WO2024057837A1 - 回転電機のコア及び回転電機 - Google Patents

回転電機のコア及び回転電機 Download PDF

Info

Publication number
WO2024057837A1
WO2024057837A1 PCT/JP2023/030129 JP2023030129W WO2024057837A1 WO 2024057837 A1 WO2024057837 A1 WO 2024057837A1 JP 2023030129 W JP2023030129 W JP 2023030129W WO 2024057837 A1 WO2024057837 A1 WO 2024057837A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
fitting part
fitting
magnetic pole
axial direction
Prior art date
Application number
PCT/JP2023/030129
Other languages
English (en)
French (fr)
Inventor
健一 青山
則幸 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024057837A1 publication Critical patent/WO2024057837A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present disclosure relates to a core of a rotating electrical machine and the rotating electrical machine.
  • a rotor core of a rotating electrical machine disclosed in Patent Document 1 includes a plurality of core sheets stacked in the axial direction.
  • Each core sheet has a convex portion and a concave portion formed by press working. Specifically, by pushing a punch into one surface of the core sheet in the axial direction, a concave portion is formed on the one surface, and a convex portion is formed on the opposite surface.
  • Core sheets that overlap in the axial direction are coupled to each other by fitting the convex portion of one core sheet into the concave portion of the other core sheet.
  • the magnetic poles are formed by permanent magnets embedded in the rotor core.
  • the core of a rotating electric machine is a core of a rotating electric machine in which a plurality of core sheets each having a plurality of magnetic pole forming portions arranged at regular intervals in the circumferential direction are laminated in the axial direction, Each of the core sheets has a first fitting part and a second fitting part, and one of the first fitting part and the second fitting part has a convex shape that projects in the axial direction.
  • the other of the first fitting part and the second fitting part has a concave shape recessed in the axial direction, and the pair of core sheets that overlap in the axial direction are connected to the first fitting part of one of the core sheets.
  • the first fitting portion and the second fitting portion provided on the same core sheet are coupled to each other by fitting with the second fitting portion of the other core sheet, and the first fitting portion and the second fitting portion provided on the same core sheet are axially oriented toward each other. They are placed in non-overlapping positions.
  • a rotating electrical machine in a second aspect of the present disclosure, includes a rotor having a rotor core and a stator having a stator core, and at least one of the rotor core and the stator core has a plurality of magnetic pole forming portions.
  • a plurality of core sheets provided at equal intervals in the circumferential direction are laminated in the axial direction, and each of the plurality of core sheets has a first fitting part and a second fitting part, and the first fitting part has a first fitting part and a second fitting part.
  • One of the joint portion and the second fitting portion has a convex shape that projects in the axial direction, and the other of the first fitting portion and the second fitting portion has a concave shape that is recessed in the axial direction.
  • the pair of core sheets that overlap in the direction are coupled to each other by fitting the first fitting part of one core sheet to the second fitting part of the other core sheet, and are provided on the same core sheet.
  • the first fitting portion and the second fitting portion are provided at positions that do not overlap with each other in the axial direction.
  • the first fitting part does not participate in forming the second fitting part. For this reason, the degree of freedom in setting the formation position of the second fitting portion is increased, and as a result, it becomes possible to easily secure the displacement amount of the skew structure in the circumferential direction.
  • FIG. 1 is a configuration diagram of a rotating electrical machine in an embodiment
  • FIG. 2 is a plan view showing a part of the core sheet in the same form
  • FIG. 3 is a plan view showing a second magnetic pole forming part in a core sheet of the same type
  • FIG. 4 is an explanatory diagram showing the lamination mode of each core sheet in a rotor core of the same type
  • FIG. 5 is an explanatory diagram showing a manner of coupling between core sheets in a rotor core of the same type
  • FIG. 1 is a configuration diagram of a rotating electrical machine in an embodiment
  • FIG. 2 is a plan view showing a part of the core sheet in the same form
  • FIG. 3 is a plan view showing a second magnetic pole forming part in a core sheet of the same type
  • FIG. 4 is an explanatory diagram showing the lamination mode of each core sheet in a rotor core of the same type
  • FIG. 5 is an explanatory diagram showing a manner of coupling between core sheets in a
  • FIG. 6 is a schematic diagram showing a skew structure of magnetic poles in a rotor of the same type
  • FIG. 7 is a schematic diagram showing a skew structure of magnetic poles in a modified rotor
  • FIG. 8 is a schematic diagram showing a skew structure of magnetic poles in a rotor of a modified example
  • FIG. 9 is a sectional view showing the second fitting part in the rotor core of the modified example
  • FIG. 10 is a perspective view showing a core sheet of a modified example.
  • the rotating electrical machine M of this embodiment shown in FIG. 1 is configured with an embedded magnet type brushless motor.
  • the rotating electric machine M includes a substantially annular stator 10 and a substantially cylindrical rotor 20 rotatably disposed in a radially inner space of the stator 10.
  • the stator 10 applies a rotating magnetic field to the rotor 20.
  • the stator 10 includes a stator core 11 having a substantially annular shape.
  • Stator core 11 is made of magnetic metal material.
  • the stator core 11 is configured, for example, by laminating a plurality of core sheets in a direction along the central axis L1.
  • the plurality of core sheets are made of, for example, an electromagnetic steel plate.
  • the stator core 11 has, for example, twelve teeth 12.
  • the teeth 12 extend radially inward and are arranged at equal intervals in the circumferential direction. Each tooth 12 has the same shape.
  • the teeth 12 have a radially inner end, which is a tip, in a substantially T-shape, and a tip end surface 12a has an arc shape that follows the outer peripheral surface of the rotor 20.
  • a winding 13 is wound around the teeth 12 by, for example, concentrated winding.
  • the windings 13 are connected in three phases, and function as U-phase, V-phase, and W-phase, respectively, as shown in FIG.
  • a rotating magnetic field for rotationally driving the rotor 20 is generated in the stator 10.
  • the outer peripheral surface of the stator core 11 is fixed to the inner peripheral surface of the housing 14.
  • the rotor 20 includes a rotating shaft 21, a rotor core 22, and a plurality of permanent magnets 23.
  • the rotor core 22 has a substantially cylindrical shape.
  • a rotating shaft 21 is fitted into the center of the rotor core 22 .
  • a plurality of permanent magnets 23 are embedded inside the rotor core 22.
  • eight permanent magnets 23 are provided in the rotor core 22.
  • the rotor 20 is rotatably arranged with respect to the stator 10 by having a rotating shaft 21 supported by a bearing (not shown) provided in the housing 14 .
  • the rotor core 22 is constructed by laminating a plurality of core sheets 24 shown in FIG. 2 in the axial direction.
  • Each core sheet 24 is made of, for example, an electromagnetic steel plate made of a magnetic metal material. In this embodiment, each core sheet 24 has the same shape.
  • the core sheet 24 has a shaft insertion hole 31 into which the rotating shaft 21 is inserted, and a plurality of magnetic pole forming portions 32 located around the shaft insertion hole 31.
  • the plurality of magnetic pole forming portions 32 are provided at equal intervals in the circumferential direction of the rotor core 22.
  • the circumferential direction of the rotor core 22, the axial direction of the rotor core 22, and the radial direction of the rotor core 22 may be simply referred to as the circumferential direction, the axial direction, and the radial direction, respectively.
  • the rotor 20 of this embodiment includes, for example, eight poles. That is, each core sheet 24 is provided with eight magnetic pole forming portions 32 at intervals of 45° in the circumferential direction.
  • the eight magnetic pole forming portions 32 each include a magnet hole 33.
  • Each magnet hole 33 is a hole that penetrates the core sheet 24 in the axial direction.
  • the magnet hole 33 has the same shape in each magnetic pole forming portion 32 .
  • a permanent magnet 23 is arranged inside each magnet hole 33 .
  • Each magnet hole 33 has a folded shape that protrudes radially inward when viewed from the axial direction. That is, each magnet hole 33 has a substantially V-shape when viewed from the axial direction.
  • the eight magnet holes 33 are provided at equal intervals in the circumferential direction.
  • the eight magnetic pole forming portions 32 each have an outer core portion 34 that is a portion radially outward of the magnet hole 33.
  • the outer core portion 34 is a part of the core sheet 24 formed inside the V-shaped folded shape of the magnet hole 33.
  • the outer core portion 34 functions as a portion that faces the stator 10 and obtains reluctance torque.
  • the outer core portion 34 has a substantially triangular shape with one vertex oriented toward the central axis L1 of the core sheet 24 when viewed from the axial direction.
  • the eight magnetic pole forming parts 32 of this embodiment consist of four first magnetic pole forming parts 41 and four second magnetic pole forming parts 42.
  • the four first magnetic pole forming parts 41 and the four second magnetic pole forming parts 42 are arranged alternately in the circumferential direction.
  • a connecting portion 35 is provided in the magnet hole 33 of each first magnetic pole forming portion 41.
  • the connecting portion 35 connects the outer core portion 34 and the portion of the core sheet 24 around the shaft insertion hole 31 at the V-shaped bent portion of the radially inner end of the magnet hole 33 .
  • the magnet hole 33 of each second magnetic pole forming portion 42 is not provided with a connecting portion like the connecting portion 35 .
  • Each core sheet 24 has a first fitting portion 43 .
  • the first fitting portion 43 is provided in the outer core portion 34 of each first magnetic pole forming portion 41 . That is, in each core sheet 24, four first fitting portions 43 are provided.
  • the first fitting portion 43 has a convex shape that projects in the axial direction.
  • the first fitting portion 43 is formed by pressing the core sheet 24.
  • the back side of the first fitting part 43 has a recess 44 formed when the first fitting part 43 is press-molded. That is, by pushing a punch (not shown) into one surface of the core sheet 24 in the axial direction, a recess 44 is formed on the one surface of the core sheet 24, and a first fitting is formed on the opposite surface.
  • a section 43 is formed. Therefore, the first fitting portion 43 and the recess 44 have substantially the same shape when viewed from the axial direction. In this embodiment, the first fitting portion 43 and the recess 44 have a circular shape when viewed in the axial direction.
  • the first fitting portion 43 and the recess 44 are not displaced in the circumferential direction. That is, the center 43a of the first fitting part 43 and the center 44a of the recess 44 are located on the same straight line L2 along the axial direction.
  • each core sheet 24 has a second fitting portion 45.
  • the second fitting portion 45 is provided in the outer core portion 34 of each second magnetic pole forming portion 42 . That is, in each core sheet 24, four second fitting portions 45 are provided. Further, first fitting portions 43 and second fitting portions 45 are provided alternately in the circumferential direction for the eight magnetic pole forming portions 32.
  • the second fitting portion 45 has a concave shape recessed in the axial direction. Specifically, the second fitting portion 45 is a through hole that penetrates the core sheet 24 in the axial direction. The second fitting portion 45 has a circular shape when viewed in the axial direction. Each first fitting part 43 and each second fitting part 45 are arranged on the same circle centered on the central axis L1.
  • the first fitting part 43 is provided in the first magnetic pole forming part 41, and the second fitting part 45 is provided in the second magnetic pole forming part 42. That is, the first fitting part 43 and the second fitting part 45 provided on the same core sheet 24 are provided at positions that do not overlap with each other in the axial direction.
  • the first fitting portion 43 is provided such that the center 43a of the first fitting portion 43 is located on the circumferential center C1 of the first magnetic pole forming portion 41.
  • the second fitting part 45 is set at a position where the center 45a of the second fitting part 45 is offset by an offset angle ⁇ 2 in the circumferential direction with respect to the circumferential center C2 of the second magnetic pole forming part 42. .
  • the first fitting portion 43 is provided at the center of the outer core portion 34 in the circumferential direction. Thereby, the first fitting part 43 can be provided at a position away from the circumferential edge of the outer core part 34 in the first magnetic pole forming part 41, that is, from the circumferential inner edge of the magnet hole 33. . Therefore, it is possible to avoid a decrease in the rigidity of the outer core part 34 due to the first fitting part 43 being provided at a position close to the circumferential edge of the outer core part 34.
  • the second fitting part 45 is relative to the circumferential center C2 of the second magnetic pole forming part 42.
  • the offset distance D is D ⁇ r ⁇ sin( ⁇ 2).
  • This offset distance D is set to a length of one-tenth or more of the thickness t of the core sheet 24. That is, the relationship among the distance r, the offset angle ⁇ 2 of the second fitting portion 45, and the thickness t of the core sheet 24 is configured to satisfy 0.1t ⁇ r ⁇ sin( ⁇ 2).
  • the second fitting portion 45 is provided such that the center 45a is located radially outward from the radial center line 34a of the outer core portion 34 of the second magnetic pole forming portion 42.
  • the plurality of core sheets 24 are stacked one by one, for example, while being rotated by a rolling angle ⁇ a around the central axis L1.
  • each core sheet 24 is coupled to each other by fitting the first fitting part 43 and the second fitting part 45.
  • the center 43a of the first fitting part 43 is located on the circumferential center C1 of the first magnetic pole forming part 41, whereas the center 45a of the second fitting part 45 is located on the circumference of the second magnetic pole forming part 42. It is shifted by an offset angle ⁇ 2 from the directional center C2.
  • the magnetic pole forming portions 32 of each core sheet 24 are stacked one by one in the axial direction while being shifted in the circumferential direction by the offset angle ⁇ 2.
  • the magnetic poles of the rotor core 22 formed by the magnetic pole forming portions 32 stacked in the axial direction form a so-called skew structure in which the magnetic poles of the rotor core 22 are displaced in the circumferential direction from one end of the rotor core 22 in the axial direction toward the other end.
  • FIG. 6 shows a rotor core 22 in which a plurality of core sheets 24 are laminated in the manner described above.
  • a skew line L3 is shown on the outer peripheral surface of the rotor core 22, tracing the circumferential center (i.e., circumferential center C1, C2) of the magnetic pole forming portion 32 of each core sheet 24 stacked in the axial direction.
  • the circumferential center i.e., circumferential center C1, C2
  • illustration of the detailed shape of the core sheet 24 such as the magnet hole 33 is omitted for convenience of explanation.
  • the magnetic pole forming portions 32 stacked in the axial direction have a so-called skew structure that is displaced in the circumferential direction from one end of the rotor core 22 in the axial direction toward the other end.
  • the amount of displacement of this skew structure in the circumferential direction is determined by the offset angle ⁇ 2 of the second fitting portion 45 and the number of stacked core sheets 24.
  • the magnet holes 33 of each of the axially stacked magnetic pole forming portions 32 are displaced in the circumferential direction along the skew line L3 from one end of the rotor core 22 toward the other end in the axial direction.
  • the permanent magnet 23 is arranged in the accommodation space formed by the magnet holes 33 of each core sheet 24 being connected along the skew line L3.
  • the permanent magnet 23 is made of, for example, a bonded magnet filled in the accommodation space formed by a series of magnet holes 33. As a result, the permanent magnet 23 has a substantially V-shaped folded shape that protrudes radially inward when viewed from the axial direction. Further, the permanent magnet 23 is displaced in the circumferential direction along the skew line L3 from one end of the rotor core 22 in the axial direction toward the other end. Note that as the magnet powder used for the permanent magnet 23, for example, a samarium iron nitrogen (SmFeN) magnet is used, but other rare earth magnets or the like may be used.
  • the magnetic poles of the rotor 20 are constituted by the magnetic pole forming portions 32 laminated in the axial direction and the permanent magnets 23 arranged in the housing spaces formed by the magnet holes 33 of the magnetic pole forming portions 32.
  • the magnetic poles of the rotor core 22 have a skew structure that is displaced in the circumferential direction from one end of the rotor core 22 in the axial direction toward the other end. Therefore, it is possible to suppress the cogging torque generated in the rotating electrical machine M to a small level.
  • each of the first fitting parts 43 of the core sheet 24 is fitted into a recess on the back side of the first fitting part 43 in the core sheet 24 adjacent in the axial direction.
  • the configuration for joining the core sheets 24 will be explained.
  • by shifting the die and punch used for pressing the first fitting part 43 in the circumferential direction it is possible to shift the first fitting part 43 and the recess on the back side thereof in the circumferential direction.
  • the first fitting part 43 and the second fitting part 45 are provided in the same core sheet 24 at positions that do not overlap with each other in the axial direction. That is, the configuration is such that the first fitting part 43 does not participate in forming the second fitting part 45. Therefore, the degree of freedom in setting the formation position of the second fitting portion 45 is high, and as a result, it is possible to ensure a large offset angle ⁇ 2 of the second fitting portion 45. Therefore, it is possible to easily ensure the displacement amount of the skew structure in the circumferential direction, so that the design of the rotor core 22 is less likely to be restricted.
  • the plurality of magnetic pole forming parts 32 include a first magnetic pole forming part 41 provided with a first fitting part 43, and a second magnetic pole forming part 41 provided with a second fitting part 45. 42.
  • the center 43a of the first fitting part 43 is set on the circumferential center C1 of the first magnetic pole forming part 41.
  • the center 45a of the second fitting portion 45 is set at a position offset in the circumferential direction with respect to the circumferential center C2 of the second magnetic pole forming portion 42.
  • the first magnetic pole forming part 41 provided with the first fitting part 43 and the second magnetic pole forming part 42 provided with the second fitting part 45 are arranged in the circumferential direction. A plurality of them are arranged alternately. According to this configuration, it is possible to provide the first fitting portions 43 and the second fitting portions 45 alternately in the circumferential direction for the plurality of magnetic pole forming portions 32. Thereby, in the core sheets 24 that overlap in the axial direction, it is possible to secure fitting locations between the first fitting portion 43 and the second fitting portion 45 equal to half the number of magnetic pole forming portions 32 .
  • the first fitting part 43 has a convex shape that projects in the axial direction
  • the second fitting part 45 is a through hole that penetrates the core sheet 24 in the axial direction.
  • the second fitting part 45 which is a through hole, has a larger magnetic resistance than the first fitting part 43. Therefore, by offsetting the second fitting portion 45 from the circumferential center C2 of the second magnetic pole forming portion 42 where the magnetic flux density is high, it is possible to suppress the influence on the magnetic properties to a small level.
  • the offset angles ⁇ 2 of the second fitting portions 45 in each core sheet 24 are all the same. According to this configuration, it is possible to make each core sheet 24 have the same shape.
  • the second fitting portion 45 is a through hole that penetrates the core sheet 24 in the axial direction. According to this configuration, it becomes possible to easily form the second fitting part 45 into which the convex first fitting part 43 is fitted.
  • Each core sheet 24 has a recess 44 formed on the back side of the first fitting part 43 when the first fitting part 43 is press-molded.
  • the center 43a of the first fitting portion 43 and the center 44a of the recess 44 are located on the same straight line L2 along the axial direction. According to this configuration, it is possible to accurately form the shape of the first fitting portion 43 formed by press working.
  • each of the plurality of magnetic pole forming portions 32 has a magnet hole 33 in which the permanent magnet 23 is placed.
  • the magnet hole 33 has a folded shape that protrudes radially inward. According to this configuration, it is possible to ensure the size of the outer core portion 34 that contributes to reluctance torque.
  • each of the plurality of magnetic pole forming portions 32 has an outer core portion 34 that is a portion radially outside the magnet hole 33.
  • the first fitting part 43 and the second fitting part 45 are provided in the outer core part 34, respectively. According to this configuration, the area of the outer core portion 34 is secured because the magnet hole 33 has a V-shape. Therefore, by setting the formation positions of the first fitting part 43 and the second fitting part 45 in the outer core part 34, there is a degree of freedom in setting the formation positions of the first fitting part 43 and the second fitting part 45. It becomes possible to improve the
  • the second fitting portion 45 is provided such that its center 45a is located radially outward from the radial center line 34a of the outer core portion 34 of the second magnetic pole forming portion 42.
  • the more the second fitting part 45 is located radially inward that is, the distance r is smaller
  • the first fitting portion 43 has a circular shape when viewed from the axial direction. Thereby, the stress around the first fitting portion 43 can be made uniform.
  • the second fitting portion 45 has a circular shape when viewed from the axial direction. Thereby, the stress around the second fitting portion 45 can be made uniform.
  • Each magnetic pole forming portion 32 is provided with only one first fitting portion 43 or one second fitting portion 45.
  • the first fitting portion 43 and the second fitting portion 45 become factors that inhibit the flow of magnetic flux in the magnetic pole forming portion 32 . Therefore, by minimizing the number of first fitting parts 43 or second fitting parts 45 provided in one magnetic pole forming part 32, it is possible to suppress deterioration of the flow of magnetic flux in each magnetic pole forming part 32. becomes.
  • the plurality of core sheets 24 forming the rotor core 22 may include core sheets 24 with different offset angles ⁇ 2 of the second fitting portions 45.
  • a first core sheet group 51 and a second core sheet group 52 are stacked in the axial direction.
  • the first core sheet group 51 is configured by stacking a plurality of core sheets 24 having the same shape.
  • the plurality of core sheets 24 constituting the first core sheet group 51 are each referred to as a first core sheet 24a.
  • the plurality of first core sheets 24a have the same shape.
  • each of the plurality of core sheets 24 constituting the second core sheet group 52 is referred to as a second core sheet 24b.
  • the plurality of second core sheets 24b have the same shape.
  • the offset angle ⁇ 2 of the second fitting portion 45 on the first core sheet 24a is ⁇ °
  • the offset angle ⁇ 2 of the second fitting portion 45 on the second core sheet 24b is ⁇ °
  • is a negative value
  • the second fitting portion 45 of the second core sheet 24b is offset in the opposite direction with respect to the second fitting portion 45 of the first core sheet 24a.
  • the thrust force in the axial direction caused by the magnetic poles of the rotor 20 having a skew structure is in opposite directions between the first core sheet group 51 and the second core sheet group 52. Therefore, the thrust force of the entire rotor 20, which is the sum of the thrust forces generated in each of the first core sheet group 51 and the second core sheet group 52, can be kept small.
  • the second fitting portion 45 may be a recessed portion that does not penetrate the core sheet 24. According to this configuration, it is possible to suppress the magnetic resistance of the second fitting part 45 to be smaller than when the second fitting part 45 is a through hole.
  • the core sheet 24 shown in FIG. 10 includes a first fitting portion 43 and a plurality of second fitting portions 45 arranged on a first reference circle X1 centered on the central axis L1. It has an uneven group 61.
  • the core sheet 24 also has a second uneven group 62 that includes a plurality of first fitting portions 43 and a plurality of second fitting portions 45 arranged on a second reference circle X2 centered on the central axis L1. have.
  • the second reference circle X2 has a smaller diameter than the first reference circle X1.
  • the first fitting portions 43 and the second fitting portions 45 are provided alternately in the circumferential direction with respect to the plurality of magnetic pole forming portions 32, for example.
  • the first fitting portions 43 and the second fitting portions 45 are provided alternately in the circumferential direction with respect to the plurality of magnetic pole forming portions 32.
  • the magnetic pole forming part 32 in which the first fitting part 43 of the first uneven group 61 is provided is referred to as the first magnetic pole forming part 41
  • the second fitting part of the first uneven group 61 is referred to as the first magnetic pole forming part 41.
  • the magnetic pole forming part 32 in which the magnetic pole 45 is provided is referred to as a second magnetic pole forming part 42.
  • Each first magnetic pole forming part 41 is provided with one first fitting part 43 of the first uneven group 61 and one second fitting part 45 of the second uneven group 62.
  • Each second magnetic pole forming portion 42 is provided with one second fitting portion 45 of the first uneven group 61 and one first fitting portion 43 of the second uneven group 62.
  • the first fitting portion 43 of each of the first unevenness group 61 and the second unevenness group 62 is provided at the circumferential center of the magnetic pole forming portion 32 .
  • the second fitting portions 45 of each of the first unevenness group 61 and the second unevenness group 62 are provided at positions offset in the circumferential direction from the circumferential center of the magnetic pole forming portion 32.
  • the first fitting part 43 and the second fitting part 45 in the same unevenness group correspond to each other. That is, in the state in which each core sheet 24 is stacked, the first fitting part 43 of the first uneven group 61 is fitted into the second fitting part 45 of the first uneven group 61 in the adjacent core sheet 24. . Further, the first fitting portion 43 of the second uneven group 62 is fitted into the second fitting portion 45 of the second uneven group 62 on the adjacent core sheet 24 .
  • the first unevenness group 61 and the second unevenness group 62 make it possible to improve the bonding strength of each core sheet 24 stacked in the axial direction.
  • the first reference circle X1 and the second reference circle X2 which serve as the reference for the positions of the first fitting part 43 and the second fitting part 45, are They have different diameters.
  • the first fitting portion 43 and the second fitting portion 45 are not aligned in the circumferential direction. Therefore, it is possible to avoid a decrease in the rigidity of the outer core portion 34 due to the first fitting portion 43 and the second fitting portion 45 being provided at positions close to the circumferential edge of the outer core portion 34. Become.
  • each magnetic pole forming portion 32 is provided with one first fitting portion 43 and one second fitting portion 45.
  • one magnetic pole forming portion 32 is not provided with the second fitting portion 45 of both the first unevenness group 61 and the second unevenness group 62. Therefore, one magnetic pole forming portion 32 is not provided with multiple second fitting portions 45 whose magnetic resistance is greater than the first fitting portions 43, and as a result, it is possible to suppress an increase in magnetic resistance in the magnetic pole forming portion 32.
  • each first magnetic pole forming part 41 is provided with the first fitting part 43 of each of the first uneven group 61 and the second uneven group 62
  • each second magnetic pole forming part 42 is provided with the first fitting part 43 of the first uneven group 61 and the second uneven group 62.
  • a second fitting portion 45 may be provided for each of the first unevenness group 61 and the second unevenness group 62.
  • the core sheet 24 includes only two groups of protrusions and recesses (the first group of protrusions and recesses 61 and the second group of protrusions and recesses 62), but the present invention is not limited to this, and even if it includes three or more groups of protrusions and recesses, good. Note that even when three or more uneven groups are provided, the reference circle that serves as a reference for the arrangement of the uneven groups is set to have a different diameter for each uneven group.
  • the centers 43a and 45a of the first fitting part 43 and the second fitting part 45 may be set radially inward from the radial center line 34a of the outer core part 34. good.
  • a plurality of core sheets 24 may be laminated in a state where each plurality of core sheets 24 are rotated by a rolling angle ⁇ a.
  • the core sheets 24 that are not stacked in a rotating state are coupled to each other by fitting between the first fitting portion 43 and the recess 44 .
  • the first fitting portions 43 and the second fitting portions 45 are arranged alternately in the circumferential direction with respect to the plurality of magnetic pole forming portions 32, but the present invention is not particularly limited to this. isn't it.
  • a configuration may be adopted in which a plurality of first fitting portions 43 and a plurality of second fitting portions 45 are arranged continuously in the circumferential direction.
  • the center 43a of the first fitting part 43 may be set at a position offset in the circumferential direction with respect to the circumferential center C1 of the first magnetic pole forming part 41. In this case, it is necessary to make the offset angle of the first fitting part 43 different from the offset angle ⁇ 2 of the second fitting part 45. According to such a configuration, it is possible to improve the degree of freedom in arranging the first fitting portion 43.
  • the relationship between the concaves and convexities of the first fitting part 43 and the second fitting part 45 may be reversed. That is, the first fitting part 43 may have a concave shape recessed in the axial direction, and the second fitting part 45 may have a convex shape protruding in the axial direction.
  • the number of poles of the rotor 20, that is, the number of magnetic pole forming portions 32 in one core sheet 24, is not limited to eight in the above embodiment, but may be set to seven or less, or nine or more.
  • the shape of the magnet hole 33 when viewed in the axial direction is not limited to the above embodiment, and may be any other folded shape that protrudes inward in the radial direction of the core sheet 24, such as a U-shape. Further, it may be in a shape other than the folded shape, such as an I-shape.
  • the first fitting part 43 and the second fitting part 45 in the above embodiment can be applied to the core sheet forming the stator core 11.
  • the present disclosure also includes various modifications and equivalent modifications.
  • various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.
  • a core (22) of a rotating electrical machine including a plurality of core sheets (24) having a plurality of magnetic pole forming portions (32) arranged at equal intervals in the circumferential direction and laminated in the axial direction, wherein Each has a first fitting part (43) and a second fitting part (45), and one of the first fitting part and the second fitting part has a protrusion projecting in the axial direction.
  • the other of the first fitting part and the second fitting part has a concave shape recessed in the axial direction, and the pair of core sheets that overlap in the axial direction are arranged in the first fitting part of one of the core sheets.
  • the first fitting portion and the second fitting portion provided on the same core sheet are connected to each other by fitting the fitting portion with the second fitting portion of the other core sheet, and the first fitting portion and the second fitting portion provided on the same core sheet are
  • the cores of a rotating electrical machine are located at positions that do not overlap in the direction.
  • the plurality of magnetic pole forming parts include a first magnetic pole forming part (41) in which the first fitting part is provided, and a second magnetic pole forming part (41) in which the second fitting part is provided.
  • a forming part (42), the center (43a) of the first fitting part is set on the circumferential center (C1) of the first magnetic pole forming part, and the center (43a) of the second fitting part is set on the circumferential center (C1) of the first magnetic pole forming part;
  • 45a) is the core of the rotating electrical machine according to [1], which is set at a position offset in the circumferential direction with respect to the circumferential center (C2) of the second magnetic pole forming part.
  • the plurality of magnetic pole forming parts include a first magnetic pole forming part (41) in which the first fitting part is provided, and a second magnetic pole forming part (41) in which the second fitting part is provided.
  • a forming part (42), the center (43a) of the first fitting part is set at a position offset in the circumferential direction with respect to the circumferential center (C1) of the first magnetic pole forming part,
  • the rotating electric machine according to [1] wherein the center (45a) of the second fitting part is set at a position offset in the circumferential direction with respect to the circumferential center (C2) of the second magnetic pole forming part. core of.
  • the plurality of core sheets are stacked one by one or each plurality of core sheets are rotated by a rolling angle ⁇ a, and the pitch angle of the plurality of magnetic pole forming parts is ⁇ 1, and the second fitting part
  • the first fitting portion or the second fitting portion having a concave shape recessed in the axial direction is a through hole (45) that penetrates the core sheet in the axial direction, [1] to [9] The core of the rotating electric machine according to any one of the above.
  • the first fitting portion has a convex shape protruding in the axial direction
  • the second fitting portion has a concave shape concave in the axial direction
  • each core sheet has a concave shape that protrudes in the axial direction
  • each of the core sheets has a recess (45) formed during press molding of the first fitting part on the back side, and the center (43a) of the first fitting part and the center (45a) of the recess are along the axial direction.
  • the core of the rotating electric machine according to any one of [1] to [10], which is located on the same straight line (L2).
  • the core of the rotating electrical machine is a rotor core (22) used in a rotor (20) of the rotating electrical machine (M), and in each core sheet, each of the plurality of magnetic pole forming portions has a permanent magnet (23 ) has a magnet hole (33) disposed inside, and the magnet hole has a folded shape protruding radially inward, according to any one of [1] to [11].
  • the core of rotating electric machines is a rotor core (22) used in a rotor (20) of the rotating electrical machine (M), and in each core sheet, each of the plurality of magnetic pole forming portions has a permanent magnet (23 ) has a magnet hole (33) disposed inside, and the magnet hole has a folded shape protruding radially inward, according to any one of [1] to [11].
  • each of the magnetic pole forming portions has an outer core portion (34) that is a portion radially outside the magnet hole, and the first fitting portion and the second fitting portion are each provided in the outer core portion.
  • a core for a rotating electric machine is a core for a rotating electric machine.
  • Each of the core sheets includes the first fitting part and the second fitting part, which are arranged on a first reference circle (X1) centered on the central axis (L1) of the core sheet.
  • the core of the rotating electrical machine according to any one of [1] to [13], further comprising a second uneven group (62) consisting of a joint portion.
  • a rotating electrical machine including a rotor (20) having a rotor core (22) and a stator (10) having a stator core (11), wherein at least one of the rotor core and the stator core has a plurality of A plurality of core sheets (24) having magnetic pole forming portions (32) arranged at equal intervals in the circumferential direction are laminated in the axial direction, and each of the plurality of core sheets has a first fitting portion (43) and a first fitting portion (43). 2 fitting parts (45), one of the first fitting part and the second fitting part has a convex shape projecting in the axial direction, and the first fitting part and the second fitting part have a convex shape projecting in the axial direction.
  • the other of the fitting parts has a concave shape recessed in the axial direction, and the pair of core sheets that overlap in the axial direction have the first fitting part of one core sheet and the second fitting part of the other core sheet.
  • the first fitting part and the second fitting part which are connected to each other by fitting with the core sheet and which are provided on the same core sheet, are provided at positions that do not overlap with each other in the axial direction. .

Abstract

回転電機のコア(22)は、複数の磁極形成部(32)を周方向において等間隔に備えるコアシート(24)が軸方向に複数積層されてなる。複数のコアシートの各々は、第1嵌合部(43)と、第2嵌合部(45)と、を有する。第1嵌合部及び第2嵌合部の一方は、軸方向に突出する凸状をなし、第1嵌合部及び第2嵌合部の他方は、軸方向に窪む凹状をなす。軸方向に重なり合う一対のコアシートは、一方のコアシートの第1嵌合部と他方のコアシートの第2嵌合部との嵌合により、互いに結合される。同一のコアシートに設けられた第1嵌合部と第2嵌合部とは、軸方向において互いに重ならない位置に設けられている。

Description

回転電機のコア及び回転電機 関連出願の相互参照
 本出願は、2022年9月13日に出願された日本出願番号2022-145329号に基づくもので、ここにその記載内容を援用する。
 本開示は、回転電機のコア及び回転電機に関するものである。
 例えば、特許文献1に開示された回転電機のロータコアは、軸方向に積層された複数のコアシートを備える。各コアシートは、プレス加工により形成される凸部と凹部を有している。詳しくは、コアシートの一方の面に対してパンチを軸方向に押し込むことにより、当該一方の面に凹部が形成されるとともに、その反対側の面に凸部が形成される。軸方向に重なり合うコアシート同士は、一方のコアシートの凸部が他方のコアシートの凹部に嵌合されることで、互いに結合される。また、特許文献1のロータでは、ロータコアに埋設された永久磁石によって磁極が形成されている。
特開2022-122982号公報
 上記のようなロータにおいて、磁極が軸方向にかけて周方向にずれるスキュー構造を実現する場合、同一のコアシートにおいて凸部とその裏側の凹部とを周方向にずらして形成する必要がある。この場合、凸部のプレス加工に用いるダイとパンチとを周方向にずらすことで、凸部とその裏側の凹部とを周方向にずらすことが可能である。しかしながら、このプレス加工では、凸部と凹部との周方向のずらし量を大きくすることは難しい。このため、磁極のスキュー構造における周方向への所望の変位量を確保するために、ロータコアの軸方向長さを大きくする必要が生じる等、ロータコアの設計に制約が生じてしまう。
 本開示の目的は、スキュー構造の周方向の変位量を容易に確保することを可能にした回転電機のコア及び回転電機を提供することにある。
 本開示の第一の態様において、回転電機のコアは、複数の磁極形成部を周方向において等間隔に備えるコアシートが軸方向に複数積層されてなる回転電機のコアであって、前記複数のコアシートの各々は、第1嵌合部と、第2嵌合部と、を有し、前記第1嵌合部及び前記第2嵌合部の一方は、軸方向に突出する凸状をなし、前記第1嵌合部及び前記第2嵌合部の他方は、軸方向に窪む凹状をなし、軸方向に重なり合う一対の前記コアシートは、一方のコアシートの前記第1嵌合部と他方のコアシートの前記第2嵌合部との嵌合により、互いに結合され、同一の前記コアシートに設けられた前記第1嵌合部と前記第2嵌合部とは、軸方向において互いに重ならない位置に設けられている。
 本開示の第二の態様において、回転電機は、ロータコアを有するロータと、ステータコアを有するステータと、を備えた回転電機であって、前記ロータコア及び前記ステータコアの少なくとも一方は、複数の磁極形成部を周方向において等間隔に備えるコアシートが軸方向に複数積層されてなり、前記複数のコアシートの各々は、第1嵌合部と、第2嵌合部と、を有し、前記第1嵌合部及び前記第2嵌合部の一方は、軸方向に突出する凸状をなし、前記第1嵌合部及び前記第2嵌合部の他方は、軸方向に窪む凹状をなし、軸方向に重なり合う一対の前記コアシートは、一方のコアシートの前記第1嵌合部と他方のコアシートの前記第2嵌合部との嵌合により、互いに結合され、同一の前記コアシートに設けられた前記第1嵌合部と前記第2嵌合部とは、軸方向において互いに重ならない位置に設けられている。
 上記の回転電機のコア及び回転電機によれば、第2嵌合部の成形に第1嵌合部が関与しない構成となる。このため、第2嵌合部の形成位置の設定自由度が高くなり、その結果、スキュー構造の周方向の変位量を容易に確保することが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態における回転電機の構成図であり、 図2は、同形態におけるコアシートの一部を示す平面図であり、 図3は、同形態のコアシートにおける第2磁極形成部を示す平面図であり、 図4は、同形態のロータコアにおける各コアシートの積層態様を示す説明図であり、 図5は、同形態のロータコアにおけるコアシート間の結合態様を示す説明図であり、 図6は、同形態のロータにおける磁極のスキュー構造を示す模式図であり、 図7は、変更例のロータにおける磁極のスキュー構造を示す模式図であり、 図8は、変更例のロータにおける磁極のスキュー構造を示す模式図であり、 図9は、変更例のロータコアにおける第2嵌合部を示す断面図であり、 図10は、変更例のコアシートを示す斜視図である。
 以下、回転電機のコア及び回転電機の一実施形態について説明する。
 図1に示す本実施形態の回転電機Mは、埋込磁石型のブラシレスモータにて構成されている。回転電機Mは、略円環状のステータ10と、ステータ10の径方向内側空間にて回転可能に配置される略円柱状のロータ20とを備えている。ステータ10は、ロータ20に対して回転磁界を付与する。
 (ステータ10)
 ステータ10は、略円環状のステータコア11を備えている。ステータコア11は、磁性金属材料にて構成されている。ステータコア11は、例えば複数のコアシートを中心軸L1に沿った方向に積層して構成されている。当該複数のコアシートは、例えば電磁鋼板よりなる。ステータコア11は、例えば12個のティース12を有している。ティース12は、径方向内側に向かって延び周方向等間隔に配置される。各ティース12は、互いに同一形状をなしている。ティース12は、先端部である径方向内側端部が略T型をなし、先端面12aがロータ20の外周面に倣った円弧状をなしている。
 ティース12には、巻線13が例えば集中巻きにて巻装されている。巻線13は3相結線がなされ、図1に示すようにそれぞれU相、V相、W相として機能する。そして、巻線13に対して電源供給がなされると、ロータ20を回転駆動するための回転磁界がステータ10にて生じるようになっている。このようなステータ10は、ステータコア11の外周面がハウジング14の内周面に対して固定されている。
 (ロータ20)
 ロータ20は、回転軸21と、ロータコア22と、複数の永久磁石23とを備える。ロータコア22は、略円柱状をなしている。ロータコア22の中心部には、回転軸21が嵌挿されている。複数の永久磁石23は、ロータコア22の内部に埋め込まれている。永久磁石23は、ロータコア22に例えば8個設けられている。ロータ20は、回転軸21がハウジング14に設けられる図示略の軸受に支持されることで、ステータ10に対して回転可能に配置されている。
 (コアシート24の構成)
 ロータコア22は、図2に示す複数のコアシート24が軸方向に積層されて構成されている。各コアシート24は、例えば、磁性金属材料にて形成された電磁鋼板からなる。本実施形態では、各コアシート24は、互いに同一形状をなしている。
 図2に示すように、コアシート24は、回転軸21が挿通される軸挿通孔31と、軸挿通孔31の周囲に位置する複数の磁極形成部32を有している。複数の磁極形成部32は、ロータコア22の周方向において等間隔に設けられている。なお、以下の説明では、ロータコア22の周方向、ロータコア22の軸方向及びロータコア22の径方向をそれぞれ単に、周方向、軸方向及び径方向と称する場合がある。
 本実施形態のロータ20は、例えば8極で構成されている。すなわち、各コアシート24には、8つの磁極形成部32が周方向において45°間隔で設けられている。
 8つの磁極形成部32は、磁石用孔33をそれぞれ備える。各磁石用孔33は、コアシート24を軸方向に貫通する孔である。磁石用孔33は、各磁極形成部32で同一形状をなす。各磁石用孔33の内部には、永久磁石23が配置される。各磁石用孔33は、軸方向から見て、径方向内側に向かって突出する折返し形状をなす。すなわち、各磁石用孔33は、軸方向から見て略V字状をなす。8つの磁石用孔33は、周方向において等間隔に設けられている。
 8つの磁極形成部32は、磁石用孔33の径方向外側の部位である外側コア部34をそれぞれ有する。外側コア部34は、磁石用孔33のV字の折返し形状の内側に形成されるコアシート24の一部である。外側コア部34は、ステータ10と対向してリラクタンストルクを得る部位として機能する。外側コア部34は、軸方向から見て、コアシート24の中心軸L1に向かう方向に1つの頂点を向けた略三角形状をなしている。
 本実施形態の8つの磁極形成部32は、4つの第1磁極形成部41と、4つの第2磁極形成部42とからなる。4つの第1磁極形成部41と4つの第2磁極形成部42とは、周方向において交互に配置されている。
 本実施形態では、各第1磁極形成部41の磁石用孔33に例えば連結部35が設けられている。連結部35は、磁石用孔33における径方向内側端部のV字の屈曲部分において、外側コア部34とコアシート24における軸挿通孔31の周囲の部分とを繋いでいる。なお、各第2磁極形成部42の磁石用孔33には、連結部35のような連結部が設けられていない。
 (第1嵌合部43の構成)
 各コアシート24は、第1嵌合部43を有する。第1嵌合部43は、各第1磁極形成部41の外側コア部34に設けられている。すなわち、各コアシート24において、第1嵌合部43は4つ設けられている。
 図5に示すように、第1嵌合部43は、軸方向に突出する凸状をなす。第1嵌合部43は、コアシート24に対するプレス加工により形成されている。第1嵌合部43の裏側には、第1嵌合部43のプレス成形時に形成される凹部44を有する。すなわち、コアシート24の一方の面に対して図示しないパンチを軸方向に押し込むことにより、コアシート24の当該一方の面に凹部44が形成されるとともに、その反対側の面に第1嵌合部43が形成される。したがって、第1嵌合部43及び凹部44は、軸方向から見た形状がほぼ同一形状をなす。本実施形態において、第1嵌合部43及び凹部44は、軸方向視で円形をなしている。第1嵌合部43と凹部44とは、周方向にずれていない。すなわち、第1嵌合部43の中心43aと凹部44の中心44aとは、軸方向に沿う同一直線L2上に位置している。
 (第2嵌合部45の構成)
 図2に示すように、各コアシート24は、第2嵌合部45を有する。第2嵌合部45は、各第2磁極形成部42の外側コア部34に設けられている。すなわち、各コアシート24において、第2嵌合部45は4つ設けられている。また、8つの磁極形成部32に対して周方向に交互に第1嵌合部43と第2嵌合部45とが設けられている。
 第2嵌合部45は、軸方向に窪む凹状をなす。具体的には、第2嵌合部45は、コアシート24を軸方向に貫通する貫通孔である。第2嵌合部45は、軸方向視で円形をなしている。各第1嵌合部43と各第2嵌合部45とは、中心軸L1を中心とする同一円上に配置されている。
 上記のように、第1嵌合部43は第1磁極形成部41に設けられ、第2嵌合部45は第2磁極形成部42に設けられている。すなわち、同一のコアシート24に設けられた第1嵌合部43と第2嵌合部45とは、軸方向において互いに重ならない位置に設けられている。
 (第1嵌合部43及び第2嵌合部45の配置について)
 複数の磁極形成部32のピッチ角度θ1は、各磁極形成部32の周方向中心間の角度である。すなわち、複数の磁極形成部32のピッチ角度θ1は、ロータ20の極数をPとして、θ1=360°/Pである。したがって、本実施形態のピッチ角度θ1は45°である。また、本実施形態では、第1磁極形成部41の周方向中心C1と、第2磁極形成部42の周方向中心C2とがなす角度は、ピッチ角度θ1と同一であって、45°である。
 第1嵌合部43は、第1嵌合部43の中心43aが第1磁極形成部41の周方向中心C1上に位置するように設けられている。一方、第2嵌合部45は、第2嵌合部45の中心45aが第2磁極形成部42の周方向中心C2に対して周方向にオフセット角度θ2だけオフセットされた位置に設定されている。
 なお、第1嵌合部43は、外側コア部34の周方向の中心に設けられている。これにより、第1嵌合部43を、第1磁極形成部41における外側コア部34の周方向の縁部、すなわち磁石用孔33の周方向内側縁から離れた位置に設けることが可能である。したがって、第1嵌合部43が外側コア部34の周方向の縁部に近い位置に設けられることによる、外側コア部34の剛性低下を回避することが可能となる。
 図3に示すように、コアシート24の中心軸L1から第2嵌合部45の中心45aまでの距離rとしたとき、第2磁極形成部42の周方向中心C2に対する第2嵌合部45のオフセット距離Dは、D≒r×sin(θ2)である。このオフセット距離Dは、コアシート24の板厚tの10分の1以上の長さに設定される。すなわち、前記距離rと、第2嵌合部45のオフセット角度θ2と、コアシート24の板厚tとの関係は、0.1t≦r×sin(θ2)を満たすように構成されている。また、第2嵌合部45は、中心45aが第2磁極形成部42の外側コア部34の径方向中心線34aよりも径方向外側に位置するように設けられている。
 図5に示すように、軸方向に積層された複数のコアシート24において、軸方向に重なり合う一対のコアシート24は、一方のコアシート24の第1嵌合部43と他方のコアシート24の第2嵌合部45との嵌合により、互いに結合される。これにより、各コアシート24が積層された状態において、第1磁極形成部41と第2磁極形成部42とは、軸方向に交互に重なっている。
 図4に示すように、複数のコアシート24は、例えば1枚毎に、中心軸L1を中心として転積角度θaだけ回転された状態で積層される。本実施形態の転積角度θaは、θa=θ1+θ2である。すなわち、軸方向に重なり合うコアシート24同士は、複数の磁極形成部32のピッチ角度θ1にオフセット角度θ2を足し合わせた角度だけ回転されている。
 上記のように、各コアシート24は、第1嵌合部43と第2嵌合部45との嵌合により互いに結合される。そして、第1嵌合部43の中心43aが第1磁極形成部41の周方向中心C1上に位置するのに対し、第2嵌合部45の中心45aは、第2磁極形成部42の周方向中心C2からオフセット角度θ2だけずれている。これにより、各コアシート24の磁極形成部32は、1枚ずつオフセット角度θ2だけ周方向にずれた状態で軸方向に積層される。すなわち、軸方向に積層される磁極形成部32によって形成されるロータコア22の磁極は、ロータコア22の軸方向の一端から他端に向かうにつれて周方向に変位するいわゆるスキュー構造をなす。
 図6には、複数のコアシート24が上記の態様で積層されてなるロータコア22を示す。同図において、ロータコア22の外周面には、軸方向に積層された各コアシート24の磁極形成部32の周方向中心(すなわち、周方向中心C1,C2)をなぞったスキュー線L3を示している。なお、図6及び後述の図7及び図8では、説明の便宜上、磁石用孔33等のコアシート24の詳細な形状の図示を省略している。スキュー線L3に示されるように、軸方向に積層された磁極形成部32は、ロータコア22の軸方向の一端から他端に向かうにつれて周方向に変位するいわゆるスキュー構造をなしている。このスキュー構造の周方向への変位量は、第2嵌合部45のオフセット角度θ2と、コアシート24の積層枚数とによって決定される。
 軸方向に積層された各磁極形成部32が有する磁石用孔33は、ロータコア22の軸方向の一端から他端に向かうにつれて、スキュー線L3に沿って周方向に変位している。また、各コアシート24の磁石用孔33がスキュー線L3に沿って連なって形成される収容空間には、永久磁石23が配置される。
 永久磁石23は、例えば、磁石用孔33が連なって形成される前記収容空間に充填されるボンド磁石よりなる。これにより、永久磁石23は、軸方向から見て、径方向内側に向かって突出する略V字の折返し形状をなす。また、永久磁石23は、ロータコア22の軸方向の一端から他端に向かうにつれて、スキュー線L3に沿って周方向に変位している。なお、永久磁石23に用いられる磁石粉体としては、例えばサマリウム鉄窒素(SmFeN)系磁石が用いられるが、他の希土類磁石等を用いてもよい。軸方向に積層された磁極形成部32と、当該磁極形成部32の磁石用孔33にて形成された収容空間に配置された永久磁石23とによって、ロータ20の磁極が構成される。
 本実施形態の作用について説明する。
 ロータコア22の磁極は、ロータコア22の軸方向の一端から他端に向かうにつれて周方向に変位するスキュー構造をなす。このため、回転電機Mにて発生するコギングトルクを小さく抑えることが可能となっている。
 本実施形態の効果について説明する。
 (1)軸方向に積層された複数のコアシート24において、軸方向に重なり合う一対のコアシート24は、一方のコアシート24の第1嵌合部43と他方のコアシート24の第2嵌合部45との嵌合により、互いに結合される。そして、同一のコアシート24に設けられた第1嵌合部43と第2嵌合部45とは、軸方向において互いに重ならない位置に設けられている。
 ここで、本実施形態に対する比較構成として、コアシート24の第1嵌合部43を、軸方向に隣接するコアシート24における第1嵌合部43の裏側の凹部に嵌合することで、各コアシート24を結合する構成について説明する。上記比較構成において、ロータ20の磁極のスキュー構造を実現する場合、第1嵌合部43とその裏側の凹部とを周方向にずらす必要がある。この場合、第1嵌合部43のプレス加工に用いるダイとパンチとを周方向にずらすことで、第1嵌合部43とその裏側の凹部とを周方向にずらすことが可能である。しかしながら、このプレス加工では、第1嵌合部43と凹部との周方向のずらし量を大きくすることは難しい。このため、スキュー構造の所望の変位量を確保するために、ロータコア22の軸方向長さを大きくする必要が生じる等、ロータコア22の設計に制約が生じてしまう。
 その点、本実施形態では、同一のコアシート24において、第1嵌合部43と第2嵌合部45とが、軸方向において互いに重ならない位置に設けられている。すなわち、第2嵌合部45の成形に第1嵌合部43が関与しない構成となる。このため、第2嵌合部45の形成位置の設定自由度が高く、その結果、第2嵌合部45のオフセット角度θ2を大きく確保することが可能となる。したがって、スキュー構造の周方向の変位量を容易に確保することが可能となるため、ロータコア22の設計に制約が生じにくい構成となる。
 (2)各コアシート24において、複数の磁極形成部32は、第1嵌合部43が設けられた第1磁極形成部41と、第2嵌合部45が設けられた第2磁極形成部42と、を含む。第1嵌合部43の中心43aは、第1磁極形成部41の周方向中心C1上に設定されている。第2嵌合部45の中心45aは、第2磁極形成部42の周方向中心C2に対して周方向にオフセットされた位置に設定されている。この構成によれば、コアシート24の第1嵌合部43を、軸方向に隣接するコアシート24の第2嵌合部45に嵌合することで、軸方向に積層される磁極形成部32にて形成されるロータ20の磁極をスキュー構造とすることが可能となる。
 (3)コアシート24の中心軸L1から第2嵌合部45の中心45aまでの距離rと、第2嵌合部45のオフセット角度θ2と、コアシート24の板厚tとの関係が、0.1t≦r×sin(θ2)を満たすように構成されている。この構成によれば、第2嵌合部45の形成位置の設定自由度が向上されることで、第2嵌合部45の周方向のオフセット距離D(D≒r×sin(θ2))を、コアシート24の板厚tの10分の1以上に設定することが容易となる。このため、第2嵌合部45のオフセット角度θ2を確保するために、コアシート24の中心軸L1から第2嵌合部45の中心45aまでの距離rを小さくする等の設計上の制約を無くすことが可能となる。
 (4)複数のコアシート24は、1枚毎に転積角度θaだけ回転された状態で積層される。そして、複数の磁極形成部32のピッチ角度をθ1とし、第2嵌合部45のオフセット角度をθ2としたとき、転積角度θaは、θa=θ1+θ2である。この構成によれば、軸方向に重なり合うコアシート24同士を、複数の磁極形成部32のピッチ角度θ1にオフセット角度θ2を足し合わせた角度だけ回転した状態で積層することが可能となる。
 (5)複数の磁極形成部32は、第1嵌合部43が設けられた第1磁極形成部41と、第2嵌合部45が設けられた第2磁極形成部42とが周方向において交互に複数配置されて構成されている。この構成によれば、複数の磁極形成部32に対して周方向に交互に第1嵌合部43と第2嵌合部45とを設けることが可能となる。これにより、軸方向に重なり合うコアシート24において、第1嵌合部43と第2嵌合部45との嵌合箇所を、磁極形成部32の個数の半数分確保することが可能となる。
 (6)第1嵌合部43は、軸方向に突出する凸状をなし、第2嵌合部45は、コアシート24を軸方向に貫通する貫通孔である。貫通孔である第2嵌合部45は、第1嵌合部43に対して磁気抵抗が大きい。このため、第2嵌合部45を、磁束密度が高い第2磁極形成部42の周方向中心C2からオフセットさせることで、磁気特性への影響を小さく抑えることが可能となる。
 (7)各コアシート24における第2嵌合部45のオフセット角度θ2が全て同じである。この構成によれば、各コアシート24を同一形状とすることが可能となる。
 (8)第2嵌合部45は、コアシート24を軸方向に貫通する貫通孔である。この構成によれば、凸状の第1嵌合部43が嵌合される第2嵌合部45を容易に形成することが可能となる。
 (9)各コアシート24は、第1嵌合部43の裏側において、第1嵌合部43のプレス成形時に形成される凹部44を有する。そして、第1嵌合部43の中心43aと凹部44の中心44aとが軸方向に沿う同一直線L2上に位置している。この構成によれば、プレス加工にて形成される第1嵌合部43の形状を、精度良く形成することが可能となる。
 (10)各コアシート24において、複数の磁極形成部32の各々は、永久磁石23が内部に配置される磁石用孔33を有する。そして、磁石用孔33は、径方向内側に向かって突出する折返し形状をなす。この構成によれば、リラクタンストルクに寄与する外側コア部34の大きさを確保することが可能となる。
 (11)各コアシート24において、複数の磁極形成部32の各々は、磁石用孔33の径方向外側の部位である外側コア部34を有する。第1嵌合部43及び第2嵌合部45は、外側コア部34にそれぞれ設けられている。この構成によれば、磁石用孔33がV字状をなすことで、外側コア部34の面積が確保されている。このため、第1嵌合部43及び第2嵌合部45の形成位置を外側コア部34に設定することで、第1嵌合部43及び第2嵌合部45の形成位置の設定自由度を向上させることが可能となる。
 (12)第2嵌合部45は、その中心45aが第2磁極形成部42の外側コア部34の径方向中心線34aよりも径方向外側に位置するように設けられている。第2嵌合部45の形成位置が製造誤差により周方向にずれてしまったとき、第2嵌合部45が径方向内側に位置する(すなわち距離rが小さい)ほど、オフセット角度θ2の誤差が大きくなる。したがって、第2嵌合部45が前記径方向中心線34aよりも径方向外側にあることで、オフセット角度θ2の誤差を小さく抑えることが可能となる。
 (13)第1嵌合部43は、軸方向から見て円形をなしている。これにより、第1嵌合部43の周りにおける応力の均一化を図ることができる。同様に、第2嵌合部45は、軸方向から見て円形をなしている。これにより、第2嵌合部45の周りにおける応力の均一化を図ることができる。
 (14)各磁極形成部32には、第1嵌合部43または第2嵌合部45が1つのみ設けられている。第1嵌合部43及び第2嵌合部45は、磁極形成部32における磁束の流れを阻害する要因となる。このため、1つの磁極形成部32に設けられる第1嵌合部43または第2嵌合部45の数を最小にすることで、各磁極形成部32における磁束の流れの悪化を抑えることが可能となる。
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・ロータコア22を形成する複数のコアシート24が、第2嵌合部45のオフセット角度θ2が異なるコアシート24を含んでいてもよい。
 例えば、図7に示すロータコア22では、第1コアシート群51と第2コアシート群52とが軸方向に重ねられている。第1コアシート群51は、互いに同一形状の複数のコアシート24が積層されて構成されている。第1コアシート群51を構成する複数のコアシート24をそれぞれ第1コアシート24aとする。複数の第1コアシート24aは、互いに同一形状である。また、第2コアシート群52を構成する複数のコアシート24をそれぞれ第2コアシート24bとする。複数の第2コアシート24bは、互いに同一形状である。
 ここで、第1コアシート24aにおける第2嵌合部45のオフセット角度θ2をα°とし、第2コアシート24bにおける第2嵌合部45のオフセット角度θ2をβ°とする。図7に示す例では、αがプラスの値であるとき、βがマイナスの値とされている。すなわち、第2コアシート24bの第2嵌合部45は、第1コアシート24aの第2嵌合部45に対して反対方向にオフセットされている。これにより、ロータ20の磁極のスキュー構造において、軸方向の一方側にかけての周方向への変位を、第1コアシート群51と第2コアシート群52とで反対向きとすることができる。したがって、ロータ20の磁極がスキュー構造を有することによって生じる軸方向へのスラスト力が、第1コアシート群51と第2コアシート群52とで反対向きとなる。このため、第1コアシート群51及び第2コアシート群52の各々で生じるスラスト力を足し合わせたロータ20全体のスラスト力を小さく抑えることが可能となる。
 さらに、図7に示す例では、プラス値であるαとマイナス値であるβの絶対値が等しく設定されている。これにより、ロータ20の磁極のスキュー構造において、軸方向の一方側にかけての周方向への変位を、第1コアシート群51と第2コアシート群52とで同等とすることが可能となる。これにより、第1コアシート群51及び第2コアシート群52の各々で生じるスラスト力を相殺させて、ロータ20全体で生じるスラスト力をより小さく抑えることが可能となる。なお、図8には、αをプラスの値として、α<βに設定した例を示している。
 ・図9に示すように、第2嵌合部45が、コアシート24を貫通しない凹部であってもよい。この構成によれば、第2嵌合部45を貫通孔とする場合に比べて、第2嵌合部45の磁気抵抗を小さく抑えることが可能となる。
 ・上記実施形態のコアシート24では、中心軸L1を中心とする同一円上に配置される複数の第1嵌合部43と複数の第2嵌合部45とからなる凹凸群を1つのみ設けているが、これに特に限定されるものではなく、当該凹凸群を2つ以上設けてもよい。
 例えば、図10に示すコアシート24は、中心軸L1を中心とする第1基準円X1上に配置される複数の第1嵌合部43と複数の第2嵌合部45とからなる第1凹凸群61を有している。また、コアシート24は、中心軸L1を中心とする第2基準円X2上に配置される複数の第1嵌合部43と複数の第2嵌合部45とからなる第2凹凸群62を有している。第2基準円X2は、第1基準円X1よりも径が小さい。
 第1凹凸群61において、第1嵌合部43と第2嵌合部45とは、例えば、複数の磁極形成部32に対して周方向に交互に設けられている。また、第2凹凸群62において、例えば、第1嵌合部43と第2嵌合部45とは、複数の磁極形成部32に対して周方向に交互に設けられている。ここで、複数の磁極形成部32において、第1凹凸群61の第1嵌合部43が設けられる磁極形成部32を第1磁極形成部41とし、第1凹凸群61の第2嵌合部45が設けられる磁極形成部32を第2磁極形成部42とする。各第1磁極形成部41には、第1凹凸群61の第1嵌合部43と第2凹凸群62の第2嵌合部45とが1つずつ設けられている。各第2磁極形成部42には、第1凹凸群61の第2嵌合部45と第2凹凸群62の第1嵌合部43とが1つずつ設けられている。第1凹凸群61及び第2凹凸群62の各々の第1嵌合部43は、磁極形成部32の周方向中心に設けられている。第1凹凸群61及び第2凹凸群62の各々の第2嵌合部45は、磁極形成部32の周方向中心から周方向にオフセットした位置に設けられている。
 第1凹凸群61及び第2凹凸群62の各々において、同一の凹凸群内の第1嵌合部43と第2嵌合部45とが互いに対応している。すなわち、各コアシート24が積層された状態において、第1凹凸群61の第1嵌合部43は、隣接するコアシート24における第1凹凸群61の第2嵌合部45に嵌合される。また、第2凹凸群62の第1嵌合部43は、隣接するコアシート24における第2凹凸群62の第2嵌合部45に嵌合される。
 図10に示すような構成によれば、第1凹凸群61と第2凹凸群62とによって、軸方向に積層される各コアシート24の結合強度を向上させることが可能となる。また、第1凹凸群61及び第2凹凸群62のそれぞれにおいて、第1嵌合部43及び第2嵌合部45の位置の基準となる第1基準円X1と第2基準円X2とが、互いに径が異なっている。これにより、1つの磁極形成部32において、第1嵌合部43と第2嵌合部45とが周方向に並ばない構成となる。このため、第1嵌合部43及び第2嵌合部45が外側コア部34の周方向の縁部に近い位置に設けられることによる、外側コア部34の剛性低下を回避することが可能となる。
 また、同構成では、各磁極形成部32に、第1嵌合部43及び第2嵌合部45が1つずつ設けられている。すなわち、1つの磁極形成部32に、第1凹凸群61及び第2凹凸群62の両方の第2嵌合部45が設けられていない構成となっている。したがって、磁気抵抗が第1嵌合部43よりも大きい第2嵌合部45が1つの磁極形成部32に複数設けられることがなく、その結果、磁極形成部32における磁気抵抗の増加を抑えることが可能となる。
 なお、図10に示す構成において、各第1磁極形成部41に、第1凹凸群61及び第2凹凸群62の各々の第1嵌合部43を設け、各第2磁極形成部42に、第1凹凸群61及び第2凹凸群62の各々の第2嵌合部45を設けてもよい。また、図10に示す構成では、コアシート24が凹凸群を2つ(第1凹凸群61及び第2凹凸群62)のみ備えるが、これに限らず、凹凸群を3つ以上備えていてもよい。なお、凹凸群を3つ以上設ける場合においても、凹凸群の配置の基準となる基準円は、各凹凸群で互いに異なる径に設定される。
 ・上記実施形態のコアシート24において、第1嵌合部43及び第2嵌合部45の中心43a,45aを、外側コア部34の径方向中心線34aよりも径方向内側に設定してもよい。
 ・上記実施形態において、転積角度θaは、θa=θ1+θ2に限定されることはなく、適宜変更可能である。すなわち、上記実施形態においては、転積角度θaは、θa=(θ1×(2N-1))+θ2(ただし、Nは1以上の整数)であればよい。
 ・複数のコアシート24を複数枚毎に転積角度θaだけ回転された状態で積層してもよい。この場合、回転状態で積層しないコアシート24同士は、第1嵌合部43と凹部44との嵌合によって互いに結合される。
 ・上記実施形態のコアシート24では、複数の磁極形成部32に対し、第1嵌合部43と第2嵌合部45とを周方向に交互に配置したが、これに特に限定されるものではない。例えば、複数の第1嵌合部43及び複数の第2嵌合部45が周方向において連続して配置される構成であってもよい。また、複数の磁極形成部32の全てに第1嵌合部43または第2嵌合部45を設ける必要はない。例えば、周方向において1つおきの磁極形成部32に対し、第1嵌合部43と第2嵌合部45とを交互に設けてもよい。なお、第1嵌合部43及び第2嵌合部45の配置によっては、転積角度θaを、θa=(θ1×N)+θ2(ただし、Nは1以上の整数)とすることが可能である。
 ・第1嵌合部43の中心43aを第1磁極形成部41の周方向中心C1に対して周方向にオフセットした位置に設定してもよい。なお、この場合、第1嵌合部43のオフセット角度を、第2嵌合部45のオフセット角度θ2とは異ならせる必要がある。このような構成によれば、第1嵌合部43の配置の自由度を向上させることが可能となる。
 ・上記実施形態及び図10に示すコアシート24において、第1嵌合部43及び第2嵌合部45の凹凸関係を逆にしてもよい。すなわち、第1嵌合部43が軸方向に窪む凹状をなし、第2嵌合部45が軸方向に突出する凸状をなしていてもよい。
 ・ロータ20の極数、すなわち、1つのコアシート24における磁極形成部32の数は、上記実施形態の8個に限らず、7個以下、または9個以上に設定してもよい。
 ・磁石用孔33の軸方向視の形状は、上記実施形態に限定されるものではなく、U字状等、コアシート24の径方向内側に突出するその他の折返し形状であってもよい。また、I字状等、折返し形状以外であってもよい。
 ・上記実施形態における第1嵌合部43及び第2嵌合部45を、ステータコア11を形成するコアシートに適用可能である。
 ・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (付記)
 本開示の特徴を以下の通り示す。
 [1]複数の磁極形成部(32)を周方向において等間隔に備えるコアシート(24)が軸方向に複数積層されてなる回転電機のコア(22)であって、前記複数のコアシートの各々は、第1嵌合部(43)と、第2嵌合部(45)と、を有し、前記第1嵌合部及び前記第2嵌合部の一方は、軸方向に突出する凸状をなし、前記第1嵌合部及び前記第2嵌合部の他方は、軸方向に窪む凹状をなし、軸方向に重なり合う一対の前記コアシートは、一方のコアシートの前記第1嵌合部と他方のコアシートの前記第2嵌合部との嵌合により、互いに結合され、同一の前記コアシートに設けられた前記第1嵌合部と前記第2嵌合部とは、軸方向において互いに重ならない位置に設けられている、回転電機のコア。
 [2]前記各コアシートにおいて、前記複数の磁極形成部は、前記第1嵌合部が設けられた第1磁極形成部(41)と、前記第2嵌合部が設けられた第2磁極形成部(42)と、を含み、前記第1嵌合部の中心(43a)は、前記第1磁極形成部の周方向中心(C1)上に設定され、前記第2嵌合部の中心(45a)は、前記第2磁極形成部の周方向中心(C2)に対して周方向にオフセットされた位置に設定されている、[1]に記載の回転電機のコア。
 [3]前記各コアシートにおいて、前記複数の磁極形成部は、前記第1嵌合部が設けられた第1磁極形成部(41)と、前記第2嵌合部が設けられた第2磁極形成部(42)と、を含み、前記第1嵌合部の中心(43a)は、前記第1磁極形成部の周方向中心(C1)に対して周方向にオフセットされた位置に設定され、前記第2嵌合部の中心(45a)は、前記第2磁極形成部の周方向中心(C2)に対して周方向にオフセットされた位置に設定されている、[1]に記載の回転電機のコア。
 [4]前記コアシートの中心軸(L1)から前記第2嵌合部の中心までの距離rと、前記第2嵌合部のオフセット角度θ2と、前記コアシートの板厚tとの関係が、0.1t≦r×sin(θ2)を満たすように構成されている、[2]に記載の回転電機のコア。
 [5]前記複数のコアシートは、1枚毎または複数枚毎に転積角度θaだけ回転された状態で積層され、前記複数の磁極形成部のピッチ角度をθ1とし、前記第2嵌合部のオフセット角度をθ2としたとき、前記転積角度θaは、θa=(θ1×N)+θ2(ただし、Nは1以上の整数)である、[2]または[4]に記載の回転電機のコア。
 [6]前記複数の磁極形成部は、前記第1磁極形成部と前記第2磁極形成部とが周方向において交互に複数配置されて構成されている、[2]から[5]のいずれか1つに記載の回転電機のコア。
 [7]前記第1嵌合部は、軸方向に突出する凸状をなし、前記第2嵌合部は、前記コアシートを軸方向に貫通する貫通孔(45)である、[2]から[6]のいずれか1つに記載の回転電機のコア。
 [8]前記各コアシートにおける前記第2嵌合部のオフセット角度(θ2)が全て同じである、[2]から[7]のいずれか1つに記載の回転電機のコア。
 [9]前記複数のコアシートは、前記第2嵌合部のオフセット角度(θ2)が異なるコアシートを含んでいる、[2]から[7]のいずれか1つに記載の回転電機のコア。
 [10]軸方向に窪む凹状をなす前記第1嵌合部または前記第2嵌合部は、前記コアシートを軸方向に貫通する貫通孔(45)である、[1]から[9]のいずれか1つに記載の回転電機のコア。
 [11]前記第1嵌合部は、軸方向に突出する凸状をなし、前記第2嵌合部は、軸方向に窪む凹状をなし、前記各コアシートは、前記第1嵌合部の裏側において、前記第1嵌合部のプレス成形時に形成される凹部(45)を有し、前記第1嵌合部の中心(43a)と前記凹部の中心(45a)とが軸方向に沿う同一直線(L2)上に位置している、[1]から[10]のいずれか1つに記載の回転電機のコア。
 [12]前記回転電機のコアは、回転電機(M)のロータ(20)に用いられるロータコア(22)であり、前記各コアシートにおいて、前記複数の磁極形成部の各々は、永久磁石(23)が内部に配置される磁石用孔(33)を有し、前記磁石用孔は、径方向内側に向かって突出する折返し形状をなす、[1]から[11]のいずれか1つに記載の回転電機のコア。
 [13]前記各コアシートにおいて、前記複数の磁極形成部の各々は、前記磁石用孔の径方向外側の部位である外側コア部(34)を有し、前記第1嵌合部及び前記第2嵌合部は、前記外側コア部にそれぞれ設けられている、[12]に記載の回転電機のコア。
 [14]前記各コアシートは、前記コアシートの中心軸(L1)を中心とする第1基準円(X1)上に配置される前記第1嵌合部と前記第2嵌合部とからなる第1凹凸群(61)と、前記中心軸を中心とする、前記第1基準円よりも径が小さい第2基準円(X2)上に配置される前記第1嵌合部と前記第2嵌合部とからなる第2凹凸群(62)と、を備える、[1]から[13]のいずれか1つに記載の回転電機のコア。
 [15]ロータコア(22)を有するロータ(20)と、ステータコア(11)を有するステータ(10)と、を備えた回転電機(M)であって、前記ロータコア及び前記ステータコアの少なくとも一方は、複数の磁極形成部(32)を周方向において等間隔に備えるコアシート(24)が軸方向に複数積層されてなり、前記複数のコアシートの各々は、第1嵌合部(43)と、第2嵌合部(45)と、を有し、前記第1嵌合部及び前記第2嵌合部の一方は、軸方向に突出する凸状をなし、前記第1嵌合部及び前記第2嵌合部の他方は、軸方向に窪む凹状をなし、軸方向に重なり合う一対の前記コアシートは、一方のコアシートの前記第1嵌合部と他方のコアシートの前記第2嵌合部との嵌合により、互いに結合され、同一の前記コアシートに設けられた前記第1嵌合部と前記第2嵌合部とは、軸方向において互いに重ならない位置に設けられている、回転電機。

Claims (15)

  1.  複数の磁極形成部(32)を周方向において等間隔に備えるコアシート(24)が軸方向に複数積層されてなる回転電機のコア(22)であって、
     前記複数のコアシートの各々は、第1嵌合部(43)と、第2嵌合部(45)と、を有し、
     前記第1嵌合部及び前記第2嵌合部の一方は、軸方向に突出する凸状をなし、
     前記第1嵌合部及び前記第2嵌合部の他方は、軸方向に窪む凹状をなし、
     軸方向に重なり合う一対の前記コアシートは、一方のコアシートの前記第1嵌合部と他方のコアシートの前記第2嵌合部との嵌合により、互いに結合され、
     同一の前記コアシートに設けられた前記第1嵌合部と前記第2嵌合部とは、軸方向において互いに重ならない位置に設けられている、
     回転電機のコア。
  2.  前記各コアシートにおいて、前記複数の磁極形成部は、前記第1嵌合部が設けられた第1磁極形成部(41)と、前記第2嵌合部が設けられた第2磁極形成部(42)と、を含み、
     前記第1嵌合部の中心(43a)は、前記第1磁極形成部の周方向中心(C1)上に設定され、
     前記第2嵌合部の中心(45a)は、前記第2磁極形成部の周方向中心(C2)に対して周方向にオフセットされた位置に設定されている、
     請求項1に記載の回転電機のコア。
  3.  前記各コアシートにおいて、前記複数の磁極形成部は、前記第1嵌合部が設けられた第1磁極形成部(41)と、前記第2嵌合部が設けられた第2磁極形成部(42)と、を含み、
     前記第1嵌合部の中心(43a)は、前記第1磁極形成部の周方向中心(C1)に対して周方向にオフセットされた位置に設定され、
     前記第2嵌合部の中心(45a)は、前記第2磁極形成部の周方向中心(C2)に対して周方向にオフセットされた位置に設定されている、
     請求項1に記載の回転電機のコア。
  4.  前記コアシートの中心軸(L1)から前記第2嵌合部の中心までの距離rと、前記第2嵌合部のオフセット角度θ2と、前記コアシートの板厚tとの関係が、0.1t≦r×sin(θ2)を満たすように構成されている、
     請求項2に記載の回転電機のコア。
  5.  前記複数のコアシートは、1枚毎または複数枚毎に転積角度θaだけ回転された状態で積層され、
     前記複数の磁極形成部のピッチ角度をθ1とし、前記第2嵌合部のオフセット角度をθ2としたとき、前記転積角度θaは、θa=(θ1×N)+θ2(ただし、Nは1以上の整数)である、
     請求項2に記載の回転電機のコア。
  6.  前記複数の磁極形成部は、前記第1磁極形成部と前記第2磁極形成部とが周方向において交互に複数配置されて構成されている、
     請求項2に記載の回転電機のコア。
  7.  前記第1嵌合部は、軸方向に突出する凸状をなし、
     前記第2嵌合部は、前記コアシートを軸方向に貫通する貫通孔(45)である、
     請求項2に記載の回転電機のコア。
  8.  前記各コアシートにおける前記第2嵌合部のオフセット角度(θ2)が全て同じである、
     請求項2に記載の回転電機のコア。
  9.  前記複数のコアシートは、前記第2嵌合部のオフセット角度(θ2)が異なるコアシートを含んでいる、
     請求項2に記載の回転電機のコア。
  10.  軸方向に窪む凹状をなす前記第1嵌合部または前記第2嵌合部は、前記コアシートを軸方向に貫通する貫通孔(45)である、
     請求項1に記載の回転電機のコア。
  11.  前記第1嵌合部は、軸方向に突出する凸状をなし、
     前記第2嵌合部は、軸方向に窪む凹状をなし、
     前記各コアシートは、前記第1嵌合部の裏側において、前記第1嵌合部のプレス成形時に形成される凹部(45)を有し、
     前記第1嵌合部の中心(43a)と前記凹部の中心(45a)とが軸方向に沿う同一直線(L2)上に位置している、
     請求項1に記載の回転電機のコア。
  12.  前記回転電機のコアは、回転電機(M)のロータ(20)に用いられるロータコア(22)であり、
     前記各コアシートにおいて、前記複数の磁極形成部の各々は、永久磁石(23)が内部に配置される磁石用孔(33)を有し、
     前記磁石用孔は、径方向内側に向かって突出する折返し形状をなす、
     請求項1に記載の回転電機のコア。
  13.  前記各コアシートにおいて、前記複数の磁極形成部の各々は、前記磁石用孔の径方向外側の部位である外側コア部(34)を有し、
     前記第1嵌合部及び前記第2嵌合部は、前記外側コア部にそれぞれ設けられている、
     請求項12に記載の回転電機のコア。
  14.  前記各コアシートは、
     前記コアシートの中心軸(L1)を中心とする第1基準円(X1)上に配置される前記第1嵌合部と前記第2嵌合部とからなる第1凹凸群(61)と、
     前記中心軸を中心とする、前記第1基準円よりも径が小さい第2基準円(X2)上に配置される前記第1嵌合部と前記第2嵌合部とからなる第2凹凸群(62)と、
    を備える、
     請求項1に記載の回転電機のコア。
  15.  ロータコア(22)を有するロータ(20)と、
     ステータコア(11)を有するステータ(10)と、を備えた回転電機(M)であって、
     前記ロータコア及び前記ステータコアの少なくとも一方は、複数の磁極形成部(32)を周方向において等間隔に備えるコアシート(24)が軸方向に複数積層されてなり、
     前記複数のコアシートの各々は、第1嵌合部(43)と、第2嵌合部(45)と、を有し、
     前記第1嵌合部及び前記第2嵌合部の一方は、軸方向に突出する凸状をなし、
     前記第1嵌合部及び前記第2嵌合部の他方は、軸方向に窪む凹状をなし、
     軸方向に重なり合う一対の前記コアシートは、一方のコアシートの前記第1嵌合部と他方のコアシートの前記第2嵌合部との嵌合により、互いに結合され、
     同一の前記コアシートに設けられた前記第1嵌合部と前記第2嵌合部とは、軸方向において互いに重ならない位置に設けられている、
     回転電機。
PCT/JP2023/030129 2022-09-13 2023-08-22 回転電機のコア及び回転電機 WO2024057837A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145329A JP2024040764A (ja) 2022-09-13 2022-09-13 回転電機のコア及び回転電機
JP2022-145329 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024057837A1 true WO2024057837A1 (ja) 2024-03-21

Family

ID=90274844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030129 WO2024057837A1 (ja) 2022-09-13 2023-08-22 回転電機のコア及び回転電機

Country Status (2)

Country Link
JP (1) JP2024040764A (ja)
WO (1) WO2024057837A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248528A (ja) * 1987-04-01 1988-10-14 Mitsubishi Electric Corp プレス型
JPH09131004A (ja) * 1995-10-30 1997-05-16 Asmo Co Ltd 電気機器用鉄心素板及び鉄心
JPH11206051A (ja) * 1998-01-09 1999-07-30 Yaskawa Electric Corp 内磁形モータのロータ構造
JPH11299145A (ja) * 1998-04-10 1999-10-29 Nissan Motor Co Ltd 電動機のロータ
US6223417B1 (en) * 1998-08-19 2001-05-01 General Electric Corporation Method for forming motor with rotor and stator core paired interlocks
WO2019012860A1 (ja) * 2017-07-11 2019-01-17 株式会社三井ハイテック 積層鉄心及びその製造方法
WO2022114075A1 (ja) * 2020-11-26 2022-06-02 株式会社デンソー ロータ及び回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248528A (ja) * 1987-04-01 1988-10-14 Mitsubishi Electric Corp プレス型
JPH09131004A (ja) * 1995-10-30 1997-05-16 Asmo Co Ltd 電気機器用鉄心素板及び鉄心
JPH11206051A (ja) * 1998-01-09 1999-07-30 Yaskawa Electric Corp 内磁形モータのロータ構造
JPH11299145A (ja) * 1998-04-10 1999-10-29 Nissan Motor Co Ltd 電動機のロータ
US6223417B1 (en) * 1998-08-19 2001-05-01 General Electric Corporation Method for forming motor with rotor and stator core paired interlocks
WO2019012860A1 (ja) * 2017-07-11 2019-01-17 株式会社三井ハイテック 積層鉄心及びその製造方法
WO2022114075A1 (ja) * 2020-11-26 2022-06-02 株式会社デンソー ロータ及び回転電機

Also Published As

Publication number Publication date
JP2024040764A (ja) 2024-03-26

Similar Documents

Publication Publication Date Title
JP4070673B2 (ja) リラクタンス型回転電機の回転子
JP5930253B2 (ja) 永久磁石埋込型回転電機
US7528519B2 (en) Permanent magnet rotary motor
US7057322B2 (en) Rotor for reluctance type rotating machine
US11056934B2 (en) Rotary electric machine with a stator core with teeth having different protrusion portions heights
JP5565365B2 (ja) 回転電機のロータおよびその製造方法
JP5231082B2 (ja) 回転電機の回転子
WO2014115436A1 (ja) 永久磁石式回転電機
WO2018116738A1 (ja) 回転電機の回転子、及び回転電機
WO2017195498A1 (ja) 回転子および回転電機
CN112119572B (zh) 旋转电机的转子以及旋转电机的转子芯支承构造
JP2019092298A (ja) ステータ、ステータのブロックおよび回転電機
JP2017093059A (ja) 回転電機
WO2018185879A1 (ja) 固定子コア片及び回転電機
WO2024057837A1 (ja) 回転電機のコア及び回転電機
JP2009284716A (ja) アウタロータ型ブラシレスモータ
JP6355859B1 (ja) 回転子及び回転電機
JP2004222466A (ja) 埋込磁石型モータ
WO2022239851A1 (ja) ロータ及び回転電機
JP5352442B2 (ja) 永久磁石モータ
WO2018230436A1 (ja) 回転電気機械
WO2024009942A1 (ja) 回転電機
JP6853335B2 (ja) ステータおよび回転電機
WO2022255481A1 (ja) ロータ及び回転電機
WO2022097297A1 (ja) ロータ、回転電機およびロータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865195

Country of ref document: EP

Kind code of ref document: A1