in a state where the winding central axes are parallel to each other, Adjacent electrode bodies have liquid junctions between the outer peripheral surfaces of the electrode bodies.
  • the adjacent electrode bodies cause the outer peripheral surfaces to be in liquid junction with each other, so that the winding center axis of each electrode body is horizontal and the electrode body at one end is positioned above the electrode body at the other end.
  • the electrolytic solution is supplied from the lower electrode body to the upper electrode body.
  • the electrolytic solution accumulated in the case hereinafter also referred to as “excess electrolytic solution”
  • the electricity storage device of the present embodiment is A plurality of electrode bodies having wound electrodes;
  • An electrolyte A case in which the plurality of electrode bodies are housed together with the electrolytic solution in a state in which the winding center axes are parallel to each other,
  • the amount of the electrolyte stored in the case is determined so that the winding center axis of the accommodated electrode body is horizontal and the electrode body at one end is positioned above the electrode body at the other end.
  • the liquid level is set to be lower than the lower end of the uppermost electrode body in the case,
  • Adjacent electrode bodies have liquid junctions between the outer peripheral surfaces of the electrode bodies.
  • the adjacent electrode bodies cause the outer peripheral surfaces to be in liquid junction with each other, so that the winding center axis of each electrode body is horizontal and the electrode body at one end is positioned above the electrode body at the other end.
  • the electrolyte solution is removed from the lower electrode body. Since it is supplied to the upper electrode body, the surplus electrolyte is supplied to the electrode body located above the liquid surface.
  • the adjacent electrode bodies may always have a liquid junction on the outer peripheral surface during the charge / discharge process.
  • the adjacent electrode bodies may be in liquid junction by bringing the outer peripheral surfaces into contact with each other.
  • Each of the plurality of electrode bodies has an insulating separator, The electrode and the separator in each of the plurality of electrode bodies are wound in a stacked state, The outer peripheral surface of the electrode body may be constituted by the separator.
  • the outer peripheral surfaces of the plurality of electrode bodies are constituted by the separators having insulation properties, insulation between the electrode bodies can be reliably achieved.
  • the electrolytic solution moves in the winding direction (circumferential direction) in the electrode, and in addition, the thickness direction and the winding direction ( Therefore, the electrolytic solution supplied to the outer peripheral surface of the electrode body is efficiently supplied (moved) to the winding center of the electrode body.
  • the separator since the separator may be more compressible and recoverable than the electrode, the separator can absorb the expansion and contraction of the electrode in the electrode body, thereby adjacent when the electrode contracts and expands due to charge and discharge. Separation between the electrode bodies is suppressed.
  • Each of the plurality of electrode bodies includes an outer region including the outer peripheral surface and around which only the separator is wound,
  • the number of turns of the separator in the outer region of one of the adjacent electrode bodies may be greater than the number of turns of the separator in the outer region of the other electrode body of the adjacent electrode bodies.
  • the lower electrode body Since more electrolyte solution is held in the outer region of the upper electrode body (the one electrode body) than the outer region of the other electrode body), when the electricity storage device is used in such a posture, It is possible to prevent an electrolyte shortage in the upper electrode body, which is less likely to be supplied with an excess electrolyte than in the lower electrode body.
  • the plurality of electrode bodies are arranged in a direction perpendicular to the winding center axis, The number of turns of the separator in the outer region may increase as the electrode body is on one side in the orthogonal direction.
  • the storage element Comprising at least one liquid junction member that can contact each of the outer peripheral surfaces of the adjacent electrode bodies and sucks up the electrolyte;
  • the adjacent electrode bodies may have a liquid junction on their outer peripheral surfaces with the liquid junction member.
  • the liquid junction member sucks up the electrolytic solution, even if the case is arranged so that the winding central axis of each electrode body is horizontal, the electrolytic solution is removed from the lower electrode body through the liquid junction member. It is supplied to the upper electrode body.
  • the liquid junction member may be formed of a porous member having open cells.
  • the liquid junction member can suck the electrolyte solution more effectively, when the case is arranged so that the winding center axis of each electrode body is horizontal, the lower electrode body Thus, the electrolytic solution is effectively supplied from the upper electrode body.
  • the liquid junction member may shrink or extend in a direction in which the adjacent electrode bodies are arranged in accordance with expansion or contraction of the electrode bodies due to charging or discharging.
  • the liquid junction member expands and contracts following the change in the distance between the outer peripheral surfaces of the electrode bodies accompanying charging and discharging of the storage element, the case is arranged so that the winding center axis of each electrode body is horizontal. Even if the storage element is charged / discharged and the electrode body expands or contracts, the outer peripheral surfaces of adjacent electrode bodies continue to be in liquid junction with the liquid junction member, so that the electrolytic solution is transferred from the lower electrode body to the upper electrode body. Continue to be supplied.
  • the amount of the electrolytic solution that can be held by the liquid junction member arranged on one side of the electrode body in the direction orthogonal to the winding center axis is the liquid arranged on the other side of the electrode body in the orthogonal direction.
  • the amount of the electrolyte solution that can be held by the entanglement member may be larger.
  • the case is such that the winding central axis of each electrode body is horizontal, and the liquid junction member disposed on the one side is above the liquid junction member disposed on the other side. Is disposed, the upper (the one side) liquid junction member can hold more electrolyte solution than the lower (the other side) liquid junction member. Therefore, when the power storage device is continuously used in such a posture, compared to the lower electrode body (the electrode body in contact with the lower liquid junction member and on the upper side of the lower liquid junction member). It is possible to prevent an electrolyte shortage from occurring in the upper electrode body (the electrode body in contact with the upper liquid junction member and on the upper side of the upper liquid junction member) to which the excess electrolyte is difficult to be supplied.
  • each of the plurality of electrode bodies the electrode is wound such that the diameter in the direction orthogonal to the electrode body is a major axis and a minor axis,
  • the plurality of electrode bodies may be arranged inside the case so that a protruding direction of the external terminal coincides with a minor axis direction of the electrode body.
  • the bulge in the short diameter direction is larger than the bulge in the long diameter direction at the time of charging.
  • the swelling of the case can be suppressed.
  • the power storage device of this embodiment is A plurality of power storage elements each having an electrode body having the major axis and the minor axis; A holding member for holding the plurality of power storage elements; A bus bar connected to the external terminal, The plurality of power storage elements are arranged in a major axis direction of the electrode body, The holding member has a pair of termination members disposed on both sides of the plurality of energy storage elements in the arrangement direction of the energy storage elements, and a connecting portion that couples the pair of termination members, The bus bar connects external terminals of different power storage elements.
  • the bulge in the arrangement direction of the power storage elements (the major axis direction of the electrode body) in each case of the plurality of power storage elements can be suppressed.
  • the force which spreads the end member of the is suppressed.
  • the swelling of the case in the direction in which the power storage elements are arranged during charging is suppressed, that is, the change in the interval between the external terminals of the power storage elements in the alignment direction is suppressed, so that the connection portion between the bus bar and the external terminal is reduced.
  • Generation of stress due to the change in the interval is suppressed, and thereby damage to the connection portion between the bus bar and the external terminal due to expansion / contraction of the electrode body during charge / discharge can be prevented.
  • the case of each power storage element has a case body having an opening, and a lid on which the external terminal is disposed and closes the opening, A gap may be formed between the lid and the electrode body inside the case.
  • the expansion in the minor axis direction of the electrode body during charging is absorbed by the gap, and the swelling of the case in the minor axis direction can be suppressed. That is, the force applied to the holding member during charging while suppressing the swelling of the case in the arrangement direction by matching the major axis direction of the electrode body and the arrangement direction of the electricity storage elements (that is, the force to spread the pair of termination members) ) Is suppressed, and the gap between the electrode body and the case (lid) formed in the direction in which the electrode body easily expands (short diameter direction) absorbs the expansion in the short diameter direction during charging of the electrode body.
  • the bulge of the case in the same direction, the occurrence of stress due to the bulge of the case (bulge in the minor axis direction) at the connection portion between the bus bar and the external terminal can be suppressed.
  • the moving body of this embodiment is Any of the above storage elements; A mobile body on which the power storage element is mounted; A drive unit that drives the mobile body with electric power supplied from the power storage element,
  • the power storage element is arranged such that a terminal side portion, which is a portion where the external terminal in the case protrudes, is located above a portion of the case opposite to the terminal side portion.
  • the adjacent electrode bodies have the outer peripheral surfaces in liquid junction with each other, so that the electrolyte is supplied from the lower electrode body to the upper electrode body.
  • the electrolytic solution accumulated in the case is supplied from the lower electrode body to the upper electrode body.
  • the power storage system of this embodiment is Any of the above storage elements; A power storage system body on which the power storage element is placed; An input / output terminal connected to an external terminal of the electricity storage element and capable of inputting power from the outside and outputting power to the outside; and
  • the power storage element is arranged such that a terminal side portion, which is a portion where the external terminal in the case protrudes, is located above a portion of the case opposite to the terminal side portion.
  • the electrolytic solution is supplied from the lower electrode body to the upper electrode body.
  • the electrolytic solution accumulated in the case is supplied from the lower electrode body to the upper electrode body.
  • the electricity storage device of this embodiment is A plurality of electrode bodies around which the electrodes are wound; A case for accommodating the plurality of electrode bodies; An external terminal protruding from the outer surface of the case and electrically connected to the plurality of electrode bodies, In each of the plurality of electrode bodies, the electrode is wound so that the diameter in the direction orthogonal to the electrode body is a major axis and a minor axis, The plurality of electrode bodies are arranged in a state in which the winding center axes are parallel to each other and the protruding direction of the external terminal and the minor axis direction of the electrode body coincide with each other inside the case,
  • the case includes a case main body having an opening, and a lid that closes the opening and on which the external terminal is disposed, A gap is formed between the lid and the electrode body inside the case.
  • the electrode bodies by arranging the electrode bodies so that the major axis direction with a small bulge during charging is aligned, the bulge of the case in the major axis direction of the electrode body during charging can be suppressed and the electrode body can be expanded.
  • the gap between the electrode body and the case (lid) formed in the easy direction (short diameter direction) absorbs the expansion of the electrode body in the short diameter direction during charging, and the swelling of the case in the same direction is suppressed.
  • the power storage device of this embodiment is A plurality of power storage elements each having an electrode body having the major axis and the minor axis; A holding member for holding the plurality of power storage elements; A bus bar connected to the external terminal, The plurality of power storage elements are arranged in a major axis direction of the electrode body, The holding member has a pair of terminal portions arranged on both sides of the plurality of power storage elements in the direction in which the power storage elements are arranged, and a connecting portion that connects the pair of terminal members, The bus bar may connect external terminals of different power storage elements.
  • the bulge in the arrangement direction of the power storage elements (the major axis direction of the electrode body) in each case of the plurality of power storage elements can be suppressed.
  • the force which spreads the end member of the is suppressed.
  • the swelling of the case in the direction in which the power storage elements are arranged during charging is suppressed, that is, the change in the interval between the external terminals of the power storage elements in the alignment direction is suppressed, so that the connection portion between the bus bar and the external terminal is reduced.
  • the generation of stress due to the change in the interval is suppressed, thereby preventing damage to the connection portion between the bus bar and the external terminal due to expansion / contraction of the electrode body during charge / discharge.
  • Examples of the power storage element include a primary battery, a secondary battery, and a capacitor.
  • a chargeable / dischargeable secondary battery will be described as an example of a power storage element.
  • 1st embodiment of this invention is an electrical storage element.
  • the name of each component (each component) of this embodiment is a thing in this embodiment, and may differ from the name of each component (each component) in background art.
  • the power storage element of this embodiment is a nonaqueous electrolyte secondary battery. More specifically, the power storage element is a lithium ion secondary battery that utilizes electron transfer that occurs as lithium ions move. This type of power storage element supplies electrical energy.
  • One or a plurality of power storage elements are used. Specifically, the storage element is used singly when the required output and the required voltage are small. On the other hand, when at least one of a required output and a required voltage is large, the power storage element is used in a power storage device in combination with another power storage element. In the power storage device, a power storage element used in the power storage device supplies electric energy.
  • the storage element includes a plurality (three in the present embodiment) of electrode bodies 2, an electrolytic solution, a case 3 that houses the plurality of electrode bodies 2 together with the electrolytic solution, and a case 3 and an external terminal 4 projecting from the outer surface.
  • the power storage device 1 also includes a current collector 5 that electrically connects each of the plurality of electrode bodies 2 and the external terminal 4, an insulating material 6 that is disposed between the plurality of electrode bodies 2 and the case 3, and the like. .
  • Each of the plurality of electrode bodies 2 is a so-called wound electrode body. Specifically, each of the plurality of electrode bodies 2 includes electrodes 23 and 24 and a separator 25, and the electrodes 23 and 24 and the separator 25 are wound in a stacked state.
  • the electrode of the present embodiment has a positive electrode 23 and a negative electrode 24. More specifically, each of the plurality of electrode bodies 2 is a laminated body 22 in which the core 21, the positive electrode 23, and the negative electrode 24 are laminated in a mutually insulated state, and is wound around the core 21.
  • a laminated body 22 (see FIGS. 3 and 4).
  • Each outer peripheral surface of the plurality of electrode bodies 2 is constituted by a separator 25.
  • each of the plurality of electrode bodies 2 is a separator 25.
  • the power storage element 1 is charged and discharged.
  • the winding core 21 is usually formed of an insulating material.
  • the core 21 of this embodiment is cylindrical, more specifically cylindrical.
  • the winding core 21 is formed by winding a sheet having flexibility or thermoplasticity.
  • the sheet of the present embodiment is formed of a synthetic resin.
  • the positive electrode 23 has a strip-shaped metal foil 231 and a positive electrode active material layer 232 stacked on the metal foil 231.
  • This positive electrode active material layer 232 is overlaid on the metal foil 231 in a state where one end portion (uncovered portion) in the width direction of the metal foil 231 is exposed.
  • the metal foil 231 of this embodiment is, for example, an aluminum foil.
  • the negative electrode 24 has a strip-shaped metal foil 241 and a negative electrode active material layer 242 stacked on the metal foil 241.
  • the negative electrode active material layer 242 is formed in a state in which the other edge in the width direction of the metal foil 241 (on the side opposite to the non-covered portion of the metal foil 231 of the positive electrode 23) (uncovered portion) is exposed. 241.
  • the metal foil 241 of this embodiment is, for example, a copper foil.
  • the positive electrode 23 and the negative electrode 24 configured as described above are wound in a state where they are insulated by the separator 25. That is, in the electrode body 2 of this embodiment, the laminated body 22 of the positive electrode 23, the negative electrode 24, and the separator 25 is wound.
  • the separator 25 is an insulating member and is disposed between the positive electrode 23 and the negative electrode 24. Thereby, in the electrode body 2 (specifically, the laminated body 22), the positive electrode 23 and the negative electrode 24 are insulated from each other.
  • the separator 25 holds the electrolytic solution in the case 3. Thereby, at the time of charging / discharging of the electrical storage element 1, a lithium ion can move between the positive electrode 23 and the negative electrode 24 which are alternately laminated on both sides of the separator 25.
  • the separator 25 has a strip shape.
  • This separator 25 is comprised by porous membranes, such as polyethylene, a polypropylene, a cellulose, polyamide, for example.
  • Separator 25 of this embodiment is formed by providing an inorganic layer containing inorganic particles such as SiO2 particles, Al2O3 particles, boehmite (alumina hydrate) on a substrate formed of a porous film. Yes.
  • the base material of the separator 25 of this embodiment is formed of, for example, polyethylene.
  • the dimension in the width direction of the separator 25 is larger than the width of the negative electrode active material layer 242.
  • the separator 25 is disposed between the positive electrode 23 and the negative electrode 24 that are stacked in a state where the positive electrode active material layer 232 and the negative electrode active material layer 242 are displaced in the width direction so as to overlap in the thickness direction (stacking direction).
  • the uncoated portion of the positive electrode 23 and the uncoated portion of the negative electrode 24 do not overlap. That is, the uncovered portion of the positive electrode 23 protrudes from the region where the positive electrode 23 and the negative electrode 24 overlap in the width direction (direction orthogonal to the stacking direction), and the non-covered portion of the negative electrode 24 is between the positive electrode 23 and the negative electrode 24.
  • the electrode body 2 is formed by winding the positive electrode 23, the negative electrode 24, and the separator 25 (that is, the stacked body 22) stacked in such a state. Further, in each of the plurality of electrode bodies 2 of the present embodiment, an uncoated laminated portion 26 in the electrode body 2 is configured by a portion where only the uncoated portion of the positive electrode 23 or the uncoated portion of the negative electrode 24 is laminated.
  • the uncoated laminated portion 26 is a portion that is electrically connected to the current collector 5 in the electrode body 2.
  • the uncoated laminated portion 26 is provided on each electrode of the electrode body 2. That is, the uncoated laminated portion 26 in which only the uncoated portion of the positive electrode 23 is laminated constitutes the uncoated laminated portion of the positive electrode in the electrode body 2, and the uncoated laminated portion 26 in which only the uncoated portion of the negative electrode 24 is laminated.
  • An uncoated laminated portion of the negative electrode in the electrode body 2 is configured.
  • the plurality of electrode bodies 2 configured as described above have the external terminals 4 from the outer surface of the case 3 (specifically, the outer surface of a cover plate 32 to be described later of the case 3) with the winding center axes C parallel to each other. Are aligned in the protruding direction (vertical direction in FIG. 2).
  • Each uncoated laminated portion 26 of the plurality of electrode bodies 2 is connected to the current collector 5.
  • each of the positive electrode uncoated laminated portions 26 of the plurality of electrode bodies 2 is connected to one current collector 5 (the left current collector 5 in FIG. 2).
  • the non-coated laminated portion 26 of each negative electrode of the plurality of electrode bodies 2 is connected to the other current collector 5 (the right current collector 5 in FIG. 2).
  • the adjacent electrode bodies 2 In the plurality of electrode bodies 2 arranged in the projecting direction, the adjacent electrode bodies 2 have their outer peripheral surfaces (that is, the outermost layer separator 25 in the multilayer body 22) in liquid junction with each other. Adjacent electrode bodies 2 of the present embodiment are in liquid junction by bringing their outer peripheral surfaces (specifically, separators 25 constituting the outer peripheral surface) into contact with each other. Moreover, the adjacent electrode bodies 2 of this embodiment always make the said outer peripheral surface have liquid junction in the charging / discharging process. Specifically, the cross section orthogonal to the winding center axis C of the electrode body 2 expands or contracts with charging or discharging, but in the electricity storage device 1 of the present embodiment, the adjacent electrode bodies 2 are charged and discharged.
  • the separators 25 constituting the outer peripheral surface are always in contact (liquid junction).
  • the liquid junction is a state in which the electrolyte is guided from the separator 25 constituting the outer peripheral surface of one electrode body 2 to the separator 25 constituting the outer peripheral surface of the other electrode body 2 in the adjacent electrode bodies 2.
  • the case 3 includes a case main body 31 having an opening and a lid plate 32 that closes (closes) the opening of the case main body 31.
  • the case 3 accommodates the electrolytic solution in the internal space 33 (see FIG. 3) together with the plurality of electrode bodies 2, the current collector 5 and the like.
  • the case 3 is formed of a metal having resistance to the electrolytic solution.
  • the case 3 of the present embodiment is formed of an aluminum metal material such as aluminum or an aluminum alloy, for example.
  • the case 3 is formed by joining the opening peripheral edge 34 of the case main body 31 and the peripheral edge of the cover plate 32 in an overlapped state.
  • an internal space 33 is defined by the case main body 31 and the lid plate 32.
  • the opening peripheral part 34 of the case main body 31 and the peripheral part of the cover plate 32 are joined by welding.
  • the case main body 31 includes a plate-like closing part 311 and a cylindrical body part 312 connected to the periphery of the closing part 311.
  • the closing part 311 is located at the lower end of the case body 31 when the case body 31 is arranged with the opening facing upward (that is, the bottom wall of the case body 31 when the opening faces upward). ) Part.
  • the blocking part 311 has a rectangular shape when viewed from the normal direction of the blocking part 311.
  • the long side direction of the closed portion 311 is the X-axis direction of the orthogonal coordinate system
  • the short side direction of the closed portion 311 is the Y-axis direction of the orthogonal coordinate system
  • the normal direction of the closed portion 311 is Z in the orthogonal coordinate system. Axial direction.
  • the body portion 312 has a rectangular tube shape, specifically, a flat rectangular tube shape.
  • the body portion 312 has a pair of long wall portions 313 extending from the long side at the periphery of the closing portion 311 and a pair of short wall portions 314 extending from the short side at the periphery of the closing portion 311. That is, the pair of long wall portions 313 are opposed to each other with an interval in the Y axis direction (specifically, an interval corresponding to the short side of the periphery of the closing portion 311), and the pair of short wall portions 314 are spaced in the X axis direction. (In detail, they are opposed to each other with a gap corresponding to the long side of the periphery of the blocking portion 311).
  • a rectangular tube-shaped body portion 312 is formed.
  • the case main body 31 has a rectangular tube shape (that is, a bottomed rectangular tube shape) in which one end in the opening direction (Z-axis direction) is closed.
  • a rectangular tube shape that is, a bottomed rectangular tube shape
  • Z-axis direction the opening direction
  • each of the plurality of electrode bodies 2 is accommodated in the case body 31 in a state in which the winding center axis C direction is in the X-axis direction and the Z-axis direction is aligned.
  • the lid plate 32 is a plate-like member that closes the opening of the case body 31.
  • the outline of the cover plate 32 has a shape corresponding to the opening peripheral edge 34 of the case body 31 when viewed from the Z-axis direction. That is, the lid plate 32 is a rectangular plate material that is long in the X-axis direction when viewed from the Z-axis direction.
  • the cover plate 32 contacts the case body 31 so as to close the opening of the case body 31. More specifically, the peripheral edge of the cover plate 32 is overlapped with the open peripheral edge 34 of the case body 31 so that the cover plate 32 closes the opening. In a state where the opening peripheral edge 34 and the cover plate 32 are overlapped, the boundary portion between the cover plate 32 and the case main body 31 is welded. Thereby, the case 3 is configured.
  • the external terminal 4 is a part that is electrically connected to an external terminal of another power storage element or an external device.
  • the external terminal 4 is formed of a conductive member.
  • the external terminal 4 is formed of a highly weldable metal material such as an aluminum-based metal material such as aluminum or an aluminum alloy, or a copper-based metal material such as copper or a copper alloy.
  • the external terminal 4 of the present embodiment has a surface 41 to which a bus bar or the like can be welded.
  • the current collector 5 is disposed in the case 3 and is directly or indirectly connected to each of the plurality of electrode bodies 2 so as to be energized.
  • the current collector 5 of the present embodiment is directly connected to each non-coated laminated portion 26 of the plurality of electrode bodies 2.
  • the current collector 5 is formed of a conductive member and is disposed along the inner surface of the case 3.
  • the current collector 5 of the present embodiment connects the external terminal 4 and the plurality of electrode bodies 2 so that energization is possible.
  • the current collector 5 includes a first connection portion 51 that is connected to the external terminal 4 so as to be energized, and a first electrode 51 that is connected to the plurality of electrode bodies 2 so as to be energized. It has the 2nd connection part 52, and the bending part 53 which connects the 1st connection part 51 and the 2nd connection part 52.
  • the bent portion 53 is disposed in the vicinity of the boundary between the lid plate 32 and the short wall portion 314 in the case 3, the first connection portion 51 extends from the bent portion 53 along the lid plate 32, and the first Two connecting portions 52 extend from the bent portion 53 along the short wall portion 314.
  • the 2nd connection part 52 is connected with the non-coating laminated part 26 of the plurality (three in this embodiment) of the electrode bodies 2 in a conductive state.
  • the 2nd connection part 52 of this embodiment is joined to each non-coating laminated part 26 of the some electrode body 2 by laser welding, for example.
  • the current collector 5 configured as described above is disposed on each of the positive electrode and the negative electrode of the power storage device 1.
  • the current collectors 5 are disposed in the case 3 in the uncoated laminated portion 26 on the positive electrode side and the uncoated laminated portion 26 on the negative electrode side, respectively.
  • the positive electrode current collector 5 and the negative electrode current collector 5 are formed of different materials. Specifically, the positive electrode current collector 5 is formed of, for example, aluminum or an aluminum alloy.
  • the negative electrode current collector 5 is formed of, for example, copper or a copper alloy.
  • the insulating material 6 is disposed between the case 3 (specifically, the case main body 31) and the plurality of electrode bodies 2.
  • the insulating material 6 is formed of an insulating resin.
  • the insulating material 6 of this embodiment is formed in a bag shape by bending an insulating sheet-like member cut into a predetermined shape.
  • the electrolytic solution is injected into the case 3.
  • more electrolytic solution than the amount that can be held by the plurality of electrode bodies 2 (specifically, the separator 25 of each electrode body 2) is injected into the case 3. ing.
  • the amount of the electrolyte (surplus electrolyte) that is not held by the plurality of electrode bodies 2 and stays in the case 3 is such that the winding center axis C of each of the plurality of electrode bodies 2 accommodated in the case 3 is horizontal.
  • the liquid level is set to be lower than the lower end 29 of the electrode body 2 located at the top in the case 3.
  • a state in which a plurality of electrode bodies 2 are immersed in an excess electrolyte solution may be used.
  • the lowermost electrode body 2 Only soaked in excess electrolyte.
  • this excess electrolyte solution is not limited to the electrolyte solution which accumulates in the lower end of case 3 irrespective of the expansion / contraction of the electrode body 2 by charging / discharging like the electrical storage element 1 of this embodiment.
  • the surplus electrolyte solution is rapidly charged and the electrodes 23 and 24 constituting the electrode body 2 are rapidly expanded and the electrolyte solution held by the separator 25 is pushed out of the separator 25, thereby It may be an electrolytic solution accumulated at the lower end.
  • the surplus electrolyte solution is abruptly generated by the electrolyte solution accumulated at the lower end of the case 3 regardless of the expansion / contraction of the electrode body 2 due to charging / discharging, and the electrodes 23 and 24 constituting the electrode body 2 by rapid charging or the like. Both of the electrolyte solution that has been expanded and retained by the separator 25 are pushed out of the separator 25 and accumulated at the lower end of the case 3.
  • the electrolytic solution is a non-aqueous electrolytic solution.
  • the electrolytic solution is obtained by dissolving an electrolyte salt in an organic solvent.
  • the organic solvent include cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the electrolyte salt is LiClO 4 , LiBF 4 , LiPF 6 or the like.
  • the power storage element 1 when the case 3 is arranged such that the adjacent electrode bodies 2 have their outer peripheral surfaces in liquid junction with each other so that the winding center axis C of each electrode body 2 is horizontal. (In the example shown in FIG. 5, when the case 3 is disposed with the surface 41 of the external terminal 4 facing upward), the excess electrolyte solution (electrolyte solution accumulated in the case 3) in the case 3 Even if the electrode body 2 is positioned above the liquid surface (see FIG.
  • the electrolyte solution from the lower electrode body 2 for example, the electrode body 2 in contact with the excess electrolyte
  • the upper electrode body 2 for example, since the electrode body 2 and the outer peripheral surface are in contact with each other on the upper side of the lower electrode body 2, the electrode body 2 is supplied to the electrode body 2) that is not in contact with the surplus electrolyte solution. It is supplied to the electrode body 2 located above the liquid level.
  • the electrolyte solution is supplied to each electrode body 2 through a site where the electrode bodies 2 adjacent to each other are in liquid junction. Can move. For this reason, the deviation of the electrolyte solution in the plurality of electrode bodies 2 in the case 3, that is, the deviation of the amount of electrolyte solution retained for each electrode body 2 is also suppressed.
  • the outer peripheral surfaces of the adjacent electrode bodies 2 are always in liquid junction even if the cross section perpendicular to the winding center axis C of the electrode body 2 expands and contracts due to charging and discharging. For this reason, even if the case 3 is arranged so that the winding center axis C of each electrode body 2 is horizontal, the surplus electrolyte solution is always supplied from the lower electrode body 2 to the upper electrode body 2.
  • the electrodes 23 and 24 and the separator 25 are wound in a stacked state in each of the plurality of electrode bodies 2. Further, the outer peripheral surface of each electrode body 2 is constituted by a separator 25. Thus, since the outer peripheral surface of each of the plurality of electrode bodies 2 is configured by the separator 25 having an insulating property, the insulation between the electrode bodies 2 is reliably achieved in the power storage element 1. Moreover, in the electrode body 2 wound in a state where the electrodes 23 and 24 and the separator 25 are laminated, the electrolytic solution moves in the winding direction (circumferential direction) in the electrodes 23 and 24 (particularly the negative electrode 24).
  • the separator 25 moves in the thickness direction and the winding direction (circumferential direction). For this reason, the electrolytic solution supplied to the outer peripheral surface of the electrode body 2 is efficiently supplied (moved) to the winding center of the electrode body 2.
  • the separator 25 since the compressibility and restoring property of the separator 25 may be better than those of the electrodes 23 and 24, the separator 25 can absorb the expansion / contraction of the electrodes 23 and 24 in the electrode body 2, and thereby the electrodes can be charged and discharged. Separation between adjacent electrode bodies 2 when 23 and 24 contract and expand is suppressed.
  • the second embodiment of the present invention is a power storage element.
  • the power storage element 1A includes at least one liquid junction member 7 that contacts each of the outer peripheral surfaces of the adjacent electrode bodies 2 (specifically, the separator 25 that constitutes the outer peripheral surface) and sucks up the electrolytic solution.
  • the liquid junction member 7 is formed of a porous member.
  • the liquid junction member 7 causes liquid junction between the electrode bodies 2 with which the liquid junction member 7 is in contact. As the electrode body 2 expands or contracts due to charging or discharging (following), the liquid junction member 7 contracts or extends in the direction in which the adjacent electrode bodies 2 are arranged (vertical direction in FIG. 6).
  • the liquid junction member 7 of the present embodiment is disposed between each of a plurality of electrode bodies 2 (one less than the number of electrode bodies 2 in the present embodiment). That is, the electricity storage element 1 ⁇ / b> A includes a plurality of liquid junction members 7.
  • the liquid junction member 7 of this embodiment is arrange
  • the liquid junction member 7 of the present embodiment is formed of an open-celled porous member from the viewpoint of liquid holding ability.
  • the liquid junction member 7 is made of a porous resin.
  • the liquid junction member 7 includes a porous polyolefin resin (a mixture of low density or high density polyethylene, ultrahigh molecular weight polyethylene, polypropylene, or polypropylene), porous PEEK resin, from the viewpoint of flexibility and resistance to electrolytic solution. , Porous latex resin, porous fluororesin.
  • the liquid junction member 7 may be formed of a mixture of these resins and inorganic particles or porous inorganic particles.
  • the amount of the liquid is larger than the amount of the electrolytic solution that can be held by the liquid junction member 7 disposed on the other side (the lower side in FIG. 6) of the electrode body 2 (the center electrode body 2 in FIG. 6) in the Z-axis direction.
  • the amount of the electrolytic solution that can be held by the liquid junction member 7 is adjusted by adjusting the volume of the liquid junction member 7. That is, in the electricity storage device 1 ⁇ / b> A shown in FIG. 6, the volume of the upper liquid junction member 7 is larger than the volume of the lower liquid junction member 7.
  • the porous member can guide the electrolyte to the upper side due to liquid absorbency, liquid retention, and the like. For this reason, like the electrical storage element 1A of this embodiment, the outer peripheral surfaces of the adjacent electrode bodies 2 are in liquid junction with the open-celled porous member (liquid junction member 7), so that each electrode body 2 is wound. Even when the case 3 is arranged so that the central axis C is horizontal, the excess electrolyte is effectively supplied from the lower electrode body 2 to the upper electrode body 2 through the liquid junction member 7.
  • the liquid junction member 7 contracts or expands in the Z-axis direction as the electrode body 2 expands or contracts due to charging or discharging.
  • the liquid junction member 7 expands and contracts following the change in the distance between the outer peripheral surfaces of the electrode body 2 that accompanies charging / discharging of the electricity storage element 1A, so that the winding center axis C of each electrode body 2 becomes horizontal.
  • the storage element 1 ⁇ / b> A is charged / discharged in a state where the case 3 is arranged and the electrode bodies 2 expand or contract, the outer peripheral surfaces of the adjacent electrode bodies 2 continue to be in liquid junction with the liquid junction member 7. .
  • the liquid junction member 7 keeps the adjacent electrode bodies 2 in liquid junction even when the power storage element 1A is in the fully discharged state and the fully charged state. Thereby, in the electrical storage element 1A, the surplus electrolyte solution continues to be supplied from the lower electrode body 2 to the upper electrode body 2 in any state of the charge / discharge process.
  • the amount of electrolyte that can be held by the liquid junction member 7 disposed on one side of the central electrode body 2 in the Z-axis direction (direction orthogonal to the winding center axis C) is The amount of electrolyte solution that can be held by the liquid junction member 7 disposed on the other side of the electrode body 2 is larger.
  • the liquid junction member 7 disposed on the one side is positioned above the liquid junction member 7 disposed on the other side so that the winding center axis C of each electrode body 2 is horizontal.
  • the case 3 is arranged so as to be (see FIG. 6)
  • the amount of the electrolytic solution that the upper (the one side) liquid junction member 7 can hold than the lower (the other side) liquid junction member 7 is large. .
  • the lower electrode body 2 the electrode body that is in contact with the lower liquid junction member 7 and is above the lower liquid junction member 7) 2 (in the example shown in FIG.
  • the central electrode body 2), the upper electrode body 2 (which is in contact with and is in contact with the upper liquid junction member 7) is less likely to be supplied with the excess electrolyte. It is possible to prevent an electrolyte shortage from occurring in the upper electrode body 2 (the uppermost electrode body 2 in the example shown in FIG. 6).
  • the third embodiment of the present invention is a power storage device.
  • the power storage device 10 includes a plurality of power storage elements 1B including the external terminals 4, a holding member 13 that holds the plurality of power storage elements 1B, and a bus bar 15 connected to the external terminals 4. .
  • the power storage device 10 includes a plurality of adjacent members 12 adjacent to the power storage element 1B, and an insulator 14 disposed between the plurality of power storage elements 1B and the holding member 13.
  • the holding member 13 of this embodiment holds the plurality of power storage elements 10 and the plurality of adjacent members 12 together.
  • the power storage element 1B includes a plurality of electrode bodies 2B around which the electrodes 23 and 24 are wound, a case 3 that houses the plurality of electrode bodies 2B, and an external terminal that protrudes from the outer surface of the case 3 and is electrically connected to the plurality of electrode bodies 2B. 4.
  • the power storage element 1B also includes a current collector 5 that electrically connects each of the plurality of electrode bodies 2B and the external terminal 4, an insulating member 6 that is disposed between the plurality of electrode bodies 2B and the case 3, and the like. .
  • each electrode body 2 ⁇ / b> B includes a core 21, a positive electrode (electrode) 23, a negative electrode (electrode) 24, and a separator 25 that are wound around the core 21.
  • the positive electrode 23 and the negative electrode 24 are wound in a flat cylindrical shape (in the present embodiment, so-called a racetrack type) in a state where the positive electrode 23 and the negative electrode 24 are overlapped with each other with a separator 25 interposed therebetween.
  • a separator 25 is located on the outermost periphery of the electrode body 2B.
  • a portion where the positive electrode 23 and the negative electrode 24 are alternately overlapped with the separator 25 being bent is referred to as a curved portion 20a.
  • a portion where the positive electrode 23 and the negative electrode 24 are alternately overlapped in a flat state via the separator 25 is referred to as a flat portion 20b.
  • the plurality of electrode bodies 2B each configured as described above have a winding center axis C parallel to each other inside the case 3 and the protruding direction of the external terminal 4 (in FIG. 9).
  • the vertical direction) and the minor axis Ds direction of the electrode body 2B are aligned with each other.
  • the adjacent electrode bodies 2B are arranged such that the separators 25 located on the outermost periphery are in contact with each other. That is, the plurality of electrode bodies 2B are arranged so that the flat portions 20b of the adjacent electrode bodies 2B are in contact with each other and the curved portions 20a bulge in the same direction. Since the plurality of electrode bodies 2B are accommodated in the case 3 in this way, the major axis dl of each electrode body 2B faces the same direction and the minor axis ds of each electrode body 2B faces the same direction. ing.
  • a gap 330 is formed between the lid plate (lid) 32 and the electrode body 2B adjacent to the lid plate 32 (see FIG. 10).
  • a part of the external terminal 4 specifically, a portion 45 (see FIG. 10) that fixes the external terminal 4 to the lid plate 32 and is connected to the current collector 5 is a lid.
  • a gap 330 is provided so that the protruding portion (a part of the external terminal 4) 45 does not come into contact with the electrode body 2B. It has been.
  • the plurality of power storage elements 1B each configured as described above are arranged in a direction perpendicular to the major axis dl direction of the electrode body 2B (direction in which the external terminal 4 protrudes from the case 3 (Z-axis direction)) and the winding center of the electrode body 2B They are arranged in a direction (Y-axis direction) orthogonal to the direction in which the axis C extends (X-axis direction).
  • the adjacent member 12 is a member arranged in the Y-axis direction between the power storage elements 1B arranged in the Y-axis direction (long diameter dl direction) or in the Y-axis direction with respect to the power storage element 1B and the power storage element 1B (in the example of the present embodiment, the holding member 13 Part of).
  • the adjacent member 12 includes a plurality of types of adjacent members.
  • the adjacent member 12 of the present embodiment includes a first adjacent member 121 disposed between adjacent power storage elements 1B, and a second adjacent member 122 disposed on the outer side of the power storage element 1B at the end in the Y-axis direction. including.
  • the first adjacent member 121 has an insulating property and is disposed between the adjacent power storage elements 1B to ensure a space (creeping distance or the like) between the power storage elements 1B. Specifically, the first adjacent member 121 extends in the XZ plane (a plane including the X axis and the Z axis) and is a temperature adjusting fluid (this embodiment) between the adjacent power storage element 1B.
  • the first main body portion 1211 that forms a flow path through which air) can flow
  • the storage element 1B that extends from the first main body portion 1211 in the Y-axis direction and is adjacent to the first main body portion 1211 and the XZ
  • a first restricting portion 1212 for restricting relative movement of the power storage element 1B in the XZ plane direction with respect to the first main body portion 1211 by abutting from the outside in the surface direction.
  • the second adjacent member 122 has insulating properties, and is disposed between the power storage element 1B and the holding member 13 (termination member 131) in the X-axis direction, whereby the power storage element 1B and the holding member 13 (termination member 131). Securing the distance between them (creeping distance, etc.). Specifically, the second adjacent member 122 extends in the XZ plane direction, and the flow path through which the temperature adjusting fluid (air in the example of the present embodiment) can flow between the adjacent power storage elements 1B.
  • the second main body portion 1221 that forms the first main body portion 1221 and the power storage element 1B that extends from the second main body portion 1221 in the Y-axis direction and is adjacent to the second main body portion 1221 from the outside in the XZ plane direction
  • a second restricting portion 1222 that restricts relative movement of the element 1B in the XZ plane direction with respect to the second main body portion 1221.
  • the holding member 13 surrounds the periphery of the plurality of power storage elements 1B and the plurality of adjacent members 12, thereby holding the plurality of power storage elements 1B and the plurality of adjacent members 12 together.
  • the holding member 13 is made of a conductive member such as metal.
  • the holding member 13 includes a pair of terminal members 131 disposed on both sides of the plurality of power storage elements 1B in the Y-axis direction (the direction in which the power storage elements 1B are arranged), and a connecting member 132 that connects the pair of terminal members 131. And having.
  • Each of the pair of termination members 131 is disposed so that the second adjacent member 122 is sandwiched between the storage element 1B disposed at the end in the Y-axis direction. This termination member 131 extends in the XZ plane direction.
  • the pair of connecting members 132 are disposed on both sides of the plurality of power storage elements 1B in the X-axis direction.
  • Each of the pair of connecting members 132 includes a pair of beam portions 1320 that extend in the Y-axis direction and are spaced from each other in the Z-axis direction, and a pair of first portions that connect ends of the pair of beam portions 1320. It has the connection part 1321 and the 2nd connection part 1322 which connects a pair of beam part 1320 in the middle position in the Y-axis direction.
  • the insulator 14 has an insulating property.
  • the insulator 14 is disposed between the connecting member 132 and the plurality of power storage elements 1B. Specifically, the insulator 14 covers a region of the connecting member 132 that faces at least the plurality of power storage elements 1B. Thereby, the insulator 14 insulates between the connection member 132 and the some electrical storage element 1B.
  • the bus bar 15 is a plate-like member having conductivity such as metal. Bus bar 15 makes external terminals 4 of different power storage elements 1B conductive. A plurality of bus bars 15 (the number corresponding to the plurality of power storage elements 1B) are provided in the power storage device 10. The plurality of bus bars 15 of the present embodiment connect (conduct) all the plurality of power storage elements 1B included in the power storage device 10 in series.
  • the power storage device 10 during charging, bulges in the direction in which the power storage elements 1B are arranged in the respective cases 3 of the plurality of power storage elements 1B (the major axis dl direction of the electrode body 2B: the Y-axis direction) are suppressed.
  • a force applied to the holding member 13 a force that pushes the pair of terminal members 131 in the direction in which the interval is widened
  • the swelling of the case 3 in the direction in which the power storage elements 1B are arranged during charging is suppressed, that is, the change in the interval between the external terminals 4 of the power storage elements 1B in the arrangement direction (change in the interval in the Y-axis direction) is suppressed.
  • a gap 330 is formed between the cover plate 32 and the electrode body 2B adjacent to the cover plate 32 in the case 3 of each power storage element 1B.
  • the expansion of the electrode body 2B in the short diameter ds direction (Z-axis direction) during charging is absorbed by the gap 330, and the expansion of the case 3 in the short diameter ds direction (Z-axis direction) can be suppressed.
  • the holding member 13 at the time of charging is suppressed by matching the direction of the major axis dl of the electrode body 2B and the direction of arrangement of the power storage elements 1B to suppress swelling of the case 3 in the arrangement direction.
  • the electrode body 2B and the case 3 (cover plate 32) formed in the direction in which the electrode body 2B easily expands (short diameter ds direction) are suppressed.
  • the case 3 at the connection portion between the bus bar 15 and the external terminal 4 Generation of stress due to swelling (bulge in the short diameter ds direction) is suppressed.
  • each power storage element 1B in each power storage element 1B, a part 45 of the external terminal 4 protruding from the cover plate 32 toward the inside of the case 3 (downward in FIG. 10) is formed on the electrode body 2B.
  • the gap 330 provided so as not to contact is utilized to absorb the expansion of the electrode body 2B in the minor axis ds direction and suppress the swelling of the case 3 in the Z-axis direction (minor axis ds direction).
  • the force applied to the holding member 13 that is, the pair of termination members 131 is expanded
  • the swelling of the case 3 in the direction in which the power storage elements 1 ⁇ / b> B are arranged major axis dl direction: Y-axis direction.
  • Force is suppressed, the force that sandwiches the entire plurality of power storage elements 1B in the Y-axis direction by the pair of termination members 131 can be suppressed. That is, it is possible to suppress the size (outside dimension) of the power storage device 10 by suppressing the strength of the holding member 13.
  • each power storage element 1B has an excess electrolyte solution in the case 3, in the case 3 of each power storage element 1B, the adjacent electrode bodies 2B make the separators 25 constituting the outer peripheral surface contact each other.
  • the winding center axis C of each electrode body 2B is horizontal, and the electrode body 2B at one end in the Z-axis direction is positioned above the electrode body 2B at the other end.
  • the fourth embodiment of the present invention is a moving body.
  • the mobile body 500 includes the power storage element 1, a mobile body main body 501 on which the power storage element 1 is mounted, and a drive unit 502 that drives the mobile body main body 501 with electric power supplied from the power storage element 1.
  • the moving body 500 of this embodiment is an automobile, the moving body main body 501 is a vehicle body, and the driving unit 502 is a motor.
  • the moving body 500 is not limited to an automobile, and may be an aircraft, a ship, a railroad, a construction machine, or the like. In other words, any device that moves (runs or the like) using the electric power supplied from the electric storage element 1 may be used.
  • the power storage element 1 has a terminal side portion (an end portion on the cover plate 32 side) where the external terminal 4 protrudes in the case 3 on the side opposite to the terminal side portion in the case 3. It arrange
  • the plurality of power storage elements 1 are mounted on the moving body main body 501 in the same posture.
  • the power storage device 10 in which the plurality of power storage elements 1 are held by the holding member 13 may be mounted on the moving body 500.
  • the power storage device 10 is mounted on the mobile body 501 such that each power storage element 1 has an end on the cover plate 32 side in the case 3 positioned above an end on the closing portion 311 side in the case 3. Is done.
  • the adjacent electrode bodies 2 have the outer peripheral surfaces in liquid junction with each other. This is supplied to the upper electrode body 2, so that the surplus electrolyte accumulated in the case 3 is supplied from the lower electrode body 2 to the upper electrode body 2.
  • the fifth embodiment of the present invention is a power storage system.
  • the power storage system 600 is connected to the power storage element 1, the power storage system main body 601 on which the power storage element 1 is mounted, and the external terminal 4 of the power storage element 1, and receives power from the outside and outputs power to the outside.
  • the power storage system 600 of this embodiment is used for wind power generation, solar power generation, and the like.
  • the power storage system main body 601 is a housing that is installed at an installation location G, and the input / output terminal 601 is a windmill or solar battery. A terminal connected to an external power transmission system or the like.
  • the power storage system 600 is not limited to storing power generated by a windmill or a solar battery, but is a household system that stores inexpensive nighttime power, and a backup that always stores a certain amount of power in preparation for a disaster. It may be a system or the like.
  • the power storage element 1 has a terminal side portion (end on the cover plate 32 side) where the external terminal 4 in the case 3 protrudes on the side opposite to the terminal side portion in the case 3. It arrange
  • the plurality of power storage elements 1 are mounted on the power storage system main body 601 in the same posture.
  • maintained by the holding member 13 may be mounted. Even in this case, the power storage device 10 is mounted on the power storage system main body 601 so that each power storage element 1 has an end on the cover plate 32 side in the case 3 positioned above the end on the closing portion 311 side in the case 3. Placed.
  • the adjacent electrode bodies 2 have the outer peripheral surfaces in liquid junction with each other. From the lower electrode body 2 to the upper electrode body 2, so that the surplus electrolyte stored in the case 3 is supplied to the upper electrode body 2.
  • the power storage device of the present invention is not limited to the above-described embodiments, but the gist of the present invention.
  • various changes can be made without departing from the scope.
  • the configuration of another embodiment can be added to the configuration of a certain embodiment, and a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment.
  • a part of the configuration of an embodiment can be deleted.
  • all of the plurality of electrode bodies 2, 2B are in liquid junction, but the present invention is not limited to this configuration. It suffices that at least a part (two or more) of the electrode bodies 2 and 2B are in liquid junction with each other.
  • the power storage elements 1, 1A, 1B of the first to fifth embodiments there are three electrode bodies 2, but the configuration is not limited to this.
  • the number of electrode bodies 2 and 2B may be two, or four or more.
  • the adjacent electrode bodies 2, 2B are liquid-connected by one method in one power storage element 1, 1A, 1B. It is not limited to the configuration.
  • the outer peripheral surfaces are brought into contact with each other by adjoining the electrode bodies 2, 2B, and the liquid junction member 7 is sandwiched between the outer peripheral surfaces. There may be a place where the electrode bodies 2 and 2B are in liquid junction.
  • Each of the plurality of electrode bodies 2 of the power storage elements 1 and 1A of the first and second embodiments is cylindrical, but is not limited to this configuration.
  • Each of the plurality of electrode bodies 2 has a flat cylindrical shape (a shape having a major axis dl and a minor axis ds) such as a so-called racetrack shape or an elliptical shape like the power storage device 1B of the third embodiment. Also good.
  • the plurality of electrode bodies 2, 2B are arranged in a straight line in the Z-axis direction when viewed from the X-axis direction, but the present invention is not limited to this configuration.
  • a plurality of electrode bodies 2 may be arranged so as to wave when viewed from the X-axis direction.
  • the electrodes are arranged straight in the Z-axis direction as viewed from the X-axis direction.
  • a plurality of rows of the bodies 2 may be arranged in the Y-axis direction.
  • each electrode body 2, 2 B is horizontal and the electrode body 2, 2 B at one end in the arrangement direction of the electrode bodies 2, 2 B is positioned above the other electrode body 2, 2 B.
  • one of the electrode bodies 2 and 2B adjacent to each other is positioned above the other electrode body 2 and 2B, and the outer peripheral surfaces of each other are in liquid junction. It only has to be.
  • the adjacent electrode bodies 2, 2B are always in liquid junction during the charge / discharge process of the power storage elements 1, 1A, 1B. It is not limited to. Adjacent electrode bodies 2, 2 ⁇ / b> B only need to be in liquid junction in part of the charge / discharge process of power storage elements 1, 1 ⁇ / b> A, 1 ⁇ / b> B. That is, the adjacent electrode bodies 2 and 2B may not always be in liquid junction when the storage elements 1, 1 ⁇ / b> A, and 1 ⁇ / b> B are charged and discharged.
  • Adjacent electrode bodies 2, 2 ⁇ / b> B have liquid junctions (peripheral surfaces) at a predetermined timing (for example, only when electrode bodies 2, 2 ⁇ / b> B are expanded most) when charging / discharging of power storage elements 1, 1 ⁇ / b> A, 1 ⁇ / b> B is performed. Or the liquid junction member 7 disposed between the outer peripheral surfaces may be in contact with each outer peripheral surface). Also with this configuration, the electrolytic solution is supplied from the lower electrode bodies 2 and 2B to the upper electrode bodies 2 and 2B.
  • the outer peripheral surfaces (outermost layers) of the plurality of electrode bodies 2, 2B are constituted by the separator 25, but are not limited to this configuration.
  • Each outer peripheral surface of the plurality of electrode bodies 2 and 2B may be configured by an electrode (positive electrode 23 or negative electrode 24). Since the positive electrode active material layer 232 and the negative electrode active material layer 242 are also porous, the electrolyte solution is supplied to the winding centers of the electrode bodies 2 and 2B by supplying the electrolyte solution to the outermost electrodes 23 and 24. Supplied.
  • each of the plurality of electrode bodies 2 includes an outer region 250 including the outer peripheral surface and around which only the separator 25 is wound, and the outer region of one electrode body 2 of the adjacent electrode bodies 2
  • the number of windings of the separator 25 of 250 (the number of windings of the separator 25 in the region indicated by ⁇ of the upper electrode body 2A in FIG. 16) It may be greater than the number of turns (the number of turns of the separator 25 in the region indicated by ⁇ of the lower electrode body 2 in FIG. 16).
  • the electrode body 2 on the one side has a larger number of turns of the separator 25 in the outer region 250.
  • the case 3 when the case 3 is arranged so that the winding center axis C of each electrode body 2 is horizontal and the one side is the upper side, the upper (the one side) electrode body 2 is more outward. More electrolyte is retained in region 250. For this reason, when the electric storage element 1 is continuously used in such a posture, the electrolyte solution shortage in the upper electrode body 2 is less likely to be supplied than the lower (the other side) electrode body 2. It can prevent more suitably.
  • the amount of the electrolytic solution that each of the plurality of electrode bodies 2 can hold is adjusted by the number of turns of the separator 25 in the outer region 250, but is not limited to this configuration. For example, by changing the porosity of the separator 25 and the thickness of the separator 25, the amount of electrolytic solution that can be held in each outer region 250 of the plurality of electrode bodies 2 may be adjusted.
  • the amount of the electrolyte solution that can be held by each of the plurality of liquid junction members 7 is different, but all may be the same.
  • all the liquid junction members 7 may hold the same amount of electrolytic solution, and some of the plurality of liquid junction members 7 have the same amount. You may hold
  • the amount of the electrolyte solution that can be held by each of the plurality of liquid junction members 7 is adjusted according to the volume of the liquid junction member 7, but the configuration is not limited thereto.
  • the liquid junction member 7 has flexibility, and thus contracts or extends in the Z-axis direction as the electrode body 2 expands or contracts due to charging or discharging. It is not limited to the configuration.
  • the liquid junction member 7 may be, for example, a porous inorganic sintered body.
  • the liquid junction member 7 is formed of a porous member, but is not limited to this configuration.
  • the liquid junction member 7 may be, for example, a member whose surface is made lyophilic, or a member having slits (such as a plurality of thin grooves) on the surface. That is, the liquid junction member 7 only needs to have a function of sucking the electrolyte solution from the lower electrode body 2 to the upper electrode body 2 by utilizing capillary action or the like.
  • the member having lyophilicity on the surface or the member having a slit on the surface is formed by, for example, fine processing (laser, sandblasting) on the surface of an organic material such as polyolefin or fluororesin, or an inorganic material such as ceramic or glass. , Nanoimprint, etc.), surface functional group imparting treatment (corona discharge treatment, plasma treatment, etc.), etc., to give a block-like or sheet-like member having improved lyophilicity.
  • the liquid junction member 7 is an open-cell porous member, but may be a closed-cell porous member.
  • the liquid junction member 7 uses, for example, a closed-cell porous member when emphasizing the restoring property after compression, and an open-cell porous member when emphasizing the liquid retention amount (liquid retention). Use.
  • the electrical storage elements 1 and 1A were used as a nonaqueous electrolyte secondary battery (for example, lithium ion secondary battery) which can be charged / discharged was demonstrated, the kind and magnitude
  • the lithium ion secondary battery was demonstrated as an example of an electrical storage element, it is not limited to this.
  • the present invention can be applied to various secondary batteries, other primary batteries, and power storage elements of capacitors such as electric double layer capacitors.
  • the power storage elements (for example, batteries) 1 and 1A may be used in a power storage device 11 (a battery module when the power storage elements are batteries) 11 as shown in FIG.
  • the power storage device 11 includes at least two power storage elements 1 and 1A, and a bus bar member 12 that electrically connects the two (different) power storage elements 1 and 1A.
  • the technology of the present invention only needs to be applied to at least one power storage element 1, 1A.

Abstract

本実施形態では、電極が巻回される複数の電極体と、電解液と、複数の電極体と電解液とを収容するケースと、ケースの外面から突出する外部端子と、を備え、複数の電極体は、巻回中心軸が互いに平行な状態で外部端子の突出方向に並び、隣り合う電極体同士は、外周面を互いに液絡させていることを特徴とする。

Description

蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム 関連出願の相互参照
 本願は、日本国特願2016-102569号の優先権を主張し、日本国特願2016-102569号の内容は、引用によって本願明細書の記載に組み込まれる。
 本発明は、複数の巻回型の電極体を備える蓄電素子、前記蓄電素子を備える蓄電装置、前記蓄電素子を備える移動体、及び前記蓄電素子を備える蓄電システムに関するものである。
 従来から複数の電極組立体を備えた二次電池が知られている(特許文献1参照)。この二次電池は、図18に示すように、複数の電極組立体101、第一集電板102、ケース103、及びキャップ組立体104を含む。
 複数の電極組立体101のそれぞれは、薄い板型或いは膜型に形成された第一電極板、セパレータ、及び第二電極板を積層して巻回することで形成される。これら複数の電極組立体101は、ケース103内において一方向に並列して配置される。このとき、隣り合う電極組立体101の間に、隙間が形成されている。
 前記一方向に配置される複数の電極組立体101の一側端部に、前記第一電極板と電気的に連結されるための第一集電板102が結合される。また、複数の電極組立体101の他側端部に、前記第二電極板と電気的に連結されるために極性を有するケース103が接触する。このとき、第一集電板102と電極組立体101の一側端部(前記第一電極板)とは、溶接によって結合されている。また、ケース103と電極組立体101の他側端部(前記第二電極板)とも、溶接によって結合されている。
 ケース103は、電解液、複数の電極組立体101、及び第一集電板102が収納されるように、底部105と、底部105から延長された側壁部106と、を含んでいる。このケース103は、導電性金属によって形成され、一つの極性を有する電極の役割をする。即ち、ケース103は、複数の電極組立体101の他側端部(前記第二電極板)と電気的に連結され、第二集電板としての役割をする。
 キャップ組立体104は、ケース103を密封するキャッププレート107と、キャッププレート107を貫通して第一集電板102と連結される第一電極端子108と、第一電極端子108に形成されたねじ山に沿って締結されて、第一電極端子108をキャッププレート107に固定する第一ナット109と、を含む。
 以上の二次電池100では、各電極組立体101の巻回中心軸が水平になるようにケース103が配置される、より具体的には、一端(例えば、図18における左端)の電極組立体101が他端(例えば、図18における右端)の電極組立体101より上方に位置するようにケース103が配置されると、一部の電極組立体101しかケース103内に溜まっている電解液(余剰電解液)に接しない。このため、二次電池100では、前記姿勢のままで充放電が繰り返されると、複数の電極組立体101のうちの余剰電解液に接していない電極組立体101では電解液不足が生じる。このように、複数の電極組立体101のうちの一部に電解液不足が生じると、二次電池100全体での出力低下が生じる。
日本国特開2011-77026号公報
 そこで、本実施形態は、複数の巻回型の電極体と、巻回中心軸が互いに平行となる状態で複数の電極体を電解液とともに収容するケースとを備え、各電極体の巻回中心軸が水平で且つ一端の電極体が他端の電極体より上方に位置するようにケースが配置されたときに、上側の電極体に電解液が供給される蓄電素子、前記蓄電素子を備える蓄電装置、前記蓄電素子を備える移動体、及び前記蓄電素子を備える蓄電システムを提供することを目的とする。
 本実施形態の蓄電素子は、
 電極が巻回される複数の電極体と、
 電解液と、
 前記複数の電極体を前記電解液とともに収容するケースと、
 前記ケースの外面から突出し且つ前記複数の電極体と導通する外部端子と、を備え、
 前記複数の電極体は、巻回中心軸が互いに平行な状態で前記外部端子の突出方向に並び、
 隣り合う電極体同士は、該電極体の外周面を互いに液絡させている。
図1は、第一実施形態に係る蓄電素子の斜視図である。 図2は、前記蓄電素子の分解斜視図である。 図3は、図1のIII-III位置における断面図である。 図4は、電極体を説明するための図である。 図5は、前記蓄電素子における余剰電解液の量を説明するための図である。 図6は、第二実施形態に係る蓄電素子の分解斜視図である。 図7は、第三実施形態に係る蓄電装置の一部を省略した斜視図である。 図8は、前記蓄電装置の一部を省略した分解斜視図である。 図9は、前記蓄電装置が備える蓄電素子の分解斜視図である。 図10は、前記蓄電素子の断面図である。 図11は、前記蓄電素子が有する電極体を説明するための図である。 図12は、移動体を説明するための模式図である。 図13は、蓄電システムを説明するための模式図である。 図14は、他実施形態の蓄電素子における複数の電極体の配置を説明するための図である。 図15は、他実施形態の蓄電素子における複数の電極体の配置を説明するための図である。 図16は、電極体の外側領域を説明するための断面の模式図である。 図17は、第一又は第二実施形態に係る蓄電素子を含む蓄電装置の斜視図である。 図18は、従来の二次電池の断面図である。
 本実施形態の蓄電素子は、
 巻回された電極を有する複数の電極体と、
 電解液と、
 前記複数の電極体を前記電解液とともに収容するケースと、
 前記ケースの外面から突出し且つ前記複数の電極体と導通する外部端子と、を備え、
 前記複数の電極体は、巻回中心軸が互いに平行な状態で前記外部端子の突出方向に並び、
 隣り合う電極体同士は、該電極体の外周面を互いに液絡させている。
 かかる構成によれば、隣り合う電極体同士が、外周面を互いに液絡させることで、各電極体の巻回中心軸が水平で且つ一端の電極体が他端の電極体より上方に位置するようにケースが配置されても、電解液が下側の電極体から上側の電極体に供給される。これにより、ケース内に溜まっている電解液(以下、「余剰電解液」とも称する。)を下側の電極体から上側の電極体に供給可能となる。
 また、本実施形態の蓄電素子は、
 巻回された電極を有する複数の電極体と、
 電解液と、
 巻回中心軸が互いに平行となる状態で前記複数の電極体を前記電解液とともに収容するケースと、を備え、
 前記ケース内に溜まっている前記電解液の量は、収容された電極体の巻回中心軸が水平で且つ一端の電極体が他端の電極体より上方に位置するように前記ケースが配置されたときに、液面が該ケース内において最も上に位置する電極体の下端より低くなるように設定され、
 隣り合う電極体同士は、該電極体の外周面を互いに液絡させている。
 かかる構成によれば、隣り合う電極体同士が、外周面を互いに液絡させることで、各電極体の巻回中心軸が水平で且つ一端の電極体が他端の電極体より上方に位置するようにケースが配置されたときに該ケース内において余剰電解液(ケース内に溜まっている電解液)の液面より上側に電極体が位置していても、電解液が下側の電極体から上側の電極体に供給されるため、余剰電解液が前記液面より上側に位置する電極体に供給される。
 前記蓄電素子では、
 前記隣り合う電極体同士は、充放電過程において前記外周面を常に液絡させてもよい。
 かかる構成によれば、充放電によって電極体の巻回中心軸と直交する断面が膨張・収縮しても隣り合う電極体の外周面同士が常に液絡しているため、各電極体の巻回中心軸が水平になるようにケースが配置されても、余剰電解液が下側の電極体から上側の電極体に常に供給され続ける。
 前記蓄電素子では、
 前記隣り合う電極体同士は、前記外周面を互いに接触させることによって液絡させてもよい。
 このように、隣り合う電極体の外周面同士が互いに接触していることで、各電極体の巻回中心軸が水平になるようにケースが配置されても、電解液が下側の電極体から上側の電極体に供給される。
 前記蓄電素子では、
 前記複数の電極体のそれぞれは、絶縁性を有するセパレータを有し、
 前記複数の電極体のそれぞれにおける前記電極と前記セパレータとは、積層された状態で巻回されており、
 前記電極体の外周面は、前記セパレータによって構成されてもよい。
 かかる構成によれば、複数の電極体のそれぞれの外周面が絶縁性を有するセパレータによって構成されているため、電極体間の絶縁が確実に図られる。また、電極とセパレータとが積層された状態で巻回されている電極体では、電解液が、電極において巻回方向(周方向)に移動するのに加え、セパレータにおいて厚み方向及び巻回方向(周方向)に移動するため、電極体の外周面に供給された電解液は、電極体の巻回中心部まで効率よく供給される(移動する)。しかも、セパレータの圧縮性及び復元性が電極と比べてよいため、電極体における電極の膨張・収縮をセパレータが吸収することができ、これにより、充放電によって電極が収縮・膨張したときの隣接する電極体同士の離間が抑えられる。
 前記蓄電素子では、
 前記複数の電極体のそれぞれは、前記外周面を含み且つ前記セパレータのみが巻回されている外側領域を有し、
 前記隣り合う電極体のうちの一方の電極体の外側領域の前記セパレータの巻数は、前記隣り合う電極体のうちの他方の電極体の外側領域の前記セパレータの巻数より多くてもよい。
 かかる構成によれば、各電極体の巻回中心軸が水平になり且つ前記一方の電極体が前記他方の電極体より上側になるようにケースが配置されたときに、下側の電極体(前記他方の電極体)の外側領域より多くの電解液が上側の電極体(前記一方の電極体)の外側領域に保持されているため、かかる姿勢で該蓄電素子を使用し続けたときに、前記下側の電極体に比べて余剰電解液が供給され難い前記上側の電極体での電解液不足を防ぐことができる。
 前記蓄電素子では、
 前記複数の電極体は、巻回中心軸と直交する方向に並び、
 前記直交する方向の一方側にある前記電極体ほど、前記外側領域における前記セパレータの巻数が多くてもよい。
 かかる構成によれば、各電極体の巻回中心軸が水平になり且つ前記直交する方向の一方側が上側となるようにケースが配置されたときに、上側(前記直交する方向の一方側)の前記電極体ほど外側領域により多くの電解液が保持されているため、かかる姿勢で該蓄電素子を使用し続けたときに、下側(前記直交する方向の他方側)の電極体に比べて余剰電解液が供給され難い上側の電極体での電解液不足をより好適に防ぐことができる。
 前記蓄電素子では、
 前記隣り合う電極体の外周面とそれぞれ接触可能であり且つ前記電解液を吸い上げる少なくとも一つの液絡部材を備え、
 前記隣り合う電極体同士は、互いの外周面を前記液絡部材によって液絡させてもよい。
 かかる構成によれば、液絡部材が電解液を吸い上げるため、各電極体の巻回中心軸が水平になるようにケースが配置されても、電解液が液絡部材を通じて下側の電極体から上側の電極体に供給される。
 前記蓄電素子では、
 前記液絡部材は、連続気泡を有する多孔質部材によって形成されてもよい。
 かかる構成によれば、液絡部材がより効果的に電解液を吸い上げることができるため、各電極体の巻回中心軸が水平になるようにケースが配置されたときに、下側の電極体から上側の電極体により効果的に電解液が供給される。
 前記蓄電素子では、
 前記液絡部材は、充電又は放電による前記電極体の膨張又は収縮に伴って、前記隣り合う電極体が並ぶ方向に縮み又は伸びてもよい。
 液絡部材が蓄電素子の充放電に伴う電極体の外周面間の距離の変動に追従して伸縮するため、各電極体の巻回中心軸が水平になるようにケースが配置された状態で蓄電素子が充放電されて電極体が膨張又は収縮しても、隣り合う電極体の外周面同士が液絡部材によって液絡し続けるため、電解液が下側の電極体から上側の電極体に供給され続ける。
 前記蓄電素子では、
 前記電極体は、三つ以上配置され、
 巻回中心軸と直交する方向における前記電極体の一方側に配置される前記液絡部材の保持できる前記電解液の量は、前記直交する方向における前記電極体の他方側に配置される前記液絡部材の保持できる前記電解液の量より多くてもよい。
 かかる構成によれば、各電極体の巻回中心軸が水平になるように、且つ前記一方側に配置される液絡部材が前記他方側に配置される液絡部材より上側となるようにケースが配置されたときに、上側(前記一方側)の液絡部材が下側(前記他方側)の液絡部材より保持できる電解液の量が多い。このため、かかる姿勢で該蓄電素子を使用し続けたときに、下側の電極体(前記下側の液絡部材に接し且つ該下側の液絡部材の上側にある電極体)に比べて余剰電解液が供給され難い上側の電極体(前記上側の液絡部材に接し且つ該上側の液絡部材の上側にある電極体)での電解液不足の発生を防ぐことができる。
 前記蓄電素子では、
 前記複数の電極体のそれぞれにおいて、前記電極は、該電極体における直交する方向の径が長径と短径となるように巻回されており、
 前記複数の電極体は、前記ケースの内部において、前記外部端子の突出方向と前記電極体の短径方向とが一致するように配置されてもよい。
 短径と長径とが生じるように電極が巻回されている電極体では、充電時に短径方向の膨らみが長径方向の膨らみより大きくなるため、かかる構成によれば、充電時における前記長径方向へのケースの膨らみを抑えることができる。
 本実施形態の蓄電装置は、
 上記の長径と短径を有する電極体を有する複数の蓄電素子と、
 前記複数の蓄電素子を保持する保持部材と、
 前記外部端子に接続されるバスバと、を備え、
 前記複数の蓄電素子は、前記電極体の長径方向に並び、
 前記保持部材は、前記蓄電素子の並び方向における前記複数の蓄電素子の両側に配置される一対の終端部材と、前記一対の終端部材を連結する連結部と、を有し、
 前記バスバは、異なる蓄電素子の外部端子同士を接続する。
 かかる構成によれば、充電時において、複数の蓄電素子のそれぞれのケースにおける蓄電素子の並び方向(電極体の長径方向)の膨らみが抑えられるため、保持部材に加わる力(間隔が広がる方向に一対の終端部材を押し広げる力)が抑えられる。
 しかも、充電時における蓄電素子の並び方向へのケースの膨らみが抑えられる、即ち、前記並び方向における蓄電素子の外部端子同士の間隔の変化が抑えられるため、バスバと外部端子との接続部位における前記間隔の変化に起因する応力発生が抑えられ、これにより、充放電での電極体の膨張・収縮に起因するバスバと外部端子との接続部位の損傷を防ぐことができる。
 前記蓄電装置では、
 各蓄電素子の前記ケースは、開口部を有するケース本体と、前記外部端子が配置され且つ前記開口部を塞ぐ蓋と、を有し、
 前記ケースの内部において前記蓋と前記電極体との間に隙間が形成されてもよい。
 かかる構成によれば、充電時の電極体の短径方向の膨張が前記隙間に吸収され、ケースの前記短径方向への膨らみを抑えることができる。即ち、電極体の長径方向と蓄電素子の並び方向とを一致させることで前記並び方向へのケースの膨みを抑えて充電時の保持部材に加わる力(即ち、一対の終端部材を押し広げる力)が抑えられると共に、電極体の膨張し易い方向(短径方向)に形成された電極体とケース(蓋)との間の隙間によって電極体の充電時の短径方向の膨張を吸収させてケースの同方向への膨らみを抑えることでバスバと外部端子との接続部位におけるケースの膨らみ(前記短径方向の膨らみ)に起因する応力発生が抑えられる。
 本実施形態の移動体は、
 上記のいずれかの蓄電素子と、
 前記蓄電素子が搭載される移動体本体と、
 前記蓄電素子から供給される電力によって前記移動体本体を駆動する駆動部と、を備え、
 前記蓄電素子は、前記ケースにおける前記外部端子が突出している部位である端子側部位が、該ケースにおける前記端子側部位と反対側の部位より上方に位置するように配置される。
 かかる構成によれば、当該移動体に搭載された蓄電素子において、隣り合う電極体同士が外周面を互いに液絡させているため、電解液が下側の電極体から上側の電極体に供給され、これにより、ケース内に溜まっている電解液が下側の電極体から上側の電極体に供給される。
 本実施形態の蓄電システムは、
 上記のいずれかの蓄電素子と、
 前記蓄電素子が載置される蓄電システム本体と、
 前記蓄電素子の外部端子と接続され、且つ、外部から電力の入力及び外部への電力の出力が可能な入出力端子と、を備え、
 前記蓄電素子は、前記ケースにおける前記外部端子が突出している部位である端子側部位が、該ケースにおける前記端子側部位と反対側の部位より上方に位置するように配置される。
 かかる構成によれば、当該蓄電システムに載置された蓄電素子において、隣り合う電極体同士が外周面を互いに液絡させているため、電解液が下側の電極体から上側の電極体に供給され、これにより、ケース内に溜まっている電解液が下側の電極体から上側の電極体に供給される。
 本実施形態の蓄電素子は、
 電極が巻回される複数の電極体と、
 前記複数の電極体を収容するケースと、
 前記ケースの外面から突出し且つ前記複数の電極体と導通する外部端子と、を備え、
 前記複数の電極体のそれぞれにおいて、前記電極が該電極体における直交する方向の径が長径と短径となるように巻回されており、
 前記複数の電極体は、前記ケースの内部において、巻回中心軸が互いに平行で且つ前記外部端子の突出方向と前記電極体の短径方向とが一致した状態で並び、
 前記ケースは、開口部を有するケース本体と、前記開口部を塞ぎ且つ前記外部端子が配置される蓋と、を有し、
 前記ケースの内部において前記蓋と前記電極体との間に隙間が形成されている。
 かかる構成によれば、ケース内において、充電時に膨らみの小さな長径方向を揃えて電極体を並べることで、充電時における電極体の長径方向へのケースの膨らみが抑えられると共に、電極体の膨張し易い方向(短径方向)に形成された電極体とケース(蓋)との間の隙間によって電極体の充電時の短径方向の膨張が吸収されてケースの同方向への膨らみが抑えられる。
 本実施形態の蓄電装置は、
 上記の長径と短径を有する電極体を有する複数の蓄電素子と、
 前記複数の蓄電素子を保持する保持部材と、
 前記外部端子に接続されるバスバと、を備え、
 前記複数の蓄電素子は、前記電極体の長径方向に並び、
 前記保持部材は、前記蓄電素子の並び方向における前記複数の蓄電素子の両側に配置される一対の終端部と、前記一対の終端部材を連結する連結部と、を有し、
 前記バスバは、異なる蓄電素子の外部端子同士を接続してもよい。
 かかる構成によれば、充電時において、複数の蓄電素子のそれぞれのケースにおける蓄電素子の並び方向(電極体の長径方向)の膨らみが抑えられるため、保持部材に加わる力(間隔が広がる方向に一対の終端部材を押し広げる力)が抑えられる。
 しかも、充電時における蓄電素子の並び方向へのケースの膨らみが抑えられる、即ち、前記並び方向における蓄電素子の外部端子同士の間隔の変化が抑えられるため、バスバと外部端子との接続部位における前記間隔の変化に起因する応力発生が抑えられ、これにより、充放電での電極体の膨張・収縮によるバスバと外部端子との接続部位の損傷を防ぐことができる。
 以上より、本実施形態によれば、複数の巻回型の電極体と、巻回中心軸が互いに平行となる状態で複数の電極体を電解液とともに収容するケースとを備え、各電極体の巻回中心軸が水平になるようにケースが配置されても、上側の電極体に電解液が供給される蓄電素子、前記蓄電素子を備える蓄電装置、前記蓄電素子を備える移動体、及び前記蓄電素子を備える蓄電システムを提供することができる。
 以下、本発明の第一実施形態について、図1~図5を参照しつつ説明する。蓄電素子には、一次電池、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。本発明の第一実施形態は、蓄電素子である。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。
 本実施形態の蓄電素子は、非水電解質二次電池である。より詳しくは、蓄電素子は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子は、電気エネルギーを供給する。蓄電素子は、単一又は複数で使用される。具体的に、蓄電素子は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子と組み合わされて蓄電装置に用いられる。前記蓄電装置では、該蓄電装置に用いられる蓄電素子が電気エネルギーを供給する。
 蓄電素子は、図1~図4に示すように、複数(本実施形態では三つ)の電極体2と、電解液と、複数の電極体2を前記電解液とともに収容するケース3と、ケース3の外面から突出する外部端子4と、を備える。また、蓄電素子1は、複数の電極体2のそれぞれと外部端子4とを導通させる集電体5と、複数の電極体2とケース3との間に配置される絶縁材6等も、備える。
 複数の電極体2のそれぞれは、いわゆる巻回型の電極体である。具体的に、複数の電極体2のそれぞれは、電極23、24とセパレータ25とを有し、且つこれら電極23、24とセパレータ25とが積層された状態で巻回されている。本実施形態の電極は、正極23と負極24とを有する。より具体的に、複数の電極体2のそれぞれは、巻芯21と、正極23と負極24とが互いに絶縁された状態で積層された積層体22であって、巻芯21の周囲に巻回された積層体22と、を備える(図3及び図4参照)。そして、複数の電極体2の各外周面は、セパレータ25によって構成されている。即ち、複数の電極体2(巻回された積層体22)のそれぞれの最外層は、セパレータ25である。これら複数の電極体2のそれぞれにおいてリチウムイオンが正極23と負極24との間を移動することにより、蓄電素子1が充放電する。
 巻芯21は、通常、絶縁材料によって形成される。本実施形態の巻芯21は、筒状、より詳しくは、円筒状である。この巻芯21は、可撓性又は熱可塑性を有するシートを巻回することによって形成される。本実施形態の前記シートは、合成樹脂によって形成されている。
 正極23は、帯状の金属箔231と、金属箔231に重ねられる正極活物質層232と、を有する。この正極活物質層232は、金属箔231における幅方向の一方の端縁部(非被覆部)を露出させた状態で、該金属箔231に重ねられている。本実施形態の金属箔231は、例えば、アルミニウム箔である。
 負極24は、帯状の金属箔241と、金属箔241に重ねられる負極活物質層242と、を有する。この負極活物質層242は、金属箔241における幅方向の他方(正極23の金属箔231の非被覆部と反対側)の端縁部(非被覆部)を露出させた状態で、該金属箔241に重ねられている。本実施形態の金属箔241は、例えば、銅箔である。
 本実施形態の電極体2では、以上のように構成される正極23と負極24とがセパレータ25によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極23、負極24、及びセパレータ25の積層体22が巻回されている。
 セパレータ25は、絶縁性を有する部材であり、正極23と負極24との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極23と負極24とが互いに絶縁される。また、セパレータ25は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、セパレータ25を挟んで交互に積層される正極23と負極24との間を、リチウムイオンが移動可能となる。
 セパレータ25は、帯状である。このセパレータ25は、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリアミドなどの多孔質膜によって構成される。本実施形態のセパレータ25は、SiO2粒子、Al2O3粒子、ベーマイト(アルミナ水和物)等の無機粒子を含んだ無機層を、多孔質膜によって形成された基材の上に設けることで形成されている。本実施形態のセパレータ25の基材は、例えば、ポリエチレンによって形成される。
 セパレータ25の幅方向の寸法は、負極活物質層242の幅より大きい。セパレータ25は、正極活物質層232と負極活物質層242とが厚さ方向(積層方向)に重なるように幅方向に位置ずれした状態で重ね合わされた正極23と負極24との間に配置される。このとき、正極23の非被覆部と、負極24の非被覆部とは重なっていない。即ち、正極23の非被覆部が、正極23と負極24との重なる領域から幅方向(積層方向と直交する方向)に突出し、且つ、負極24の非被覆部が、正極23と負極24との重なる領域から幅方向(正極23の非被覆部の突出方向と反対の方向)に突出する。このような状態で積層された正極23、負極24、及びセパレータ25(即ち、積層体22)が巻回されることによって、電極体2が形成される。また、本実施形態の複数の電極体2のそれぞれでは、正極23の非被覆部又は負極24の非被覆部のみが積層された部位によって、電極体2における非被覆積層部26が構成される。
 非被覆積層部26は、電極体2における集電体5と導通される部位である。この非被覆積層部26は、電極体2の各極に設けられる。即ち、正極23の非被覆部のみが積層された非被覆積層部26が電極体2における正極の非被覆積層部を構成し、負極24の非被覆部のみが積層された非被覆積層部26が電極体2における負極の非被覆積層部を構成する。
 以上のように構成される複数の電極体2は、巻回中心軸Cが互いに並行な状態で、ケース3の外面(詳しくは、ケース3の後述する蓋板32の外面)からの外部端子4の突出方向(図2における上下方向)に並んでいる。複数の電極体2のそれぞれの非被覆積層部26は、集電体5に接続されている。具体的に、複数の電極体2のそれぞれの正極の非被覆積層部26は、一方の集電体5(図2における左側の集電体5)に接続されている。また、複数の電極体2のそれぞれの負極の非被覆積層部26は、他方の集電体5(図2における右側の集電体5)に接続されている。
 前記突出方向に並ぶ複数の電極体2において、隣り合う電極体2同士は、外周面(即ち、積層体22における最外層のセパレータ25)同士を互いに液絡させている。本実施形態の隣り合う電極体2同士は、外周面(詳しくは、外周面を構成するセパレータ25)を互いに接触させることによって液絡させている。また、本実施形態の隣り合う電極体2同士は、充放電過程において前記外周面を常に液絡させている。詳しくは、充電又は放電に伴って電極体2の巻回中心軸Cと直交する断面が膨張又は収縮するが、本実施形態の蓄電素子1では、隣り合う電極体2同士は、前記充放電に伴う膨張・収縮に関わりなく、外周面を構成するセパレータ25同士を常に接触(液絡)させている。ここで、液絡とは、隣り合う電極体2において一方の電極体2の外周面を構成するセパレータ25から他方の電極体2の外周面を構成するセパレータ25に電解液が案内される状態をいう。
 ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、複数の電極体2及び集電体5等と共に、電解液を内部空間33(図3参照)に収容する。このため、ケース3は、電解液に耐性を有する金属によって形成される。本実施形態のケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。
 ケース3は、ケース本体31の開口周縁部34と、蓋板32の周縁部とを重ね合わせた状態で接合することによって形成される。また、ケース3では、ケース本体31と蓋板32とによって内部空間33が画定されている。本実施形態のケース3では、ケース本体31の開口周縁部34と蓋板32の周縁部とが溶接によって接合されている。
 ケース本体31は、板状の閉塞部311と、閉塞部311の周縁に接続される筒状の胴部312と、を備える。
 閉塞部311は、ケース本体31が開口を上に向けた姿勢で配置されたときにケース本体31の下端に位置する(即ち、前記開口が上を向いたときのケース本体31の底壁となる)部位である。閉塞部311は、該閉塞部311の法線方向から見て、矩形状である。
 以下では、閉塞部311の長辺方向を直交座標系のX軸方向とし、閉塞部311の短辺方向を直交座標系のY軸方向とし、閉塞部311の法線方向を直交座標系のZ軸方向とする。
 胴部312は、角筒形状、詳しくは、偏平な角筒形状を有する。胴部312は、閉塞部311の周縁における長辺から延びる一対の長壁部313と、閉塞部311の周縁における短辺から延びる一対の短壁部314とを有する。即ち、一対の長壁部313は、Y軸方向に間隔(詳しくは、閉塞部311の周縁における短辺に相当する間隔)をあけて対向し、一対の短壁部314は、X軸方向に間隔(詳しくは、閉塞部311の周縁における長辺に相当する間隔)をあけて対向する。短壁部314が一対の長壁部313の対応(詳しくは、Y軸方向に対向)する端部同士をそれぞれ接続することによって、角筒状の胴部312が形成される。
 以上のように、ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。このケース本体31には、上述のように、複数の電極体2のそれぞれが、巻回中心軸C方向をX軸方向に向け且つZ軸方向に並んだ状態で収容される。
 蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。具体的に、蓋板32の輪郭は、Z軸方向から見て、ケース本体31の開口周縁部34に対応した形状である。即ち、蓋板32は、Z軸方向から見て、X軸方向に長い矩形状の板材である。この蓋板32は、ケース本体31の開口を塞ぐように該ケース本体31に当接する。より具体的には、蓋板32が開口を塞ぐように、蓋板32の周縁部がケース本体31の開口周縁部34に重ねられる。開口周縁部34と蓋板32とが重ねられた状態で、蓋板32とケース本体31との境界部が溶接される。これにより、ケース3が構成される。
 外部端子4は、他の蓄電素子の外部端子又は外部機器等と電気的に接続される部位である。外部端子4は、導電性を有する部材によって形成される。例えば、外部端子4は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。本実施形態の外部端子4は、図1~図3に示す通り、バスバ等が溶接可能な面41を有する。
 集電体5は、ケース3内に配置され、複数の電極体2のそれぞれと通電可能に直接又は間接に接続される。本実施形態の集電体5は、複数の電極体2のそれぞれの非被覆積層部26と直接接続されている。この集電体5は、導電性を有する部材によって形成され、ケース3の内面に沿って配置される。本実施形態の集電体5は、外部端子4と複数の電極体2とを通電可能に接続する。
 具体的に、集電体5は、図2及び図3に示すように、外部端子4と通電可能に接続される第一接続部51と、複数の電極体2と通電可能に接続される第二接続部52と、第一接続部51と第二接続部52とを接続する屈曲部53と、を有する。集電体5では、屈曲部53がケース3内の蓋板32と短壁部314との境界近傍に配置され、第一接続部51が屈曲部53から蓋板32に沿って延びると共に、第二接続部52が屈曲部53から短壁部314に沿って延びる。第二接続部52は、複数(本実施形態では三つ)の電極体2の非被覆積層部26と導通状態で接続されている。本実施形態の第二接続部52は、例えば、レーザ溶接によって複数の電極体2のそれぞれの非被覆積層部26と接合される。
 以上のように構成される集電体5は、蓄電素子1の正極と負極とにそれぞれ配置される。本実施形態の蓄電素子1では、集電体5は、ケース3内において、電極体2の正極側の非被覆積層部26と、負極側の非被覆積層部26とにそれぞれ配置される。正極の集電体5と負極の集電体5とは、異なる素材によって形成される。具体的に、正極の集電体5は、例えば、アルミニウム又はアルミニウム合金によって形成される。負極の集電体5は、例えば、銅又は銅合金によって形成される。
 絶縁材6は、ケース3(詳しくはケース本体31)と、複数の電極体2と、の間に配置される。この絶縁材6は、絶縁性を有する樹脂によって形成されている。本実施形態の絶縁材6は、所定の形状に裁断された絶縁性を有するシート状の部材を折り曲げることによって袋状に形成されている。
 上述のように、ケース3内に、電解液が注液されている。本実施形態の蓄電素子1では、図5に示すように、複数の電極体2(詳しくは、各電極体2のセパレータ25)が保持できる量より多くの電解液がケース3内に注液されている。複数の電極体2に保持されずにケース3内に溜まっている電解液(余剰電解液)の量は、ケース3に収容された複数の電極体2のそれぞれの巻回中心軸Cが水平となるようにケース3が配置されたときに、液面が該ケース3内において最も上に位置する電極体2の下端29より低くなるように設定されている。即ち、複数の電極体2が余剰電解液に漬かった状態(図5の二点鎖線参照)でもよい。本実施形態の蓄電素子1では、ケース3に収容された複数の電極体2のそれぞれの巻回中心軸Cが水平となるようにケース3が配置されたときに、最も下にある電極体2のみが余剰電解液に漬かっている。尚、この余剰電解液は、本実施形態の蓄電素子1のように、充放電による電極体2の膨張・収縮に関わらずケース3の下端に溜まっている電解液に限定されない。例えば、余剰電解液は、急速充電等によって、電極体2を構成する電極23、24が急激に膨張してセパレータ25が保持していた電解液が該セパレータ25から押し出されることで、ケース3の下端に溜まった電解液であってもよい。また、余剰電解液は、充放電による電極体2の膨張・収縮に関わらずケース3の下端に溜まっている電解液と、急速充電等によって、電極体2を構成する電極23、24が急激に膨張してセパレータ25が保持していた電解液が該セパレータ25から押し出されることでケース3の下端に溜まった電解液と、の両方であってもよい。
 電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを、プロピレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=3:2:5の割合で調整した混合溶媒に、1mol/LのLiPFを溶解させたものである。
 以上の蓄電素子1によれば、隣り合う電極体2同士が、外周面を互いに液絡させることで、各電極体2の巻回中心軸Cが水平になるようにケース3が配置されたとき(図5に示す例では、外部端子4の面41を上方に向けた状態でケース3が配置されたとき)に該ケース3内において余剰電解液(ケース3内に溜まっている電解液)の液面より上側に電極体2が位置していても(図5参照)、電解液が下側の電極体2(例えば、余剰電解液に接している電極体2)から上側の電極体2(例えば、前記下側の電極体2の上側において該電極体2と外周面同士を接触させた状態で隣り合い且つ余剰電解液と接していない電極体2)に供給されるため、余剰電解液が前記液面より上側に位置する電極体2に供給される。
 また、本実施形態の蓄電素子1では、隣り合う電極体2同士が外周面を互いに液絡させているため、隣り合う電極体2同士が液絡している部位を通じて各電極体2に電解液が移動できる。このため、ケース3内の複数の電極体2における電解液の偏り、即ち、電極体2毎の電解液の保持量の偏りも抑えられる。
 本実施形態の蓄電素子1では、充放電によって電極体2の巻回中心軸Cと直交する断面が膨張・収縮しても隣り合う電極体2の外周面同士が常に液絡している。このため、各電極体2の巻回中心軸Cが水平になるようにケース3が配置されても、余剰電解液が下側の電極体2から上側の電極体2に常に供給され続ける。
 また、本実施形態の蓄電素子1では、複数の電極体2のそれぞれにおいて、電極23、24とセパレータ25とが、積層された状態で巻回されている。また、各電極体2の外周面は、セパレータ25によって構成されている。このように、複数の電極体2のそれぞれの外周面が絶縁性を有するセパレータ25によって構成されているため、蓄電素子1において電極体2間の絶縁が確実に図られる。また、電極23、24とセパレータ25とが積層された状態で巻回されている電極体2では、電解液が、電極23、24(特に負極24)において巻回方向(周方向)に移動するのに加え、セパレータ25において厚み方向と巻回方向(周方向)とに移動する。このため、電極体2の外周面に供給された電解液は、電極体2の巻回中心部まで効率よく供給される(移動する)。しかも、セパレータ25の圧縮性及び復元性が電極23、24と比べてよいため、電極体2における電極23、24の膨張・収縮をセパレータ25が吸収することができ、これにより、充放電によって電極23、24が収縮・膨張したときの隣接する電極体2同士の離間が抑えられる。
 次に、本発明の第二実施形態について図6を参照しつつ説明するが、上記第一実施形態と同様の構成には同一符号を用いて詳細な説明を繰り返さず、異なる構成についてのみ詳細に説明する。本発明の第二実施形態は、蓄電素子である。
 蓄電素子1Aは、複数(本実施形態では三つ以上)の電極体2と、電解液と、ケース3と、外部端子4と、集電体5と、絶縁材6と、を備える。本実施形態の複数の電極体2は、Z軸方向に間隔をあけて配置されている。また、蓄電素子1Aは、隣り合う電極体2の外周面(詳しくは、外周面を構成するセパレータ25)とそれぞれ接触し、且つ、電解液を吸い上げる少なくとも一つの液絡部材7を備える。
 液絡部材7は、多孔質部材によって形成される。この液絡部材7は、該液絡部材7が接触している電極体2同士を液絡させる。この液絡部材7は、充電又は放電による電極体2の膨張又は収縮に伴って(追従して)、隣り合う電極体2が並ぶ方向(図6における上下方向)に縮み又は伸びる。本実施形態の液絡部材7は、複数(本実施形態では、電極体2の数より一つ少ない数)の電極体2間のそれぞれに配置されている。即ち、蓄電素子1Aは、複数の液絡部材7を備える。また、本実施形態の液絡部材7は、電極体2間において、巻回中心軸C方向の一部に配置されている。即ち、液絡部材7は、電極体2間の巻回中心軸C方向において、隣り合う電極体2を局所的に液絡させている。
 本実施形態の液絡部材7は、液保持能力の観点から、連続気泡の多孔質部材によって形成されている。この液絡部材7は、多孔質の樹脂によって形成されている。例えば具体的に、液絡部材7は、柔軟性や耐電解液性の観点から、多孔質ポリオレフィン樹脂(低密度又は高密度ポリエチレン、超高分子量ポリエチレン、ポリプロピレン又はポリプロピレンの混合)、多孔質PEEK樹脂、多孔質ラテックス樹脂、多孔質フッ素樹脂によって形成される。また、液絡部材7は、これらの樹脂と、無機粒子又は多孔質無機粒子と、の混合物によって形成されてもよい。
 また、本実施形態の蓄電素子1Aでは、Z軸方向における電極体2(図6における中央の電極体2)の一方側(図6の上方側)に配置される液絡部材7の保持できる電解液の量は、Z軸方向における前記電極体2(図6における中央の電極体2)の他方側(図6の下方側)に配置される液絡部材7の保持できる電解液の量より多い。本実施形態の蓄電素子1Aでは、液絡部材7の体積を調整することによって、該液絡部材7の保持できる電解液の量が調整されている。即ち、図6に示す蓄電素子1Aでは、上側の液絡部材7の体積が、下側の液絡部材7の体積より大きい。
 多孔質部材は、吸液性や液保持性等によって電解液を上側に導くことができる。このため、本実施形態の蓄電素子1Aのように、隣り合う電極体2の外周面同士が連続気泡の多孔質部材(液絡部材7)によって液絡することで、各電極体2の巻回中心軸Cが水平になるようにケース3が配置されても、余剰電解液が液絡部材7を通じて下側の電極体2から上側の電極体2に効果的に供給される。
 本実施形態の蓄電素子1Aでは、液絡部材7が、充電又は放電による電極体2の膨張又は収縮に伴ってZ軸方向に縮み又は伸びる。このように、液絡部材7が蓄電素子1Aの充放電に伴う電極体2の外周面間の距離の変動に追従して伸縮することで、各電極体2の巻回中心軸Cが水平になるようにケース3が配置された状態で蓄電素子1Aが充放電されて各電極体2が膨張又は収縮しても、隣り合う電極体2の外周面同士が液絡部材7によって液絡し続ける。即ち、液絡部材7は、蓄電素子1Aが完全放電状態及び完全充電状態のときでも、隣り合う電極体2同士を液絡させ続ける。これにより、蓄電素子1Aでは、充放電過程のいずれの状態においても、余剰電解液が下側の電極体2から上側の電極体2に供給され続ける。
 本実施形態の蓄電素子1Aでは、Z軸方向(巻回中心軸Cと直交する方向)における中央の電極体2の一方側に配置される液絡部材7の保持できる電解液の量が、該電極体2の他方側に配置される液絡部材7の保持できる電解液の量より多い。
 かかる構成によれば、各電極体2の巻回中心軸Cが水平になるように、且つ前記一方側に配置される液絡部材7が前記他方側に配置される液絡部材7より上側となるようにケース3が配置されたときに(図6参照)、上側(前記一方側)の液絡部材7が下側(前記他方側)の液絡部材7より保持できる電解液の量が多い。このため、かかる姿勢で該蓄電素子1Aを使用し続けたときに、下側の電極体2(前記下側の液絡部材7に接し且つ該下側の液絡部材7の上側にある電極体2(図6に示す例では、中央の電極体2))に比べて余剰電解液が供給され難い上側の電極体2(前記上側の液絡部材7に接し且つ該上側の液絡部材7の上側にある電極体2(図6に示す例では、最も上側の電極体2))での電解液不足の発生を防ぐことができる。
 次に、本発明の第三実施形態について、図7~図11を参照しつつ説明するが、上記第一実施形態及び第二実施形態と同様の構成には同一符号を用いて詳細な説明を繰り返さず、異なる構成についてのみ詳細に説明する。本発明の第三実施形態は、蓄電装置である。
 蓄電装置10は、図7~図10に示すように、外部端子4を備える複数の蓄電素子1Bと、複数の蓄電素子1Bを保持する保持部材13と、外部端子4に接続されるバスバ15と、を備える。また、蓄電装置10は、蓄電素子1Bと隣接する複数の隣接部材12と、複数の蓄電素子1Bと保持部材13との間に配置されるインシュレータ14と、備える。本実施形態の保持部材13は、複数の蓄電素子10と複数の隣接部材12とをひとまとめに保持する。
 蓄電素子1Bは、電極23、24が巻回される複数の電極体2Bと、複数の電極体2Bを収容するケース3と、ケース3の外面から突出し且つ複数の電極体2Bと導通する外部端子4と、を備える。また、蓄電素子1Bは、複数の電極体2Bのそれぞれと外部端子4とを導通させる集電体5と、複数の電極体2Bとケース3との間に配置される絶縁部材6等も、備える。
 図11に示すように、複数の電極体2Bのそれぞれにおいて、電極23、24が該電極体2Bにおける直交する方向の径が長径dlと短径dsとなるように巻回されている。具体的には、各電極体2Bは、巻芯21と、巻芯21の周囲に巻回される正極(電極)23、負極(電極)24、及びセパレータ25と、を有する。この電極体2Bでは、正極23と負極24とがセパレータ25を介して重ねられた状態で、扁平な筒状に(本実施形態では、いわゆるレーストラック型となるように)巻回されている。また、電極体2Bの最外周には、セパレータ25が位置している。以下では、電極体2Bにおいて、正極23と負極24とがセパレータ25を介して湾曲した状態で交互に重なっている部位を湾曲部20aと称する。また、電極体2Bにおいて、正極23と負極24とがセパレータ25を介して平坦な状態で交互に重なっている部位を平坦部20bと称する。
 図7~図10に戻り、それぞれが以上のように構成される複数の電極体2Bは、ケース3の内部において、巻回中心軸Cが互いに平行で且つ外部端子4の突出方向(図9における上下方向)と電極体2Bの短径Ds方向とが一致した状態で並んでいる。また、隣り合う電極体2B同士は、最外周に位置するセパレータ25が互いに接触するように配置されている。即ち、複数の電極体2Bは、隣り合う電極体2Bの平坦部20b同士が接触し、且つ湾曲部20aが同じ向きに膨出するように並んでいる。このように複数の電極体2Bがケース3に収容されることで、ケース3内において、各電極体2Bの長径dlが同じ方向を向くと共に、各電極体2Bの短径dsが同じ方向を向いている。
 また、ケース3の内部において、蓋板(蓋)32と、該蓋板32と隣り合う電極体2Bとの間に隙間330が形成されている(図10参照)。本実施形態の蓄電素子1Bでは、外部端子4の一部、具体的には、外部端子4を蓋板32に固定すると共に集電体5に接続される部位45(図10参照)が、蓋板32からケース3の内側に向けて(図10における下側に)突出しており、この突出している部位(外部端子4の一部)45が電極体2Bに接触しないように、隙間330が設けられている。
 それぞれが以上のように構成される複数の蓄電素子1Bは、電極体2Bの長径dl方向(ケース3から外部端子4が突出する方向(Z軸方向)に直交し且つ電極体2Bの巻回中心軸Cの延びる方向(X軸方向)と直交する方向(Y軸方向))に並んでいる。
 隣接部材12は、Y軸方向(長径dl方向)に並ぶ蓄電素子1Bの間、又は蓄電素子1Bと該蓄電素子1Bに対してY軸方向に並ぶ部材(本実施形態の例では、保持部材13の一部)との間に配置される。この隣接部材12は、複数種の隣接部材を含む。本実施形態の隣接部材12は、隣り合う蓄電素子1Bの間に配置される第一隣接部材121と、Y軸方向において最も端にある蓄電素子1Bの外側に配置される第二隣接部材122とを含む。
 第一隣接部材121は、絶縁性を有し、隣り合う蓄電素子1Bの間に配置されることで蓄電素子1B間の間隔(沿面距離等)を確保する。具体的に、第一隣接部材121は、X-Z面(X軸とZ軸とを含む面)方向に広がり、且つ、隣接する蓄電素子1Bとの間に温度調整用の流体(本実施形態の例では空気)が流通可能な流路を形成する第一本体部1211と、第一本体部1211からY軸方向に延び、且つ、第一本体部1211と隣接する蓄電素子1BとX-Z面方向の外側から当接することによって該蓄電素子1Bの第一本体部1211に対するX-Z面方向への相対移動を規制する第一規制部1212と、を有する。
 第二隣接部材122は、絶縁性を有し、X軸方向において蓄電素子1Bと保持部材13(終端部材131)との間に配置されることで蓄電素子1Bと保持部材13(終端部材131)との間の間隔(沿面距離等)を確保する。具体的に、第二隣接部材122は、X-Z面方向に広がり、且つ、隣接する蓄電素子1Bとの間に温度調整用の流体(本実施形態の例では空気)が流通可能な流路を形成する第二本体部1221と、第二本体部1221からY軸方向に延び、且つ、第二本体部1221と隣接する蓄電素子1BとX-Z面方向の外側から当接することによって該蓄電素子1Bの第二本体部1221に対するX-Z面方向への相対移動を規制する第二規制部1222と、を有する。
 保持部材13は、複数の蓄電素子1Bと複数の隣接部材12との周囲を囲むことで、これら複数の蓄電素子1B及び複数の隣接部材12をひとまとめに保持する。この保持部材13は、金属等の導電性を有する部材によって構成される。具体的に、保持部材13は、Y軸方向(蓄電素子1Bの並び方向)における複数の蓄電素子1Bの両側に配置される一対の終端部材131と、一対の終端部材131を連結する連結部材132と、を有する。
 一対の終端部材131のそれぞれは、Y軸方向の端に配置された蓄電素子1Bとの間に第二隣接部材122を挟み込むように配置される。この終端部材131は、X-Z面方向に広がる。
 一対の連結部材132は、X軸方向において複数の蓄電素子1Bの両側に配置される。これら一対の連結部材132のそれぞれは、Y軸方向に延び且つZ軸方向に間隔をあけて配置される一対の梁部1320と、一対の梁部1320の端部同士を連結する一対の第一連結部1321と、Y軸方向における途中位置において一対の梁部1320同士を連結する第二連結部1322と、を有する。
 インシュレータ14は、絶縁性を有する。このインシュレータ14は、連結部材132と、複数の蓄電素子1Bとの間に配置される。具体的に、インシュレータ14は、連結部材132における少なくとも複数の蓄電素子1Bと対向する領域を覆う。これにより、インシュレータ14は、連結部材132と、複数の蓄電素子1Bとの間を絶縁する。
 バスバ15は、金属等の導電性を有する板状の部材である。バスバ15は、異なる蓄電素子1Bの外部端子4同士を導通させる。バスバ15は、蓄電装置10において複数(複数の蓄電素子1Bと対応する数)設けられる。本実施形態の複数のバスバ15は、蓄電装置10に含まれる複数の蓄電素子1Bの全てを直列に接続する(導通させる)。
 以上の蓄電装置10によれば、充電時において、複数の蓄電素子1Bのそれぞれのケース3における蓄電素子1Bの並び方向(電極体2Bの長径dl方向:Y軸方向)の膨らみが抑えられるため、保持部材13に加わる力(間隔が広がる方向に一対の終端部材131を押し広げる力)が抑えられる。しかも、充電時における蓄電素子1Bの並び方向へのケース3の膨らみが抑えられる、即ち、前記並び方向における蓄電素子1Bの外部端子4同士の間隔の変化(Y軸方向の間隔の変化)が抑えられるため、バスバ15と外部端子4との接続部位における前記間隔の変化に起因する応力発生が抑えられる。これにより、充放電での電極体2Bの膨張・収縮に起因するバスバ15と外部端子4との接続部位の損傷を防ぐことができる。
 また、本実施形態の蓄電装置10では、各蓄電素子1Bのケース3内において、蓋板32と、該蓋板32と隣り合う電極体2Bとの間に隙間330が形成されている。これにより、充電時の電極体2Bの短径ds方向(Z軸方向)の膨張が隙間330に吸収され、ケース3の短径ds方向(Z軸方向)への膨らみを抑えることができる。即ち、本実施形態の蓄電装置10では、電極体2Bの長径dl方向と蓄電素子1Bの並び方向とを一致させることで前記並び方向へのケース3の膨みを抑えて充電時の保持部材13に加わる力(即ち、一対の終端部材131を押し広げる力)が抑えられると共に、電極体2Bの膨張し易い方向(短径ds方向)に形成された電極体2Bとケース3(蓋板32)との間の隙間330によって電極体2Bの充電時の短径ds方向の膨張を吸収させてケース3の同方向への膨らみを抑えることでバスバ15と外部端子4との接続部位におけるケース3の膨らみ(短径ds方向の膨らみ)に起因する応力発生が抑えられる。
 尚、本実施形態の蓄電装置10では、各蓄電素子1Bにおいて、蓋板32からケース3の内側に向けて(図10における下側に)突出する外部端子4の一部45が電極体2Bに接触しないように設けられた隙間330を利用して、電極体2Bの短径ds方向の膨張を吸収してケース3のZ軸方向(短径ds方向)の膨らみを抑えている。
 また、蓄電装置10において、蓄電素子1Bの並び方向(長径dl方向:Y軸方向)のケース3の膨らみが抑えられることで、保持部材13に加わる力(即ち、一対の終端部材131を押し広げる力)が抑制されるため、一対の終端部材131によって複数の蓄電素子1B全体をY軸方向に挟み込む力を抑えることができる。即ち、保持部材13の強度を抑えて、蓄電装置10の寸法(外寸)を抑えることができる。
 さらに、各蓄電素子1Bがケース3内に余剰電解液を有する場合には、各蓄電素子1Bのケース3内において、隣り合う電極体2B同士が、外周面を構成するセパレータ25同士を互いに接触させている、即ち、液絡させているため、各電極体2Bの巻回中心軸Cが水平で且つZ軸方向の一端の電極体2Bが他端の電極体2Bより上方に位置するようにケース3が配置されたとき(図7に示す例では、各蓄電素子1Bの外部端子4の面41を上方に向けた状態で蓄電装置10が配置されたとき)に該ケース3内において余剰電解液(ケース3内に溜まっている電解液)の液面より上側にいずれかの電極体2Bが位置していても、電解液が下側の電極体2B(例えば、余剰電解液に接している電極体2B)から上側の電極体2B(例えば、前記下側の電極体2Bの上側において該電極体2Bと外周面同士を接触させた状態で隣り合い且つ余剰電解液と接していない電極体2B)に供給される。このため、余剰電解液が前記液面より上側に位置する電極体2Bに供給される。
 次に、本発明の第四実施形態について、図12を参照しつつ説明するが、上記第一~第三実施形態と同様の構成には同一符号を用いて詳細な説明を繰り返さず、異なる構成についてのみ詳細に説明する。本発明の第四実施形態は、移動体である。
 移動体500は、蓄電素子1と、蓄電素子1が搭載される移動体本体501と、蓄電素子1から供給される電力によって移動体本体501を駆動する駆動部502と、を備える。本実施形態の移動体500は、自動車であり、移動体本体501は車体であり、駆動部502は、モーターである。尚、移動体500は、自動車に限定されず、航空機、船舶、鉄道、建機等でもよい。即ち、蓄電素子1から供給される電力を利用して移動(走行等)するものであればよい。
 この移動体500において、蓄電素子1は、ケース3における外部端子4が突出している部位である端子側部位(蓋板32側の端部)が、該ケース3における前記端子側部位と反対側の部位(閉塞部311側の端部)より上方に位置するように配置される。
 本実施形態の移動体500では、複数の蓄電素子1が同じ姿勢で移動体本体501に搭載されている。尚、複数の蓄電素子1が保持部材13によって保持されている蓄電装置10が移動体500に搭載されていてもよい。この場合でも、各蓄電素子1がケース3における蓋板32側の端部が、該ケース3における閉塞部311側の端部より上方に位置するように、蓄電装置10が移動体本体501に搭載される。
 以上の移動体500によれば、当該移動体500に搭載された蓄電素子1において、隣り合う電極体2同士が外周面を互いに液絡させているため、電解液が下側の電極体2から上側の電極体2に供給され、これにより、ケース3内に溜まっている余剰電解液が下側の電極体2から上側の電極体2に供給される。
 次に、本発明の第五実施形態について、図13を参照しつつ説明するが、上記第一~第三実施形態と同様の構成には同一符号を用いて詳細な説明を繰り返さず、異なる構成についてのみ詳細に説明する。本発明の第五実施形態は、蓄電システムである。
 蓄電システム600は、蓄電素子1と、蓄電素子1が載置される蓄電システム本体601と、蓄電素子1の外部端子4と接続され、且つ、外部から電力の入力及び外部への電力の出力が可能な入出力端子602と、を備える。本実施形態の蓄電システム600は、風力発電や太陽光発電等に用いられるものであり、蓄電システム本体601は、設置場所Gに据え付けられる筐体であり、入出力端子601は、風車や太陽光電池、外部への送電系統等に接続される端子である。尚、蓄電システム600は、風車や太陽光電池によって発電した電力を蓄電するものに限定されず、安価な夜間電力を蓄電する家庭用システム、災害に備えて常時一定量の電力を蓄電しておくバックアップシステム等でもよい。
 この蓄電システム600において、蓄電素子1は、ケース3における外部端子4が突出している部位である端子側部位(蓋板32側の端部)が、該ケース3における前記端子側部位と反対側の部位(閉塞部311側の端部)より上方に位置するように配置される。
 本実施形態の蓄電システム600では、複数の蓄電素子1が同じ姿勢で蓄電システム本体601に載置されている。尚、複数の蓄電素子1が保持部材13によって保持されている蓄電装置10が載置されていてもよい。この場合でも、各蓄電素子1がケース3における蓋板32側の端部が、該ケース3における閉塞部311側の端部より上方に位置するように、蓄電装置10が蓄電システム本体601に載置される。
 以上の蓄電システム600によれば、当該蓄電システム600に載置された蓄電素子1において、隣り合う電極体2同士が外周面を互いに液絡させているため、電解液が下側の電極体2から上側の電極体2に供給され、これにより、ケース3内に溜まっている余剰電解液が下側の電極体2から上側の電極体2に供給される。
 尚、本発明の蓄電素子、前記蓄電素子を備える蓄電装置、前記蓄電素子を備える移動体、及び前記蓄電素子を備える蓄電システムは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。
 上記第一~第五実施形態の蓄電素子1、1A、1Bでは、複数の電極体2、2Bの全てが液絡しているが、この構成に限定されない。複数の電極体2、2Bのうちの少なくとも一部(二つ以上)の電極体2、2B同士が液絡していればよい。
 上記第一~第五実施形態の蓄電素子1、1A、1Bでは、電極体2は、三つであるが、この構成に限定されない。電極体2、2Bは、二つでもよく、四つ以上でもよい。
 また、上記第一~第五実施形態の蓄電素子1、1A、1Bでは、一つ蓄電素子1、1A、1Bにおいて一つの方法によって隣り合う電極体2、2Bを液絡させているが、この構成に限定されない。例えば、一つの蓄電素子1、1A、1Bにおいて、外周面同士を接触させることによって隣り合う電極体2、2Bを液絡させている箇所と、外周面間に液絡部材7を挟み込むことによって隣り合う電極体2、2Bを液絡させている箇所と、があってもよい。
 上記第一及び第二実施形態の蓄電素子1、1Aの複数の電極体2のそれぞれは、円筒状であるが、この構成に限定されない。複数の電極体2のそれぞれは、例えば、第三実施形態の蓄電素子1Bのような所謂レーストラック形状や楕円形状等の扁平な円筒状(長径dlと短径dsとを有する形状)であってもよい。
 上記第一~第五実施形態の蓄電素子1、1A、1Bでは、X軸方向から見て、複数の電極体2、2BがZ軸方向に真っ直ぐ一列に並んでいるが、この構成に限定されない。図14に示すように、X軸方向から見て、複数の電極体2が波打つように並んでいてもよく、図15に示すように、X軸方向から見て、Z軸方向に真っ直ぐ並ぶ電極体2の列が、Y軸方向に複数配置されてもよい。即ち、各電極体2、2Bの巻回中心軸Cが水平で且つ電極体2、2Bの並び方向の一端の電極体2、2Bが他端の電極体2、2Bより上方に位置するようにケース3が配置されたときに、隣り合う電極体2、2Bのうちの一方の電極体2、2Bが他方の電極体2、2Bの上側に位置し、且つ互いの外周面同士が液絡していればよい。
 上記第一~第五実施形態の蓄電素子1、1A、1Bでは、隣り合う電極体2、2Bは、該蓄電素子1、1A、1Bの充放電過程において常に液絡しているが、この構成に限定されない。隣り合う電極体2、2B同士は、蓄電素子1、1A、1Bの充放電過程の一部において、液絡していればよい。即ち、隣り合う電極体2、2B同士は、蓄電素子1、1A、1Bの充放電が行われるときに、常に液絡していなくてもよい。隣り合う電極体2、2Bは、蓄電素子1、1A、1Bの充放電が行われたときの所定のタイミング(例えば、最も電極体2、2Bが膨張したときのみ)において液絡(外周面同士が接触又は外周面間に配置された液絡部材7が各外周面と接触)してもよい。かかる構成によっても、上側の電極体2、2Bに対し下側の電極体2、2Bから電解液が供給される。
 上記第一~第五実施形態の蓄電素子1、1A、1Bでは、複数の電極体2、2Bのそれぞれの外周面(最外層)は、セパレータ25によって構成されているが、この構成に限定されない。複数の電極体2、2Bのそれぞれの外周面は、電極(正極23又は負極24)によって構成されてもよい。正極活物質層232及び負極活物質層242も多孔質であるため、最外周の電極23、24に電解液が供給されることで、電極体2、2Bの巻回中心部まで前記電解液が供給される。
 上記第一実施形態の蓄電素子1では、複数の電極体2(セパレータ25)のそれぞれが保持できる電解液の量が同じ若しくは略同じであるが、この構成に限定されない。例えば、複数の電極体2のそれぞれが、外周面を含み且つセパレータ25のみが巻回されている外側領域250を有し、且つ、隣り合う電極体2のうちの一方の電極体2の外側領域250のセパレータ25の巻数(図16の上側の電極体2Aのαで示す領域におけるセパレータ25の巻数)が、前記隣り合う電極体2のうちの他方の電極体2Bの外側領域250のセパレータ25の巻数(図16の下側の電極体2のβで示す領域におけるセパレータ25の巻数)より多くてもよい。かかる構成によれば、各電極体2の巻回中心軸Cが水平になり且つ一方の電極体2Aが他方の電極体2Bより上側になるようにケース3が配置されたときに、下側の電極体2(他方の電極体2B)の外側領域250より多くの電解液が上側の電極体2(一方の電極体2A)の外側領域250に保持されている。このため、かかる姿勢で該蓄電素子1を使用し続けたときに、前記下側の電極体2Bに比べて余剰電解液が供給され難い前記上側の電極体2Aでの電解液不足を防ぐことができる。
 この場合、前記一方側にある電極体2ほど、外側領域250におけるセパレータ25の巻数が多い構成が好ましい。かかる構成によれば、各電極体2の巻回中心軸Cが水平になり且つ前記一方側が上側となるようにケース3が配置されたときに、上側(前記一方側)の電極体2ほど外側領域250により多くの電解液が保持されている。このため、かかる姿勢で該蓄電素子1を使用し続けたときに、下側(前記他方側)の電極体2に比べて余剰電解液が供給され難い上側の電極体2での電解液不足をより好適に防ぐことができる。
 また、第一実施形態の蓄電素子1では、複数の電極体2のそれぞれが保持できる電解液の量を、外側領域250におけるセパレータ25の巻数によって調整しているが、この構成に限定されない。例えば、セパレータ25の空孔率、セパレータ25の厚さを変更することで、複数の電極体2のそれぞれの外側領域250が保持できる電解液の量を調整してもよい。
 上記第二実施形態の蓄電素子1Aでは、複数の液絡部材7のそれぞれの保持できる電解液の量が異なっているが、全てが同じでもよい。また、液絡部材7が三つ以上配置されている場合には、全ての液絡部材7が同じ量の電解液を保持してもよく、複数の液絡部材7の一部が同じ量の電解液を保持してもよい。
 また、上記第二実施形態の蓄電素子1Aでは、液絡部材7の体積によって、複数の液絡部材7のそれぞれの保持できる電解液の量を調整しているが、この構成に限定されない。例えば、液絡部材7の空孔率、形状等を変更することで、複数の液絡部材7のそれぞれが保持できる電解液の量を調整してもよい。また、隣り合う電極体2間毎に、配置される液絡部材7の数を変更してもよい。
 上記第二実施形態の蓄電素子1Aでは、液絡部材7は、柔軟性を有し、これにより、充電又は放電による電極体2の膨張又は収縮に伴ってZ軸方向に縮み又は伸びるが、この構成に限定されない。液絡部材7は、例えば、多孔質無機焼結体であってもよい。
 また、上記第二実施形態の蓄電素子1Aでは、液絡部材7は、多孔質部材によって形成されているが、この構成に限定されない。液絡部材7は、例えば、表面を親液化した部材、又は表面にスリット(細い複数の溝等)を有する部材であってもよい。即ち、液絡部材7は、毛細管現象等を利用して下側の電極体2から上側の電極体2に電解液を吸い上げる機能を有していればよい。
 前記表面に親液性を有する部材、又は前記表面にスリットを有する部材は、例えば、ポリオレフィン、フッ素樹脂等の有機材料、又はセラミック、ガラス等の無機材料の表面に、微細加工処理(レーザ、サンドブラスト、ナノインプリント等)、表面官能基付与処理(コロナ放電処理、プラズマ処理等)等を施して親液性を向上させたブロック状又はシート状の部材である。
 また、上記第二実施形態の蓄電素子1Aでは、液絡部材7は、連続気泡の多孔質部材であるが、独立気泡の多孔質部材でもよい。液絡部材7は、例えば、圧縮後の復元性を重視する場合に、独立気泡の多孔質部材を用い、保液量(液保持性)を重視する場合には、連続気泡の多孔質部材を用いる。
 また、上記実施形態においては、蓄電素子1、1Aが充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類や大きさ(容量)は任意である。また、上記実施形態において、蓄電素子の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。
 蓄電素子(例えば電池)1、1Aは、図17に示すような蓄電装置(蓄電素子が電池の場合は電池モジュール)11に用いられてもよい。蓄電装置11は、少なくとも二つの蓄電素子1、1Aと、二つの(異なる)蓄電素子1、1A同士を電気的に接続するバスバ部材12と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子1、1Aに適用されていればよい。

Claims (18)

  1.  巻回された電極を有する複数の電極体と、
     電解液と、
     前記複数の電極体を前記電解液とともに収容するケースと、
     前記ケースの外面から突出し且つ前記複数の電極体と導通する外部端子と、を備え、
     前記複数の電極体は、各々の巻回中心軸が互いに平行な状態で前記外部端子の突出方向に並び、
     隣り合う電極体同士は、該電極体の外周面を互いに液絡させている、蓄電素子。
  2.  巻回された電極を有する複数の電極体と、
     電解液と、
     巻回中心軸が互いに平行となる状態で前記複数の電極体を前記電解液とともに収容するケースと、を備え、
     前記ケース内に溜まっている前記電解液の量は、収容された電極体の巻回中心軸が水平で且つ一端の電極体が他端の電極体より上方に位置するように前記ケースが配置されたときに、液面が該ケース内において最も上に位置する電極体の下端より低くなるように設定され、
     隣り合う電極体同士は、該電極体の外周面を互いに液絡させている、蓄電素子。
  3.  前記隣り合う電極体同士は、充放電過程において前記外周面を常に液絡させている、請求項1又は2に記載の蓄電素子。
  4.  前記隣り合う電極体同士は、前記外周面を互いに接触させることによって液絡させている、請求項1~3のいずれか1項に記載の蓄電素子。
  5.  前記複数の電極体のそれぞれは、セパレータを有し、
     前記複数の電極体のそれぞれにおける前記電極と前記セパレータとは、積層された状態で巻回されており、
     前記電極体の外周面は、前記セパレータによって構成されている、請求項1~4のいずれか1項に記載の蓄電素子。
  6.  前記複数の電極体のそれぞれは、前記外周面を含み且つ前記セパレータのみが巻回されている外側領域を有し、
     前記隣り合う電極体のうちの一方の電極体の外側領域の前記セパレータの巻数は、前記隣り合う電極体のうちの他方の電極体の外側領域の前記セパレータの巻数より多い、請求項5に記載の蓄電素子。
  7.  前記複数の電極体は、巻回中心軸と直交する方向に並び、
     前記直交する方向の一方側にある前記電極体ほど、前記外側領域における前記セパレータの巻数が多い、請求項6に記載の蓄電素子。
  8.  前記隣り合う電極体の外周面とそれぞれ接触可能であり且つ前記電解液を吸い上げる少なくとも一つの液絡部材を備え、
     前記隣り合う電極体同士は、互いの外周面を前記液絡部材によって液絡させている、請求項1~3のいずれか1項に記載の蓄電素子。
  9.  前記液絡部材は、連続気泡を有する多孔質部材によって形成される、請求項8に記載の蓄電素子。
  10.  前記液絡部材は、充電又は放電による前記電極体の膨張又は収縮に伴って、前記隣り合う電極体が並ぶ方向に縮み又は伸びる、請求項8又は9に記載の蓄電素子。
  11.  前記電極体は、三つ以上配置され、
     巻回中心軸と直交する方向における前記電極体の一方側に配置される前記液絡部材の保持できる前記電解液の量は、前記直交する方向における前記電極体の他方側に配置される前記液絡部材の保持できる前記電解液の量より多い、請求項8~10のいずれか1項に記載の蓄電素子。
  12.  前記複数の電極体のそれぞれにおいて、前記電極は、該電極体における直交する方向の径が長径と短径となるように巻回されており、
     前記複数の電極体は、前記ケースの内部において、前記外部端子の突出方向と前記電極体の短径方向とが一致するように配置されている、請求項1~11のいずれか1項に記載の蓄電素子。
  13.  請求項12に記載の複数の蓄電素子と、
     前記複数の蓄電素子を保持する保持部材と、
     前記外部端子に接続されるバスバと、を備え、
     前記複数の蓄電素子は、前記電極体の長径方向に並び、
     前記保持部材は、前記蓄電素子の並び方向における前記複数の蓄電素子の両側に配置される一対の終端部材と、前記一対の終端部材を連結する連結部と、を有し、
     前記バスバは、異なる蓄電素子の外部端子同士を接続する、蓄電装置。
  14.  各蓄電素子の前記ケースは、開口部を有するケース本体と、前記外部端子が配置され且つ前記開口部を塞ぐ蓋と、を有し、
     前記ケースの内部において前記蓋と前記電極体との間に隙間が形成されている、請求項13に記載の蓄電装置。
  15.  請求項1~13のいずれか1項に記載の蓄電素子と、
     前記蓄電素子が搭載される移動体本体と、
     前記蓄電素子から供給される電力によって前記移動体本体を駆動する駆動部と、を備え、
     前記蓄電素子は、前記ケースにおける前記外部端子が突出している部位である端子側部位が、該ケースにおける前記端子側部位と反対側の部位より上方に位置するように配置される、移動体。
  16.  請求項1~13のいずれか1項に記載の蓄電素子と、
     前記蓄電素子が載置される蓄電システム本体と、
     前記蓄電素子の外部端子と接続され、且つ、外部から電力の入力及び外部への電力の出力が可能な入出力端子と、を備え、
     前記蓄電素子は、前記ケースにおける前記外部端子が突出している部位である端子側部位が、該ケースにおける前記端子側部位と反対側の部位より上方に位置するように配置される、蓄電システム。
  17.  電極が巻回される複数の電極体と、
     前記複数の電極体を収容するケースと、
     前記ケースの外面から突出し且つ前記複数の電極体と導通する外部端子と、を備え、
     前記複数の電極体のそれぞれにおいて、前記電極が該電極体における直交する方向の径が長径と短径となるように巻回されており、
     前記複数の電極体は、前記ケースの内部において、巻回中心軸が互いに平行で且つ前記外部端子の突出方向と前記電極体の短径方向とが一致した状態で並び、
     前記ケースは、開口部を有するケース本体と、前記開口部を塞ぎ且つ前記外部端子が配置される蓋と、を有し、
     前記ケースの内部において前記蓋と前記電極体との間に隙間が形成されている、蓄電素子。
  18.  請求項17に記載の複数の蓄電素子と、
     前記複数の蓄電素子を保持する保持部材と、
     前記外部端子に接続されるバスバと、を備え、
     前記複数の蓄電素子は、前記電極体の長径方向に並び、
     前記保持部材は、前記蓄電素子の並び方向における前記複数の蓄電素子の両側に配置される一対の終端部と、前記一対の終端部材を連結する連結部と、を有し、
     前記バスバは、異なる蓄電素子の外部端子同士を接続する、蓄電装置。
PCT/JP2017/018973 2016-05-23 2017-05-22 蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム WO2017204137A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519521A JP7049603B2 (ja) 2016-05-23 2017-05-22 蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-102569 2016-05-23
JP2016102569 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017204137A1 true WO2017204137A1 (ja) 2017-11-30

Family

ID=60412854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018973 WO2017204137A1 (ja) 2016-05-23 2017-05-22 蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム

Country Status (2)

Country Link
JP (1) JP7049603B2 (ja)
WO (1) WO2017204137A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149412A (ja) * 2018-02-26 2019-09-05 Tdk株式会社 電気化学デバイス
FR3085533A1 (fr) * 2018-08-30 2020-03-06 Amimer Energie Spa Ensemble de stockage capacitif d'energie electrique, et procede de fabrication associe
WO2020134748A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 二次电池、电池模组以及二次电池的制造方法
EP3883033A4 (en) * 2018-12-29 2022-01-12 Contemporary Amperex Technology Co., Limited SECONDARY BATTERY AND BATTERY MODULE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324568A (ja) * 2001-04-24 2002-11-08 Yuasa Corp 複数個の捲回式極板群を備えた電池
JP2003249200A (ja) * 2002-02-26 2003-09-05 Japan Storage Battery Co Ltd 蓄電池
JP2008210729A (ja) * 2007-02-28 2008-09-11 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2013077527A (ja) * 2011-09-30 2013-04-25 Gs Yuasa Corp 蓄電素子
WO2014024424A1 (ja) * 2012-08-09 2014-02-13 三洋電機株式会社 電池パックの製造方法
JP2015230761A (ja) * 2014-06-03 2015-12-21 トヨタ自動車株式会社 二次電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324568A (ja) * 2001-04-24 2002-11-08 Yuasa Corp 複数個の捲回式極板群を備えた電池
JP2003249200A (ja) * 2002-02-26 2003-09-05 Japan Storage Battery Co Ltd 蓄電池
JP2008210729A (ja) * 2007-02-28 2008-09-11 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2013077527A (ja) * 2011-09-30 2013-04-25 Gs Yuasa Corp 蓄電素子
WO2014024424A1 (ja) * 2012-08-09 2014-02-13 三洋電機株式会社 電池パックの製造方法
JP2015230761A (ja) * 2014-06-03 2015-12-21 トヨタ自動車株式会社 二次電池の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149412A (ja) * 2018-02-26 2019-09-05 Tdk株式会社 電気化学デバイス
FR3085533A1 (fr) * 2018-08-30 2020-03-06 Amimer Energie Spa Ensemble de stockage capacitif d'energie electrique, et procede de fabrication associe
WO2020134748A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 二次电池、电池模组以及二次电池的制造方法
US11088423B2 (en) 2018-12-29 2021-08-10 Contemporary Amperex Technology Co., Limited Secondary battery and battery module
EP3883033A4 (en) * 2018-12-29 2022-01-12 Contemporary Amperex Technology Co., Limited SECONDARY BATTERY AND BATTERY MODULE
US11476526B2 (en) 2018-12-29 2022-10-18 Contemporary Amperex Technology Co., Limited Secondary battery, battery module and vehicle

Also Published As

Publication number Publication date
JP7049603B2 (ja) 2022-04-07
JPWO2017204137A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
KR101057869B1 (ko) 조전지, 조전지의 제조 방법 및 조전지를 구비한 차량
WO2017204137A1 (ja) 蓄電素子、蓄電素子を備える蓄電装置、蓄電素子を備える移動体、及び蓄電素子を備える蓄電システム
KR102097084B1 (ko) 파우치형 이차전지 및 이를 포함하는 배터리 모듈
JP2012516009A (ja) 電気化学的エネルギー貯蔵セル
JP7446444B2 (ja) 断線防止層を含む電極組立体及びその製造方法
KR20200043402A (ko) 배터리 단자 용 리드 탭
JP6350865B2 (ja) 電池
JP2013021326A (ja) スーパーキャパシタセルおよびそれらのセルを複数備えてなるスーパーキャパシタモジュール
JP2017208177A (ja) 蓄電素子及び蓄電素子の製造方法
KR101416805B1 (ko) 폴딩 셀 및 그를 갖는 폴딩형 슈퍼 커패시터
JP6657565B2 (ja) 蓄電素子
JP6827646B2 (ja) 蓄電素子
JP2016178028A (ja) 電極体、及び電極体を備える蓄電素子
JP2019071259A (ja) 蓄電素子、及び蓄電素子の製造方法
KR101849990B1 (ko) 분리막의 열 수축성이 억제된 전지셀
JP7096991B2 (ja) 蓄電素子、及び蓄電素子の製造方法
JP2021044082A (ja) 蓄電素子
WO2018092775A1 (ja) 蓄電素子、及び蓄電装置
JP2017220324A (ja) 蓄電素子
CN107851830B (zh) 二次电池
JP2021044081A (ja) 蓄電素子
JP2019106256A (ja) 蓄電素子
JP2019053824A (ja) 蓄電素子、及び蓄電素子の製造方法
US20230268626A1 (en) Electric storage device
KR101616502B1 (ko) 슬릿을 이용하여 연결된 전극 리드와 전극 탭을 포함하는 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519521

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802729

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802729

Country of ref document: EP

Kind code of ref document: A1