WO2017203612A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2017203612A1
WO2017203612A1 PCT/JP2016/065363 JP2016065363W WO2017203612A1 WO 2017203612 A1 WO2017203612 A1 WO 2017203612A1 JP 2016065363 W JP2016065363 W JP 2016065363W WO 2017203612 A1 WO2017203612 A1 WO 2017203612A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
stator core
region
plates
misaligned
Prior art date
Application number
PCT/JP2016/065363
Other languages
English (en)
French (fr)
Inventor
拓也 村田
亮宏 佐久間
興起 仲
英晴 小田
涼太 亀井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016568068A priority Critical patent/JPWO2017203612A1/ja
Priority to PCT/JP2016/065363 priority patent/WO2017203612A1/ja
Publication of WO2017203612A1 publication Critical patent/WO2017203612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to a rotating electric machine that rotates using a magnetic field generated by a current flowing in a coil wound around a stator.
  • a stator core of a rotating electric machine is generally configured by laminating a plurality of laminated plates obtained by punching a strip-shaped electrical steel sheet having a thickness of 0.35 mm or more and 0.6 mm or less. Since magnetic flux flows through the stator core, it is desirable that the cross-sectional area passing through the axis be uniform in the circumferential direction so that the magnetic flux density inside is constant. For this reason, it is ideal that the stator core has a circular outer shape. On the other hand, in order to improve the productivity of a laminated board and to obtain more laminated boards from a strip
  • the stator core When obtaining multiple rows of laminated sheets from strip-shaped magnetic steel sheets, the stator core is laminated with the distance between the centers of adjacent laminated sheets shorter than the diameter of the stator cores in order to improve the material yield of the electromagnetic steel sheets.
  • Four linear straight surfaces were provided at an equal pitch of 90 degrees on the outer edge of the plate. The straight straight surface is not necessary for manufacturing and is provided in consideration of material costs.
  • the magnetic flux density is higher in the linear straight surface than in the arcuate arc surface of the outer edge, and the characteristics of the stator core are deteriorated.
  • a conventional rotating electric machine has laminated a plurality of laminated plates by changing the direction of the rotation direction around the axis (see Patent Document 1).
  • the present invention has been made in view of the above, and an object thereof is to obtain a rotating electrical machine capable of achieving both improvement in material yield and uniformity in magnetic flux density.
  • the present invention provides an arc surface whose outer periphery in a cross section perpendicular to the rotation axis is an arc shape centered on the rotation axis, a linear surface whose outer periphery is linear, Is a rotating electrical machine including a stator core formed by laminating a plurality of laminated plates provided alternately on the outer edge in the axial direction of the rotating shaft.
  • the stator core includes a misaligned laminated portion in which a plurality of laminated plates are laminated so that a reference position set in advance at the outer edge of the laminated plate changes in the circumferential direction.
  • the number of laminated plates constituting the misaligned laminated portion is X
  • the number of arc surfaces provided on one laminated plate is Y
  • n turns in one circumferential direction of a plurality of laminated plates constituting the misaligned laminated portion
  • the rotating electrical machine according to the present invention has an effect that it is possible to achieve both improvement in material yield and uniform magnetic flux density.
  • Sectional drawing of the axial center direction of the electric motor which concerns on Embodiment 1 of this invention 1 is a perspective view of a stator iron core of the electric motor shown in FIG.
  • FIG. 2 is a plan view of two laminated plates in which the laminated portions of the stator core shown in FIG. 2 overlap.
  • FIG. 1 is a cross-sectional view in the axial direction of the electric motor according to Embodiment 1 of the present invention.
  • the axial direction is the vertical direction of the paper.
  • FIG. 2 is a perspective view of the stator core of the electric motor shown in FIG.
  • FIG. 3 is a plan view of a laminated plate constituting the stator core shown in FIG.
  • FIG. 4 is a plan view of the metal strip forming the laminate shown in FIG.
  • FIG. 5 is an exploded perspective view showing the misalignment laminated portion of the stator core shown in FIG.
  • FIG. 6 is a plan view of two laminated plates in which the misaligned laminated portions of the stator core shown in FIG. 2 overlap.
  • the electric motor 1 that is a rotating electrical machine according to the first embodiment is a low-voltage three-phase induction motor that is used at a voltage of 600 V or less and generates power by obtaining electric power from a three-phase AC power source.
  • the electric motor 1 includes an annular stator 10 and a rotor 20 disposed inside the stator 10 via a gap G.
  • the rotor 20 is fixed to the rotating shaft 2 when the rotating shaft 2 of the electric motor 1 is press-fitted inside.
  • the rotor 20 has a structure in which a gap G is provided between the rotor 20 and the stator 10 so that the rotor 20 can rotate around the rotation shaft 2.
  • the size of the gap G is typically 0.3 mm to 1 mm, but is not limited to this range.
  • the rotary shaft 2 is arranged coaxially with the stator 10.
  • To be arranged coaxially means to be arranged at a position having a common axis P.
  • the axis P is the axis of the stator 10, the rotating shaft 2, the rotor 20, and the electric motor 1.
  • the rotating shaft 2 is a cylindrical hollow shaft, but may be a solid shaft.
  • the rotor 20 includes a permanent magnet 21 that is a magnet fixed to the outer peripheral surface of the rotating shaft 2.
  • the stator 10 includes an annular stator core 11 and a coil 12 wound around the teeth 14 of the stator core 11 shown in FIG. 2.
  • the coil 12 is formed by winding an electric wire around a tooth 14.
  • the coil 12 is a concentrated winding of electric wires.
  • an electric wire is directly wound around the tooth 14.
  • the coils 12 are shown as a single unit, with the cross sections of the individual windings omitted.
  • the coil 12 is concentrated winding, but is not limited to this, and may be distributed winding.
  • the electric motor 1 generates rotational torque using the action of the magnetic field generated in the permanent magnet 21 and the magnetic field generated in the coil 12, and rotates the rotating shaft 2 by the rotational torque.
  • the stator core 11 is configured by laminating a plurality of laminated plates 15 in the axis P direction.
  • the laminated board 15 is formed in a ring shape as shown in FIG.
  • the outer periphery of the laminated plate 15 has an arcuate surface 16 that is arcuate around the rotational axis 2 in a cross-sectional view perpendicular to the rotational axis 2, and the outer periphery of the laminated plate 15 is linear in a cross-sectional view perpendicular to the rotational axis 2.
  • the circular arc surface 16 and the linear surface 17 are provided on the outer edge of the laminated plate 15 alternately in the circumferential direction around the rotation axis 2.
  • the laminated plate 15 includes four arcuate surfaces 16 and four straight surfaces 17, but the number of arcuate surfaces 16 and straight surfaces 17 is not limited to four.
  • the two linear surfaces 17 corresponding to each other with the rotation axis 2 of the laminated plate 15 in between are parallel to each other.
  • the laminated plate 15 has the linear surfaces 17 arranged at a pitch of 90 degrees in the circumferential direction around the rotation axis 2. The pitch at which the linear surfaces 17 are arranged is the metal strip 30. And a value determined by the diameter of the arc surface 16 of the laminated plate 15.
  • the laminated plate 15 is manufactured by punching a metal strip 30 made of a strip-shaped electromagnetic steel plate shown in FIG.
  • the metal strip 30 has a rectangular planar shape and a thickness of 0.35 mm to 0.6 mm.
  • the laminated plate 15 has two straight surfaces 17 constituted by the outer edges 30a of the metal strips 30, and the remaining two straight surfaces 17 are overlapped with each other in the longitudinal direction of the metal strips 30. Are lined up.
  • the laminated plate 15 has two linear surfaces 17 constituted by the outer edge 30a of the metal strip 30, and the remaining two linear surfaces 17 are overlapped with each other. Are arranged at regular intervals.
  • the remaining part which punched the laminated board 15 of the metal strip 30 shown by a parallel diagonal line in FIG.
  • the laminated plate 15 is punched with the inner hole 18 before being punched from the metal strip 30.
  • the metal strip 30 is configured such that the straight surface 17 of the laminate 15 is constituted by the outer edge 30a of the metal strip 30, and the remaining two straight surfaces 17 are overlapped with each other to be adjacent to each other.
  • the center-to-center distance 15 is made smaller than the diameter of the arcuate surface 16 of the laminated plate 15 to make the discarded portion 31 smaller.
  • the arrangement of the laminated plate 15 with the straight surfaces 17 of the laminated plate 15 provided at equal pitch intervals in the circumferential direction is determined by the width of the metal strip 30 and the diameter of the laminated plate 15.
  • regions including the linear surface 17 on the outer edge of the laminated plate 15 are referred to as a region A, a region B, a region C, and a region D.
  • Region A, region B, region C, and region D are regions surrounded by a broken line connecting both ends of the linear surface 17 and the axis P.
  • the region including each arc surface 16 of the laminated plate 15 is divided into two regions, and the region including the arc surface 16 on the outer edge of the laminated plate 15 is defined as region a, region b, region c, region d. , Region e, region f, region g, and region h.
  • the laminated plate 15 is divided into 12 regions of region A, region B, region C, region D, region a, region b, region c, region d, region e, region f, region g, and region h. Shown separately.
  • region A region A, region B, region C, region D, region a, region b, region c, region d, region e, region f, region g, and region h. Shown separately.
  • the laminated board 15 makes the boundary of the area
  • the laminated plate 15 uses the reference position SL as the boundary between the region A and the region a.
  • various positions of the outer edge 30a of the laminated plate 15 may be used.
  • the laminated plate 15 uses a broken line connecting the reference position SL and the axis P as the reference line RL. *
  • the stator core 11 includes a first space S1 corresponding to the area A of the laminated plate 15 shown in FIG.
  • the eleventh space S11 corresponding to the region g and the twelfth space S12 corresponding to the region h are shown separately.
  • the ninth space S9, the tenth space S10, the eleventh space S11, and the twelfth space S12 are parallel to the axis P.
  • the stator core 11 is configured by laminating a plurality of laminated plates 15 along the axis P. As shown in FIG. 2, the stator core 11 includes at least a misalignment laminated portion 13.
  • the misalignment laminating portion 13 is configured so that the reference position SL is centered around the rotation axis 2 as it goes toward one P ⁇ b> 1 parallel to the axis P direction in which a plurality of laminated plates 15 are laminated. A plurality of laminated plates 15 are laminated at equal intervals in one direction C1 in the direction.
  • the reference position SL is shifted at equal intervals in one direction C1 toward the one side P1.
  • one P1 is a direction from the bottom to the top in FIG. 2, but may be a direction from the top to the bottom in FIG.
  • the one direction C1 is a clockwise direction, but may be a counterclockwise direction as long as it is a circumferential direction around the axis P.
  • the reference position SL of the plurality of laminated plates 15 constituting the misaligned laminated portion 13 is disposed in front of the one-direction C1 with respect to the reference position SL of the lower laminated plate 15.
  • the angle ⁇ [°] formed by the reference lines RL shown in FIG. 6 of the two laminated plates 15 continuously laminated in the direction of the axis P among the plural laminated plates 15 constituting the misaligned laminated portion 13 is: All are equally formed. Further, the number of the laminated plates 15 constituting the misaligned laminated portion 13 is X, and the number of the straight surfaces 17 provided on one laminated plate 15 is Y. Further, the misalignment laminating portion 13 is configured by laminating so that the reference position SL of the plurality of laminated plates 15 makes n turns (n is an integer of 1 or more) in one circumferential direction C1 centering on the rotation axis 2. The angle ⁇ [°] satisfies the following formulas 1 and 2.
  • the linearly aligned surfaces 17 in the direction of the axis P are not overlapped on the same plane, and the misaligned laminated portion 13 in which a plurality of laminated plates 15 are laminated is formed. And the peak value of the magnetic flux density in the circumferential direction of the stator core 11 decreases. Furthermore, by satisfying Expression 1, the straight surfaces 17 of the plurality of laminated plates 15 are uniformly arranged on the entire circumference in the circumferential direction around the rotation axis 2. That is, since the total area of the linear surfaces 17 arranged in the axial direction at a certain position in the circumferential direction of the stator core 11 is uniformized in the entire circumferential direction, the magnetic flux density is uniform in the circumferential direction and the axial direction. Improves.
  • stator core 11 in the present embodiment by satisfying the formulas 1 and 2, the uniformity of the magnetic flux density in the circumferential direction and the axial direction of the stator core 11 can be improved as described above.
  • the angles ⁇ [°] formed by the reference lines RL in the two laminated plates 15 that are continuously laminated in the axis P direction among the plurality of laminated plates 15 that constitute the misaligned laminated portion 13 are all equal.
  • X be the number of laminated plates 15 constituting the misaligned laminated portion 13
  • Y (Y> 1) be the number of linear surfaces 17 provided on one laminated plate 15.
  • the misalignment laminating unit 13 is configured by laminating the plurality of laminated plates 15 so that the reference position SL of the plurality of laminated plates 15 rotates in one circumferential direction C1 around the rotation axis 2.
  • m is an integer of 1 or more
  • the angle ⁇ [°] satisfies the following formulas 3 to 5.
  • the number of laminated plates 15 in the misaligned laminated portion 13 is (m + 1) or more.
  • the straight surfaces 17 are provided at 90 ° intervals so as to be uniform in the circumferential direction. That is, the linear surfaces 17 are sequentially arranged at four locations in the circumferential direction so that the normals of the linear surfaces 17 are 90 °. Equation 3 indicates that ⁇ is less than 90 °, and indicates that none of the linear surfaces 17 of the two laminated plates 15 that are continuously laminated in the axial direction are located in the same plane. .
  • the uniformity of the magnetic flux density of the stator core 11 in the circumferential direction and the axial direction can be improved.
  • the length L in the axis P direction of the plurality of arcuate surfaces 16 stacked continuously in the direction of the axis P of the plurality of laminates 15 constituting the misalignment stacking portion 13 is the circumference that stops the stator core 11 from being rotated. It is longer than the outer diameter R of the set pin 40 which is a stop member.
  • the outer diameter R of the set pin 40 is the outer diameter of the end surface 41 of the set pin 40 that is driven into the arc surface 16 of the stator core 11 and corresponds to the outer shape of the set pin 40.
  • the outer diameter R of the set pin 40 is typically 3 mm to 15 mm, but is not limited to this range. Further, the number of arcuate surfaces 16 overlapping in the axis P direction of the plurality of laminated plates 15 constituting the misaligned laminated portion 13, that is, the number of laminated plates 15 is typically 5 to 50. It is not limited to this range.
  • the stator core 11 is stopped around the set pin 40 by being driven into one of the arcuate surfaces 16 of the misalignment laminated portion 13.
  • the set pin 40 has a cylindrical shape, but the outer shape of the set pin 40 is not limited to the cylindrical shape. In the first embodiment, the set pin 40 is disposed at the center of the stator core 11 in the direction of the axis P.
  • the plurality of laminated plates 15 constituting the stator core 11 are fixed to each other by welding or adhesion using an adhesive.
  • the misalignment laminated portion 13 of the stator core 11 includes a plurality of laminated layers so that the angle ⁇ between the reference lines RL of the two laminated plates 15 that overlap in the axis P direction is 30 degrees. Plates 15 are stacked. Further, in the first embodiment, each region A, region B, region C, region D, region a, region b of the rearmost laminated plate 15 in FIG. , Region c, region d, region e, region f, region g and region h correspond to the first space S1 to the twelfth space S12 as shown in FIG.
  • the first laminated plate 15 in Table 1 shows the lowermost laminated plate 15 in FIG. 2 of the misaligned laminated portion 13, and the second laminated plate 15 is the most in the misaligned laminated portion 13 in FIG. 2.
  • the laminated plate 15 is shown as being one layer above the lower laminated plate 15, and the third laminated plate 15 is laminated on two of the lower laminated plates 15 in FIG. A plate 15 is shown.
  • Table 1 shows each region A, region B, region C, region D, region a, region b, corresponding to each of the first space S1 to the twelfth space S12 of each laminated plate 15 constituting the misaligned laminated portion 13. Region c, region d, region e, region f, region g, and region h are shown.
  • the laminated plates 15 of the misaligned laminated portion 13 of the stator core 11 according to the first embodiment are the regions A and B of the first laminated plate 15 and the thirteenth laminated plate 15.
  • Region C, region D, region a, region b, region c, region d, region e, region f, region g, and region h have the same correspondence relationship from the first space S1 to the twelfth space S12. .
  • stacking part 13 of the stator core 11 which concerns on Embodiment 1 corresponds to the 1st space S1 to the 12th space S12 of the 12th lamination board 15 from the 1st lamination board 15.
  • each of the first space S1 to the twelfth space S12 between the first laminated plate 15 and the twelfth laminated plate 15 has four straight surfaces 17 and circular arcs. Eight surfaces 16 are provided.
  • the misalignment laminated portion 13 of the stator core 11 is formed by laminating the laminated plates 15 to form the misalignment laminated portion 13, even though the laminate 15 is not a perfect circle. Therefore, the stator core 11 can be formed in a shape close to a columnar shape, and the magnetic flux density of the stator core 11 can be made uniform in the circumferential direction.
  • the number X of the laminated plates 15 is 48
  • the number Y of the arcuate surfaces 16 is 4
  • the number of rotations n is 4, and the equations 1 and According to 2, the angle ⁇ is 30 degrees.
  • the laminated plate 15 may be punched in the same shape, and the teeth 14 may be shifted in one direction C1, and based on the order of lamination when the laminated plate 15 is punched.
  • the positions of the teeth 14 may be changed, and the teeth 14 may be stacked in the direction of the axis P after the stacked plates 15 are stacked.
  • the electric motor 1 even if the material yield is improved without forming the outer edge of the laminated plate 15 constituting the stator core 11 in a perfect circle, the direction toward the one P1 in the axis P direction. Accordingly, the misalignment laminating portion 13 in which a plurality of laminating plates 15 are laminated is provided so that the reference position SL is shifted in one direction C1. Further, in the misalignment stacking portion 13, the straight surfaces 17 of the plurality of stacking plates 15 are uniformly arranged on the entire circumference in the circumferential direction. For this reason, the electric motor 1 can make the stator core 11 close to a columnar shape, and can make the magnetic flux density uniform. As a result, the electric motor 1 can achieve both the improvement of the material yield and the uniformity of the magnetic flux density, and can improve the characteristics.
  • the stator core 11 can be formed in a shape close to a columnar shape, and the magnetic flux density is made uniform. Thus, it is possible to achieve both improvement in material yield and uniform magnetic flux density.
  • the length L of the plurality of arcuate surfaces 16 that overlap in the axis P direction of the plurality of laminated plates 15 that constitute the misaligned laminated portion 13 is longer than the outer shape of the set pin 40. Therefore, the set pin 40 can be driven into the arcuate surface of the outer periphery of the stator core 11.
  • FIG. FIG. 7 is a perspective view of the stator core of the electric motor according to Embodiment 2 of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the laminated plate 15-2 includes five circular arc surfaces 16 and five straight surfaces 17, and the circular arc surface in the axis P direction.
  • the configuration is the same as that of the first embodiment except that 16 and the straight surface 17 are sequentially overlapped.
  • the misalignment laminating portion 13 is provided in which a plurality of laminating plates 15-2 are laminated so that the reference position SL is shifted in one direction C1 toward P1.
  • the straight surfaces 17 of the plurality of laminating plates 15-2 are uniformly arranged on the entire circumference in the circumferential direction.
  • the stator core 11-2 can have a shape close to a columnar shape, and the magnetic flux density can be made uniform. As a result, the electric motor 1 can achieve both an improvement in material yield and a uniform magnetic flux density.
  • FIG. FIG. 8 is a perspective view of the stator core of the electric motor according to Embodiment 3 of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the stator core 11-3 of the electric motor 1 according to the third embodiment has the same configuration as that of the first embodiment except that it includes an aligned laminated portion 19 in addition to the misaligned laminated portion 13. .
  • the misalignment laminated portion 13 is disposed at both ends of the stator core 11-3 in the direction of the axis P.
  • the plurality of laminated plates 15-2 are laminated so that the respective straight surfaces 17 are located in the same plane.
  • the aligned laminated portion 19 is disposed in the central portion in the direction of the axis P of the stator core 11-3.
  • the central portion in the direction of the axis P where the aligned laminated portion 19 is provided indicates a position including the center in the direction of the axis P of the stator core 11-3.
  • the aligned laminated portion 19 is provided at the center portion in the direction of the axis P of the stator core 11-3.
  • the position where the aligned laminated portion 19 is provided is the axial center of the stator core 11-3.
  • Various positions in the P direction may be used.
  • the aligned laminated portion 19 has a plurality of laminated plates 15 laminated with the reference position SL overlapping in the axis P direction.
  • the length L-3 in the axial direction of the aligned laminated portion 19 is longer than the outer diameter R of the set pin 40.
  • the alignment laminated portion 19 is stopped by the set pin 40 being driven into one of the arcuate surfaces 16.
  • the set pin 40 is provided in the region of the arc surface 16 of the plurality of laminated plates 15 in the aligned laminated portion 19, but the set pin 40 is provided in the plurality of laminated plates 15 in the aligned laminated portion 19. May be provided in the region of the straight surface 17.
  • the set pin 40 can be installed on a smooth surface without unevenness, the accuracy of the rotation stop can be improved.
  • the contact area between the set pin 40 and the laminated plate 15 can be increased as compared with the case where the set pin 40 is provided in the region of the linear surface 17, so It can be improved.
  • the number of the laminated plates 15 constituting the aligned laminated portion 19 is determined based on the thickness of each laminated plate 15 and the outer shape of the set pin 40 so that the length L-3 is longer than the outer shape of the set pin 40.
  • a misalignment laminating portion 13 is provided for laminating a plurality of laminating plates 15 so that the reference position SL is shifted in one direction C1 as it goes to. Further, in the misalignment stacking portion 13, the straight surfaces 17 of the plurality of stacking plates 15 are uniformly arranged on the entire circumference in the circumferential direction.
  • the stator core 11-3 can have a shape close to a columnar shape, and the magnetic flux density can be made uniform.
  • the electric motor 1 can achieve both the improvement of the material yield and the uniformity of the magnetic flux density, and can improve the characteristics.
  • the set pin 40 can be driven into the arc-shaped surface on the outer periphery of the stator core 11-3.
  • the electric motor 1 can drive the set pin 40 into the stator core 11-3 while improving the material yield.
  • the length L-3 of the aligned laminated portion 19 is longer than the outer shape of the set pin 40, so that the set pin 40 is connected to the arcuate surface on the outer periphery of the stator core 11. Can be driven into.
  • the misalignment laminated portion 13 is disposed at both ends in the axial center P direction, and the aligned laminated portion 19 is disposed at the central portion in the axial center P direction.
  • the density can be made uniform and the characteristics can be improved.
  • FIG. 9 is a plan view of a metal strip forming a laminated sheet of stator cores of an electric motor according to Embodiment 4 of the present invention.
  • the same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the laminated plate 15-4 constituting the stator core 11 of the electric motor 1 according to Embodiment 4 includes three arcuate surfaces 16 and three linear surfaces 17.
  • two rows of laminated plates 15-4 are arranged in the width direction of the metal strip 30-4.
  • the straight surfaces 17 of the laminated plate 15-4 are arranged at a 120-degree pitch in the circumferential direction around the rotation axis 2.
  • the material yield can be improved without forming the outer edge of the laminated plate 15-4 constituting the stator core 11 in a perfect circle. Since the plurality of laminated plates 15-4 are laminated so that the reference position SL is shifted in one direction C1 toward one P1 in the axis P direction, the magnetic flux density can be made uniform. As a result, similarly to the first embodiment, the electric motor 1 according to the fourth embodiment can achieve both improvement in material yield and uniform magnetic flux density, and can improve characteristics.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • SYMBOLS 1 Electric motor (rotary electric machine), 2 Rotating shaft, 11, 11-2, 11-3 Stator iron core, 13 Shift lamination
  • stacking part 15, 15-2, 15-4 laminated board, 16 circular arc surface, 17 linear surface, 19 Alignment laminated part, 40 set pins, 41 end face, P axis, SL reference position, RL reference line, P1, one side, C1, one direction, L, L-3 length, R outer diameter (outer shape), ⁇ angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

電動機は、回転軸を中心とする円弧状である円弧面(16)と直線状の直線面(17)とが交互に外縁に設けられた積層板(15)を、回転軸の軸心(P)方向に複数枚積層する固定子鉄心(11)を備える。固定子鉄心(11)は、積層板(15)の外縁において予め設定される基準位置(SL)が、周方向に変化するように複数の積層板(15)が積層されたズレ積層部(13)を備える。ズレ積層部(13)を構成する積層板(15)の数をXとし、一つの積層板(15)に設けられた円弧面(16)の数をYとし、ズレ積層部(13)を構成する複数の積層板(15)の周方向の一方向(C1)にn周回転されるとすると、積層板(15)のうち、軸心(P)方向に連続して積層される2枚の積層板(15)において、基準位置(SL)と軸心(P)とを結んだ基準線同士のなす角度θ[°]は、θ=(360×n)/X及びθ<360/Yを満たす。

Description

回転電機
 本発明は、固定子に巻回されたコイルに流れる電流による磁界を利用して回転する回転電機に関する。
 回転電機の固定子鉄心は、一般に厚さ0.35mm以上でかつ0.6mm以下の帯状電磁鋼板に打ち抜き加工を施して得られた積層板を複数枚積層して構成される。固定子鉄心は、内部に磁束が流れるので、内部の磁束密度が一定となるように、軸心を通る断面積を周方向に均一とすることが望ましい。このため、固定子鉄心は、外形形状が円形状であることが理想的である。一方で、固定子鉄心は、積層板の生産性を向上し、帯状電磁鋼板からより多くの積層板を得るために、帯状電磁鋼板から複数列の積層板を得ることがある。
 帯状電磁鋼板から複数列の積層板を得る際に、固定子鉄心は、電磁鋼板の材料歩留りを向上するため、隣り合う積層板の中心間距離を固定子鉄心の直径よりも短くして、積層板の外縁に90度の等ピッチで4ヶ所の直線状の直線面を設けていた。直線状の直線面は、製造上必要なものでもなく、材料費との兼ね合いから設けられる。固定子鉄心は、直線状の直線面では、外縁の円弧状の円弧面よりも磁束密度が高くなり、固定子鉄心の特性が悪化してしまう。従来の回転電機は、軸心を中心とした回転方向の向きを変更して、複数枚の積層板を積層していた(特許文献1参照)。
特開2006-230087号公報
 前述した特許文献1に示された固定子鉄心は、軸心を中心とした回転方向の向きを変更して、複数枚の積層板を積層しているため、磁束密度の均一化がある程度改善されるものの、十分ではなかった。
 本発明は、上記に鑑みてなされたものであって、材料歩留りの向上と磁束密度の均一化との両立を図ることができる回転電機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、回転軸と垂直な断面における外周が回転軸を中心とする円弧状である円弧面と、外周が直線状の直線面と、が交互に外縁に設けられた積層板を、回転軸の軸心方向に複数枚積層することで構成される固定子鉄心を備える回転電機である。固定子鉄心は、積層板の外縁において予め設定される基準位置が、周方向に変化するように複数の積層板が積層されたズレ積層部を備える。ズレ積層部を構成する積層板の数をXとし、一つの積層板に設けられた円弧面の数をYとし、ズレ積層部を構成する複数の積層板の周方向の一方向にn周(nは整数)回転されるとすると、ズレ積層部を構成する積層板のうち、軸心方向に連続して積層される2枚の積層板において、基準位置と軸心とを結んだ基準線同士のなす角度θ[°]は、θ=(360×n)/X及びθ<360/Yを満たす。
 本発明に係る回転電機は、材料歩留りの向上と磁束密度の均一化との両立を図ることができる、という効果を奏する。
本発明の実施の形態1に係る電動機の軸心方向の断面図 図1に示す電動機の固定子鉄心の斜視図 図2に示す固定子鉄心を構成する積層板の平面図 図3に示す積層板を形成する金属条材の平面図 図2に示す固定子鉄心のズレ積層部を分解して示す斜視図 図2に示す固定子鉄心のズレ積層部の重なり合う2枚の積層板の平面図 本発明の実施の形態2に係る電動機の固定子鉄心の斜視図 本発明の実施の形態3に係る電動機の固定子鉄心の斜視図 本発明の実施の形態4に係る電動機の固定子鉄心の積層板を形成する金属条材の平面図
 以下に、本発明の実施の形態にかかる回転電機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る電動機の軸心方向の断面図である。図1において、軸心方向とは紙面上下方向である。図2は、図1に示す電動機の固定子鉄心の斜視図である。図3は、図2に示す固定子鉄心を構成する積層板の平面図である。図4は、図3に示す積層板を形成する金属条材の平面図である。図5は、図2に示す固定子鉄心のズレ積層部を分解して示す斜視図である。図6は、図2に示す固定子鉄心のズレ積層部の重なり合う2枚の積層板の平面図である。
 実施の形態1に係る回転電機である電動機1は、600V以下の電圧で使用され、かつ三相交流電源からの電力を得て動力を発生する低圧三相誘導電動機である。電動機1は、図1に示すように、環状の固定子10と、固定子10の内側に空隙Gを介して配置された回転子20と、を備える。
 回転子20は、図1に示すように、電動機1の回転軸2が内側に圧入されることにより、回転軸2に固定されるものである。回転子20は、固定子10との間に空隙Gを設け、回転軸2を中心に回転可能な構造である。空隙Gの大きさは、0.3mmから1mmが典型的な例であるが、この範囲に限定されない。
 回転軸2は、固定子10と同軸に配置される。同軸に配置されるとは、共通の軸心Pを有する位置に配置されることをいう。以下、軸心Pは、固定子10、回転軸2、回転子20及び電動機1の軸心である。実施の形態1において、回転軸2は、円筒状の中空軸であるが、中実軸でも良い。回転子20は、回転軸2の外周面に固定される磁石である永久磁石21を備える。
 固定子10は、図1に示すように、環状の固定子鉄心11と、固定子鉄心11の図2に示すティース14に巻回されたコイル12とを備える。コイル12は、電線がティース14に巻回されて形成される。コイル12は、電線を集中巻したものである。コイル12は、ティース14に電線が直接巻き付けられている。なお、図1では、個々の巻線の断面を省略して、コイル12を一体的に示している。実施の形態1において、コイル12は、集中巻であるが、これに限定されるものではなく、分布巻であってもよい。
 電動機1は、永久磁石21に発生する磁界とコイル12に発生する磁界との作用を利用して、回転トルクを発生し、回転トルクにより回転軸2を回転させる。
 固定子鉄心11は、図2に示すように、積層板15を軸心P方向に複数枚積層することで構成される。積層板15は、図3に示すように、リング形状に形成される。積層板15の外周は、回転軸2と垂直な断面視において回転軸2を中心とする円弧状である円弧面16と、回転軸2と垂直な断面視において積層板15の外周が直線状である直線面17と、から構成されている。円弧面16と直線面17とは、回転軸2を中心とする周方向に交互に積層板15の外縁に設けられている。実施の形態1において、積層板15は、円弧面16と直線面17とをそれぞれ4つ備えるが、円弧面16と直線面17の数は、4つに限定されない。実施の形態1において、積層板15の回転軸2を挟んで対応する二つの直線面17は、互いに平行である。また、実施の形態1において、積層板15は、回転軸2を中心とする周方向に90度ピッチで直線面17を配置されているが、直線面17を配置するピッチは、金属条材30の幅及び積層板15の円弧面16の直径により定められる値であれば良い。
 積層板15は、図4に示す帯状の電磁鋼板により構成された金属条材30に打ち抜き加工が施されて製造される。金属条材30は、平面形状が長方形状であり、厚さが0.35mmから0.6mmである。実施の形態1において、積層板15は、二つの直線面17が金属条材30の外縁30aにより構成され、かつ残りの二つの直線面17が互いに重ねられて、金属条材30の長手方向に並べられる。また、積層板15は、二つの直線面17が金属条材30の外縁30aにより構成され、かつ残り二つの直線面17が互いに重ねられて、直線面17を回転軸2を中心とする周方向に等間隔に配置する。なお、図4に平行斜線で示す金属条材30の積層板15を打ち抜いた残りの部分は、廃却部分31である。また、実施の形態1において、積層板15は、金属条材30から打ち抜かれる前に、内側の孔18が打ち抜かれている。
 また、実施の形態1において、金属条材30は、積層板15の直線面17を金属条材30の外縁30aにより構成し、かつ残りの二つの直線面17を互いに重ねて、隣り合う積層板15の中心間距離を、積層板15の円弧面16の直径よりも小さくして、廃却部分31を小さくしている。また、積層板15の直線面17を周方向に等ピッチ間隔に設ける積層板15の金属条材30に対する配置は、金属条材30の幅および積層板15の直径により決定される。
 以下、本明細書は、積層板15の外縁の直線面17を含む領域を、領域A、領域B、領域C及び領域Dと示す。領域A、領域B、領域C及び領域Dは、直線面17の両端と軸心Pとを結んだ破線で囲まれた領域である。また、本明細書は、積層板15の各円弧面16を含む領域を二つの領域に分け、積層板15の外縁の円弧面16を含む領域を、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hと示す。領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hは、円弧面16の一端及び円弧面16の周方向の中心と軸心Pとを結んだ破線で囲まれた領域である。実施の形態1は、積層板15を、領域A、領域B、領域C、領域D、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hの12の領域に分けて示す。なお、図3は、領域A、領域B、領域C、領域D、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域h間の境界を破線で示しているが、実際の積層板15には、破線が存在しない。また、実施の形態1において、積層板15は、外縁の領域Aと領域aとの境界を、予め設定される基準位置SLとする。実施の形態1において、積層板15は、基準位置SLを領域Aと領域aとの境界としたが、基準位置SLを予め設定すれば積層板15の外縁30aの種々の位置としても良い。また、実施の形態1において、積層板15は、基準位置SLと軸心Pとを結んだ破線を基準線RLとする。 
 また、実施の形態1において、固定子鉄心11は、固定子鉄心11の外周の空間を、図3に示す積層板15の領域Aに対応する第1の空間S1と、領域aに対応する第2の空間S2と、領域bに対応する第3の空間S3と、領域Bに対応する第4の空間S4と、領域cに対応する第5の空間S5と、領域dに対応する第6の空間S6と、領域Cに対応する第7の空間S7と、領域eに対応する第8の空間S8と、領域fに対応する第9の空間S9と、領域D対応する第10の空間S10と、領域gに対応する第11の空間S11と、領域hに対応する第12の空間S12とに分けて示す。なお、第1の空間S1、第2の空間S2、第3の空間S3、第4の空間S4、第5の空間S5、第6の空間S6、第7の空間S7、第8の空間S8、第9の空間S9、第10の空間S10、第11の空間S11、及び第12の空間S12は、軸心Pと平行である。
 固定子鉄心11は、積層板15が軸心Pに沿って複数枚積層されて構成される。固定子鉄心11は、図2に示すように、ズレ積層部13を少なくとも備える。
 ズレ積層部13は、図5に示すように、複数枚の積層板15同士が積層される軸心P方向と平行な一方P1に向かうにしたがって、基準位置SLが回転軸2を中心とする周方向の一方向C1に等間隔にずれて、複数の積層板15が積層されている。実施の形態1において、ズレ積層部13は、一方P1に向かうにしたがって、基準位置SLが一方向C1に等間隔にずれている。実施の形態1において、一方P1は、図2の下から上に向かう方向であるが、軸心Pに平行であれば、図2の上から下に向かう方向でも良い。また、実施の形態1において、一方向C1は、時計回りの方向であるが軸心Pを中心とする周方向であれば反時計回りの方向でも良い。実施の形態1において、ズレ積層部13を構成する複数の積層板15の基準位置SLは、一つ下側の積層板15の基準位置SLよりも一方向C1の前方に配置されている。
 ズレ積層部13を構成する複数の積層板15のうちの軸心P方向に連続して積層される2枚の積層板15の図6に示す基準線RL同士のなす角度θ[°]は、全て等しく形成されている。また、ズレ積層部13を構成する積層板15の数をXとし、一つの積層板15に設けられた直線面17の数をYとする。さらに、複数の積層板15の基準位置SLが回転軸2を中心とする周方向の一方向C1にn周(nは1以上の整数)するように積層されてズレ積層部13が構成されるとし、角度θ[°]は、以下の式1及び式2を満たす。
 θ=(360×n)/X・・・式1
 0<θ<360/Y・・・式2
 式2を満たすことにより、軸心P方向の直線面17同士が同一平面内に重なることなく、複数の積層板15が積層されるズレ積層部13が構成されるため、直線面17による磁束密度のピークが分散され、固定子鉄心11の周方向における磁束密度のピーク値が減少する。さらに、式1を満たすことにより、複数の積層板15の直線面17が回転軸2を中心とする周方向の全周に均一に配置される。すなわち、固定子鉄心11の周方向のある位置において軸方向に配置された直線面17の面積の合計が、周方向全体の位置で均一化されるため、磁束密度の周方向と軸方向の均一性が向上する。
 本実施の形態における固定子鉄心11によれば、式1及び式2を満たすことにより、上述のように固定子鉄心11の磁束密度の周方向と軸方向の均一性を向上できる。
 本実施の形態の変形例として、以下の場合を説明する。ズレ積層部13を構成する複数の積層板15のうちの軸心P方向に連続して積層される2枚の積層板15における基準線RL同士のなす角度θ[°]は、すべて等しい。ズレ積層部13を構成する積層板15の数をXとし、一つの積層板15に設けられた直線面17の数をY(Y>1)とする。さらに、複数の積層板15の基準位置SLが回転軸2を中心とする周方向の一方向C1に回転するように、複数の積層板15が積層されてズレ積層部13が構成されるとし、mを1以上の整数とすると、角度θ[°]は、以下の式3から式5を満たす。
 0<θ<(360/Y)・・・・・式3
 (m*θ)<(360/Y)・・・・式4
 (360/Y)<{(m+1)*θ}・・・・式5
 尚、ズレ積層部13における積層板15の積層枚数は(m+1)枚以上とする。
 図6のように、一枚の積層板15に4つの直線面17が設けられている場合、直線面17が周方向に均一となるように90°間隔で設けられている。すなわち、周方向に4か所、直線面17の法線同士が90°となるように直線面17が順に配置されている。式3は、θが90°未満となることを示しており、軸方向に連続して積層される2枚の積層板15のいずれの直線面17も同一平面内に位置しないことを示している。
 また、式4及び式5を満たさない場合、すなわち複数の積層板15が積層されていき、基準線RLが回転される角度が360/Y[°]となった場合に、2つの直線面17が同一平面内に形成されることになり、当該位置における磁束密度が高くなってしまう。本実施の形態によれば、基準線RLが360/Y[°]付近まで回転されるまで積層板15が積層されても、回転角度が360/Y[°]と一致しないため、同一平面内に直線面17が2枚位置することがなく、磁束密度の不均一化を抑制することができる。
 このように、本実施の形態の変形例における固定子鉄心11によれば、式3から式5を満たすことにより、固定子鉄心11の磁束密度の周方向と軸方向の均一性を向上できる。
 ズレ積層部13を構成する複数の積層板15の軸心P方向に連続して積層される複数の円弧面16の軸心P方向の長さLは、固定子鉄心11の周り止めを行う周り止め部材であるセットピン40の外径Rよりも長い。なお、セットピン40の外径Rは、セットピン40の固定子鉄心11の円弧面16に打ち込まれる側の端面41の外径であり、セットピン40の外形に相当する。セットピン40の外形Rよりも長さLを長くすることによって、セットピン40を円弧面16が配置される領域内に設けることができる。その結果、セットピン40を固定子鉄心11の外形のうち、滑らかな面に設けることができるので、周り止めを確実に行うことができる。
 セットピン40の外径Rは、3mmから15mmが典型的な例であるが、この範囲に限定されない。また、ズレ積層部13を構成する複数の積層板15の軸心P方向に重なりあう円弧面16の数、即ち、積層板15の数は、5枚から50枚が典型的な例であるが、この範囲に限定されない。実施の形態1において、固定子鉄心11は、ズレ積層部13の円弧面16の一つにセットピン40が打ち込まれて周り止めされる。実施の形態1において、セットピン40は、円柱状であるが、セットピン40の外形は、円柱状に限定されない。実施の形態1において、セットピン40は、固定子鉄心11の軸心P方向の中央に配置されている。
 実施の形態1において、固定子鉄心11を構成する複数の積層板15は、溶接、又は接着剤を用いた接着により互いに固定される。
 実施の形態1において、固定子鉄心11のズレ積層部13は、軸心P方向に重なりあう2枚の積層板15の基準線RL同士のなす角度θが30度となるように、複数の積層板15が積層されている。また、実施の形態1において、ズレ積層部13の一方P1の最も後方、即ち図2中の最も下側の積層板15の各領域A、領域B、領域C、領域D、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hと、第1の空間S1から第12の空間S12とが、図3に示すように対応している。ズレ積層部13の各積層板15の各領域A、領域B、領域C、領域D、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hと、第1の空間S1から第12の空間S12との対応関係は、以下の表1となる。
Figure JPOXMLDOC01-appb-T000001
 表1の1枚目の積層板15は、ズレ積層部13の図2中の最も下側の積層板15を示し、2枚目の積層板15は、ズレ積層部13の図2中の最も下側の積層板15の一つ上の積層板15を示しており、3枚目の積層板15は、ズレ積層部13の図2中の最も下側の積層板15の二つ上の積層板15を示している。表1は、ズレ積層部13を構成する各積層板15の第1の空間S1から第12の空間S12それぞれに対応する各領域A、領域B、領域C、領域D、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hを示している。
 表1によれば、実施の形態1に係る固定子鉄心11のズレ積層部13の積層板15は、1枚目の積層板15と13枚目の積層板15との各領域A、領域B、領域C、領域D、領域a、領域b、領域c、領域d、領域e、領域f、領域g及び領域hの第1の空間S1から第12の空間S12に対する対応関係が等しくなっている。このため、実施の形態1に係る固定子鉄心11のズレ積層部13は、1枚目の積層板15から12枚目の積層板15の第1の空間S1から第12の空間S12に対する対応関係を繰り返すことになる。また、表1によれば、1枚目の積層板15から12枚目の積層板15との間において、第1の空間S1から第12の空間S12それぞれが、直線面17を4つ、円弧面16を8つ備える。つまり、固定子鉄心11のズレ積層部13は、実施の形態1に示すように、積層板15を積層してズレ積層部13を構成することにより、積層板15が真円ではないにもかかわらず、固定子鉄心11を円柱状に近い形状にすることができ、固定子鉄心11の磁束密度を周方向に一様にすることができる。なお、実施の形態1において、ズレ積層部13は、積層板15の数Xが48であり、円弧面16の数Yが4であり、回転される回数nが4であり、式1及び式2によると、角度θが30度となる。
 また、実施の形態1に示す固定子鉄心11は、積層板15を同形状に打ち抜いて、ティース14も一方向C1にずらしても良く、積層板15を打ち抜く際に積層される順番に基づいてティース14の位置を異ならせて、積層板15の積層後にティース14を軸心P方向に重ねても良い。
 実施の形態1に係る電動機1によれば、固定子鉄心11を構成する積層板15の外縁を真円に形成せずに、材料歩留りを向上しても、軸心P方向の一方P1に向かうにしたがって基準位置SLが一方向C1にずれるように、複数枚の積層板15を積層したズレ積層部13を備える。また、ズレ積層部13は、複数の積層板15の直線面17が周方向の全周に均一に配置されている。このため、電動機1は、固定子鉄心11を円柱状に近い形状にすることができ、磁束密度を一様にすることができる。その結果、電動機1は、材料歩留りの向上と磁束密度の均一化との両立を図ることができ、特性の向上を図ることができる。
 また、実施の形態1に係る電動機1は、ズレ積層部13が式1及び式2を満たしているので、固定子鉄心11を円柱状に近い形状にすることができ、磁束密度を一様にすることができ、材料歩留りの向上と磁束密度の均一化との両立を図ることができる。
 また、実施の形態1に係る電動機1は、ズレ積層部13を構成する複数の積層板15の軸心P方向に重なりあう複数の円弧面16の長さLがセットピン40の外形よりも長いので、セットピン40を固定子鉄心11の外周の円弧状の面に打ち込むことができる。
実施の形態2.
 図7は、本発明の実施の形態2に係る電動機の固定子鉄心の斜視図である。なお、図7において、実施の形態1と同一部分には、同一符号を付して説明を省略する。
 実施の形態2に係る電動機1の固定子鉄心11-2は、図7に示すように、積層板15-2が円弧面16と直線面17とを5つ備え、軸心P方向に円弧面16と直線面17とが順に重なりあうこと以外、実施の形態1と同じ構成である。
 実施の形態2に係る電動機1によれば、固定子鉄心11-2を構成する積層板15-2の外縁を真円に形成せずに、材料歩留りを向上しても、軸心P方向の一方P1に向かうにしたがって基準位置SLが一方向C1にずれるように、複数枚の積層板15-2を積層したズレ積層部13を備える。また、ズレ積層部13は、複数の積層板15-2の直線面17が周方向の全周に均一に配置されている。このため、実施の形態2に係る電動機1は、実施の形態1と同様に、固定子鉄心11-2を円柱状に近い形状にすることができ、磁束密度を一様にすることができる。その結果、電動機1は、材料歩留りの向上と磁束密度の均一化との両立を図ることができる。
実施の形態3.
 図8は、本発明の実施の形態3に係る電動機の固定子鉄心の斜視図である。なお、図8において、実施の形態1と同一部分には、同一符号を付して説明を省略する。
 実施の形態3に係る電動機1の固定子鉄心11-3は、図8に示すように、ズレ積層部13に加え、整列積層部19を備えている以外、実施の形態1と同じ構成である。ズレ積層部13は、固定子鉄心11-3の軸心P方向の両端部に配置されている。
 本実施の形態における整列積層部19においては、複数の積層板15-2はそれぞれの直線面17が同一平面内に位置するように積層される。
 整列積層部19は、固定子鉄心11-3の軸心P方向の中央部に配置されている。実施の形態3において、整列積層部19が設けられる軸心P方向の中央部とは、固定子鉄心11-3の軸心P方向の中央を含む位置を示している。実施の形態3において、整列積層部19は、固定子鉄心11-3の軸心P方向の中央部に設けられるが、整列積層部19が設けられる位置は、固定子鉄心11-3の軸心P方向の種々の位置でも良い。
 整列積層部19は、基準位置SLが軸心P方向に重なって、複数の積層板15が積層されている。整列積層部19の軸心方向の長さL-3は、セットピン40の外径Rよりも長い。実施の形態3において、整列積層部19は、円弧面16の一つにセットピン40が打ち込まれて周り止めされる。
 本実施の形態では、セットピン40は整列積層部19における複数の積層板15の円弧面16の領域内に設けられる場合を示したが、セットピン40は整列積層部19における複数の積層板15の直線面17の領域内に設けられても良い。いずれの場合でも、セットピン40を凹凸のない滑らかな面上に設置できるので、周り止めの精度を向上できる。セットピン40を円弧面16の領域内に設けた場合は、直線面17の領域内に設けた場合に比べてセットピン40と積層板15との接触面積を大きくできるため、周り止めの精度をより向上できる。
 整列積層部19を構成する積層板15の枚数は、各積層板15の厚さとセットピン40の外形に基づいて、長さL-3がセットピン40の外形よりも長くなる枚数に定められる。
 実施の形態3に係る電動機1によれば、固定子鉄心11-3を構成する積層板15の外縁を真円に形成せずに、材料歩留りを向上しても、軸心P方向の一方P1に向かうにしたがって基準位置SLが一方向C1にずれるように、複数枚の積層板15を積層するズレ積層部13を備える。また、ズレ積層部13は、複数の積層板15の直線面17が周方向の全周に均一に配置されている。このため、実施の形態3に係る電動機1は、実施の形態1と同様に、固定子鉄心11-3を円柱状に近い形状にすることができ、磁束密度を一様にすることができる。その結果、電動機1は、材料歩留りの向上と磁束密度の均一化との両立を図ることができ、特性の向上を図ることができる。
 また、実施の形態3に係る電動機1によれば、整列積層部19を備えているために、セットピン40を、固定子鉄心11-3の外周の円弧状の面に打ち込むことができる。電動機1は、材料歩留りを向上させることを可能としながらも、固定子鉄心11-3にセットピン40を打ち込むことができる。
 また、実施の形態3に係る電動機1によれば、整列積層部19の長さL-3がセットピン40の外形よりも長いので、セットピン40を固定子鉄心11の外周の円弧状の面に打ち込むことができる。
 また、実施の形態3に係る電動機1によれば、ズレ積層部13を軸心P方向の両端部に配置し、整列積層部19を軸心P方向の中央部に配置しているので、磁束密度を一様にすることができ、特性の向上を図ることができる。
実施の形態4.
 図9は、本発明の実施の形態4に係る電動機の固定子鉄心の積層板を形成する金属条材の平面図である。なお、図9において、実施の形態1と同一部分には、同一符号を付して説明を省略する。
 実施の形態4に係る電動機1の固定子鉄心11を構成する積層板15-4は、図9に示すように、円弧面16と直線面17とを3つずつ備える。実施の形態4に係る積層板15-4は、金属条材30-4の幅方向に積層板15-4を2列配置している。また、実施の形態4において、積層板15-4の直線面17は、回転軸2を中心とする周方向に120度ピッチで配置されている。
 実施の形態4に係る電動機1によれば、実施の形態1と同様に、固定子鉄心11を構成する積層板15-4の外縁を真円に形成せずに、材料歩留りを向上しても、軸心P方向の一方P1に向かうにしたがって基準位置SLが一方向C1にずれるように、複数枚の積層板15-4を積層するため、磁束密度を一様にすることができる。その結果、実施の形態4に係る電動機1は、実施の形態1と同様に、材料歩留りの向上と磁束密度の均一化との両立を図ることができ、特性の向上を図ることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 電動機(回転電機)、2 回転軸、11,11-2,11-3 固定子鉄心、13 ズレ積層部、15,15-2,15-4 積層板、16 円弧面、17 直線面、19 整列積層部、40 セットピン、41 端面、P 軸心、SL 基準位置、RL 基準線、P1 一方、C1 一方向、L,L-3 長さ、R 外径(外形)、θ 角度。

Claims (6)

  1.  回転軸と垂直な断面における外周が前記回転軸を中心とする円弧状である円弧面と、前記外周が直線状の直線面と、が交互に外縁に設けられた積層板を、前記回転軸の軸心方向に複数枚積層することで構成される固定子鉄心を備え、
     前記固定子鉄心は、前記積層板の外縁において予め設定される基準位置が、前記周方向に変化するように複数の前記積層板が積層されたズレ積層部を備え、
     前記ズレ積層部を構成する前記積層板の数をXとし、一つの積層板に設けられた前記円弧面の数をYとし、前記ズレ積層部を構成する複数の積層板の前記周方向の一方向にn周(nは整数)回転されるとすると、
     前記ズレ積層部を構成する前記積層板のうち、前記軸心方向に連続して積層される2枚の前記積層板において、前記基準位置と軸心とを結んだ基準線同士のなす角度θ[°]は、式1及び式2を満たすこと
     を特徴とする回転電機。
     θ=(360×n)/X・・・式1
     θ<360/Y・・・式2
  2.  回転軸と垂直な断面における外周が前記回転軸を中心とする円弧状である円弧面と、前記外周が直線状の直線面と、が交互に外縁に設けられた積層板を、前記回転軸の軸心方向に複数枚積層することで構成される固定子鉄心を備え、
     前記固定子鉄心は、前記積層板の外縁において予め設定される基準位置が、前記周方向に回転するように複数の前記積層板が積層されたズレ積層部を備え、
     一つの積層板に設けられた前記直線面の数をY(Y>1)とし、mを1以上の整数とすると、
     前記ズレ積層部を構成する前記積層板は(m+1)枚以上であり、
     前記ズレ積層部を構成する前記積層板のうち、前記軸心方向に連続して積層される2枚の前記積層板において、前記基準位置と軸心とを結んだ基準線同士のなす角度θ[°]は、式3から式5を満たすこと
     を特徴とする回転電機。
     0<θ<(360/Y)・・・式3
     (m*θ)<(360/Y)・・・式4
     (360/Y)<{(m+1)*θ}・・・式5
  3.  前記ズレ積層部の円弧面内に前記固定子鉄心の周り止め部材が設けられることを特徴とする請求項1または請求項2に記載の回転電機。
  4.  前記固定子鉄心は、前記基準位置が前記軸心方向に重なって前記積層板が積層された整列積層部を備える
     ことを特徴とする請求項1から請求項3のいずれか1項に記載の回転電機。
  5.  前記整列積層部の円弧面内に、前記固定子鉄心の周り止め部材が設けられることを特徴とする請求項4に記載の回転電機。
  6.  前記整列積層部は、前記固定子鉄心の前記軸心方向の中央部に配置され、
     前記ズレ積層部は、前記固定子鉄心の前記軸心方向の両端部に配置される
     ことを特徴とする請求項4又は請求項5に記載の回転電機。
PCT/JP2016/065363 2016-05-24 2016-05-24 回転電機 WO2017203612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016568068A JPWO2017203612A1 (ja) 2016-05-24 2016-05-24 回転電機
PCT/JP2016/065363 WO2017203612A1 (ja) 2016-05-24 2016-05-24 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065363 WO2017203612A1 (ja) 2016-05-24 2016-05-24 回転電機

Publications (1)

Publication Number Publication Date
WO2017203612A1 true WO2017203612A1 (ja) 2017-11-30

Family

ID=60411184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065363 WO2017203612A1 (ja) 2016-05-24 2016-05-24 回転電機

Country Status (2)

Country Link
JP (1) JPWO2017203612A1 (ja)
WO (1) WO2017203612A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065489A (ja) * 2003-08-08 2005-03-10 General Electric Co <Ge> 逆方向ステープルシステムおよび方法
JP2010119192A (ja) * 2008-11-12 2010-05-27 Yaskawa Electric Corp 永久磁石形モータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134650U (ja) * 1985-02-05 1986-08-22
JPS6229735U (ja) * 1985-08-07 1987-02-23
JPH1118334A (ja) * 1997-06-18 1999-01-22 Fuji Electric Co Ltd 回転電機の固定子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065489A (ja) * 2003-08-08 2005-03-10 General Electric Co <Ge> 逆方向ステープルシステムおよび方法
JP2010119192A (ja) * 2008-11-12 2010-05-27 Yaskawa Electric Corp 永久磁石形モータ

Also Published As

Publication number Publication date
JPWO2017203612A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
US11056934B2 (en) Rotary electric machine with a stator core with teeth having different protrusion portions heights
JP6390716B2 (ja) ステータ製造方法及びコイル
JP4745991B2 (ja) 電機子の絶縁シートおよび電機子
WO2012026158A1 (ja) 回転電機及びそのステータコアを製造するためのステータコアの製造装置
JP2013027240A (ja) 回転電機
WO2015156353A1 (ja) 同期リラクタンス型回転電機
CN106797169B (zh) 旋转变压器
US20210044162A1 (en) Axial gap motor
US20200036251A1 (en) Electric rotary machine
JP2011078210A (ja) 固定子鉄心及びその製造方法
JP5502533B2 (ja) 永久磁石型電動機
WO2018025428A1 (ja) 固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ
TWI552486B (zh) Axial air gap motor
WO2017203612A1 (ja) 回転電機
JP2014222958A (ja) 回転電機の積層鉄心
US20220294298A1 (en) Stator of rotary electric machine and rotary electric machine
JP2016123249A (ja) コイル
JP2013039002A (ja) 積層コア、積層コアの製造方法及び回転電機
CN113039704B (zh) 定子及使用该定子的电动机
WO2024057837A1 (ja) 回転電機のコア及び回転電機
TW201820748A (zh) 電動機及電動機的製造方法
WO2018230436A1 (ja) 回転電気機械
JP7308645B2 (ja) 回転電機
JP5352442B2 (ja) 永久磁石モータ
WO2024089765A1 (ja) 回転電機の固定子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016568068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903094

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903094

Country of ref document: EP

Kind code of ref document: A1