WO2017201813A1 - 地面灌溉地表水流运动过程模拟方法 - Google Patents

地面灌溉地表水流运动过程模拟方法 Download PDF

Info

Publication number
WO2017201813A1
WO2017201813A1 PCT/CN2016/087882 CN2016087882W WO2017201813A1 WO 2017201813 A1 WO2017201813 A1 WO 2017201813A1 CN 2016087882 W CN2016087882 W CN 2016087882W WO 2017201813 A1 WO2017201813 A1 WO 2017201813A1
Authority
WO
WIPO (PCT)
Prior art keywords
infiltration
surface water
data
irrigation
coordinate direction
Prior art date
Application number
PCT/CN2016/087882
Other languages
English (en)
French (fr)
Inventor
许迪
章少辉
白美健
李益农
李福祥
Original Assignee
中国水利水电科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国水利水电科学研究院 filed Critical 中国水利水电科学研究院
Priority to US15/544,160 priority Critical patent/US10579756B2/en
Publication of WO2017201813A1 publication Critical patent/WO2017201813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the invention relates to the technical field of farmland water conservancy, in particular to a simulation method for surface water flow movement process of surface irrigation.
  • Ground irrigation is currently the most widely used irrigation method in farmland irrigation. In order to design the ground irrigation system more rationally and achieve high-efficiency water saving, it is necessary to simulate the surface water movement process of the surface irrigation, that is, the distribution of irrigation water infiltration into the soil.
  • the simulation method of surface water flow movement on the ground is: according to the relative elevation of the surface, the roughness coefficient of the surface and the infiltration rate of the surface, the classical full hydrodynamic equation is used to calculate the surface of a certain point in Putian at a certain moment.
  • the inventors have found that at least the following problems exist in the prior art: the relative error of the simulated surface water flow motion process data and the measured data obtained by the existing ground irrigation surface water flow motion simulation method is large, and the simulation accuracy is not high. Moreover, the numerical solution process of the classical full hydrodynamic equation used in the simulation method of the existing surface irrigation water flow movement process is complicated.
  • the embodiment of the invention provides a simulation method for surface water flow movement process of surface irrigation with high simulation precision and simple numerical solution process.
  • a method for simulating surface motion motion of surface irrigation comprising:
  • Step a obtaining surface relative elevation data of the target Putian, data of the roughness coefficient of the surface and data of the infiltration rate of the surface water;
  • Step b substituting the surface relative elevation data, the surface roughness coefficient data, and the surface water infiltration rate data into a modified full hydrodynamic equation, and numerically solving the improved full hydrodynamic equation
  • the expression for the improved full hydrodynamic equation is:
  • Step c according to the simulated value of the surface water depth, the simulated value of the vertical integrated mean flow velocity of the irrigation water flow along the x-coordinate direction, and the simulated value of the vertical integrated average flow velocity along the y-coordinate direction, the irrigation water flow along the x
  • step a the data of the surface water infiltration rate of the target field is specifically included:
  • the infiltration parameter of the Kostiakov infiltration empirical formula and the dimensionless infiltration parameter of the Kostiakov infiltration empirical formula are determined by a double loop infiltration method.
  • the acquiring the surface relative elevation data of the target field specifically includes: measuring the relative elevation data of the surface by using a level gauge and spacing the preset distance.
  • the preset distance is 5 m.
  • the data of the surface roughness coefficient of the target field includes: observing the surface water depth of the target field, obtaining observation data of the surface water depth of the target field, and estimating according to the observation data of the surface water depth The roughness coefficient of the surface.
  • step b the improved full hydrodynamic equation is numerically solved using a finite volume method.
  • step c an analog value of the single-wide flow rate of the irrigation water flow along the x-coordinate direction and an analog value of the single-wide flow rate along the y-coordinate direction are calculated by the following formula:
  • q x and Q y are the irrigation water in the x coordinate direction and the discharge per unit width y-coordinate direction, in units of m 3 / (s ⁇ m) ; h is a surface depth, the unit is m; u and v is irrigated
  • the improved full hydrodynamic equation is used to solve the simulated value of the surface water depth of a certain measuring point in the target field and the vertical flow of the irrigation water flow along the x coordinate direction.
  • the simulated value of the integrated mean flow velocity and the simulated value of the vertical integrated mean velocity along the y-coordinate are simulated to simulate the surface water flow motion of the ground irrigation. Since the mathematical properties of the improved hydrodynamic equation are parabolic, and the mathematical properties of the classical hydrodynamic equation are hyperbolic, it is compared with the classical full hydrodynamic equation under the specific water flow physical conditions of ground irrigation.
  • the relative error between the simulation results of the surface water flow motion process and the measured results obtained by the improved full hydrodynamic equation is small, and the simulation accuracy is higher.
  • the improved full hydrodynamic equation is easier to solve numerically, and the simulation efficiency of surface irrigation flow motion is improved.
  • Example 1 is a comparison diagram between the simulated value and the measured value of the surface water flow propulsion process of Example 1;
  • Example 2 is a comparison diagram between the simulated value and the measured value of the surface water flow regression process of Example 1;
  • Example 3 is a comparison diagram between the simulated value and the measured value of the surface water flow propulsion process of Example 2;
  • Example 4 is a comparison diagram between the simulated value and the measured value of the surface water flow regression process of Example 2;
  • Figure 5 is a comparison diagram between the simulated value and the measured value of the surface water flow propulsion process of Example 3;
  • Fig. 6 is a comparison diagram between the simulated value and the measured value of the surface water flow regression process of Example 3.
  • the embodiment of the invention provides a simulation method for the surface water flow movement process of the ground irrigation, the simulation method comprises:
  • Step 1 Obtain the surface relative elevation data of the target Putian, the roughness coefficient data of the surface and the infiltration rate data of the surface water.
  • Step 2 Substituting the surface relative elevation data, the surface roughness coefficient data and the surface water infiltration rate data into the improved full hydrodynamic equation, and numerically solving the improved full hydrodynamic equation to obtain a certain measuring point in the target field.
  • the simulated value of the surface water depth at a certain moment, the simulated value of the vertical integrated mean flow velocity of the irrigation water flow along the x-coordinate direction, and the simulated value of the vertical integrated mean flow velocity along the y-coordinate direction, the expression of the improved hydrodynamic equation is :
  • Step 3 according to the simulated value of the surface water depth, the simulated value of the vertical integrated mean flow velocity of the irrigation water flow along the x-coordinate direction, and the simulated value of the vertical integrated mean flow velocity along the y-coordinate direction, the single flow of the irrigation water flow along the x-coordinate direction is obtained.
  • the numerical simulation of the improved full hydrodynamic equation is carried out, and the simulated value of the surface water depth of a certain measuring point in the target field and the irrigation water flow are obtained.
  • Analog value of the vertical integrated mean flow velocity along the x-coordinate direction and along the y-coordinate The simulated value of the vertical integrated mean flow velocity of the direction simulates the surface water flow movement process of the ground irrigation.
  • the surface irrigation flow motion obtained by the improved full hydrodynamic equation is used.
  • the relative error between the process simulation result and the measured result is small, and the simulation accuracy is higher.
  • the improved full hydrodynamic equation is easier to solve numerically, thus improving the simulation efficiency of surface irrigation water flow movement process.
  • the surface relative elevation data, the surface roughness coefficient data, and the surface water infiltration rate data in the step 1 of the simulation method provided by the embodiments of the present invention are all measured data, and the soil infiltration can be performed. Test and surface depth observation tests were performed to obtain the above data.
  • the data of surface water infiltration rate of the target polders are obtained by: obtaining the infiltration parameters of the Kostiakov infiltration empirical formula, the dimensionless infiltration parameters of the Kostiakov infiltration empirical formula, and calculating the surface water infiltration rate data of the target polder according to the Kostiakov infiltration empirical formula. ;
  • the infiltration parameters of the Kostiakov infiltration empirical formula and the Kostiakov infiltration empirical formula can be determined by the test results of the double-ring infiltration method.
  • the double-ring infiltration method is a commonly used method for measuring soil infiltration parameters.
  • the equipment used in the double-ring infiltration method mainly includes two inner and outer rings arranged in a concentric manner and a Mario bottle. Insert the inner and outer rings into the soil layer to a certain depth, and use the Marioot bottle to fill the inner ring, continuously observe and record the change of the water level in the Marioot bottle with time.
  • the Kostiakov infiltration empirical formula infiltration parameters and the Kostiakov infiltration empirical formula are dimensionless.
  • the infiltration parameters may vary. Kostiakov infiltration experience used in calculating the surface water infiltration rate of the target polder when the infiltration parameters of the Kostiakov infiltration empirical formula obtained by multiple measuring points and the non-dimensional infiltration parameters of the Kostiakov infiltration empirical formula are different.
  • the infiltration parameters of the formula and the non-dimensional infiltration parameters of the Kostiakov infiltration empirical formula should be the infiltration parameters of the Kostiakov infiltration empirical formula obtained at each measuring point and the dimensionless empirical formula of Kostiakov infiltration. The average of the values of the infiltration parameters.
  • Obtaining the relative elevation data of the surface of the target Putian specifically includes: using the level gauge, measuring the relative elevation data of the surface by the preset distance.
  • the preset distance may be 5 m or other values, for example, 4 m, 6 m, 8 m, 10 m, etc., and those skilled in the art may set according to actual conditions.
  • Obtaining the target roughness coefficient data of the target Putian specifically includes: observing the surface water depth of the target Putian, obtaining the observation data of the surface water depth of the target Putian, and estimating the roughness coefficient of the surface based on the observation data of the surface water depth. It can be understood by those skilled in the art that the roughness coefficient at different positions of the target polder may be different, and the average value of the roughness coefficient at different positions may be used as the roughness coefficient of the target polder.
  • the finite volume method is used in step 2 to numerically solve the improved full hydrodynamic equation.
  • the selection of initial conditions, boundary conditions, and the like involved in the numerical solution process using the finite volume method may be performed by conventional techniques in the art.
  • Those skilled in the art can also use other conventional numerical solution methods in the art to numerically solve the improved hydrodynamic equation, such as finite difference method, finite element method and the like.
  • q x and q y are the single-wide flow of the irrigation water flow along the x-coordinate and y-coordinates, respectively, in m 3 /(s ⁇ m); h is the surface water depth in m; u and v are respectively irrigation The vertical integrated mean flow velocity of the water flow along the x-coordinate and y-coordinates, in m/s.
  • the x coordinate direction and the y coordinate direction may be any two orthogonal directions in the target field, and those skilled in the art may select according to actual conditions.
  • the length direction of the target field may be the x coordinate direction
  • the width direction of the target field may be the y coordinate direction.
  • the specific ground irrigation data is taken as an example to describe the simulation method of the surface irrigation flow motion process provided by the embodiment of the present invention, and the accuracy of the simulation method provided by the embodiment of the present invention is evaluated.
  • the length direction of the target field is taken as the x coordinate direction
  • the width of the target field is The direction is the y coordinate direction.
  • a field of 50m ⁇ 50m in the Yehe Irrigation District of Hebei province was selected as the target field, and the surface water flow movement process of the winter wheat in the winter wheat irrigation process was simulated by the simulation method of the present invention.
  • the specific simulation method is as follows:
  • is the dimensionless infiltration parameter of the Kostiakov infiltration empirical formula, and its value is the average value of the test results of each measuring point in the target field;
  • k in is the infiltration parameter of the Kostiakov infiltration empirical formula, and its value is the target in the field.
  • the average value of the test results of each measuring point; ⁇ is the time of water infiltration, the unit is s.
  • step 102 the surface relative elevation data is measured at a distance of 5 m using a level gauge.
  • Step 103 Perform surface water depth observation test on the target Putian, obtain observation data of the surface water depth of the target Putian, and estimate the roughness coefficient of the surface based on the observation data of the surface water depth.
  • the value of the rake roughness coefficient n is the average of the test results of the observation points in the target field.
  • the order of the above steps 101 to 103 is not strictly limited.
  • the above-mentioned Kostiakov infiltration empirical formula infiltration parameters, Kostiakov infiltration empirical formula non-dimensional infiltration parameters, surface relative elevation and surface roughness coefficient, the above data are obtained.
  • the specific values are shown in Table 1.
  • Step 104 substituting the surface relative elevation data, the kneading roughness coefficient data and the surface water infiltration rate data obtained in steps 101-103 into the improved whole hydrodynamics, and using the finite volume method to numerically solve the improved hydrodynamic equation Obtain the simulated value of the surface water depth at a certain point in the target field, the simulated integral flow rate of the vertical integrated flow along the x-coordinate direction of the irrigation water flow, and the direction along the y-coordinate The simulated value of the vertical integrated mean flow rate.
  • the expression for improving the full hydrodynamic equation is:
  • q x and q y are the single-wide flow of the irrigation water flow along the x-coordinate and y-coordinates, respectively, in m 3 /(s ⁇ m); h is the surface water depth in m; u and v are respectively irrigation The vertical integrated mean flow velocity of the water flow along the x-coordinate and y-coordinates, in m/s.
  • This comparative example simulates the surface irrigation surface water movement process of the target polder in the first embodiment using the existing simulation method.
  • a field of 80m ⁇ 50m in a certain group field of Xinjiang Production and Construction Corporation is selected as the target field, and the surface water flow movement process of the winter wheat in the target field is simulated.
  • the specific simulation method is the same as in the first embodiment.
  • This comparative example simulates the surface irrigation surface water movement process of the target Putian in Example 2 using the existing simulation method.
  • a field of 200m ⁇ 60m in a certain group field of Xinjiang Production and Construction Corporation is selected as the target field, and the surface water flow movement process of winter wheat in the target field is simulated.
  • the specific simulation method is the same as in the first embodiment.
  • This comparative example simulates the surface irrigation surface water movement process of the target polder in the third embodiment using the existing simulation method.
  • the simulated values of the surface water depth and the regression time are determined according to the surface water depth simulation values obtained in Embodiments 1 to 3 and Comparative Examples 1 to 3, respectively, and the simulation values of the surface water flow propulsion time and the regression time are calculated.
  • the average relative error between the measured values and the measured values, the simulation method provided by the present invention and the simulation of the existing simulation method were compared by comparing the average relative errors between the simulated values and the measured values in Examples 1 to 3 and Comparative Examples 1 to 3. Accuracy is evaluated.
  • the propulsion time of the surface water flow refers to the time when the surface water depth begins to be greater than zero, and the surface water flow regression time refers to the time when the surface water depth becomes zero.
  • the average relative error between the simulated value and the measured value of the surface water flow advancement time and the regression time obtained by the simulation method provided by the embodiment of the present invention is significantly smaller than that of the existing one.
  • the average relative error obtained by the simulation method provided by the embodiment of the present invention has no significant change. It can be seen that the simulation method provided by the embodiment of the present invention has higher precision and is applicable to target fields of various sizes and various inflow patterns.
  • This embodiment evaluates the quality conservation of the simulation method provided by the present invention and the existing simulation method.
  • the conservation of mass means that the sum of the simulated values of the amount of surface water remaining calculated from the simulated surface water depth and the simulated amount of water infiltrated into the soil should be the same as the total amount of water actually flowing into the target field. Therefore, the error between the sum of the simulated values of the amount of surface water remaining and the simulated amount of water infiltrated into the soil and the total amount of water actually flowing into the target field (ie, the water balance error) can reflect the accuracy of the simulation method.
  • Q surface is a surface remaining analog values of water, in units of m 3;
  • Q soil of infiltration to the analog value of the amount of water in the soil, in m 3 .
  • the water balance error obtained by the simulation method of the embodiment of the present invention is significantly smaller than the water balance error obtained by the existing simulation method, and the water balance error obtained by the simulation method of the embodiment of the present invention is about low.
  • the water balance error obtained by the existing simulation method is three orders of magnitude, which also indicates that the simulation method provided by the embodiment of the present invention has higher accuracy.
  • the improved full hydrodynamic equation with the mathematical property of parabolic type is numerically solved, thereby simulating the surface water flow movement process of the ground irrigation.
  • the simulation method provided by the embodiment of the present invention has higher precision than the numerical solution of the classical full hydrodynamic equation with the mathematical property of the hyperbolic type in the existing simulation method.
  • the improved full hydrodynamic equation is easier to solve numerically, which can improve the simulation efficiency of surface water flow movement process.
  • the simulation method provided by the embodiment of the invention has a wider application range and higher application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种地面灌溉地表水流运动过程模拟方法,属于农田水利技术领域。该模拟方法包括:步骤a,获取目标畦田的地表相对高程数据,畦面糙率系数数据以及地表水入渗率数据;步骤b,将地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据代入改进全水动力学方程,对改进全水动力学方程进行数值求解得出目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向以及沿y坐标方向的垂向积分平均流速的模拟值;步骤c,根据地表水深的模拟值、灌溉水流沿x坐标方向以及沿y坐标方向的垂向积分平均流速的模拟值,得出灌溉水流沿x坐标向以及沿y坐标向的单宽流量的模拟值。该模拟方法模拟精度高、数值求解过程简单。

Description

地面灌溉地表水流运动过程模拟方法
本申请要求于2016年5月24日提交中国专利局、申请号为201610349658.2、发明名称为“地面灌溉地表水流运动过程模拟方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及农田水利技术领域,特别涉及一种地面灌溉地表水流运动过程模拟方法。
背景技术
地面灌溉是目前农田灌溉中应用最广泛的一种灌溉方式。为了更加合理地设计地面灌溉系统以及实现高效节水,需要对地面灌溉地表水流运动过程,即灌溉水流入渗至土壤中的分布状况进行模拟。
目前对地面灌溉地表水流运动过程进行模拟的方法为:根据地表相对高程、畦面糙率系数以及地表入渗率,利用经典全水动力学方程计算畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值等数据,并分别计算地表水深的模拟值与沿x坐标方向的垂向积分平均流速模拟值的乘积以及沿y坐标方向的垂向积分平均流速的模拟值的乘积,得出沿x坐标向的单宽流量的模拟值以及沿y坐标向的单宽流量的模拟值。上述经典全水动力学方程的表达式如下:
Figure PCTCN2016087882-appb-000001
Figure PCTCN2016087882-appb-000002
Figure PCTCN2016087882-appb-000003
上式中,h为地表水深,单位为m;x和y分别为两个正交方向的空间坐标;u和v分别为沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s;qx和qy分别为沿x坐标向和y坐标向的单宽流量,单位为m3/(s·m),qx=h·u,qy=h·v;g为重力加速度,单位为m/s2;ζ为地表水位相对高程,单位为m,ζ=地表水深h+地表相对高程b;n为畦面糙率系数,单位为s/m1/3;ic为地表水入渗率,单位为m/s。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:通过现有地面灌溉地表水流运动过程模拟方法得到的模拟地表水流运动过程数据与实测数据的相对误差较大,模拟精度不高。并且,现有地面灌溉地表水流运动过程模拟方法中所用的经典全水动力学方程的数值求解过程比较复杂。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种模拟精度高、数值求解过程简单的地面灌溉地表水流运动过程模拟方法。
具体而言,包括以下技术方案:
一种地面灌溉地表水流运动过程模拟方法,所述模拟方法包括:
步骤a,获取目标畦田的地表相对高程数据,畦面糙率系数数据以及地表水入渗率数据;
步骤b,将所述地表相对高程数据、所述畦面糙率系数数据以及所述地表水入渗率数据代入改进全水动力学方程,对所述改进全水动力学方程进行数值求解得出所述目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,所述改进全水动力学方程的表达式为:
Figure PCTCN2016087882-appb-000004
Figure PCTCN2016087882-appb-000005
Figure PCTCN2016087882-appb-000006
Figure PCTCN2016087882-appb-000007
其中:h为地表水深,单位为m;x和y分别为两个正交方向的空间坐标;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s;g为重力加速度,单位为m/s2;ζ为地表水位相对高程,单位为m,ζ=地表水深h+地表相对高程b;n为畦面糙率系数,单位为s/m1/3;ic为地表水入渗率,单位为m/s;
步骤c,根据所述地表水深的模拟值、所述灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,得出灌溉水流沿x坐标向的单宽流量的模拟值以及沿y坐标向的单宽流量的模拟值。
具体地,步骤a中,所述获取目标畦田的地表水入渗率数据具体包括:
获取Kostiakov入渗经验公式入渗参数、Kostiakov入渗经验公式无量纲入渗参数,根据Kostiakov入渗经验公式计算所述目标畦田的地表水入渗率数据;
所述Kostiakov入渗经验公式为:ic=αkinτα-1;其中:ic为地表水入渗率,单位为m/s;α为所述Kostiakov入渗经验公式无量纲入渗参数;kin为所述Kostiakov入渗经验公式入渗参数,单位为cm/minα;τ为入渗受水时间,单位为s。
具体地,采用双环入渗法确定所述Kostiakov入渗经验公式入渗参数以及所述Kostiakov入渗经验公式无量纲入渗参数。
具体地,步骤a中,所述获取目标畦田的地表相对高程数据具体包括:采用水准仪,间隔预设距离测量所述地表相对高程数据。
具体地,所述预设距离为5m。
具体地,所述获取目标畦田的畦面糙率系数数据具体包括:对所述目标畦田的地表水深进行观测,获取所述目标畦田的地表水深的观测数据,根据所述地表水深的观测数据估算所述畦面糙率系数。
具体地,步骤b中,采用有限体积法对所述改进全水动力学方程进行数值求解。
具体地,步骤c中,利用以下公式计算所述灌溉水流沿x坐标方向的单宽流量的模拟值以及沿y坐标方向的单宽流量的模拟值:
qx=h·u,qy=h·v;
其中:qx和qy分别为灌溉水流沿x坐标向和y坐标向的单宽流量,单位为m3/(s·m);h为地表水深,单位为m;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s。
本发明实施例提供的技术方案的有益效果是:
本发明实施例提供的地面灌溉地表水流运动过程模拟方法中,利用改进全水动力学方程求解目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,从而对地面灌溉地表水流运动过程进行模拟。由于改进全水动力学方程的数学性质为抛物型,而经典全水动力学方程的数学性质为双曲型,因此,在地面灌溉特定的水流物理条件下,与经典全水动力学方程相比,利用改进全水动力学方程求解得到的地面灌溉地表水流运动过程模拟结果与实测结果的相对误差较小,模拟精度更高。同时,与经典全水动力学方程相比,改进全水动力学方程更容易进行数值求解,提高地面灌溉地表水流运动过程的模拟效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面对实施例描述中所需要使用的附图作简单地介绍。
图1为实例1的地表水流推进过程模拟值与实测值之间的对比图;
图2为实例1的地表水流消退过程模拟值与实测值之间的对比图;
图3为实例2的地表水流推进过程模拟值与实测值之间的对比图;
图4为实例2的地表水流消退过程模拟值与实测值之间的对比图;
图5为实例3的地表水流推进过程模拟值与实测值之间的对比图;
图6为实例3的地表水流消退过程模拟值与实测值之间的对比图。
图1~图6中,——代表模拟值,--------代表实测值。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。除非另有定义,本发明实施例所用的所有技术术语均具有 与本领域技术人员通常理解的相同的含义。
本发明实施例提供了一种地面灌溉地表水流运动过程模拟方法,该模拟方法包括:
步骤1,获取目标畦田的地表相对高程数据,畦面糙率系数数据以及地表水入渗率数据。
步骤2,将地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据代入改进全水动力学方程,对改进全水动力学方程进行数值求解得出目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,改进全水动力学方程的表达式为:
Figure PCTCN2016087882-appb-000008
Figure PCTCN2016087882-appb-000009
Figure PCTCN2016087882-appb-000010
Figure PCTCN2016087882-appb-000011
其中:h为地表水深,单位为m;x和y分别为两个正交方向的空间坐标;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s;g为重力加速度,单位为m/s2;ζ为地表水位相对高程,单位为m,ζ=地表水深h+地表相对高程b;n为畦面糙率系数,单位为s/m1/3;ic为地表水入渗率,单位为m/s;
步骤3,根据地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,得出灌溉水流沿x坐标向的单宽流量的模拟值以及沿y坐标向的单宽流量的模拟值。
本发明实施例提供的地面灌溉地表水流运动过程模拟方法中,通过对改进全水动力学方程进行数值求解,得出目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标 方向的垂向积分平均流速的模拟值,从而对地面灌溉地表水流运动过程进行模拟。通过对比改进全水动力学方程的表达式和经典全水动力学方程的表达式可以看出,改进全水动力学方程的数学性质为抛物型,经典全水动力学方程的数学性质为双曲型,而地面灌溉水流运动过程属于浅水流过程,因此,在地面灌溉特定的水流物理条件下,与经典全水动力学方程相比,利用改进全水动力学方程求解得到的地面灌溉地表水流运动过程模拟结果与实测结果的相对误差较小,模拟精度更高。同时,与经典全水动力学方程相比,改进全水动力学方程更容易进行数值求解,从而提高地面灌溉地表水流运动过程的模拟效率。
本领域技术人员可以理解的是,本发明实施例提供的模拟方法步骤1中的地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据均为实测数据,可以通过开展土壤入渗试验和地表水深观测试验来获得上述数据。
其中,
获取目标畦田的地表水入渗率数据具体包括:获取Kostiakov入渗经验公式入渗参数、Kostiakov入渗经验公式无量纲入渗参数,根据Kostiakov入渗经验公式计算目标畦田的地表水入渗率数据;
Kostiakov入渗经验公式为:ic=αkinτα-1;其中:ic为地表水入渗率,单位为m/s;α为Kostiakov入渗经验公式无量纲入渗参数;kin为Kostiakov入渗经验公式入渗参数,单位为cm/minα;τ为入渗受水时间,单位为s。
Kostiakov入渗经验公式入渗参数以及Kostiakov入渗经验公式无量纲入渗参数可以通过双环入渗法的试验结果确定。双环入渗法是一种常用的土壤入渗参数测量方法。双环入渗法所用设备主要包括内外两个同心设置的圆环以及马利奥特瓶。将内环和外环插入土层一定深度,利用马利奥特瓶向内环注水,连续观测并记录马利奥特瓶内水位随时间的变化。
本领域技术人员可以理解的是,在一块目标畦田内,通常会设置多个土壤入渗参数测点,每一个测点最终得到的Kostiakov入渗经验公式入渗参数以及Kostiakov入渗经验公式无量纲入渗参数可能会有所不同。当多个测点得到的Kostiakov入渗经验公式入渗参数以及Kostiakov入渗经验公式无量纲入渗参数的数值不相同时,在计算该目标畦田的地表水入渗率时所用的Kostiakov入渗经验公式入渗参数以及Kostiakov入渗经验公式无量纲入渗参数的取值应当为各测点得到的Kostiakov入渗经验公式入渗参数以及Kostiakov入渗经验公式无量纲 入渗参数的数值的平均值。
本领域技术人员也可以采用本领域其他常规的获取地表水入渗率数据的方法来获取目标畦田的地表水入渗率数据。
获取目标畦田的地表相对高程数据具体包括:采用水准仪,间隔预设距离测量地表相对高程数据。其中预设距离可以为5m或者其他数值,例如4m、6m、8m、10m等,本领域技术人员可以根据实际情况进行设定。
获取目标畦田的畦面糙率系数数据具体包括:对目标畦田的地表水深进行观测,获取目标畦田的地表水深的观测数据,根据地表水深的观测数据估算畦面糙率系数。本领域技术人员可以理解的是,目标畦田不同位置处的糙率系数可能不相同,可以以不同位置处的糙率系数的平均值作为该目标畦田的糙率系数。
进一步地,本发明实施例提供的模拟方法中,步骤2中采用有限体积法对改进全水动力学方程进行数值求解。在利用有限体积法进行数值求解过程中涉及的初始条件、边界条件等的选择采用本领域的常规技术手段即可。本领域技术人员也可以采用本领域其他常规的数值求解方法来对改进全水动力学方程进行数值求解,例如有限差分法、有限单元法等。
进一步地,本发明实施例提供的模拟方法中,步骤3中,利用以下公式计算灌溉水流沿x坐标方向的单宽流量的模拟值以及沿y坐标方向的单宽流量的模拟值:qx=h·u,qy=h·v。其中:qx和qy分别为灌溉水流沿x坐标向和y坐标向的单宽流量,单位为m3/(s·m);h为地表水深,单位为m;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s。
进一步地,本发明实施例提供的模拟方法中,x坐标向和y坐标向可以是目标畦田内任意的两个正交方向,本领域技术人员可以根据实际情况进行选择。例如,可以以目标畦田的长度方向作为x坐标向,以目标畦田的宽度方向作为y坐标向。
下面以具体地面灌溉数据为例,对本发明实施例提供的地面灌溉地表水流运动过程模拟方法作进一步详细说明,并将采用本发明实施例提供的模拟方法的精确度进行评价。
以下实施例中,以目标畦田的长度方向作为x坐标向,以目标畦田的宽度 方向作为y坐标向。
实施例1
本实施例选取河北冶河灌区一尺寸为50m×50m的田块作为目标畦田,采用本发明的模拟方法对该目标畦田内冬小麦冬灌过程中地表水流运动过程进行模拟。具体模拟方法如下:
步骤101,采用双环入渗法对该目标畦田开展土壤入渗试验,确定Kostiakov入渗经验公式入渗参数以及Kostiakov入渗经验公式无量纲入渗参数,利用Kostiakov入渗经验公式:ic=αkinτα-1计算该目标畦田的地表水入渗率ic。其中,α为Kostiakov入渗经验公式无量纲入渗参数,其取值为目标畦田内各个测点试验结果的平均值;kin为Kostiakov入渗经验公式入渗参数,其取值为目标畦田内各个测点测试结果的平均值;τ为入渗受水时间,单位为s。
步骤102,采用水准仪,以5m间隔距离测量地表相对高程数据。
步骤103,对该目标畦田开展地表水深观测试验,获取目标畦田的地表水深的观测数据,根据地表水深的观测数据估算畦面糙率系数。本实施例中畦面糙率系数n的取值为目标畦田内各观测点试验结果的平均值。
上述步骤101~103的顺序没有严格限制。本实施例根据该目标畦田2008年冬小麦冬灌试验数据得出上述Kostiakov入渗经验公式入渗参数、Kostiakov入渗经验公式无量纲入渗参数、地表相对高程以及畦面糙率系数,上述各数据的具体取值如表1所示。
表1
Figure PCTCN2016087882-appb-000012
步骤104,将步骤101~103中得到的地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据代入改进全水动力学,采用有限体积法对改进全水动力学方程进行数值求解,得出目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的 垂向积分平均流速的模拟值。改进全水动力学方程的表达式为:
Figure PCTCN2016087882-appb-000013
Figure PCTCN2016087882-appb-000014
Figure PCTCN2016087882-appb-000015
Figure PCTCN2016087882-appb-000016
其中:h为地表水深,单位为m;x和y分别为目标畦田长度方向和目标畦田宽度方向的空间坐标;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s;g为重力加速度,单位为m/s2;ζ为地表水位相对高程,单位为m,ζ=地表水深h+地表相对高程b;n为畦面糙率系数,单位为s/m1/3;ic为地表水入渗率,单位为m/s。
步骤105,将步骤104得到的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值代入公式:qx=h·u,qy=h·v,得出灌溉水流沿x坐标向的单宽流量的模拟值以及沿y坐标向的单宽流量的模拟值。其中:qx和qy分别为灌溉水流沿x坐标向和y坐标向的单宽流量,单位为m3/(s·m);h为地表水深,单位为m;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s。
对比例1
本对比例采用现有的模拟方法对实施例1中的目标畦田的地面灌溉地表水流运动过程进行模拟。
本对比例与实施例1的区别在于:将地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据代入经典全水动力学,采用有限体积法对经典全水动力学方程进行数值求解。
实施例2
本实施例选取新疆生产建设兵团某团场一尺寸为80m×50m的田块作为目标畦田,对该目标畦田内冬小麦春灌过程中地表水流运动过程进行模拟。
具体模拟方法同实施例1。
本实施例中根据该目标畦田2010年冬小麦春灌试验数据得出Kostiakov入渗经验公式入渗参数、Kostiakov入渗经验公式无量纲入渗参数、地表相对高程以及畦面糙率系数,上述各数据的具体取值如表2所示。
表2
Figure PCTCN2016087882-appb-000017
对比例2
本对比例采用现有的模拟方法对实施例2中的目标畦田的地面灌溉地表水流运动过程进行模拟。
本对比例与实施例2的区别在于:将地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据代入经典全水动力学,采用有限体积法对经典全水动力学方程进行数值求解。
实施例3
本实施例选取新疆生产建设兵团某团场一尺寸为200m×60m的田块作为目标畦田,对该目标畦田内冬小麦春灌过程中地表水流运动过程进行模拟。
具体模拟方法同实施例1。
本实施例中根据该目标畦田2010年冬小麦春灌试验数据得出Kostiakov入渗经验公式入渗参数、Kostiakov入渗经验公式无量纲入渗参数、地表相对高程以及畦面糙率系数,上述各数据的具体取值如表3所示。
表3
Figure PCTCN2016087882-appb-000018
对比例3
本对比例采用现有的模拟方法对实施例3中的目标畦田的地面灌溉地表水流运动过程进行模拟。
本对比例与实施例3的区别在于:将地表相对高程数据、畦面糙率系数数据以及地表水入渗率数据代入经典全水动力学,采用有限体积法对经典全水动力学方程进行数值求解。
实施例4
本实施例分别根据实施例1~3和对比例1~3得出的地表水深模拟值来确定地表水流的推进时间和消退时间的模拟值,并计算地表水流的推进时间和消退时间的模拟值与实测值之间的平均相对误差,通过比较实施例1~3和对比例1~3中模拟值与实测值之间的平均相对误差来对本发明提供的模拟方法和现有的模拟方法的模拟精确度进行评价。
地表水流的推进时间是指地表水深开始大于0的时间,地表水流消退时间是指地表水深变为0的时间。
地表水流推进时间的模拟值与实测值之间的平均相对误差的计算公式为:
Figure PCTCN2016087882-appb-000019
其中:
Figure PCTCN2016087882-appb-000020
Figure PCTCN2016087882-appb-000021
分别为地表水流推进到目标畦田第i测点的时间的实测值和模拟值,单位为min;M为目标畦田内测点的个数。
地表水流消退时间的模拟值与实测值之间的平均相对误差的计算公式为:
Figure PCTCN2016087882-appb-000022
其中:
Figure PCTCN2016087882-appb-000023
Figure PCTCN2016087882-appb-000024
分别为地表水流在目标畦田第i测点的消退时间的实测值和 模拟值,单位为min;M为目标畦田内测点的个数。
实施例1~3和对比例1~3中地表水流的推进时间和消退时间的模拟值与实测值之间的平均相对误差如表4所示。
表4
Figure PCTCN2016087882-appb-000025
参见表4数据,并结合图1~图6,可以看出采用本发明实施例提供的模拟方法得到的地表水流推进时间和消退时间的模拟值和实测值之间的平均相对误差明显小于现有模拟方法得到的地表水流推进时间和消退时间的模拟值和实测值之间的平均相对误差,特别是随着目标畦田尺寸的增大,采用现有模拟方法得到平均相对误差逐渐增大,而采用本发明实施例提供的模拟方法得到的平均相对误差没有明显变化。由此可见,本发明实施例提供的模拟方法具有更高的精确度,而且适用于各种尺寸以及各类入流型式的目标畦田。
实施例5
本实施例对本发明提供的模拟方法和现有的模拟方法的质量守恒性进行评价。
质量守恒性是指根据地表水深模拟值计算得到的地表存留水量的模拟值与入渗至土壤中的水量的模拟值的总和应当与实际流入目标畦田的总水量相同。因此,地表存留水量的模拟值与入渗至土壤中的水量的模拟值的总和与实际流入目标畦田的总水量之间的误差(即水量平衡误差)能够反映模拟方法的精确度。
水量平衡误差的计算公式为:
Figure PCTCN2016087882-appb-000026
其中:Qin为实际流入目标畦田的总水量,单位为m3;Qsurface为地表存留水量的模拟值,单位为m3;Qsoil为入渗至土壤中的水量的模拟值,单位为m3
实施例1~3和对比例1~3中的水量平衡误差如表5所示。
表5
  水量平衡误差eq
实施例1 0.0087
对比例1 1.1
实施例2 0.0091
对比例2 3.3
实施例3 0.0091
对比例3 5.3
从表5数据可以看出,采用本发明实施例的模拟方法得到的水量平衡误差明显小于采用现有模拟方法得到的水量平衡误差,并且采用本发明实施例的模拟方法得到的水量平衡误差约低于现有模拟方法得到的水量平衡误差3个数量级,这同样表明本发明实施例提供的模拟方法具有更高的精确度。
综上,本发明实施例提供的地面灌溉地表水流运动过程模拟方法中,采用数学性质为抛物型的改进全水动力学方程进行数值求解,从而对地面灌溉地表水流运动过程进行模拟。与现有模拟方法中采用数学性质为双曲型的经典全水动力学方程进行数值求解相比,本发明实施例提供的模拟方法具有更高的精确度。同时,与经典全水动力学方程相比,改进全水动力学方程更容易进行数值求解,能够提高地面灌溉地表水流运动过程的模拟效率。并且,本发明实施例提供的模拟方法适用范围更广,具有更高的应用价值。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种地面灌溉地表水流运动过程模拟方法,其特征在于,所述模拟方法包括:
    步骤a,获取目标畦田的地表相对高程数据,畦面糙率系数数据以及地表水入渗率数据;
    步骤b,将所述地表相对高程数据、所述畦面糙率系数数据以及所述地表水入渗率数据代入改进全水动力学方程,对所述改进全水动力学方程进行数值求解得出所述目标畦田内某一测点在某一时刻的地表水深的模拟值、灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,所述改进全水动力学方程的表达式为:
    Figure PCTCN2016087882-appb-100001
    Figure PCTCN2016087882-appb-100002
    Figure PCTCN2016087882-appb-100003
    Figure PCTCN2016087882-appb-100004
    其中:h为地表水深,单位为m;x和y分别为两个正交方向的空间坐标;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s;g为重力加速度,单位为m/s2;ζ为地表水位相对高程,单位为m,ζ=地表水深h+地表相对高程b;n为畦面糙率系数,单位为s/m1/3;ic为地表水入渗率,单位为m/s;
    步骤c,根据所述地表水深的模拟值、所述灌溉水流沿x坐标方向的垂向积分平均流速的模拟值以及沿y坐标方向的垂向积分平均流速的模拟值,得出灌溉水流沿x坐标向的单宽流量的模拟值以及沿y坐标向的单宽流量的模拟值。
  2. 根据权利要求1所述的模拟方法,其特征在于,步骤a中,所述获取目标畦田的地表水入渗率数据具体包括:
    获取Kostiakov入渗经验公式入渗参数、Kostiakov入渗经验公式无量纲入渗参数,根据Kostiakov入渗经验公式计算所述目标畦田的地表水入渗率数据;
    所述Kostiakov入渗经验公式为:ic=αkinτα-1;其中:ic为地表水入渗率,单位为m/s;α为所述Kostiakov入渗经验公式无量纲入渗参数;kin为所述Kostiakov入渗经验公式入渗参数,单位为cm/minα;τ为入渗受水时间,单位为s。
  3. 根据权利要求2所述的模拟方法,其特征在于,采用双环入渗法确定所述Kostiakov入渗经验公式入渗参数以及所述Kostiakov入渗经验公式无量纲入渗参数。
  4. 根据权利要求1所述的模拟方法,其特征在于,步骤a中,所述获取目标畦田的地表相对高程数据具体包括:采用水准仪,间隔预设距离测量所述地表相对高程数据。
  5. 根据权利要求4所述的模拟方法,其特征在于,所述预设距离为5m。
  6. 根据权利要求1所述的模拟方法,其特征在于,所述获取目标畦田的畦面糙率系数数据具体包括:对所述目标畦田的地表水深进行观测,获取所述目标畦田的地表水深的观测数据,根据所述地表水深的观测数据估算所述畦面糙率系数。
  7. 根据权利要求1所述模拟方法,其特征在于,步骤b中,采用有限体积法对所述改进全水动力学方程进行数值求解。
  8. 根据权利要求1~7任一项所述的模拟方法,其特征在于,步骤c中,利用以下公式计算所述灌溉水流沿x坐标方向的单宽流量的模拟值以及沿y坐标方向的单宽流量的模拟值:
    qx=h·u,qy=h·v;
    其中:qx和qy分别为灌溉水流沿x坐标向和y坐标向的单宽流量,单位为m3/(s·m);h为地表水深,单位为m;u和v分别为灌溉水流沿x坐标向和y坐标向的垂向积分平均流速,单位为m/s。
PCT/CN2016/087882 2016-05-24 2016-06-30 地面灌溉地表水流运动过程模拟方法 WO2017201813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/544,160 US10579756B2 (en) 2016-05-24 2016-06-30 Simulation method of surface water flow movement process in surface irrigation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610349658.2 2016-05-24
CN201610349658.2A CN105956327B (zh) 2016-05-24 2016-05-24 地面灌溉地表水流运动过程模拟方法

Publications (1)

Publication Number Publication Date
WO2017201813A1 true WO2017201813A1 (zh) 2017-11-30

Family

ID=56909653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087882 WO2017201813A1 (zh) 2016-05-24 2016-06-30 地面灌溉地表水流运动过程模拟方法

Country Status (3)

Country Link
US (1) US10579756B2 (zh)
CN (1) CN105956327B (zh)
WO (1) WO2017201813A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333957B (zh) * 2017-12-27 2020-07-14 中国水利水电科学研究院 智慧灌区全过程模拟方法及装置
CN111079256B (zh) * 2019-11-18 2023-08-29 珠江水利委员会珠江水利科学研究院 一种基于遥感的灌溉水有效利用系数测算方法
CN111368485B (zh) * 2020-03-03 2020-11-10 中国水利水电科学研究院 基于曼宁方程计算地表糙率的方法
CN114329950B (zh) * 2021-12-27 2024-03-29 中国港湾工程有限责任公司 基于动态概化的斜坡式潜堤波浪水动力影响数值模拟方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781805B1 (en) * 2010-07-23 2014-07-15 Lucasfilm Entertainment Company, Ltd. Simulating fluid structures
CN105243177A (zh) * 2015-09-01 2016-01-13 中国地质大学(北京) 海岸带地下淡水向海洋的排泄量计算方法
CN105353620A (zh) * 2015-11-28 2016-02-24 中国水利水电科学研究院 一种基于地表水深信息的地面灌溉控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353113B2 (en) * 2004-12-07 2008-04-01 Sprague Michael C System, method and computer program product for aquatic environment assessment
CN101101612B (zh) * 2007-07-19 2010-08-04 中国水利水电科学研究院 一种模拟田面微地形空间分布状况的方法
KR101106548B1 (ko) * 2009-12-23 2012-01-30 서울대학교산학협력단 텐서형 와점성계수를 가진 2차원 하천흐름모형을 이용하여 천수흐름을 해석하는 방법
KR101029282B1 (ko) * 2010-03-30 2011-04-18 한국건설기술연구원 하천 횡단면에서 횡방향 흐름저항 요인의 변화를 고려한 하천유량 측정 방법
KR101219352B1 (ko) * 2011-10-26 2013-01-09 한양대학교 산학협력단 유량기반 계산영역 가변형 지진해일 수치모의 방법
KR101273977B1 (ko) * 2011-10-26 2013-06-12 한양대학교 산학협력단 계산영역 가변형 지진해일 수치모의 방법
US9298861B1 (en) * 2012-05-24 2016-03-29 Valmont Industries, Inc. System and method for designing irrigation systems
WO2014192326A1 (ja) * 2013-05-31 2014-12-04 三菱電機株式会社 津波監視システム
CN105184667B (zh) * 2015-08-24 2018-09-28 中国长江三峡集团公司 双重嵌套模拟风电场风速分布的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781805B1 (en) * 2010-07-23 2014-07-15 Lucasfilm Entertainment Company, Ltd. Simulating fluid structures
CN105243177A (zh) * 2015-09-01 2016-01-13 中国地质大学(北京) 海岸带地下淡水向海洋的排泄量计算方法
CN105353620A (zh) * 2015-11-28 2016-02-24 中国水利水电科学研究院 一种基于地表水深信息的地面灌溉控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, SHAOHUI ET AL.: "One-dimensional Complete Hydrodynamic Model for Border Irrigation Based on Hybrid Numerical Method", TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING, vol. 25, no. 9, 30 September 2009 (2009-09-30), pages 7 - 9 *

Also Published As

Publication number Publication date
CN105956327B (zh) 2019-04-23
CN105956327A (zh) 2016-09-21
US10579756B2 (en) 2020-03-03
US20190108297A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2017201813A1 (zh) 地面灌溉地表水流运动过程模拟方法
WO2017201812A1 (zh) 一种渠道流量的获取方法
CN106767780B (zh) 基于Chebyshev多项式插值逼近的扩展椭球集员滤波方法
US10455781B2 (en) Method for controlling surface irrigation based on surface water depth information
CN109271672B (zh) 一种河-湖-泵站相互影响作用下的河道水面线计算方法
AU2020102630A4 (en) Method for acquiring roughness of river channels under gradually-varied flow conditions
CN110147646B (zh) 一种数值模拟框架下线性挡水构筑物的过流处理方法
CN106528933B (zh) 一种整圈自由叶片的失谐参数模拟方法
CN109145396B (zh) 一种基于植被分布的河道糙率分区率定方法
CN103559411A (zh) 一种基于数字高程模型的洪水演进数值模拟计算修正方法
WO2022033490A1 (zh) 一种通过添加k源项来校正标准k-ε模型的方法
CN109033181B (zh) 一种复杂地形地区风场地理数值模拟方法
CN105205215B (zh) 一种计算不同状态挺水植被水流阻力的方法
CN106651054A (zh) 基于遗传算法的长距离调水工程输水渠道糙率辨识方法
CN102567594A (zh) 一种近岸岛礁型人工鱼礁群流场仿真建模的方法
AU2017100049A4 (en) A method for calculating seepage quantity of the wetland
WO2017088181A1 (zh) 各向异性畦面糙率的获取方法及其应用
CN115083134B (zh) 一种水利工程大坝泄洪溶解气体过饱和预警调控系统
CN110457772A (zh) 一种结合平面曲率和最陡下坡方向的dem流向估计方法
CN102289550A (zh) 一种用于露天开放性颗粒源风蚀释放因子的动力学估算方法
CN114993609A (zh) 预测变雷诺数钝锥转捩位置的方法、介质、处理器及设备
CN110032818B (zh) 一种无边界游泳池水跌流量计算方法
CN112556666A (zh) 一种复杂地形情形的直线放样方法
CN110110455A (zh) 给定流量下调节闸门开度的方法
CN106096147A (zh) 水库生态调度方法和水库坝前取水位的确定方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902801

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902801

Country of ref document: EP

Kind code of ref document: A1