WO2018025428A1 - 固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ - Google Patents

固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ Download PDF

Info

Publication number
WO2018025428A1
WO2018025428A1 PCT/JP2017/004291 JP2017004291W WO2018025428A1 WO 2018025428 A1 WO2018025428 A1 WO 2018025428A1 JP 2017004291 W JP2017004291 W JP 2017004291W WO 2018025428 A1 WO2018025428 A1 WO 2018025428A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
stator
unit
electromagnetic steel
steel strip
Prior art date
Application number
PCT/JP2017/004291
Other languages
English (en)
French (fr)
Inventor
川又 昭一
榎本 裕治
健彌 寳井
邦人 野口
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018025428A1 publication Critical patent/WO2018025428A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a stator for an axial gap type motor, a method for manufacturing the stator, an axial gap type motor using the stator, and an electric pump using the axial gap type motor.
  • an axial gap type motor has a plurality of core portions, a stator formed by winding a winding around the core portions, and one side of an axial end surface of the stator. It has the structure which has a flat rotor.
  • Patent Document 1 shows a configuration of an axial gap type motor core that reduces the cost of the mold, reduces the cost, and further improves the circumferential rigidity of the teeth during rotational driving.
  • the core described in Patent Document 1 is a unit core formed by physically dividing the core into a predetermined number in the circumferential direction, and the divided unit core is formed by laminating a plurality of steel plates. is there. Therefore, the steel plate is formed in the shape of a unit core, and is formed so that the shape increases from the inner peripheral side toward the outer peripheral side.
  • the core of the axial gap type motor described in Patent Document 1 forms a core by arranging separated unit cores in a circumferential direction and combining them. For this reason, it is necessary to join or fit each adjacent unit core, so that the assembly workability becomes complicated, and if the processing accuracy of the unit core is deteriorated or the joining or fitting is not performed well, they are adjacent to each other. There is a problem that a gap is generated between the unit cores to deteriorate the magnetic characteristics.
  • FIGS. 11A and 11B cores configured as shown in FIGS. 11A and 11B have been proposed.
  • a continuous elongated electromagnetic steel strip 61 is spirally wound while being laminated from the winding start end 61S, and when reaching a predetermined number of laminations, it is cut at the winding end 61E, It is formed in an annular core 60 having a predetermined length in the radial direction.
  • the annular core 60 in which the electromagnetic steel strips 61 are laminated is scraped at predetermined angles to form slot portions 62, and further the slot portions A unit core portion 63 is formed between 62 and a core back portion 64 is formed on the outer peripheral side.
  • a processing machine such as a milling machine
  • the core 60 is formed by laminating and winding the continuous electromagnetic steel strips 61, no gap is generated as in the case of the core in which the unit cores are combined as described above, so that the magnetic characteristics are deteriorated. Can be suppressed.
  • the winding of the electromagnetic steel strip 61 and the processing of the slot portion are separate processes, and the processing of the slot portion requires a jig for fixing the electromagnetic steel strip 61 laminated in the radial direction. Furthermore, a jig for plastically deforming the outer peripheral surface of the core portion and the outer peripheral surface of the core back portion into an arc shape is required, which increases the manufacturing cost.
  • An object of the present invention is to use a novel stator capable of suppressing the deterioration of magnetic properties due to bending stress without generating gaps in adjacent unit cores, and a method for manufacturing the stator, and the stator. It is an object to provide an axial gap type motor and an electric pump using the axial gap type motor.
  • a feature of the present invention is that it is made of a thin plate-shaped electromagnetic steel strip in which at least one round of the core formed in an annular shape is continuous, and the core is formed by laminating the electromagnetic steel strip in the radial direction.
  • the outer peripheral surface of the unit core portion and the outer peripheral surface of the core back portion formed on the core are formed in a flat shape.
  • the unit core is continuously formed, no gap is generated, and the outer peripheral surface of the unit core part and the outer peripheral surface of the core back part of the core are formed in a flat shape, so that the bending stress is Is mitigated, so that deterioration of magnetic properties can be suppressed.
  • FIG. 1 is a schematic cross-sectional view of an axial gap type motor to which the present invention is applied. It is a perspective view of the core which comprises the stator which becomes the 1st Embodiment of this invention. It is a block diagram explaining the shape of the electromagnetic steel strip before laminating
  • FIG. 12 It is sectional drawing of the radial direction of the polygonal laminated core formed using the annular core shown in FIG. It is a block diagram of the manufacturing apparatus which manufactures the electromagnetic steel strip used for 2nd Embodiment. It is a flowchart explaining the manufacturing process of the manufacturing apparatus shown in FIG. It is sectional drawing of the electric water pump to which this invention is applied. It is a perspective view of the core before being processed into the final shape by the conventional core.
  • FIG. 12 is a perspective view of the core after being processed into a final shape by the core shown in FIG.
  • FIG. 1 shows an axial cross section of an axial gap type motor 10 using a stator according to an embodiment of the present invention.
  • the axial gap motor 10 includes a stator 12 that is fixed in a housing 11 and a rotor 13 that includes a permanent magnet that is rotatably disposed on an end surface in the axial direction of the stator 12.
  • the stator 12 and the rotor 13 are arranged so as to face each other with a predetermined gap.
  • the stator 12 is formed such that the core back portion 14 side is positioned on the axial end surface portion 11A of the housing 11, and the core portion 15 extends toward the opposite side.
  • a plurality of core portions 15 are provided with a predetermined angle in the radial direction, and slot portions (not shown in FIG. 1) are formed between the core portions 15.
  • a winding 17 is disposed in the slot portion, and a rotating magnetic field is formed by the winding 17 and the core portion 15.
  • a permanent magnet 18 is provided on the side surface of the rotor 13 facing the core portion 15, and the rotor 13 is rotated according to the rotating magnetic field.
  • the rotor 13 includes a back yoke 19, and a permanent magnet 18 is disposed on the back yoke 19.
  • the configuration of the rotor 13 is sufficient if it has a function necessary for configuring the axial gap type motor 10.
  • a rotating shaft 20 is fixed at the center of the rotor 13 and is supported by a bearing 21 disposed near the center of the housing 11.
  • a bearing 21 a rolling bearing, a sliding bearing, or the like can be used.
  • the core of the present embodiment is not formed as an annular laminated core like the conventional core shown in FIG. 11B, but as a polygonal annular laminated core. Has been.
  • FIG. 2 shows a polygonal annular laminated core 22 (hereinafter referred to as a polygonal laminated core) completed by laminating electromagnetic steel strips press-punched by a punching machine (pressing machine) in the radial direction. ing.
  • This polygonal laminated core 22 connects a unit core part around which a winding is wound, a slot part formed between adjacent unit core parts, and an adjacent unit core part formed corresponding to the slot part. It is a laminated core in which the core back portion to be arranged is annularly arranged.
  • the major feature of the polygonal laminated core 22 is that, as shown in FIG. 2, at least one round of the annularly formed laminated core (in this embodiment, from the winding start end to the winding end end).
  • the magnetic steel strips 23 (made of continuous thin plate-shaped electromagnetic steel strips 23) are laminated in the radial direction, the outer peripheral surface of the unit core portion 24 formed in the laminated electromagnetic steel strips 23, and the electrical steel
  • the outer peripheral surface of the core back portion 25 formed on the band 23 is formed in a planar shape to form a polygonal laminated core 22.
  • the polygonal laminated core 22 is formed in a polygonal shape corresponding to the number of slots.
  • an example of a 9-sided polygon is shown with 9 slots.
  • FIG. 2 “a” to “i” are assigned to the unit core part, core back part, and slot part corresponding to the number of slots.
  • a plurality of unit core portions 24 are formed in the polygonal laminated core 22, and since there are 9 slots in the present embodiment, nine unit core portions 24a, 24b, 24c, 24d, 24e, 24f, 24g, 24h , 24i are formed.
  • the unit core portion 24 is collectively described.
  • the polygonal laminated core 22 is formed with a core back portion 25 that connects adjacent unit core portions 24. Since this embodiment has 9 slots, nine core back portions 25a, 25b, 25c, 25d, 25e, 25f, 25g, 25h, and 25i are formed. Hereinafter, the core back portion 25 is collectively described.
  • the core back portion 25 is formed by forming a slot portion 26 described later in an elongated electromagnetic steel strip.
  • a slot portion 26 is formed between each unit core portion 24. Since there are nine slots in this embodiment, nine slot portions 26a, 26b, 26c, 26d, 26e, 26f, 26g, 26h, and 26i are formed. Hereinafter, they are collectively referred to as a slot portion 26.
  • the slot portion 26 extends from the outermost peripheral surface to the innermost peripheral surface of the polygonal laminated core 22 toward the center, and the width thereof is constant (parallel slot). Accordingly, the width of the unit core portion 24 gradually decreases from the outermost peripheral surface to the innermost peripheral surface.
  • a bent portion 27 is formed near the center in the circumferential direction of the core back portion 25 sandwiched between the adjacent unit core portions 24.
  • the bent portion 27 is also near the center of the slot portion 26 in the circumferential direction. Therefore, the polygonal laminated core 22 having a hexagonal shape is formed by bending the bent portion 27 of the core back portion 25.
  • each unit core portion 24 and the bent portions 27 of the core back portions 25 on both sides corresponding to each unit core portion 24 have the same planar shape.
  • windings wound around each unit core portion 24 are arranged. The winding may be directly wound around each unit core portion 24 or may be configured such that a separately wound winding is inserted into each unit core portion 24.
  • FIG. 3 shows a shape after the unit core portion 24, the core back portion 25, and the slot portion 26 are punched by a punching machine, and the core back portion 25 corresponding to the slot portion 26 is bent around the center in the circumferential direction.
  • the polygonal laminated core 22 shown in FIG. 2 is formed by bending the portion 27.
  • the electromagnetic steel strip 23 has an elongated and continuous plate shape, and the unit for each layer between the winding start end 23S of the first layer P1 and the winding end 23E of the final layer Pn.
  • a core portion 24, a core back portion 25, and a slot portion 26 are formed.
  • the electromagnetic steel strips 23 are stacked from the inside of the polygonal laminated core 22 and are cut when a predetermined number of layers are reached.
  • the length of one layer corresponding to one round of the annular polygonal laminated core 22 becomes longer as it is wound up.
  • the punching pitch P of the slot portion 26 of the first layer P1 is roughly as follows.
  • the thickness of the electromagnetic steel strip 23 is “t”
  • the average inner radius of the polygonal laminated core 22 is “R”
  • bent portion 27 near the center in the circumferential direction of the core back portion 25 sandwiched between the unit core portions 24, and the core back portion 25 is bent along the bent portion 27.
  • the bent portion 27 is not provided in the electromagnetic steel strip 23 in advance, but is formed as a result when it is wound up by a winding jig of a winding machine. This will be described with reference to FIG.
  • the unit core portion 24 and the core back portion 25 existing between the respective bent portions 27 are in the same plane, no bending stress is generated in the planar electromagnetic steel strip 23 or even if it occurs. It will be extremely small. For this reason, the deterioration of the magnetic characteristics due to bending stress can be suppressed. Moreover, since the unit core part 24 formed in the 1st layer P1 (for 1 round) is formed continuously, there is no possibility that the space
  • the second layer P2 is subsequently wound.
  • nine unit core parts 24 are formed across the slot part 26, and the remaining area of the electromagnetic steel strip 23 in the part where the slot part 26 is formed is formed as the core back part 25.
  • the part corresponding to the core back part 25 of the unit core part 24 functions as a core back.
  • the pitches P21 to P29 between the centers of the circumferential widths of the unit core portions 24 adjacent to each other across the slot portion 26 are formed to have the same width.
  • the width of the unit core portion 24 of the second layer P2 is formed larger than the width of the unit core portion 24 of the first layer P1. This is because the circumferential width increases as the unit core portion 24 extends toward the outer peripheral side as shown in FIG.
  • the slot punching pitch P is increased corresponding to the increase in diameter corresponding to the thickness “t” of the electromagnetic steel strip 23.
  • the width of the slot portion 26 is formed to be the same as that of the first layer P1.
  • the bent portion 27 of the second layer P2 is not provided in the electromagnetic steel strip 23, but is formed as a result when it is wound up by a winder.
  • the unit core portion 24 and the core back portion 25 existing between the respective bent portions 27 are on the same plane, bending stress is not generated or is extremely small even if generated. For this reason, the deterioration of the magnetic characteristics due to bending stress can be suppressed. Further, since the unit core portion 24 formed in the second layer (one turn) P2 is continuously formed, there is no possibility of generating a gap as in Patent Document 1, and the magnetic characteristics are deteriorated. It can be suppressed.
  • the final layer Pn is subsequently wound.
  • nine unit core portions 24 are formed across the slot portion 26, and the remaining area of the portion where the slot portion 26 is formed is formed as the core back portion 25.
  • the part corresponding to the core back part 25 of the unit core part 24 functions as a core back.
  • the pitches Pn1 to Pn9 between the centers in the width direction of adjacent unit core portions 24 across the slot portion 26 are formed to have the same width.
  • the width of the unit core portion 24 of the final layer Pn is formed to be the largest as compared with the width of the unit core portion 24 of the other layers. This is because the circumferential width increases as the unit core portion 24 extends toward the outer peripheral side as shown in FIG.
  • the final layer Pn also has a slot punching pitch P corresponding to the increase in diameter corresponding to the thickness “t” of the electromagnetic steel strip 23.
  • the width of the slot portion 26 is the same as that of each layer.
  • bent portion 27 near the center in the circumferential direction of the core back portion 25 sandwiched between the unit core portions 24, and the core back portion 25 is bent along the bent portion 27. is there.
  • the bent portion 27 of the final layer Pn is not provided in the electromagnetic steel strip 23, but is formed as a result when it is wound by a winder.
  • the annularly formed core is made of a continuous thin plate-shaped electromagnetic steel strip, and the core is formed by laminating the electromagnetic steel strip in the radial direction.
  • the configuration is such that the outer peripheral surface of the unit core portion of each layer formed and the outer peripheral surface of the core back portion of each layer formed in the core are formed in a planar shape.
  • the unit core is continuously formed, there is no gap, and the outer peripheral surface of the core unit core portion and the outer peripheral surface of the core back portion are formed in a flat shape, so that the bending stress is relieved. Therefore, it is possible to suppress deterioration of magnetic characteristics.
  • a forming jig or the like for forming the outer peripheral surface of the unit core portion and the outer peripheral surface of the core back portion in an arc shape is not required, and thus the manufacturing cost can be reduced.
  • the first embodiment is different from the first embodiment in that the position of the bent portion of the core back portion 25 is near the boundary between the core portion and the slot portion. It is different in that it is set to.
  • the present embodiment is the same as the first embodiment except that the position of the bent portion of the core back portion 25 is set near the boundary between the core portion and the slot portion. The description of is omitted.
  • FIG. 4 shows a shape after the unit core part 24, the core back part 25, and the slot part 26 are punched by a punching machine, and the boundary part (joint part) between the unit core part 24 and the slot part 26 is bent. By bending as 28, the polygonal laminated core 22 shown in FIG. 5 is formed.
  • the electromagnetic steel strip 23 has an elongated continuous plate shape, and each layer is formed between the winding start end 23S of the first layer P1 and the winding end 23E of the final layer Pn.
  • a unit core part 24, a core back part 25, and a slot part 26 are formed for each unit.
  • the core back portion 25 at the boundary portion has a bent portion 28, and the core back portion 25 is bent along the bent portion 28. Similar to the first embodiment, the bent portion 28 is not provided in the electromagnetic steel strip 23 but is formed as a result when it is wound up by a winder.
  • the unit core portion 24 existing between the respective bent portions 28 and the core back portion 25 existing between the respective bent portions 28 have a planar shape, so that bending stress is not generated or generated. It will be extremely small.
  • the core back portion 25 corresponding to the slot portion 26 and the core back portion 25 corresponding to the unit core portion 24 (in this case, the core back portion is formed in the unit core portion 24).
  • the boundary between the unit core portion and the slot portion is bent as the bent portion 28. Therefore, the surface of the unit core part 24 and the surface of the core back part 25 existing between the unit core parts 24 are formed in a planar shape.
  • FIG. 5 shows a cross-section of the polygonal laminated core 22 formed by bending in a plane perpendicular to the axial direction.
  • the region of the core back portion 15 corresponding to the slot portion 26 and the region of the unit core portion 24 are formed in a planar shape. Will be.
  • each unit core portion 24 and the core back portion 25 existing between the unit core portions 24 have a planar shape, so that bending stress is not generated or is extremely small even if generated. For this reason, the deterioration of the magnetic characteristics due to bending stress can be suppressed. Moreover, since the unit core part 24 is formed continuously, there is no possibility of generating a gap as in Patent Document 1, and it is possible to suppress deterioration of the magnetic characteristics.
  • bent portion 28 is formed in the core back portion 25 at the boundary portion between the unit core portion 24 and the slot portion 16, the bending process is facilitated by a notch effect, and it is difficult to cause a dimensional error due to bending. .
  • the positional accuracy of the bent portion 28 between the unit core portion 24 and the core back portion 25 affects the shape change of the polygonal laminated core 22 in the final shape in which the slotted punched electromagnetic steel strips 23 are laminated in the circumferential direction. give.
  • the outer diameter of the polygonal laminated core 22 is large, a gap is generated between the laminated electromagnetic steel strips 23 due to the positional displacement in the circumferential direction when the electromagnetic steel strips 23 are laminated. It becomes a factor of.
  • the bent portion 28 between the unit core portion 24 and the core back portion 25 is based on the circumferential end portions 24 ⁇ / b> A of the unit core portion 24.
  • the error is alleviated and the polygonal laminated core 22 with good lamination accuracy can be provided.
  • FIGS. 6 and 7, are different from the second embodiment in the following points.
  • a single continuous elongated electromagnetic steel strip is spirally laminated to form the polygonal laminated core 22, but in this embodiment, a polygonal annular core is formed for each layer.
  • the polygonal laminated core 22 is formed by separating them and combining them so as to be laminated. In this case, the dimensions are determined so that the inner periphery and the outer periphery of each annular core are in close contact.
  • this embodiment since this embodiment only differs in the laminated form of the annular core from the second embodiment, the same description is omitted.
  • one continuous electromagnetic steel strip 23 shown in FIG. 4 is divided so as to be independent for each layer to be laminated to form a polygonal annular core.
  • a polygonal laminated core 22 configured as described above is shown.
  • FIG. 6 typically shows a polygonal independent annular core 29 of the first layer P1, which is obtained by cutting out the first layer P1 shown in FIG. Therefore, the second layer P2 to the final layer Pn are separated and cut out and stacked in a shape as shown in FIG.
  • the electromagnetic steel strip 23 of the cut first layer P1 is bent by a bent portion 28, and thereafter both ends in the circumferential direction of the electromagnetic steel strip 23 of the first layer P1 are welded by a welded portion 30.
  • a polygonal independent annular core 29 is formed.
  • the polygonal annular core 29 has a bent portion 28 at the boundary between the core back portion 25 corresponding to the slot portion 26 and the core back portion 25 corresponding to the unit core portion 24. It is bent. Therefore, the surface of the unit core part 24 and the surface of the core back part 25 existing between the unit core parts 24 are formed in a planar shape.
  • the polygonal annular core 29 made in this way is laminated from the inner circumference side toward the outer circumference according to the order of lamination as shown in FIG.
  • the welded portion 30 is formed in the vicinity of the center in the circumferential direction of the core back portion 25, and is disposed so as to be shifted by one slot for each layer with respect to the slot portion 26 of each layer. Has been.
  • the welded portion 30 of the divided polygonal annular core 29 is preferably dispersed in the circumferential direction for each layer as shown in FIG.
  • the magnetic property imbalance due to the presence of the welded portion 30 can be reduced.
  • the welded portion 30 of the annular core 29 does not have to be welded for each layer, and may be welded only at the outermost periphery or at an arbitrary position of each layer. In this case, the welding operation for each layer is not necessary, and the manufacturing cost of the polygonal laminated core 22 can be reduced.
  • the polygonal annular core 29 may be configured such that each layer is joined in advance by the welded portion 30 and inserted into each layer from the axial direction.
  • a polygonal laminated annular core composed of a plurality of layers of spirally laminated regions is formed by the continuous electromagnetic steel strip 23, and an independent polygonal annular core welded from the outermost periphery thereof at the welded portion as the final layer. 29 can be inserted and combined. According to this, it becomes unnecessary to weld and join the winding end portion 23E of the polygonal annular core 29 formed by the continuous electromagnetic steel strip 23, and the manufacturing cost can be reduced, and the welding location of the winding end portion 23E can be reduced. And the effect of alleviating the deterioration of the magnetic properties of the welded portion 30 can be obtained.
  • FIG. 8 is a diagram for explaining a method of manufacturing the polygonal laminated core 22 according to the second embodiment.
  • the electromagnetic steel strip (magnetic thin plate) 23 uses a punching machine 32 provided with a punching blade 31 for punching one surface in the longitudinal direction of the electromagnetic steel strip 23 with a slot width Wp having a fixed length, and the punching blade 31 is indicated by an arrow. By pushing down downward, one surface of the electromagnetic steel strip 23 is punched out, and the slot portion 26 is formed.
  • the winding start end 23S of the electromagnetic steel strip 23 from which the slot portion 26 has been punched is temporarily fixed to a winding jig 33, and for example, a guide roller 34 and a feed roller for feeding the electromagnetic steel strip 23 in the direction of the arrow.
  • the winding jig 33 rotates in accordance with the setting of the step motor that drives the feeding roller 35 of the feeding mechanism 35, the electromagnetic steel strip 23 spirals around the winding jig 33 of the winding machine. Is laminated.
  • the core back portion 25 is pressed against the take-up jig 33 by the presser roller 36, and the bent portion 28 of the core back portion 25 and the corner portion 33A of the take-up jig 33 are in close contact with each other.
  • a rectangular laminated core 22 can be formed.
  • the winding end end portion (not shown) of the electromagnetic steel strip 23 is cut, and the polygonal laminated core 22 is completed by welding and fixing the cut portion to the overlapping electromagnetic steel strip 23.
  • the punching pitch P increases.
  • the feed roller 35 and the guide roller 34 rotate by a predetermined angle, and the electromagnetic steel strip 23 moves in the direction of the arrow.
  • the punching pitch P of each layer is determined so that, in the completed shape after lamination, the slot portion 26 becomes a radial and linear parallel slot from the center of the polygonal laminated core 22, and according to this, the electromagnetic steel strip 23. Is moved at a predetermined pitch.
  • the winding start end portion 23S of the electromagnetic steel strip 23 preferably uses the core back portion 25, and the bending of the electromagnetic steel strip 23 is approximately the length of the slot width Wp.
  • the portion 28 and the corner portion 33A of the winding jig 33 corresponding to the bent portion 28 of the electromagnetic steel strip 23 are configured to coincide with each other.
  • the length of the winding start end 23S of the core back portion 25 is substantially the same as the slot width Wp, the length is limited as long as it can be temporarily fixed to the winding jig 33. It is not a thing.
  • the manufacturing process flow shown in FIG. 9 is performed using such a manufacturing apparatus.
  • the electromagnetic steel strip 23 is fed to the punching machine 32 by the guide roller 34 and the feed roller 35 in step S10.
  • the electromagnetic steel strip 23 is fed to the punching machine 32 at a predetermined pitch P.
  • the punching machine 32 operates to punch out a part of the electromagnetic steel strip 23 in order to form the slot portion 26 in step S20.
  • the electromagnetic steel strip 23 that has passed through the punching machine 2 is punched into a shape as shown in FIG. 4 to form a unit core portion 24, a core back portion 25, and a slot portion 26.
  • the electromagnetic steel strip 23 is wound up by the winding jig 33 in step S30.
  • step S30 the winding start end portion 23S of the first layer P1 of the electromagnetic steel strip 23 is wound around the winding jig 33, and the electromagnetic steel strip 23 is rotated around the winding jig 33 by the rotation of the winding jig 33. It is wound up so as to be laminated.
  • step S40 the electromagnetic steel strip 23 is bent by the pressing roller 36 and the corner 33A of the winding jig 33 to form flat surfaces on the unit core part 24 and the core back part 25 described above.
  • cutting and terminal processing welding processing
  • step S50 the winding is wound around the unit core portion 24 of the polygonal laminated core 22, and when the winding is wound around all the unit core portions 24 of each phase, the stator is completed. Is.
  • the stator made in this way is used in an axial gap type motor as shown in FIG. Since the polygonal laminated core 22 according to this embodiment (Examples 1 to 3) has improved magnetic characteristics, it can be a highly efficient axial gap type motor.
  • a rotor 41 that rotates about a rotation axis 40 is fixed to a shaft 42, and a stator 43 is disposed in the axial direction of the rotation axis 40 so as to face the rotor 41. It constitutes an axial gap type motor.
  • An impeller 44 is fixed to a surface of the rotor 41 opposite to the surface facing the stator 43, and the impeller 44 is accommodated in the first housing 45.
  • Pump chambers 46 and 47 that form a fluid flow around the rotation axis 40 are provided in the first housing 45, and the cooling water sucked into the pump chamber 46 by the rotation of the impeller 44 is centrifuged. The force is pushed out into the pump chamber 47 on the radially outer side by the force, and is finally discharged from an outlet (not shown) provided in the first housing 45.
  • the rotor 41 and the impeller 44 are integrally formed by insert molding.
  • the rotor 41, the impeller 44, and the stator 43 are accommodated in a first housing 45 and a second housing 48 made of synthetic resin, and the first housing 45 and the second housing 48 are , And are fastened to each other with bolts via O-rings.
  • the rotor 41 is fixed to the shaft 42, and the impeller 44 integrally formed with the rotor 41 rotates around the rotation axis 40 together with the rotor 41.
  • the stator 43 is disposed opposite to the rotor 41 in the axial direction of the rotation axis 40.
  • the stator 43 has a canned structure covered with a mold resin, and is integrated with the second housing 48. Thereby, the shaft 42 is rotatably supported by the stator 43 via the bearing 49.
  • a circuit board 50 covered with a mold resin is mounted on the bottom of the second housing 48.
  • a switching element for driving and controlling the motor is mounted on the circuit board 50.
  • a motor and a circuit board are provided separately from the flow path through which the cooling water sucked into the pump chambers 46 and 47 is discharged from the outlet by the rotation of the impeller 44. A plurality of flow paths are formed for cooling etc.
  • a flow path along the radial direction is formed and communicates with the pump chamber 46.
  • the cooling water circulates in the gap between the rotor 41 and the stator 43, and the upper surface of the stator 43 can be cooled.
  • a flow path 51 along the axial direction is formed in the gap between the stator 43 and the inner wall of the second housing 48, whereby the side surface of the stator 43 can be cooled.
  • a flow path 52 along the radial direction is formed in the gap between the floor trochanter 41 and the bottom wall of the second housing 48, whereby heat from the circuit board 50 is transferred to the second housing 48. It can be transmitted to the flow path 52 through the bottom wall.
  • the axial gap type motor using the polygonal laminated core of this embodiment to the electric water pump, a small and thin highly efficient electric water pump can be provided.
  • the polygonal laminated core is held in the housing, for example, when the polygonal laminated core and the housing are integrally molded, an effect of preventing the rotation of the polygonal laminated core is obtained.
  • the partition can be formed simultaneously with the molding material. Can be omitted.
  • the number of slots of the polygonal laminated core may be other than 9 poles, and although not shown, any number of permanent magnets (number of poles) can be adopted.
  • At least one round of a core formed in an annular shape is made of a continuous thin plate-shaped electromagnetic steel strip, and the core is formed by laminating the electromagnetic steel strip in the radial direction.
  • a configuration was adopted in which the outer peripheral surface of the unit core portion formed in the core and the outer peripheral surface of the core back portion formed in the core were formed in a planar shape.
  • the unit core is continuously formed, there is no gap, and the outer peripheral surface of the core unit core portion and the outer peripheral surface of the core back portion are formed in a flat shape, so that the bending stress is relieved. Therefore, it is possible to suppress deterioration of magnetic characteristics.
  • a forming jig or the like for forming the outer peripheral surface of the unit core portion and the outer peripheral surface of the core back portion in an arc shape is not required, and thus the manufacturing cost can be reduced.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • SYMBOLS 10 Axial gap type motor, 11 ... Housing, 12 ... Stator, 13 ... Rotor, 14 ... Core back part, 15 ... Core, 17 ... Winding, 18 ... Permanent magnet, 19 ... Back yoke, 20 ... Rotating shaft 22 ... Polygonal laminated core, 23 ... Electromagnetic steel strip, 23S ... Winding end, 23E ... Winding end, 24 ... Unit core, 25 ... Core back, 26 ... Slot, 27, 28 ... Bending 29, polygonal annular core, 30 ... weld, 31 ... punching blade, 32 ... punching machine, 33 ... winding-up jig, 34 ... guide roller, 35 ... feed roller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

隣り合う単位コアに空隙を生じず、しかも曲げ応力による磁気特性の劣化を抑制することができる新規な固定子、及びこの固定子の製造方法、及びこの固定子を使用したアキシャルギャップ型モータ、及びこのアキシャルギャップ型モータを使用した電動ポンプを提供することにある。 環状に形成されたコア(22)の少なくとも1周分が連続した薄板状の電磁鋼帯(23)作られ、この電磁鋼帯(23)を径方向に積層してコアを形成する共に、コアに形成された単位コア部(24)の外周面と、コアに形成されたコアバック部(25)の外周面を平面状に形成した。これによれば、単位コアが連続的に形成されるので空隙が生じず、また、コアの単位コア部の外周面とコアバック部の外周面が平面状に形成されているので曲げ応力が緩和されるので磁気特性の劣化を抑制できる。

Description

固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ
 本発明はアキシャルギャップ型モータの固定子、及びこの固定子の製造方法、及びこの固定子を使用したアキシャルギャップ型モータ、及びこのアキシャルギャップ型モータを使用した電動ポンプに関するものである。
 近年、地球温暖化が深刻化する中で、電気機器に対する省エネルギー化の要求が高まっている。現在、国内の年間消費電力量の約55%が電動モータによって消費されているといわれており、電動モータのこれまで以上の高効率化の要求が強くなっている。そして、これまで電動モータの高効率化には、高いエネルギー積を有する希土類磁石を用いた設計が採用されている。
 しかしながら、希土類磁石の原料であるネオジムやディスプロシウムは、近年価格が高騰している。このため、希土類磁石を使わずにフェライト磁石を使用した電動モータが使用されるようになってきている。そして、フェライト磁石を使用した電動モータの高効率化を図る方法として、アキシャルギャップ型モータを使用することが提案されている。アキシャルギャップ型モータは、ラジアルギャップ型モータに比べて磁石面積を広くとることができるため、高効率化を図ることができるものである。
 そして、一般的にアキシャルギャップ型モータは、複数のコア部を有し、そのコア部の周囲に巻線が巻回されて構成された固定子と、この固定子の軸方向の端面の一方側に偏平状の回転子を有する構成となっている。
 ところで、固定子を構成するコアの形成方法として、例えば特開2006-353054公報(特許文献1)に記載されたものが知られている。この特許文献1には、金型費用を削減してコストを低減し、更に回転駆動時におけるティースの周方向の剛性を向上させるアキシャルギャップ型モータのコアの構成が示されている。特許文献1に記載のコアは、周方向にコアを所定数に物理的に分割して単位コアを形成し、この分割された単位コアは複数の鋼板を積層して形成するようにしたものである。したがって、鋼板は単位コアの形状に形成され、内周側から外周側に向かってその形状が大きくなるように形成されている。
特開2006-353054公報
 ところで、特許文献1に記載されているアキシャルギャップ型モータのコアは、分離された単位コアを周方向に並べて組み合わせることでコアを形成するものである。このため、隣り合う単位コア毎に接合、或いは嵌合が必要であり、組み付け作業性が煩雑になる共に、単位コアの加工精度の悪化や接合、或いは嵌合がうまく行われないと、隣り合う単位コアの間に隙間が生じて磁気特性が劣化するという課題がある。
 このような単位コアの組み合わせによってコアを形成した場合の上述した課題に対応するためには、例えば、図11(A)及び図11(B)に示すような構成のコアが提案されている。図11(A)に示すように、連続した細長い電磁鋼帯61を巻き始め端部61Sから積層しながら渦巻状に巻回し、所定の積層数に達すると巻き終り端部61Eで切断して、径方向に所定の長さを有する円環状のコア60に形成する。
 その後、図11(B)に示すように、フライス盤等の加工機械を用いて、電磁鋼帯61を積層した円環状のコア60を所定角度毎に削ってスロット部62を形成し、更にスロット部62の間に単位コア部63を形成すると共に、外周側にコアバック部64を形成している。このように、連続した電磁鋼帯61を積層して巻き重ねることによってコア60を形成しているので、上述したような単位コアを組み合わせたコアのように隙間を生じないため、磁気特性が劣化するのを抑制できるようになる。
 しかしながら、電磁鋼帯61のコア部の外周面及びコアバック部の外周面が塑性変形して円弧状に形成されるので、この部分に曲げ応力が生じて磁気特性を劣化させ、モータ特性が低下する課題がある。
 また、副次的であるが電磁鋼帯61の巻き取りとスロット部の加工が別工程となると共に、スロット部の加工では径方向に積層した電磁鋼帯61を固定する治具が必要になり、更にコア部の外周面及びコアバック部の外周面を円弧状に塑性変形させる治具が必要となり製造コストが増加する課題がある。
 本発明の目的は、隣り合う単位コアに空隙を生じず、しかも曲げ応力による磁気特性の劣化を抑制することができる新規な固定子、及びこの固定子の製造方法、及びこの固定子を使用したアキシャルギャップ型モータ、及びこのアキシャルギャップ型モータを使用した電動ポンプを提供することにある。
 本発明の特徴は、環状に形成されたコアの少なくとも1周分が連続した薄板状の電磁鋼帯で作られ、この電磁鋼帯を径方向に積層してコアを形成する共に、コアに形成された単位コア部の外周面と、コアに形成されたコアバック部の外周面を平面状に形成した、ところにある。
 本発明によれば、単位コアが連続的に形成されるので空隙が生じず、また、コアの単位コア部の外周面とコアバック部の外周面が平面状に形成されているため、曲げ応力が緩和されるので磁気特性の劣化を抑制できる。
本発明が適用されるアキシャルギャップ型モータの概略的な断面図である。 本発明の第1の実施形態になる固定子を構成するコアの斜視図である。 図2に示すコアの積層する前の電磁鋼帯の形状を説明する構成図である。 本発明の第2の実施形態になるコアの積層する前の電磁鋼帯の形状を説明する構成図である。 図4に示す電磁鋼帯で作られたコアの径方向の断面図である。 本発明の第3の実施形態になる環状コアの斜視図である。 図6に示す環状コアを使用して形成した多角形積層コアの径方向の断面図である。 第2の実施形態に使用される電磁鋼帯を製造する製造装置の構成図である。 図8に示す製造装置の製造工程を説明するフロー図である。 本発明が適用される電動ウォータポンプの断面図である。 従来のコアで最終形状に加工される前のコアの斜視図である。 図11(A)に示すコアで最終形状に加工された後のコアの斜視図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 図1は、本発明の実施形態になる固定子を使用したアキシャルギャップ型モータ10の軸方向断面を示している。このアキシャルギャップ型モータ10は、ハウジング11内に固定された固定子12と、固定子12の軸方向の端面に回転可能に配置された永久磁石を備えた回転子13から構成されている。固定子12と回転子13とは所定の空隙を介して対向するように配置されている。
 固定子12はコアバック部14側がハウジング11の軸方向端面部11Aに位置し、この反対側に向けてコア部15が延びるようにして形成されている。コア部15は径方向で所定角度を有して複数個設けられており、夫々のコア部15の間にはスロット部(図1では示されていない)が形成されている。スロット部には巻線17が配置されており、巻線17とコア部15によって回転磁界を形成している。
 コア部15と対向する回転子13の側面には、永久磁石18が設けられており、回転磁界に応じて回転子13を回転させる構成となっている。回転子13はバックヨーク19を備えており、このバックヨーク19に永久磁石18が配置されている。尚、回転子13の構成はアキシャルギャップ型モータ10を構成するのに必要な機能を備えていれば良いものである。
 回転子13の中央には回転軸20が固定されており、ハウジング11の中央付近に配置されたベアリング21に軸支されている。ベアリング21としては、転動軸受、滑り軸受などを使用することができる。
 このような構成のアキシャルギャップ型モータ10の構成とその動作は良く知られているものであるため、これ以上の説明は省略する。
 次に本実施形態になる、固定子12を構成するコアの具体的な構成について説明する。図2及び図3に示すように、本実施形態のコアは、図11(B)に示す従来のコアのように円環状の積層コアに形成されていなく、多角形の環状の積層コアとして形成されている。
 図2には、打抜き機(プレス機)でプレス打抜きされた電磁鋼帯を径方向に積層して完成させた多角形の環状の積層コア22(以下、多角形積層コアと表記する)を示している。この多角形積層コア22は、巻線が巻回される単位コア部と、隣り合う単位コア部の間に形成されたスロット部と、スロット部に対応して形成され隣り合う単位コア部を接続するコアバック部が環状に配置された積層コアである。
 そして、この多角形積層コア22の大きな特徴は、図2に示されている通り、環状に形成された積層コアの少なくとも1周分(本実施形態では巻き始め端部から巻き終り端部までが連続した薄板状の電磁鋼帯23で作られている)の電磁鋼帯23を径方向に積層する共に、積層された電磁鋼帯23に形成された単位コア部24の外周面と、電磁鋼帯23に形成されたコアバック部25の外周面を平面状に形成して、多角形積層コア22としたところである。
 したがって、多角形積層コア22はスロット数に対応した多角形の形状に形成されている。ここでは、スロット数を9スロットとして、9角形の例を示している。本実施形態では、後述するようにスロット部26に対応して形成されたコアバック部25の周方向の中央付近を折り曲げ部としているので、多角形積層コア22の多角数を「N」、スロット数を「S」とした時、N=S×1で多角数が決められている。
 図2においては、各スロット数に対応して、単位コア部、コアバック部、及びスロット部に「a」~「i」の符号を付している。そして、多角形積層コア22には複数の単位コア部24が形成されており、本実施形態では9スロットなので、9個の単位コア部24a、24b、24c、24d、24e、24f、24g、24h、24iが形成されている。以下ではまとめて単位コア部24と表記する。
 また、多角形積層コア22には、隣り合う単位コア部24を繋ぐコアバック部25が形成されている。本実施形態では9スロットなので、9個のコアバック部25a、25b、25c、25d、25e、25f、25g、25h、25iが形成されている。以下ではまとめてコアバック部25と表記する。コアバック部25は、細長い電磁鋼帯に後述のスロット部26を形成することで形成されるものである。
 更に、夫々の単位コア部24の間にはスロット部26が形成されている。本実施形態では9スロットなので、9個のスロット部26a、26b、26c、26d、26e、26f、26g、26h、26iが形成されている。以下ではまとめてスロット部26と表記する。
 スロット部26は、多角形積層コア22の最外周面から最内周面まで中心に向かって延びており、その幅は一定(平行スロット)である。したがって、単位コア部24は最外周面から最内周面に至るにつれて周方向の幅が漸減するようになっている。
 そして、隣り合う単位コア部24で挟まれたコアバック部25の周方向の中央付近に折り曲げ部27が形成されている。この折り曲げ部27は、スロット部26の周方向の中央付近でもある。したがって、コアバッック部25の折り曲げ部27を折り曲げることで、9角形の多角形積層コア22が形成されるものである。
 これによって、夫々の単位コア部24とこれに対応した両側のコアバック部25の折り曲げ部27までは同一の平面形状となるものである。そして、スロット部26には、夫々の単位コア部24に巻回された巻線が配置されるものである。巻線は、夫々の単位コア部24に直接的に巻回しても良いし、別途巻回した巻線を夫々の単位コア部24に挿入する構成でも良いものである。
 次に、図2に示す多角形積層コア22が形成される前の電磁鋼帯23の形状について説明する。図3は単位コア部24とコアバック部25とスロット部26が、打抜き機で打ち抜かれた後の形状を示しており、スロット部26に対応したコアバック部25の周方向の中央付近の折り曲げ部27を折り曲げることによって、図2に示す多角形積層コア22が形成されるものである。
 図3において、電磁鋼帯23は細長い連続した板状の形を有しており、第1層P1の巻き始め端部23Sから最終層Pnの巻き終り端部23Eの間に、各層毎の単位コア部24とコアバック部25とスロット部26が形成されている。電磁鋼帯23は、多角形積層コア22の内側から重ねられて積層されており、所定の積層数になると切断されるものである。ここで、環状の多角形積層コア22の1周分に相当する1層の長さは、巻き重ねられるにしたがって長くなるものである。
 例えば、第1層P1においては、単位コア部24はスロット部26を挟んで9個形成されており、スロット部26が形成されている部分の電磁鋼帯23の残余の領域がコアバック部25として形成されている。もちろん、単位コア部24のコアバック部25に対応する部分はコアバックとして機能するものである。スロット部26を挟んで隣り合う単位コア部24の周方向の幅の中心の間のピッチP11~P19は夫々同じ幅に形成されている。ここで、第1層P1のスロット部26の打抜きピッチPは、概略、電磁鋼帯23の厚さを「t」、多角形積層コア22の平均内半径を「R」、スロット数を「S」とした場合、P=((R+t/2)×2π)/Sで求めることができる。
 単位コア部24に挟まれたコアバック部25の周方向の中央付近には折り曲げ部27があり、この折り曲げ部27に沿ってコアバック部25が折り曲げられるものである。この折り曲げ部27は電磁鋼帯23に予め設けられているものではなく、巻き取り機の巻き取り治具によって巻き取られる時に結果として形成されるものである。これについては図8を参照して説明する。
 したがって、夫々の折り曲げ部27の間に存在する単位コア部24とコアバック部25は同一の平面となるため、この平面状の電磁鋼帯23には曲げ応力が発生しない、或いは発生しても極めて小さいものとなる。このため、曲げ応力による磁気特性の劣化を抑制できるものである。また、第1層P1(1周分)に形成される単位コア部24は連続して形成されているので、特許文献1にあるような空隙を生じる恐れがなく、磁気特性が劣化するのを抑制できるものである。
 1周分に相当する第1層P1が巻かれると、これに続いて第2層P2が巻かれるものである。第2層P2においても、単位コア部24はスロット部26を挟んで9個形成されており、スロット部26が形成されている部分の電磁鋼帯23の残余の領域がコアバック部25として形成されている。もちろん、単位コア部24のコアバック部25に対応する部分はコアバックとして機能するものである。第1層P1と同様に、スロット部26を挟んで隣り合う単位コア部24の周方向の幅の中心の間のピッチP21~P29は夫々同じ幅に形成されている。ただ、第2層P2の単位コア部24の幅は、第1層P1の単位コア部24の幅より大きく形成されている。これは図3に示しているように単位コア部24が外周側に延びるにつれて周方向の幅が大きくなるためである。
 尚、第2層P2以降は、電磁鋼帯23の厚さ「t」に応じた直径の増加に対応して、スロット打抜きピッチPが大きくなっている。ただし、スロット部26の幅は第1層P1と同じ幅に形成されている。
 また、第1層P1と同様に単位コア部24に挟まれたコアバック部25の周方向の中央付近には折り曲げ部27があり、この折り曲げ部27に沿ってコアバック部25が折り曲げられるものである。この第2層P2の折り曲げ部27も電磁鋼帯23に設けられているものではなく、巻き取り機によって巻き取られる時に結果として形成されるものである。
 したがって、夫々の折り曲げ部27の間に存在する単位コア部24とコアバック部25は同一の平面となるため、曲げ応力が発生しない、或いは発生しても極めて小さいものとなる。このため、曲げ応力による磁気特性の劣化を抑制できるものである。また、第2層(1周分)P2に形成される単位コア部24は連続して形成されているので、特許文献1にあるような空隙を生じる恐れがなく、磁気特性が劣化するのを抑制できるものである。
 そして、所定数の層だけ巻かれると、これに続いて最終層Pnが巻かれるものである。
最終層Pnにおいても、単位コア部24はスロット部26を挟んで9個形成されており、スロット部26が形成されている部分の残余の領域がコアバック部25として形成されている。もちろん、単位コア部24のコアバック部25に対応する部分はコアバックとして機能するものである。各層と同様に、スロット部26を挟んで隣り合う単位コア部24の幅方向の中心の間のピッチPn1~Pn9は夫々同じ幅に形成されている。ただ、最終層Pnの単位コア部24の幅は、他の層の単位コア部24の幅に比べて最も大きく形成されている。これは図3に示しているように単位コア部24が外周側に延びるにつれて周方向の幅が大きくなるためである。
 尚、最終層Pnも、電磁鋼帯23の厚さ「tに」応じた直径の増加に対応して、スロット打抜きピッチPが大きくなっている。ただし、スロット部26の幅は各層と同じ幅に形成されている。
 また、他の層と同様に単位コア部24に挟まれたコアバック部25の周方向の中央付近には折り曲げ部27があり、この折り曲げ部27に沿ってコアバック部25が折り曲げられるものである。この最終層Pnの折り曲げ部27も電磁鋼帯23に設けられているものではなく、巻き取り機によって巻き取られる時に結果として形成されるものである。
 したがって、夫々の折り曲げ部27の間に存在する単位コア部24とコアバック部25は平面状となるため、曲げ応力が発生しない、或いは発生しても極めて小さいものとなる。このため、曲げ応力による磁気特性の劣化を抑制できるものである。また、最終層(1周分)に形成される単位コア部24は連続して形成されているので、特許文献1にあるような空隙を生じる恐れがなく、磁気特性が劣化するのを抑制できるものである。
 このように、本実施形態によれば、環状に形成されたコアが連続した薄板状の電磁鋼帯で作られ、この電磁鋼帯を径方向に積層してコアを形成する共に、コアに形成された各層の単位コア部の外周面と、コアに形成された各層のコアバック部の外周面を平面状に形成した、構成を採用したものである。
 これによれば、単位コアが連続的に形成されるので空隙が生じず、また、コアの単位コア部の外周面とコアバック部の外周面が平面状に形成されているので曲げ応力が緩和されるので磁気特性の劣化を抑制できる。
 更に副次的であるが、単位コア部の外周面とコアバック部の外周面を円弧状に形成する成形治具等が不要となるので、製造コストの削減が可能となるものである。
 次に本発明の第2の実施形態について図4、図5を用いて説明するが、第1の実施形態とは、コアバック部25の折り曲げ部の位置が、コア部とスロット部の境界付近に設定されている点で異なっているものである。尚、本実施形態は、コアバック部25の折り曲げ部の位置を、コア部とスロット部の境界付近に設定した点で第1の実施形態と異なっているだけであるので、同じ説明となるものについては、その説明を省略する。
 第2の実施形態になる、多角形積層コア22が形成される前の電磁鋼帯23の形状について説明する。図4は単位コア部24とコアバック部25とスロット部26が打抜き機で打ち抜かれた後の形状を示しており、単位コア部24とスロット部26の境界部分(繋ぎ目部分)を折り曲げ部28として折り曲げることによって、図5に示す多角形積層コア22が形成されるものである。
 図4、図5において、電磁鋼帯23は細長い連続した板状の形を有しており、第1層P1の巻き始め端部23Sから最終層Pnの巻き終り端部23Eの間に、各層毎の単位コア部24とコアバック部25とスロット部26が形成されている。
 単位コア部24とスロット部26の境界付近、好ましくは境界部分のコアバック部25には折り曲げ部28があり、この折り曲げ部28に沿ってコアバック部25が折り曲げられるものである。この折り曲げ部28は第1の実施形態と同様に、電磁鋼帯23に設けられているものではなく、巻き取り機によって巻き取られる時に結果として形成されるものである。
 したがって、夫々の折り曲げ部28の間に存在する単位コア部24と、夫々の折り曲げ部28の間に存在するコアバック部25は平面状となるため、曲げ応力が発生しない、或いは発生しても極めて小さいものとなるものである。
 つまり、第1層P1で説明すると、スロット部26に対応するコアバック部25と、単位コア部24に対応するコアバック部25(この場合のコアバック部は単位コア部24に形成されている)の境(単位コア部とスロット部の境界部分)が、折り曲げ部28として折り曲げられているものである。したがって、単位コア部24の面と、単位コア部24の間に存在するコアバック部25の面は平面状に形成されることになる。
 この折り曲げられて形成された多角形積層コア22を、軸方向に直交する面で断面した形状を図5に示している。1周分に相当する第1層P1が巻き始め端部23Sから巻かれると、これに続いて第2層P2が巻かれ、所定数の層だけ巻かれると、これに続いて最終層Pnが巻かれて巻き終わり端部23Eで切断されるものである。
 そして、電磁鋼帯23は単位コア部24とスロット部26の境界部分で折り曲げられるので、スロット部26に対応するコアバック部15の領域と、単位コア部24の領域とは平面状に形成されることになる。ここで、本実施形態では、単位コア部24とスロット部26の境界部分を折り曲げ部28としているので、多角形積層コア22の多角数を「N」、スロット数を「S」とした時、N=S×2で多角数が決められている。
 したがって、夫々の単位コア部24と、この単位コア部24の間に存在するコアバック部25は平面状となるため、曲げ応力が発生しない、或いは発生しても極めて小さいものとなる。このため、曲げ応力による磁気特性の劣化を抑制できるものである。また、単位コア部24は連続して形成されているので、特許文献1にあるような空隙を生じる恐れがなく、磁気特性が劣化するのを抑制できるものである。
 また、折り曲げ部28は、単位コア部24とスロット部16の境界部分のコアバック部25に形成しているので、切り欠き効果で曲げ加工が容易となり、曲げによる寸法誤差が生じ辛くなっている。
 更に、単位コア部24とコアバック部25の間の折り曲げ部28の位置精度は、スロット打抜きされた電磁鋼帯23を周方向に積層した最終形状において、多角形積層コア22の形状変化に影響を与える。特に、多角形積層コア22の外径が大きい場合では、電磁鋼帯23の積層時の周方向の位置ずれにより、積層した電磁鋼帯23間に隙間が生じ、モータ特性の低下や外径拡大の要因となる。
 したがって、図4、図5に示す構成とすることで、単位コア部24とコアバック部25の間の折り曲げ部28が、単位コア部24の周方向の両端部24Aが基準となるため、位置誤差は緩和され、積層精度の良い多角形積層コア22を提供できる。
 次に本発明の第3の実施形態について図6、図7を用いて説明するが、第2の実施形態とは以下の点で異なっている。第2の実施形態では、一枚の連続した細長い電磁鋼帯を渦巻状に積層して多角形積層コア22を形成しているが、本実施形態では、1層毎に多角形の環状コアを分離して形成し、これらを積層するように組み合せて多角形積層コア22を形成するものである。この場合、夫々の環状コアの内周と外周が密着するように寸法が決められている。尚、本実施形態は、環状コアの積層形態が第2の実施形態と異なっているだけであるので、同じ説明となるものについては省略する。
 図6、図7には、図4に示した1枚の連続した電磁鋼帯23を、積層される各層毎に独立するように分割して多角形の環状のコアを形成し、これを積層して構成した多角形積層コア22を示している。
 図6は代表的に第1層P1の多角形の独立した環状コア29を示しており、図4に示す第1層P1を切り取って得られるものである。したがって、第2層P2から最終層Pnまでが分離して切り取られ、図7に示すような形状に積層されるものである。図6にある通り、切り取られた第1層P1の電磁鋼帯23は折り曲げ部28で折り曲げられ、更にこの後に第1層P1の電磁鋼帯23の周方向の両端が溶接部30で溶接されて、多角形の独立した環状コア29が形成されている。
 この多角形の環状コア29は、第2実施例と同じように、スロット部26に対応するコアバック部25と、単位コア部24に対応するコアバック部25の境界部分が、折り曲げ部28として折り曲げられているものである。したがって、単位コア部24の面と、単位コア部24の間に存在するコアバック部25の面は平面状に形成されることになる。このようにして作られた多角形の環状コア29は、図7に示すように積層順序にしたがって、内周側から外周に向かって積層されることになる。
 尚、図7で示す黒い点は溶接部30を示している。図7からわかるように、溶接部30は、コアバック部25の周方向の中央付近で形成されており、各層のスロット部26に対して1層毎に1スロットだけずらして位置するように配置されている。
 このような構成にすることによって、スロット打抜きのピッチ誤差による径方向のスロット部26の配置誤差を緩和することができる。また、積層途中でピッチ誤差が生じても、ピッチ誤差を修正した電磁鋼帯23を使用することで補正が可能となり、積層精度の良い多角形積層コア22を提供できる。本実施形態では、一層毎に電磁鋼帯23を分割する例で示したが、2層分、或いは3層分を1単位として実施例2と同様な方法で作製し、これを複数の単位で積層して多角形積層コア22を作ることもできる。したがって、多角形積層コア22の大きさや用途などによって使い分けることが可能である。
 また、分割した多角形の環状コア29の溶接部30は、積層した状態で図7に示したように各層毎に周方向に分散させると良いものである。溶接部30を分散させることにより、溶接部30の存在による磁気特性のアンバランスを緩和させることができる。更に、環状コア29の溶接部30は、各層毎に溶接する必要はなく、最外周のみか、各層の任意の箇所で溶接しても良いものである。この場合、各層毎の溶接作業が不要となり、多角形積層コア22の製造コストを低減することが可能となる。
 更には、多角形の環状コア29を積層する場合には、周方向位置決め治具等を排除することもできる。多角形の環状コア29は、各層毎に前もって溶接部30で接合しておき、軸方向から各層毎に挿入する構成としても良いものである。
 また、連続した電磁鋼帯23によって複数層の渦巻き積層領域からなる多角形の積層環状コアを形成し、これの最外周から、最終層となる溶接部で溶接された独立した多角形の環状コア29を挿入して組み合わせることができる。これによれば、連続した電磁鋼帯23で形成された多角形の環状コア29の巻き終わり部23Eを溶接接合することが不要となり、製造コストの低減が図れると共に、巻き終わり部23Eの溶接箇所を低減でき、溶接部30の磁気特性劣化を緩和できる効果も得られるようになる。
 次に、多角形積層コア22の製造方法について、図8、図9を用いて説明する。図8は、第2の実施形態である多角形積層コア22の製造方法を説明するための図である。
 電磁鋼帯(磁性薄板)23は、電磁鋼帯23の長手方向の一方面を一定長のスロット幅Wpで打ち抜くための打抜き刃31を備えた打抜き機32を用い、打抜き刃31を矢印で示した下方向に押し下げることで、電磁鋼帯23の一方面を打ち抜いて、スロット部26が形成される。スロット部26が打ち抜きされた電磁鋼帯23の巻き始め端部23Sは、巻き取り治具33に仮止めされ、電磁鋼帯23を矢印方向に送るための、例えば、ガイドローラ34、及び送りローラ35からなる送り機構の送りローラ35を駆動するステップモータの設定にあわせて、巻取り治具33が回転することで、電磁鋼帯23は巻き取り機の巻き取り治具33の周囲に渦巻状に積層される。
 そして、押えローラ36により、コアバック部25は、巻き取り治具33に押え付けられ、コアバック部25の折り曲げ部28と巻き取り治具33の角部33Aが密着し、折り曲げ精度の良い多角形積層コア22が形成できる。電磁鋼帯23の巻き終わり端部(図示せず)は切断され、切断部を重なっている電磁鋼帯23に溶接して固定することにより多角形積層コア22が完成される。
 ここで、多角形積層コア22の最内周側から第1層目、第2層目・・・と最外周側に巻き進むにしたがって、打抜きピッチPが大きくなってくる。図8において、ステップモータ(図示せず)の設定で、送りローラ35とガイドローラ34が所定の角度だけ回転し、電磁鋼帯23は矢印方向に移動する。各層の打抜きピッチPは、積層後の完成形状において、スロット部26が、多角形積層コア22の中心から放射状に、かつ直線状に平行スロットとなるように決められ、これにしたがって電磁鋼帯23は所定のピッチで移動されるものである。
 また、図8の拡大部Sで示すように、電磁鋼帯23の巻き始め端部23Sは、コアバック部25を用いるのが望ましく、概ねスロット幅Wpの長さで、電磁鋼帯23の折り曲げ部28と、この電磁鋼帯23の折り曲げ部28に対応した巻き取り治具33の角部33Aとが一致する構成としている。尚、コアバック部25の巻き始め端部23Sの長さをスロット幅Wpと概ね同じ長さとしているが、巻き取り治具33に、仮止めできる範囲であれば、特別、長さを限定するものではない。
 このような製造装置を使用して、図9による製造工程フローが実施される。図9において、先ず工程S10でガイドローラ34、送りローラ35によって電磁鋼帯23を打抜き機32に送り込むが、電磁鋼帯23は所定のピッチPで打抜き機32に送り込まれる。次に、電磁鋼帯23が送られてくると、行程S20で打抜き機32は、スロット部26を形成するため、電磁鋼帯23の一部を打ち抜くように動作する。
 打抜き機2を通過した電磁鋼帯23は図4に示しているような形状に打ち抜かれ、単位コア部24、コアバック部25、スロット部26が形成されている。次に、行程S30で巻き取り治具33によって電磁鋼帯23が巻き取られる。行程S30では電磁鋼帯23の第1層P1の巻き始め端部23Sが巻き取り治具33に巻き掛けられ、巻き取り治具33の回転によって、電磁鋼帯23が巻き取り治具33の周囲に積層するようにして巻き取られる。
 この巻き取りの行程で、行程S40で押えローラ36と巻き取り治具33の角部33Aによって電磁鋼帯23は折り曲げられて上述した単位コア部24とコアバック部25に平面が形成され、所定の積層数に達すると切断されて端末処理(溶接処理)が行われて、図5に示す多角形積層コア22が得られるものである。工程S40が終了すると、行程S50で巻線が多角形積層コア22の単位コア部24に巻回され、各相の単位コア部24の全てに巻線が巻回されると固定子が完成されるものである。
 このようにして作られた固定子は、図1に示すようなアキシャルギャップ型モータに使用される。本実施形態(実施例1~実施例3)になる多角形積層コア22は磁気特性が改善されているので、高効率のアキシャルギャップ型モータとすることができる。
 次にアキシャルギャップ型モータを使用した電動ウォータポンプについて説明する。図10に示すように、回転軸線40を中心に回転する回転子41がシャフト42に固定され、回転軸線40の軸方向に、回転子41に対向して固定子43が配置され、これにより、アキシャルギャップ型モータを構成している。回転子41の固定子43に対向する面と反対側の面には、インペラ44が固定されており、インペラ44は、第1ハウジング45に収容されている。
 第1ハウジング45内には、回転軸線40の周りに流体の流れを形成するポンプ室46、47が設けられており、インペラ44の回転によって、ポンプ室46内に吸入された冷却水は、遠心力をよって径方向外側のポンプ室47に押し出され、最後は、第1ハウジング45に設けられた流出口(図示せず)から吐出される。図10に示すように、回転子41とインペラ44とはインサート成形により一体成形されている。
 図10に示すように、回転子41、インペラ44、及び固定子43は、合成樹脂よりなる第1ハウジング45及び第2ハウジング48内に収容されており、第1ハウジング45及び第2ハウジング48は、Oリングを介してボルトで互いに締結されている。回転子41は、シャフト42に固定されており、回転子41と一体成形されたインペラ44は、回転子41と共に、回転軸線40を中心に回転する。
 固定子43は、回転軸線40の軸方向に、回転子41に対向して配置されている。固定子43は、モールド樹脂で覆われたキャンド構造となっており、第2ハウジング48と一体化されている。これにより、シャフト42は、軸受49を介して固定子43で回転可能に支持される。
 また、第2ハウジング48の底部には、モールド樹脂で覆った回路基板50が装着されている。回路基板50には、モータを駆動制御するスイッチング素子等が実装されている。また、第1ハウジング45及び第2ハウジング48内には、インペラ44の回転により、ポンプ室46、47内に吸入された冷却水が流出口から吐出される流路とは別に、モータや回路基板等を冷却するための複数の流路が形成されている。
 例えば、回転子41と固定子43との隙間には、径方向に沿った流路が形成されており、ポンプ室46と連通している。これにより、回転子41と固定子43との隙間に冷却水が循環し、固定子43の上面を冷却することができる。
 また、固定子43と第2ハウジング48の内側壁との隙間には、軸方向に沿った流路51が形成されており、これにより、固定子43の側面を冷却することができる。更に、階転子41と第2ハウジング48の底壁との隙間には、径方向に沿った流路52が形成されており、これにより、回路基板50からの熱を、第2ハウジング48の底壁を介して流路52に伝達することができる。
 このような構成の電動ウォータポンプにおいて、多角形積層コア22の巻線にバッテリ(図示せず)から電力が回路基板50を介してして供給され、固定子43で発生する回転磁界と回転子41の永久磁石で発生する磁界との間の吸引力/反発力によって回転子41が回転する。従って、回転子41と一体になっているインペラ44により冷却水の吸入、吐出が行わるものである。
 このように、電動ウォータポンプに、本実施形態の多角形積層コアを用いたアキシャルギャップ型モータを適用することにより、小型、薄型の高効率な電動ウォータポンプを提供できる。また、多角形積層コアをハウジング内に保持する場合、例えば、多角形積層コアとハウジングを一体モールドする場合など、多角形積層コアの回り止めが不要となる効果が得られる。
 また、多角形積層コアのモールド材とハウジングの材料を同じにして、多角形積層コアの表面を覆うようにモールドすれば、モールド材によって隔壁を同時に形成できるため、これまでの金属からなる隔壁を省略することができる。尚、多角形積層コアのスロット数は、9極以外でもよく、記載してないが永久磁石の個数(極数)も任意の個数を採用することができる。
 以上述べた通り本発明によれば、環状に形成されたコアの少なくとも1周分が連続した薄板状の電磁鋼帯で作られ、この電磁鋼帯を径方向に積層してコアを形成する共に、コアに形成された単位コア部の外周面と、コアに形成されたコアバック部の外周面を平面状に形成した、構成を採用した。
 これによれば、単位コアが連続的に形成されるので空隙が生じず、また、コアの単位コア部の外周面とコアバック部の外周面が平面状に形成されているので曲げ応力が緩和されるので磁気特性の劣化を抑制できる。
 更に副次的であるが、単位コア部の外周面とコアバック部の外周面を円弧状に形成する成形治具等が不要となるので、製造コストの削減が可能となるものである。
 本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10…アキシャルギャップ型モータ、11…ハウジング、12…固定子、13…回転子、14…コアバック部、15…コア、17…巻線、18…永久磁石、19…バックヨーク、20…回転軸、22…多角形積層コア、23…電磁鋼帯、23S…巻き始め端部、23E…巻き終わり端部、24…単位コア部、25…コアバック部、26…スロット部、27、28…折り曲げ部、29…多角形の環状コア、30…溶接部、31…打抜き刃、32…打抜き機、33…巻き取り治具、34…ガイドローラ、35…送りローラ。

Claims (13)

  1.  アキシャルギャップ型モータに使用され、巻線が巻回される複数の単位コア部と、隣り合う前記単位コア部の間に形成されたスロット部と、前記スロット部に対応して形成され隣り合う前記単位コア部を接続するコアバック部とが環状に配置された環状コアを備えた固定子であって、
     少なくとも1周分が連続した薄板状の電磁鋼帯で作られ、前記電磁鋼帯を径方向に積層して前記環状コアを形成する共に、前記環状コアに形成された前記単位コア部の外周面と、前記環状コアに形成された前記コアバック部の外周面を平面状に形成したことを特徴とする固定子。
  2.  請求項1に記載の固定子において、
     前記環状コアは、連続した前記電磁鋼帯が所定数だけ渦巻き状に積層されて形成されていることを特徴とする固定子。
  3.  請求項1に記載の固定子において、
     前記環状コアは、1周分毎に分割された複数の前記電磁鋼帯が所定数だけ積層されて形成されていることを特徴とする固定子。
  4.  請求項1に記載の固定子において、
     前記環状コアは、連続した前記電磁鋼帯が所定数だけ渦巻き状に積層されて形成されている渦巻き積層領域と、最終層の1周分だけが独立して形成された環状の前記電磁鋼帯が前記渦巻き積層領域に積層されて形成されていることを特徴とする固定子。
  5.  請求項2乃至請求項4のいずれか1項に記載の固定子において、
     前記環状コアは、前記コアバック部の周方向の中央付近で折り曲げられた折り曲げ部を有し、前記単位コア部の両側に位置する前記折り曲げ部に挟まれた前記単位コア部と前記コアバック部が同一平面として形成されていることを特徴とする固定子。
  6.  請求項5に記載の固定子において、
     前記環状コアは、前記折り曲げ部によって多角形に形成され、前記多角形の多角数を「N」、スロット数を「S」とした時、N=S×1によって前記多角形の多角数が決められていることを特徴とする固定子。
  7.  請求項2乃至請求項4のいずれか1項に記載の固定子において、
     前記環状コアは、前記単位コア部と前記スロット部の境界付近の前記コアバック部で折り曲げられた折り曲げ部を有し、前記折り曲げ部に挟まれた前記単位コア部と、前記折り曲げ部に挟まれた前記コアバック部が、異なった平面として形成されていることを特徴とする固定子。
  8.  請求項7に記載の固定子において、
     前記環状コアは、前記折り曲げ部によって多角形に形成され、前記多角形の多角数を「N」、スロット数を「S」とした時、N=S×2によって前記多角形の多角数が決められていることを特徴とする固定子。
  9.  請求項2に記載の固定子において、
     前記環状コアを形成する前記電磁鋼帯は、前記単位コア部と、前記スロット部と、前記コアバック部が、連続した前記電磁鋼帯に所定の間隔で複数個連続して形成されていることを特徴とする固定子。
  10.  請求項3に記載の固定子において、
     前記環状コアを形成する前記電磁鋼帯は、前記単位コア部と、前記スロット部と、前記コアバック部がスロット数に対応して等分割されて形成されていることを特徴とする固定子。
  11.  巻線が巻回される環状コアを備えた固定子と、前記固定子に所定の隙間を介して対向する磁石とバックヨークを備えた回転子と、前記回転子が固定され前記回転子と共に回転する回転軸と、前記固定子を固定すると共に前記回転子を収納するハウジングとを備えたアキシャルギャップ型モータであって、
     前記固定子が、請求項1乃至請求項10のいずれか1項に記載の固定子から構成されていることを特徴とするアキシャルギャップ型モータ。
  12.  ポンプ部と、前記ポンプ部を駆動してポンプ動作を行うロータ部とステータ部から構成されるアキシャルギャップ型モータと、前記アキシャルギャップ型モータを駆動制御する制御部とからなる電動ポンプであって、
     前記アキシャルギャップ型モータが、請求項11に記載されているアキシャルギャップ型モータから構成されていることを特徴とする電動ポンプ。
  13.  アキシャルギャップ型モータに使用され、巻線が巻回される複数の単位コア部と、隣り合う前記単位コア部の間に形成されたスロット部と、前記スロット部に対応して形成され隣り合う前記単位コア部を接続するコアバック部とが環状に配置された環状コアを備えた固定子の製造方法であって、
     前記環状コアを形成する細長い電磁鋼帯を打抜き機に送る工程と、
     前記打抜き機によって前記電磁鋼帯に、前記単位コア部と、前記スロット部と、前記コアバック部を形成する工程と、
     前記単位コア部と、前記スロット部と、前記コアバック部が形成された前記電磁鋼帯を巻き取り機で巻き取る工程と、
     前記巻き取り機で前記電磁鋼帯を巻き取る過程で、前記単位コア部の外周面と、前記環状コアに形成された前記コアバック部の外周面を平面状に形成する平面形成工程と
    によって前記環状コアを形成することを特徴とする固定子の製造方法。
PCT/JP2017/004291 2016-08-02 2017-02-07 固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ WO2018025428A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-151791 2016-08-02
JP2016151791A JP2019165519A (ja) 2016-08-02 2016-08-02 固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ

Publications (1)

Publication Number Publication Date
WO2018025428A1 true WO2018025428A1 (ja) 2018-02-08

Family

ID=61074065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004291 WO2018025428A1 (ja) 2016-08-02 2017-02-07 固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ

Country Status (2)

Country Link
JP (1) JP2019165519A (ja)
WO (1) WO2018025428A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180720A1 (ja) * 2017-03-28 2018-10-04 Ntn株式会社 電動モータおよびその製造方法
CN109067025A (zh) * 2018-09-04 2018-12-21 上海适达动力科技股份有限公司 盘式电机、盘式电机的定子铁芯及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021003706A1 (de) 2021-07-19 2023-01-19 Mercedes-Benz Group AG Verfahren zum Herstellen eines Rotors für eine elektrische Maschine, insbesondere für eine Axialflussmaschine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951219B2 (ja) * 1979-02-22 1984-12-12 松下電器産業株式会社 偏平形電動機の巻鉄心加工法
JPS60162949U (ja) * 1984-04-04 1985-10-29 日産自動車株式会社 回転機
JP2004312858A (ja) * 2003-04-04 2004-11-04 Honda Motor Co Ltd アキシャル型回転電機およびその製造方法
JP2006166679A (ja) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd アキシャルギャップ型回転電機のステータ構造
JP2008099453A (ja) * 2006-10-12 2008-04-24 Daikin Ind Ltd 界磁子及び電機子用磁心並びに電機子及びモータ
JP2011045187A (ja) * 2009-08-21 2011-03-03 Daikin Industries Ltd 電機子用磁芯
WO2015170518A1 (ja) * 2014-05-08 2015-11-12 株式会社日立製作所 アキシャルギャップ型回転電機
JP2016077067A (ja) * 2014-10-06 2016-05-12 株式会社日立産機システム アキシャルギャップ型回転電機およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951219B2 (ja) * 1979-02-22 1984-12-12 松下電器産業株式会社 偏平形電動機の巻鉄心加工法
JPS60162949U (ja) * 1984-04-04 1985-10-29 日産自動車株式会社 回転機
JP2004312858A (ja) * 2003-04-04 2004-11-04 Honda Motor Co Ltd アキシャル型回転電機およびその製造方法
JP2006166679A (ja) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd アキシャルギャップ型回転電機のステータ構造
JP2008099453A (ja) * 2006-10-12 2008-04-24 Daikin Ind Ltd 界磁子及び電機子用磁心並びに電機子及びモータ
JP2011045187A (ja) * 2009-08-21 2011-03-03 Daikin Industries Ltd 電機子用磁芯
WO2015170518A1 (ja) * 2014-05-08 2015-11-12 株式会社日立製作所 アキシャルギャップ型回転電機
JP2016077067A (ja) * 2014-10-06 2016-05-12 株式会社日立産機システム アキシャルギャップ型回転電機およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180720A1 (ja) * 2017-03-28 2018-10-04 Ntn株式会社 電動モータおよびその製造方法
CN109067025A (zh) * 2018-09-04 2018-12-21 上海适达动力科技股份有限公司 盘式电机、盘式电机的定子铁芯及其制造方法

Also Published As

Publication number Publication date
JP2019165519A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP5020034B2 (ja) 回転電機
US9735636B2 (en) Rotor and dynamo-electric machine having the same
JP6444497B2 (ja) 回転電機およびその製造方法
JP2012023861A (ja) 電機子鉄心とモータ
JP6552713B2 (ja) 回転電機の固定子及び回転電機
JP2009055737A (ja) ロータおよび回転電機
US20130241367A1 (en) Exciter of a rotary electric machine
WO2018025428A1 (ja) 固定子、固定子の製造方法、アキシャルギャップ型モータ、及び電動ポンプ
JP2013153643A (ja) 単相誘導モータ
JP2011135733A (ja) 回転電機
JP5178371B2 (ja) 電動機
JP2013219904A (ja) ステータの製造方法及びステータ
JP2017163675A (ja) 固定子鉄心、固定子及び回転電機
JP6462714B2 (ja) アキシャルギャップ型回転電機及び絶縁部材
JP2013258822A (ja) ステータの製造方法およびステータ
JP2010239680A (ja) 回転電機用電機子及びその製造方法
JP5256835B2 (ja) 回転電機の固定子及び回転電機
JP2007274787A (ja) ステータ、電動機およびステータの製造方法
JPWO2019225156A1 (ja) 回転電機および回転電機の製造方法
JP6900790B2 (ja) 回転電機
JP6126976B2 (ja) ステータ及びモータ
JP2009213310A (ja) 回転電機の固定子及び回転電機
JP2009142086A (ja) 電動機
US20180006510A1 (en) Electrical machine
JP6110261B2 (ja) ステータ及びモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17836535

Country of ref document: EP

Kind code of ref document: A1