WO2017088181A1 - 各向异性畦面糙率的获取方法及其应用 - Google Patents

各向异性畦面糙率的获取方法及其应用 Download PDF

Info

Publication number
WO2017088181A1
WO2017088181A1 PCT/CN2015/095824 CN2015095824W WO2017088181A1 WO 2017088181 A1 WO2017088181 A1 WO 2017088181A1 CN 2015095824 W CN2015095824 W CN 2015095824W WO 2017088181 A1 WO2017088181 A1 WO 2017088181A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface roughness
anisotropic
roughness
target
water flow
Prior art date
Application number
PCT/CN2015/095824
Other languages
English (en)
French (fr)
Inventor
章少辉
许迪
李益农
白美健
李福祥
Original Assignee
中国水利水电科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国水利水电科学研究院 filed Critical 中国水利水电科学研究院
Priority to CN201580000960.0A priority Critical patent/CN105723370B/zh
Priority to US15/312,251 priority patent/US10132625B2/en
Priority to PCT/CN2015/095824 priority patent/WO2017088181A1/zh
Publication of WO2017088181A1 publication Critical patent/WO2017088181A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/245Earth materials for agricultural purposes

Definitions

  • the invention relates to the technical field of farmland water conservancy, in particular to an acquisition method of an anisotropic crucible roughness and an application thereof.
  • the roughness of the surface is usually used to characterize the surface resistance caused by the surface water movement.
  • the crop layout structure formed by tillage cultivation and the local undulations on the surface of the soil often show a specific directionality, so that the resistance of the surface water flowing through any space point in the field shows anisotropic characteristics.
  • an anisotropic surface roughness model with significant two-dimensional features is needed for quantitative description to improve the simulation accuracy of surface water flow during surface irrigation and to improve the performance evaluation capability of the surface irrigation system.
  • anisotropic surface roughness is limited to the shallow ditch and the crop parallel to the pupa in the middle of the Putian, but there is a certain rotation in the shallow ditch and the crop planting direction and the hoe in the field. At angles, it is common to measure the isotropic surface roughness of only one-dimensional features and replace the anisotropic surface roughness with two-dimensional features, which will greatly reduce the simulation accuracy of surface irrigation hydrodynamic processes. , thereby reducing the accuracy of the irrigation system performance evaluation.
  • the present invention is based on anisotropy.
  • the mathematical tensor property of the roughness of the surface provides a simple, practical and accurate method for obtaining the anisotropic surface roughness and its application.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method for obtaining an anisotropic surface roughness under the condition that the shallow ditch of the kneading surface and the crop planting direction and the crucible have a certain rotation angle, and the respective The application of the roughness to the opposite sex.
  • the specific technical solutions are as follows:
  • an embodiment of the present invention provides a method for obtaining an anisotropic surface roughness, comprising: step a, preselecting a first experimental field parallel to a length direction of the target field, and parallel to the mesh a second experimental field in the width direction of the field, respectively obtaining first land flow propulsion process data of the first experimental field and second surface water flow advancing process data of the second experimental field;
  • Step b according to the first surface water flow advancement process data and the second surface water flow advancement process data, using the one-dimensional hydrodynamic irrigation model to obtain the first isotropic concrete surface roughness and the second isotropic Roughness
  • Step c substituting the first isotropic ⁇ surface roughness and the second isotropic ⁇ surface roughness into an elliptic equation satisfying an anisotropic ⁇ surface roughness, and obtaining each of the target ⁇ To the anisotropic surface roughness, the anisotropic surface roughness includes a rake roughness component parallel and perpendicular to the shallow surface of the target ⁇ and the crop planting direction.
  • the data of the surface water flow advancement process includes: surface water depth, water flow advancement time along the length of the experimental strip, vertical uniform flow velocity along the length of the experimental strip, and length along the length of the experimental strip. Single width flow, relative elevation of the surface, surface water infiltration rate.
  • the calculation formula of the one-dimensional hydrodynamic irrigation model is as follows:
  • t is the water flow propulsion time along the length of the experimental strip
  • the elliptic equation is as follows:
  • n A is a rake roughness component parallel to the target shallow ditch and crop planting direction
  • n B is a rake roughness perpendicular to the target shallow ditch and crop planting direction Component.
  • an embodiment of the present invention provides an application of the anisotropic crucible roughness obtained by the above method in a ground irrigation process.
  • the application comprises: determining a simulation precision of the anisotropic surface roughness, and then applying the anisotropic surface roughness to a two-dimensional hydrodynamic model to target The irrigation performance of Putian was analyzed and evaluated.
  • the simulation accuracy of determining the anisotropic surface roughness includes:
  • Step ⁇ substituting the anisotropic surface roughness into the two-dimensional hydrodynamic irrigation model to obtain an analog value of the surface water flow propulsion process data under an anisotropic surface roughness; and, at the same time, based on the target The isotropic surface roughness is substituted into the two-dimensional hydrodynamic model, and the simulated values of the surface water flow advancement process under the isotropic surface roughness are obtained;
  • Step ⁇ calculating a first average relative error between the simulated value of the surface water flow propulsion process data and the measured value of the surface water flow propulsion process data under the anisotropic surface roughness; and simultaneously calculating the isotropic concrete a second average relative error between the simulated value of the surface water flow propulsion process data under the surface roughness and the measured value of the surface water flow propulsion process data;
  • Step ⁇ determining the simulation accuracy of the anisotropic surface roughness based on the first average relative error and the second average relative error.
  • the calculation formula of the two-dimensional hydrodynamic irrigation model is as follows:
  • t is the water flow propulsion time
  • the method for obtaining the anisotropic crucible roughness selects the above two experimental strips by means of the orientation arrangement of the target polder, and thereby obtains one-dimensional isotropic radon roughening of the two experimental strips. Rate, and then based on the mathematical tensor property of the anisotropic surface roughness, using the elliptic equation satisfied by the anisotropic surface roughness, the shallow ditch of the kneading surface and the crop planting direction and the stalk can be calculated to rotate arbitrarily.
  • the two-dimensional anisotropic surface roughness of the angle is based on the mathematical tensor property of the anisotropic surface roughness
  • the two-dimensional anisotropic surface roughness can more accurately reflect the resistance of the surface of the surface to the water flow, which is conducive to improving the simulation accuracy of the ground irrigation hydrodynamics (also known as the turbulent water kinetics), and thus more accurate. Irrigation performance indicators. It can be seen that the method for obtaining the anisotropic surface roughness provided by the embodiment of the present invention is not only simple and practical, but also accurate and reliable.
  • FIG. 1 is a schematic diagram showing the positional relationship between a first experimental field and a second experimental field and a target field according to an embodiment of the present invention.
  • n A is parallel to the surface roughness of the anisotropic surface roughness in the shallow ditch of the target field and the direction of crop planting,
  • n B is perpendicular to the surface roughness of the anomalous surface roughness of the target shallow surface and the crop planting direction
  • an embodiment of the present invention provides a method for obtaining an anisotropic surface roughness, including the following steps:
  • Step 101 pre-selecting the first experimental strip 2 parallel to the longitudinal direction of the target Putian 1, and the second experimental strip 3 parallel to the width direction of the target Putian 1, respectively acquiring the first surface current of the first experimental strip 2
  • the process data and the second surface water flow advancement process data of the second experimental strip 3 are advanced.
  • the target Putian 1 can be understood as a square shape.
  • Step 102 According to the first surface water flow advancement process data and the second surface water flow advancement process data, the first isotropic concrete surface roughness and the second isotropic concrete surface roughness are respectively obtained by using the one-dimensional hydrodynamic irrigation model. .
  • Step 103 Substituting the first isotropic ⁇ surface roughness and the second isotropic ⁇ surface roughness into an elliptic equation satisfying the anisotropic ⁇ surface roughness, and obtaining an anisotropic surface roughness of the target ⁇ 1 Rate, anisotropic surface roughness includes parallel and perpendicular to the target shallow surface of the shallow field of the field and the roughness of the crop surface.
  • the positional relationship between the first experimental strip 2 and the second experimental strip 3 and the target Putian 1, and the first isotropic radon roughness obtained by the first experimental strip 2 and the second experimental strip 3 The ellipse formed between the obtained second isotropic ⁇ surface roughness and the anisotropic ⁇ surface roughness based on the target ⁇ 1 is as shown in Fig. 1.
  • the length direction of the first experimental strip 2 is parallel to the longitudinal direction of the target Putian 1
  • the length direction of the second experimental strip 3 is parallel to the width direction of the target Putian 1
  • the first experimental strip 2 is guaranteed.
  • the shallow ditch and crop planting direction of the second experimental strip 3 are consistent with the shallow ditch and crop planting direction of the target Putian 1.
  • the point n 1 in the ellipse represents the first isotropic dome roughness obtained based on the first surface water flow advancement process data in the first experimental strip 2, and the point n 2 in the ellipse represents the second experimental strip 3
  • the second isotropic surface roughness obtained from the second surface water flow advancement process data n A in the ellipse represents the shallow surface of the parallel target Putian 1 shallow surface ditch and the anisotropy surface roughness in the crop planting direction Roughness component; n B in the ellipse represents the kneading roughness component of the anisotropic surface roughness perpendicular to the target shallow surface of the target field and the crop planting direction.
  • the method for obtaining an anisotropic crucible roughness selects the first experimental strip 2 and the second experimental strip 3 by means of the orientation arrangement of the target Putian 1, and thereby obtains two experimental strips.
  • the one-dimensional isotropic surface roughness, and then based on the mathematical tensor properties of the anisotropic surface roughness, using the elliptic equation satisfied by the anisotropic surface roughness, the shallow ditch and the shallow ditch can be calculated.
  • the two-dimensional anisotropic surface The roughness can more realistically reflect the resistance of the surface to the water flow, which is conducive to improving the simulation accuracy of the ground irrigation hydrodynamics (also known as the ⁇ ⁇ kinetics), and thus obtaining more accurate irrigation performance indicators. It can be seen that the method for obtaining the anisotropic surface roughness provided by the embodiment of the present invention is not only simple and practical, but also accurate and reliable.
  • the data information included in the first surface water flow advancement process data and the second surface water flow advancement process data described above should be of the same type, which specifically includes the surface water depth that can be actually measured, along the length direction of the experimental strip field.
  • the relative elevation of the surface refers to the relative value of the surface elevation of Putian. It can be understood that the acquisition of the surface water flow advancement process data is a prior art in the art, and the embodiment of the present invention does not limit the specific acquisition process of the surface water flow advancement process data.
  • the first isotropic concrete surface roughness n 1 and the second isotropic dome surface are respectively obtained by the one-dimensional hydrodynamic irrigation model.
  • Roughness n 2 the calculation formula of the one-dimensional hydrodynamic model is as follows:
  • the unit is m 3 /(s ⁇ m);
  • g is the gravitational acceleration, the unit is m/s 2 ;
  • i is the above-mentioned surface water infiltration rate, the unit is (m/s).
  • n A is the rake roughness component parallel to the shallow surface of the target Putian 1 and the crop planting direction
  • n B is the roughness component of the ravine surface perpendicular to the shallow surface of the target Putian 1 and the crop planting direction.
  • the first isotropic roughness Qimian n 1 in the x coordinate direction and y-coordinate direction corresponds weighty. 1 x 1 and y;
  • Both the upper and the y-coordinate directions correspond to the components x 2 and y 2 . Since x 1 , y 1 , x 2 and y 2 are all known values, the values of n A and n B will be easily obtained on this basis. That is, an anisotropic surface roughness is obtained.
  • the embodiment of the invention provides an application of the anisotropic surface roughness in the ground irrigation process.
  • the application includes: determining the simulation precision of the anisotropic surface roughness, and then applying the anisotropic surface roughness to the two-dimensional hydrodynamic irrigation model to analyze the irrigation performance of the target Putian 1 and Evaluation.
  • the above-described simulation accuracy for determining the anisotropic surface roughness includes the following steps:
  • Step 201 Substituting an anisotropic surface roughness into a two-dimensional hydrodynamic model to obtain an analog value of the surface water flow propulsion process data under an anisotropic surface roughness; and, at the same time, based on the target
  • the isotropic surface roughness was substituted into the two-dimensional hydrodynamic model, and the simulated values of the surface water flow propulsion process under the isotropic surface roughness were obtained.
  • the isotropic surface roughness based on the target ⁇ 1 can be obtained by the method provided by the prior art, and the embodiment of the present invention does not more specifically define the acquisition process.
  • Step 202 Calculate a first average relative error between the simulated value of the surface water flow propulsion process data and the measured value of the surface water flow propulsion process data under an anisotropic surface roughness; and, at the same time, calculate the isotropic surface roughness
  • the second average relative error between the simulated value of the surface water flow propulsion process data and the measured value of the surface water flow propulsion process data is preferably a water flow advancement time.
  • Step 203 Determine a simulation precision of the anisotropic surface roughness according to the first average relative error and the second average relative error.
  • t is the water flow propulsion time
  • step 202 the average relative error can be calculated by the following calculation formula:
  • an anisotropic bony roughness is obtained for three paddy fields in a certain group area of the Xinjiang Construction Corporation, and the three fields are numbered sequentially, which are #1, #2, #3, where 1 shows the geometrical dimensions of the three fields and the isotropic roughness based on the three fields obtained by the prior art.
  • Table 1 is as follows:
  • Step 1 Set the first test strip and the second experimental strip parallel to the target Putian under any shallow ditch and crop planting direction. Observe the surface water flow advancement process data in the two test strips. Based on the two sets of surface water flow advancement data of the two test strips, the first isotropic concrete surface roughness n 1 and the second isotropic concrete surface roughness n 2 can be obtained by using the one-dimensional hydrodynamic irrigation model.
  • Step 2 According to the basic principle of solving the binary quadratic equation, substituting n 1 and n 2 into the elliptic equation satisfying the anisotropy surface roughness, and obtaining the shallow ditch parallel to the target ⁇ and the crop planting direction The abundance roughness component of the anisotropic surface roughness, n A , and the surface roughness component n B of the anisotropic surface roughness perpendicular to the shallow surface of the target field and the crop planting direction. The specific results are shown in Table 2:
  • Step 3 Substituting the obtained n A and n B into a two-dimensional hydrodynamic irrigation model to obtain an analog value of the surface water flow propulsion time under an anisotropic surface roughness.
  • the isotropic rake roughness shown in Table 1 was substituted into the two-dimensional hydrodynamic model to obtain the simulated value of the surface water flow propulsion time under the isotropic surface roughness.
  • Step 4 Calculate the first average relative error between the simulated value of the surface water flow propulsion time and the measured value of the surface water flow propulsion time under the anisotropic surface roughness; and calculate the surface under the isotropic surface roughness
  • the second average relative error between the simulated value of the water flow propulsion time and the measured value of the surface water flow propulsion time is used to quantitatively compare the simulation accuracy between the anisotropic surface roughness and the isotropic surface roughness. The results are shown in Table 3:
  • step 4 is also performed, and simulation data of surface water flow propulsion process data and simulation of surface water flow propulsion process data under isotropic concrete surface roughness are obtained according to the obtained anisotropic surface roughness.
  • the irrigation performance indicators include irrigation uniformity Ea and water storage efficiency CU, the calculation formulas of which are as follows:
  • the unit For the average irrigation depth, the unit is m;
  • the average water depth stored in the root zone of the crop after irrigation, the unit is m, when Z avg ⁇ 0.08m, take Z avg is 0.08m, when Z avg ⁇ 0.08m, take the actual value of Z avg ;
  • n is the number of nodes in the field;
  • t is the water flow propulsion time;
  • k and ⁇ are the measured soil infiltration parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geometry (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Evolutionary Computation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Cultivation Of Plants (AREA)

Abstract

一种各向异性畦面糙率的获取方法,包括:预选分别平行于目标畦田(1)的长度和宽度方向的两个实验条田(2,3),分别获取两个实验条田(2,3)的地表水流推进过程数据;根据上述地表水流推进过程数据,利用一维水动力学畦灌模型,分别获得两个各向同性畦面糙率;将所述各向同性畦面糙率代入各向异性畦面糙率所满足的椭圆方程中,求解得到目标畦田(1)的各向异性畦面糙率,其包括平行和垂直于目标畦田(1)畦面浅沟及作物种植方向上的畦面糙率分量。还公开了一种各向异性畦面糙率在地面灌溉过程中的应用。该各向异性畦面糙率能真实地反映出畦面地表对水流的阻力作用,利于提高地面灌溉水动力学的模拟精度,获得更精确的灌溉性能指标。

Description

各向异性畦面糙率的获取方法及其应用 技术领域
本发明涉及农田水利技术领域,特别涉及一种各向异性畦面糙率的获取方法及其应用。
背景技术
在地面灌溉系统性能的分析评价中,通常采用畦面糙率来表征地表水流运动受到的地表阻力影响。在机械化耕作播种条件下,因耕作栽培形成的作物布局结构以及地表局部的起伏凹凸常呈现出特定的方向性,致使流经畦田任意空间点处的地表水流受到的阻力表现出各向异性特征,此时,需采用具有显著二维特征的各向异性畦面糙率模型进行定量描述,以提高地面灌溉时地表水流运动的模拟精度,达到提高地面灌溉系统性能评价能力的目的。
目前对于各向异性畦面糙率的测量仅限于畦田中当畦面浅沟及作物平行于畦埂的情景,但是,当畦田中的畦面浅沟及作物种植方向与畦埂存在一定的旋转角度时,通常测量仅有一维特征的各向同性畦面糙率,并以此来代替具有二维特征的各向异性畦面糙率,这将会大大降低地面灌溉水动力学过程的模拟精度,进而降低灌溉系统性能评价的精确性。
基于上述可知,对于畦田中的畦面浅沟及作物种植方向与畦埂存在一定的旋转角度的情况,有必要提供一种各向异性畦面糙率的测量方法,而本发明基于各向异性畦面糙率在数学上的张量属性,提供了一种简单实用且精确可靠的各向异性畦面糙率的获取方法及其应用。
发明内容
本发明实施例所要解决的技术问题在于,提供了一种能够在畦面浅沟及作物种植方向与畦埂存在一定的旋转角度的情况下,获取各向异性畦面糙率的方法以及该各向异性畦面糙率的应用。具体技术方案如下:
第一方面,本发明实施例提供了一种各向异性畦面糙率的获取方法,包括:步骤a、预选平行于目标畦田的长度方向的第一实验条田,以及平行于所述目 标畦田的宽度方向的第二实验条田,分别获取所述第一实验条田的第一地表水流推进过程数据和所述第二实验条田的第二地表水流推进过程数据;
步骤b、根据所述第一地表水流推进过程数据和所述第二地表水流推进过程数据,利用一维水动力学畦灌模型,分别获得第一各向同性畦面糙率和第二各向同性畦面糙率;
步骤c、将所述第一各向同性畦面糙率和所述第二各向同性畦面糙率代入各向异性畦面糙率所满足的椭圆方程中,求解得到所述目标畦田的各向异性畦面糙率,所述各向异性畦面糙率包括平行和垂直于所述目标畦田畦面浅沟及作物种植方向上的畦面糙率分量。
具体地,作为优选,所述地表水流推进过程数据包括:地表水深、沿实验条田长度方向上的水流推进时间、沿实验条田长度方向的垂向均布流速、沿实验条田长度方向的单宽流量、畦面相对高程、地表水入渗率。
具体地,作为优选,所述一维水动力学畦灌模型的计算公式如下所示:
Figure PCTCN2015095824-appb-000001
Figure PCTCN2015095824-appb-000002
其中,t为沿实验条田长度方向上的水流推进时间,单位为s;h为地表水深,单位为m;u为沿实验条田长度方向上的垂向均布流速,单位为m/s;q为沿实验条田长度方向的单宽流量,单位为m3/(s·m);g为重力加速度,单位为m/s2;ζ为地表水位相对高程,且ζ=所述地表水深+所述畦面相对高程,单位为m;n为各向同性畦面糙率,单位s/m1/3;i为地表水入渗率,单位为m/s。
具体地,作为优选,所述椭圆方程如下所示:
Figure PCTCN2015095824-appb-000003
其中,nA为平行于所述目标畦田畦面浅沟及作物种植方向上的畦面糙率分量;nB为垂直于所述目标畦田畦面浅沟及作物种植方向上的畦面糙率分量。
第二方面,本发明实施例提供了利用上述的方法获取得到的各向异性畦面糙率在地面灌溉过程中的应用。
具体地,作为优选,所述应用包括:确定所述各向异性畦面糙率的模拟精度,然后将所述各向异性畦面糙率应用到二维水动力学畦灌模型中,来对目标 畦田的灌溉性能进行分析与评价。
具体地,作为优选,所述确定所述各向异性畦面糙率的模拟精度包括:
步骤α、将各向异性畦面糙率代入所述二维水动力学畦灌模型中,获取各向异性畦面糙率下的地表水流推进过程数据的模拟值;同时,将基于所述目标畦田的各向同性畦面糙率代入所述二维水动力学畦灌模型中,获取各向同性畦面糙率下的地表水流推进过程数据的模拟值;
步骤β、计算所述各向异性畦面糙率下的地表水流推进过程数据的模拟值与地表水流推进过程数据的实测值之间的第一平均相对误差;同时,计算所述各向同性畦面糙率下的地表水流推进过程数据的模拟值与所述地表水流推进过程数据的实测值之间的第二平均相对误差;
步骤γ、根据所述第一平均相对误差和所述第二平均相对误差来确定所述各向异性畦面糙率的模拟精度。
具体地,作为优选,所述二维水动力学畦灌模型的计算公式如下所示:
Figure PCTCN2015095824-appb-000004
Figure PCTCN2015095824-appb-000005
Figure PCTCN2015095824-appb-000006
其中,t为水流推进时间,单位为s;h为所述地表水深,单位为m;u和v分别为沿x坐标方向及y坐标方向上的垂向均布流速,单位为m/s;q和p分别为沿x坐标方向及y坐标方向上的单宽流量,单位为m3/(s·m);g为重力加速度,单位为m/s2;ζ为地表水位相对高程,且ζ=地表水深+畦面相对高程,单位为m;nA为平行于目标畦田畦面浅沟及作物种植方向上的畦面糙率分量,单位s/m1/3;nB为垂直于目标畦田畦面浅沟及作物种植方向上的畦面糙率分量,单位s/m1/3;i为地表水入渗率,单位为m/s;β为畦面浅沟及作物种植方向与x坐标方向之间的夹角。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的各向异性畦面糙率的获取方法,通过借助目标畦田的方位布置选择上述两个实验条田,并由此获得两个实验条田的一维各向同性畦面糙率,然后基于各向异性畦面糙率在数学上的张量属性,利用各向异性畦面糙率所满足的椭圆方程,可计算得到畦面浅沟及作物种植方向与畦梗呈任意旋转角度的二维各向异性畦面糙率。该二维各向异性畦面糙率能够更真实地反映出畦面地表对水流的阻力作用,利于提高地面灌溉水动力学(也可理解为畦灌水动力学)的模拟精度,进而获得更精确的灌溉性能指标。可见,本发明实施例提供的各向异性畦面糙率的获取方法不仅简单实用,且精确可靠。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的第一实验条田和第二实验条田与目标畦田的位置关系示意图。
附图标记分别表示:
1       目标畦田,
2       第一实验条田,
3       第二实验条田,
n1      基于第一实验条田的第一各向同性畦面糙率,
n2      基于第二实验条田的第二各向同性畦面糙率,
nA      平行于目标畦田畦面浅沟及作物种植方向上的各向异性畦面糙率的畦面糙率分量,
nB      垂直于目标畦面畦面浅沟及作物种植方向上的各向异性畦面糙率的畦面糙率分量,
β       畦面浅沟及作物种植方向与x坐标方向之间的夹角。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明 实施方式作进一步地详细描述。
第一方面,本发明实施例提供了一种各向异性畦面糙率的获取方法,包括以下步骤:
步骤101、预选平行于目标畦田1的长度方向的第一实验条田2,以及平行于目标畦田1的宽度方向的第二实验条田3,分别获取第一实验条田2的第一地表水流推进过程数据和第二实验条田3的第二地表水流推进过程数据。其中,该目标畦田1可以理解为方块形。
步骤102、根据第一地表水流推进过程数据和第二地表水流推进过程数据,利用一维水动力学畦灌模型,分别获得第一各向同性畦面糙率和第二各向同性畦面糙率。
步骤103、将第一各向同性畦面糙率和第二各向同性畦面糙率代入各向异性畦面糙率所满足的椭圆方程中,求解得到目标畦田1的各向异性畦面糙率,各向异性畦面糙率包括平行和垂直于目标畦田1畦面浅沟及作物种植方向上的畦面糙率分量。
其中,第一实验条田2和第二实验条田3与目标畦田1的位置关系,以及由第一实验条田2得到的第一各向同性畦面糙率和由第二实验条田3得到的第二各向同性畦面糙率,与基于目标畦田1的各向异性畦面糙率之间所构成的椭圆如附图1所示。由图1可知,第一实验条田2的长度方向平行于目标畦田1的长度方向,而第二实验条田3的长度方向平行于目标畦田1的宽度方向,且保证第一实验条田2和第二实验条田3的畦面浅沟及作物种植方向均与目标畦田1的畦面浅沟及作物种植方向相一致。椭圆中的点n1代表基于第一实验条田2中的第一地表水流推进过程数据得到的第一各向同性畦面糙率,椭圆中的点n2代表基于第二实验条田3中的第二地表水流推进过程数据得到的第二各向同性畦面糙率,椭圆中的nA代表平行目标畦田1畦面浅沟及作物种植方向上的各向异性畦面糙率的畦面糙率分量;椭圆中的nB代表垂直于目标畦田1畦面浅沟及作物种植方向上的各向异性畦面糙率的畦面糙率分量。
本发明实施例提供的各向异性畦面糙率的获取方法,通过借助目标畦田1的方位布置选择上述第一实验条田2和第二实验条田3,并由此获得两个实验条田的一维各向同性畦面糙率,然后基于各向异性畦面糙率在数学上的张量属性,利用各向异性畦面糙率所满足的椭圆方程,可计算得到畦面浅沟及作物种植方向与畦梗呈任意旋转角度的二维各向异性畦面糙率。该二维各向异性畦面 糙率能够更真实地反映出畦面地表对水流的阻力作用,利于提高地面灌溉水动力学(也可理解为畦灌水动力学)的模拟精度,进而获得更精确的灌溉性能指标。可见,本发明实施例提供的各向异性畦面糙率的获取方法不仅简单实用,且精确可靠。
具体地,上述的第一地表水流推进过程数据和第二地表水流推进过程数据所包括的数据信息应当是同种类型的,其具体包括可实际测量得到的地表水深、沿实验条田长度方向上的水流推进时间;沿实验条田长度方向上的垂向均布流速、沿实验条田长度方向上的单宽流量、畦面相对高程、地表水入渗率。其中,畦面相对高程指的是畦田地表高程的相对值。可以理解的是,获取地表水流推进过程数据为本领域的现有技术,本发明实施例在此并不对地表水流推进过程数据的具体获取过程进行限定。
进一步地,基于上述第一地表水流推进过程数据和第二地表水流推进过程数据,利用一维水动力学畦灌模型分别获得第一各向同性畦面糙率n1和第二各向同性畦面糙率n2。其中,一维水动力学畦灌模型的计算公式如下所示:
Figure PCTCN2015095824-appb-000007
Figure PCTCN2015095824-appb-000008
其中,t为上述的水流推进时间,单位为s;h为上述的地表水深,单位为m;u为上述的沿实验条田长度方向上的垂向均布流速,单位为m/s;q为上述的沿实验条田长度方向上的单宽流量,单位为m3/(s·m);g为重力加速度,单位为m/s2;ζ为地表水位相对高程,且ζ=地表水深+畦面相对高程,单位为m;n为各向同性畦面糙率,单位s/m1/3;i为上述的地表水入渗率,单位为(m/s)。
进一步地,在求解目标畦田1的各向异性畦面糙率过程中所应用的椭圆方程如下所示:
Figure PCTCN2015095824-appb-000009
其中,nA为平行于目标畦田1畦面浅沟及作物种植方向上的畦面糙率分量;nB为垂直于目标畦田1畦面浅沟及作物种植方向上的畦面糙率分量。而第一各向同性畦面糙率n1在x坐标方向上和y坐标方向上均对应有分量x1和y1;相应地,第二各向同性畦面糙率n2在x坐标方向上和y坐标方向上均对应有分量x2 和y2,由于x1、y1、x2和y2均为已知值,所以在此基础上将容易地获得nA和nB的值,即获得各向异性畦面糙率。
在利用上述方法获得目标畦田1的各向异性畦面糙率的基础上,第二方面,本发明实施例提供了一种该各向异性畦面糙率在地面灌溉过程中的应用。
具体地,该应用包括:确定各向异性畦面糙率的模拟精度,然后将各向异性畦面糙率应用到二维水动力学畦灌模型中,来对目标畦田1的灌溉性能进行分析与评价。
具体地,上述的确定各向异性畦面糙率的模拟精度包括以下步骤:
步骤201、将各向异性畦面糙率代入二维水动力学畦灌模型中,获取各向异性畦面糙率下的地表水流推进过程数据的模拟值;同时,将基于所述目标畦田1的各向同性畦面糙率代入二维水动力学畦灌模型中,获取各向同性畦面糙率下的地表水流推进过程数据的模拟值。其中,基于所述目标畦田1的各向同性畦面糙率通过现有技术提供的方法即可获取,本发明实施例在此不对其获取过程作更具体限定。
步骤202、计算各向异性畦面糙率下的地表水流推进过程数据的模拟值与地表水流推进过程数据的实测值之间的第一平均相对误差;同时,计算各向同性畦面糙率下的地表水流推进过程数据的模拟值与地表水流推进过程数据的实测值之间的第二平均相对误差。其中,步骤201和步骤202中所述的地表水流推进过程数据优选为水流推进时间。
步骤203、根据第一平均相对误差和第二平均相对误差来确定各向异性畦面糙率的模拟精度。
其中,步骤201中所述的二维水动力学畦灌模型的计算公式如下所示:
Figure PCTCN2015095824-appb-000010
Figure PCTCN2015095824-appb-000011
Figure PCTCN2015095824-appb-000012
其中,t为水流推进时间,单位为s;h为地表水深,单位为m;u和v分别为沿x坐标方向及y坐标方向上的垂向均布流速,单位为m/s;q和p分别为沿x坐标方向及y坐标方向上的单宽流量,单位为m3/(s·m);g为重力加速度,单位为m/s2;ζ为地表水位相对高程,且ζ=地表水深+畦面相对高程,单位为m;nA为平行于目标畦田畦面浅沟及作物种植方向上的畦面糙率分量,单位s/m1/3;nB为垂直于目标畦田1畦面浅沟及作物种植方向上的畦面糙率分量,单位s/m1/3;i为地表水入渗率,单位为m/s;β为畦面浅沟及作物种植方向与x坐标方向之间的夹角。此处,x坐标方向及y坐标方向分别指的是沿目标畦田的畦长和畦宽方向。
本领域技术人员可以理解的是,上述一维水动力学畦灌模型和二维水动力学畦灌模型的计算可以通过在计算机中建立对应的数学模型即可实现。
进一步地,步骤202中,所述的平均相对误差可以通过如下计算公式计算得到:
Figure PCTCN2015095824-appb-000013
其中,
Figure PCTCN2015095824-appb-000014
Figure PCTCN2015095824-appb-000015
分别为地表水流推进到畦田第i测点时,所实际测量得到的水流推进时间和利用二维水动力学畦灌模型计算得到的模拟时间,单位为min;M为畦田内的测点个数。
以下将通过具体实施例进一步描述本发明。
实施例1
本实施例对新疆建设兵团某团场区内的3块畦田进行各向异性的畦面糙率的获取,对这3块畦田分别编号,依次为#1、#2、#3,其中,表1示出了这3块畦田的几何尺寸及采用现有技术获取的,基于这三个畦田的各向同性畦面糙率,表1具体如下所示:
表1
Figure PCTCN2015095824-appb-000016
然后,利用本发明实施例上述的方法,来获取这三个畦田的各向异性畦面糙率,具体步骤如下:
步骤1、任意畦面浅沟与作物种植方向下,设置平行于目标畦田的第一试验条田和第二实验条田。观测这两个试验条田内的地表水流推进过程数据。基于这两个试验条田的两组地表水流推进数据,利用一维水动力学畦灌模型,可获得第一各向同性畦面糙率n1和第二各向同性畦面糙率n2
步骤2、根据求解二元二次方程的基本原理,将n1和n2代入各向异性畦面糙率所满足的椭圆方程中,获取平行于目标畦田畦面浅沟及作物种植方向上的各向异性畦面糙率的畦面糙率分量nA,以及垂直于目标畦田畦面浅沟及作物种植方向上的各向异性畦面糙率的畦面糙率分量nB。具体结果如表2所示:
表2
Figure PCTCN2015095824-appb-000017
步骤3、把获得的nA和nB代入二维水动力学畦灌模型,获取各向异性畦面糙率下的地表水流推进时间的模拟值。同时,将表1中所示的各向同性畦面糙率对应代入二维水动力学畦灌模型中,获取各向同性畦面糙率下的地表水流推进时间的模拟值。
步骤4、计算各向异性畦面糙率下的地表水流推进时间的模拟值与地表水流推进时间的实测值之间的第一平均相对误差;同时,计算各向同性畦面糙率下的地表水流推进时间的模拟值与地表水流推进时间的实测值之间的第二平均相对误差,以定量对比各向异性畦面糙率与各向同性畦面糙率之间的模拟精度。该结果如表3所示:
表3
Figure PCTCN2015095824-appb-000018
由表3可知,采用各向异性畦面糙率后,二维水动力学畦灌模型的模拟精度得以显著提高。
进一步地,本实施例还进行了步骤4、根据所获取的各向异性畦面糙率下的地表水流推进过程数据的模拟值和各向同性畦面糙率下的地表水流推进过程数据的模拟值,来计算各畦田的灌溉性能指标的模拟值。其中,灌溉性能指标包括灌溉均匀度Ea和储水效率CU,这两者的计算公式分别如下所示:
Figure PCTCN2015095824-appb-000019
Figure PCTCN2015095824-appb-000020
其中,
Figure PCTCN2015095824-appb-000021
为平均灌水深度,单位为m;
Figure PCTCN2015095824-appb-000022
为灌溉后储存在作物根区的平均水深,单位为m,当Zavg≥0.08m时,取Zavg为0.08m,当Zavg<0.08m时,取实际的Zavg值;其中,Zi为第i个节点处的灌水深度,且Zi=ktα;n为畦田的节点数目;t为水流推进时间;k和α均为实测的土壤入渗参数。
测试结果如表4所示:
表4
Figure PCTCN2015095824-appb-000023
由表4可知,基于各向异性畦面糙率的灌溉性能指标模拟值与基于各向同性畦面糙率的灌溉性能指标模拟值的差异较大。而由表3的数据可知,基于各向异性畦面糙率的灌溉性能指标模拟值,更加接近物理事实。故由此可知,利 用本发明实施例提供的方法得到的各向异性畦面糙率,能有效提高灌溉水动力学的模拟精度和灌溉性能评价与分析的能力。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种各向异性畦面糙率的获取方法,包括:步骤a、预选平行于目标畦田的长度方向的第一实验条田,以及平行于所述目标畦田的宽度方向的第二实验条田,分别获取所述第一实验条田的第一地表水流推进过程数据和所述第二实验条田的第二地表水流推进过程数据;
    步骤b、根据所述第一地表水流推进过程数据和所述第二地表水流推进过程数据,利用一维水动力学畦灌模型,分别获得第一各向同性畦面糙率和第二各向同性畦面糙率;
    步骤c、将所述第一各向同性畦面糙率和所述第二各向同性畦面糙率代入各向异性畦面糙率所满足的椭圆方程中,求解得到所述目标畦田的各向异性畦面糙率,所述各向异性畦面糙率包括平行和垂直于所述目标畦田畦面浅沟及作物种植方向上的畦面糙率分量。
  2. 根据权利要求1所述的获取方法,其特征在于,所述地表水流推进过程数据包括:地表水深、沿实验条田长度方向上的水流推进时间、沿实验条田长度方向的垂向均布流速、沿实验条田长度方向的单宽流量、畦面相对高程、地表水入渗率。
  3. 根据权利要求2所述的获取方法,其特征在于,所述一维水动力学畦灌模型的计算公式如下所示:
    Figure PCTCN2015095824-appb-100001
    Figure PCTCN2015095824-appb-100002
    其中,t为沿实验条田长度方向上的水流推进时间,单位为s;h为地表水深,单位为m;u为沿实验条田长度方向上的垂向均布流速,单位为m/s;q为沿实验条田长度方向上的单宽流量,单位为m3/(s·m);g为重力加速度,单位为m/s2;ζ为地表水位相对高程,且ζ=地表水深+畦面相对高程,单位为m;n为各向同性畦面糙率,单位s/m1/3;i为地表水入渗率,单位为m/s。
  4. 根据权利要求3所述的获取方法,其特征在于,所述椭圆方程如下所示:
    Figure PCTCN2015095824-appb-100003
    其中,nA为平行于所述目标畦田畦面浅沟及作物种植方向上的畦面糙率分量;nB为垂直于所述目标畦田畦面浅沟及作物种植方向上的畦面糙率分量。
  5. 利用权利要求1-4任一项所述的方法获取得到的各向异性畦面糙率在地面灌溉过程中的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述应用包括:确定所述各向异性畦面糙率的模拟精度,然后将所述各向异性畦面糙率应用到二维水动力学畦灌模型中,来对目标畦田的灌溉性能进行分析与评价。
  7. 根据权利要求6所述的应用,其特征在于,确定所述各向异性畦面糙率的模拟精度包括:
    步骤α、将各向异性畦面糙率代入所述二维水动力学畦灌模型中,获取各向异性畦面糙率下的地表水流推进过程数据的模拟值;同时,将基于所述目标畦田的各向同性畦面糙率代入所述二维水动力学畦灌模型中,获取各向同性畦面糙率下的地表水流推进过程数据的模拟值;
    步骤β、计算所述各向异性畦面糙率下的地表水流推进过程数据的模拟值与地表水流推进过程数据的实测值之间的第一平均相对误差;同时,计算所述各向同性畦面糙率下的地表水流推进过程数据的模拟值与所述地表水流推进过程数据的实测值之间的第二平均相对误差;
    步骤γ、根据所述第一平均相对误差和所述第二平均相对误差来确定所述各向异性畦面糙率的模拟精度。
  8. 根据权利要求7所述的应用,其特征在于,所述二维水动力学畦灌模型的计算公式如下所示:
    Figure PCTCN2015095824-appb-100004
    Figure PCTCN2015095824-appb-100005
    Figure PCTCN2015095824-appb-100006
    其中,t为水流推进时间,单位为s;h为所述地表水深,单位为m;u和v分别为沿x坐标方向及y坐标方向上的垂向均布流速,单位为m/s;q和p分别为沿x坐标方向及y坐标方向上的单宽流量,单位为m3/(s·m);g为重力加速度,单位为m/s2;ζ为地表水位相对高程,且ζ=地表水深+畦面相对高程,单位为m;nA为平行于目标畦田畦面浅沟及作物种植方向上的畦面糙率分量,单位s/m1/3;nB为垂直于目标畦田1畦面浅沟及作物种植方向上的畦面糙率分量,单位s/m1/3;i为地表水入渗率,单位为m/s;β为畦面浅沟及作物种植方向与x坐标方向之间的夹角。
PCT/CN2015/095824 2015-11-27 2015-11-27 各向异性畦面糙率的获取方法及其应用 WO2017088181A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580000960.0A CN105723370B (zh) 2015-11-27 2015-11-27 各向异性畦面糙率的获取方法及其应用
US15/312,251 US10132625B2 (en) 2015-11-27 2015-11-27 Method for acquiring anisotropic basin surface roughness and use thereof
PCT/CN2015/095824 WO2017088181A1 (zh) 2015-11-27 2015-11-27 各向异性畦面糙率的获取方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095824 WO2017088181A1 (zh) 2015-11-27 2015-11-27 各向异性畦面糙率的获取方法及其应用

Publications (1)

Publication Number Publication Date
WO2017088181A1 true WO2017088181A1 (zh) 2017-06-01

Family

ID=56147523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095824 WO2017088181A1 (zh) 2015-11-27 2015-11-27 各向异性畦面糙率的获取方法及其应用

Country Status (3)

Country Link
US (1) US10132625B2 (zh)
CN (1) CN105723370B (zh)
WO (1) WO2017088181A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353620B (zh) * 2015-11-28 2018-05-18 中国水利水电科学研究院 一种基于地表水深信息的地面灌溉控制方法
CN111368485B (zh) * 2020-03-03 2020-11-10 中国水利水电科学研究院 基于曼宁方程计算地表糙率的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101612A (zh) * 2007-07-19 2008-01-09 中国水利水电科学研究院 一种模拟田面微地形空间分布状况的方法
CN101356882A (zh) * 2008-09-18 2009-02-04 中国农业大学 一种灌区配水方案的确定方法
CN103197047A (zh) * 2013-04-08 2013-07-10 清华大学 生态糙率的实验方法
RU2487530C2 (ru) * 2011-09-12 2013-07-20 Государственное научное учреждение Всероссийский научно-исследовательский институт риса Российской академии сельскохозяйственных наук (ГНУ ВНИИ риса Россельхозакадемии) Способ орошения риса
KR101396395B1 (ko) * 2013-02-22 2014-05-19 경북대학교 산학협력단 회귀분석을 이용한 설계풍속 산정 장치 및 방법
CN104677801A (zh) * 2015-02-10 2015-06-03 西安理工大学 一种土壤入渗参数和地面糙率的测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262316B2 (en) * 2008-11-19 2012-09-11 Kelly Slater Wave Company, Llc Surface gravity wave generator and wave pool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101612A (zh) * 2007-07-19 2008-01-09 中国水利水电科学研究院 一种模拟田面微地形空间分布状况的方法
CN101356882A (zh) * 2008-09-18 2009-02-04 中国农业大学 一种灌区配水方案的确定方法
RU2487530C2 (ru) * 2011-09-12 2013-07-20 Государственное научное учреждение Всероссийский научно-исследовательский институт риса Российской академии сельскохозяйственных наук (ГНУ ВНИИ риса Россельхозакадемии) Способ орошения риса
KR101396395B1 (ko) * 2013-02-22 2014-05-19 경북대학교 산학협력단 회귀분석을 이용한 설계풍속 산정 장치 및 방법
CN103197047A (zh) * 2013-04-08 2013-07-10 清华大学 生态糙率的实验方法
CN104677801A (zh) * 2015-02-10 2015-06-03 西安理工大学 一种土壤入渗参数和地面糙率的测量方法

Also Published As

Publication number Publication date
CN105723370B (zh) 2019-02-05
CN105723370A (zh) 2016-06-29
US20180038688A1 (en) 2018-02-08
US10132625B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
Vanani et al. Development of a new method for determination of infiltration coefficients in furrow irrigation with natural non-uniformity of slope
Jowett et al. Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river
Martinez-Agirre et al. Evaluation of surface roughness parameters in agricultural soils with different tillage conditions using a laser profile meter
CN105353620B (zh) 一种基于地表水深信息的地面灌溉控制方法
Gilley et al. Hydraulic roughness coefhcients as affected by random roughness
Ou et al. Advancements and challenges in rill formation, morphology, measurement and modeling
Porhemmat et al. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran
CN104376204A (zh) 一种采用改进的像元二分法反演植被覆盖度的方法
WO2017088181A1 (zh) 各向异性畦面糙率的获取方法及其应用
CN110276150A (zh) 一种基于Copula函数的山丘区河川基流量系列插补延长方法
WO2017201813A1 (zh) 地面灌溉地表水流运动过程模拟方法
Dadgar et al. Potential groundwater recharge from deep drainage of irrigation water
Nie et al. Optimization of the border size on the irrigation district scale–Example of the Hetao irrigation district
CN105137041A (zh) 土壤参数空间分布的监测方法和系统
Dabral et al. Modelling of wetting pattern under trickle source in sandy soil of Nirjuli, Arunachal Pradesh (India)
Adib et al. Evaluation of synthetic outlet runoff assessment models
Li et al. Flexible and rigid vegetation in overland flow resistance
CN107832935A (zh) 一种水文变量设计值的确定方法及装置
Shaikh et al. Comparative Study of Irrigation Advance Based Infiltration Methods for Furrow Irrigated Soils.
Loranger et al. Comparison of one-and two-dimensional hydraulic habitat models for simulation of trout stream habitat
PHONTUSANG et al. Field-scale spatial variability of electrical conductivity of the inland, salt-affected soils of Northeast Thailand
Rojas-Ponce et al. Improved evaluation of bay (and furrow) irrigation
Walker et al. Another look at wetted perimeter along irrigated furrows-modeling implications
He et al. Modeling bedload transport trajectories along a Sine-generated channel
Zhang et al. Prediction of the Slope Solute Loss Based on BP Neural Network.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15312251

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909092

Country of ref document: EP

Kind code of ref document: A1