WO2014192326A1 - 津波監視システム - Google Patents

津波監視システム Download PDF

Info

Publication number
WO2014192326A1
WO2014192326A1 PCT/JP2014/051353 JP2014051353W WO2014192326A1 WO 2014192326 A1 WO2014192326 A1 WO 2014192326A1 JP 2014051353 W JP2014051353 W JP 2014051353W WO 2014192326 A1 WO2014192326 A1 WO 2014192326A1
Authority
WO
WIPO (PCT)
Prior art keywords
tsunami
wave height
monitoring system
wave
unit
Prior art date
Application number
PCT/JP2014/051353
Other languages
English (en)
French (fr)
Inventor
石川 博章
隆 川相
隆文 永野
泰三 磯野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015519687A priority Critical patent/JP5905646B2/ja
Priority to US14/890,323 priority patent/US9544748B2/en
Priority to DE112014002638.7T priority patent/DE112014002638T5/de
Publication of WO2014192326A1 publication Critical patent/WO2014192326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a tsunami monitoring system for measuring the sea surface velocity of a tsunami with a radar and predicting the wave height and the arrival time on land.
  • Ocean radar radiates radio waves to the sea surface from antennas installed on land, receives backscattered waves from sea surface waves, and performs frequency analysis to measure ocean currents, waves, ocean winds, etc. in a wide area of about 100 km. be able to.
  • Marine radars are characterized by being able to observe a wide area at the same time, and are suitable for long-term observation because they can be observed from land.
  • the sea surface velocity component in the line-of-sight direction of the radio wave emitted from the antenna can be measured, and the wave height of the incoming tsunami cannot be directly measured.
  • JP 2013-40898 A Japanese Patent No. 3512330 Japanese Patent No. 272486 Japanese Patent No. 4534200
  • An object of the present invention is to provide a tsunami monitoring system that can solve the above problems and can directly predict the wave height of an incoming tsunami with sufficient accuracy.
  • Tsunami monitoring system In a tsunami monitoring system comprising a transmission antenna that radiates a transmission signal for detecting a tsunami as a radio wave toward the sea, and a reception antenna that receives a reflected wave reflected by the tsunami as a reception signal, Signal generating means for generating the transmission signal having a predetermined frequency; A signal processing unit that generates a beat signal that is a frequency difference between the transmission signal and the reception signal; A wave height estimation unit that divides the radio wave irradiation area into a plurality of areas, calculates the tsunami sea surface flow velocity based on the beat signal for each region, and estimates the tsunami wave height from the calculated flow velocity. It is characterized by comprising.
  • the tsunami wave height can be directly predicted from the sea surface velocity distribution measured by radio waves, the arrival time and arrival time of all tsunamis including unexpected tsunamis can be estimated. It is possible to accurately predict the wave height.
  • FIG. 6 is a plan view showing the distribution of the wave height ⁇ of FIG. 5 after 25 minutes. It is a top view which shows distribution of wave height (eta) of the tsunami 7 of FIG. 5 25 minutes after produced
  • FIG. 1 is a block diagram showing a tsunami monitoring system 1 and its surrounding components according to the first embodiment of the present invention.
  • the tsunami monitoring system 1 in FIG. 1 includes a transmission / reception antenna 2, a transmission / reception unit 8, a signal processing unit 9, a calculation unit 10, and a display unit 13 provided at positions where the transmission radio wave 5 can scan the sea. It is prepared for.
  • the calculating part 10 is provided with the wave height estimation part 11 which consists of a computer and a program.
  • the transmission / reception antenna 2 is installed on the land 18, the transmission / reception antenna 2 may be installed anywhere on the sea 4 as long as the transmission radio wave 5 can scan the sea. Further, in FIG.
  • the shape of the transmission / reception antenna 2 is a cylindrical shape or a linear shape.
  • the transmission / reception antenna 2 may be an array antenna.
  • the transmission / reception antenna 2 has the transmission antenna and the reception antenna integrated, the transmission antenna and the reception antenna may be provided separately.
  • the transmission / reception unit 8 includes signal generation means for generating a transmission signal having a predetermined frequency and outputting the transmission signal to the transmission / reception antenna 2.
  • the transmission / reception unit 8 includes reception means for receiving a reception signal from a transmission / reception antenna 2 described later and outputting the reception signal to the signal processing unit 9.
  • the transmission / reception unit 8 is described as a single unit. However, the transmission / reception unit 8 and the signal processing unit 9 may be configured in two different configurations. However, the present invention can be applied.
  • the transmission / reception antenna 2 radiates a transmission signal for detecting the tsunami 7 as a transmission radio wave 5 on the sea. Further, the transmission / reception antenna 2 receives the reception radio wave 6 strongly scattered on the sea surface 3 as a reception signal, and outputs the reception signal to the transmission / reception unit 8. This backscattering is called black scattering.
  • the signal processing unit 9 multiplies the transmission signal generated by the transmission / reception unit 8 and the reception signal received by the transmission / reception antenna 2 and outputs the resulting signal to the wave height estimation unit 11 as a beat signal. That is, the signal processing unit 9 generates a beat signal having a frequency difference between the transmission signal and the reception signal.
  • the received radio wave 6 is modulated by the Doppler effect, and the modulation amount depends on the flow velocity of the sea surface 3 and is calculated as a beat signal.
  • the signal processing unit 9 has a function of filtering out the higher harmonic component from the signal resulting from the multiplication of the transmission signal and the reception signal.
  • the wave height estimation unit 11 receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, estimates the wave height ⁇ of the tsunami 7 from this flow velocity, and is estimated Data of the wave height ⁇ is output to the display unit 13.
  • the radio wave irradiation area 14 of the transmission radio wave 5 is divided into a plurality of areas as shown in FIG. 3 to be described later, and the flow velocity of the sea surface 3 of the tsunami 7 is calculated for each area, and the tsunami 7 in that area is calculated.
  • Estimate the wave height ⁇ The display unit 13 displays the data of the wave height ⁇ input from the wave height estimating unit 11.
  • FIG. 2 is a cross-sectional view for explaining the wave height ⁇ and total water depth D of the tsunami 7 in FIG.
  • h indicates the hydrostatic depth
  • indicates the wave height of the tsunami 7.
  • the hydrostatic depth h is the water depth from the sea bottom 21 to the sea surface 3 when no waves are standing
  • the wave height ⁇ of the tsunami 7 is the water depth from the hydrostatic depth h to the sea surface 3 when the waves are standing. is there. Therefore, the total water depth D from the sea bottom 21 to the sea surface 3 when the wave is standing is the sum of the wave height ⁇ and the hydrostatic depth h.
  • the wavelength ⁇ of the tsunami 7 is sufficiently larger than the hydrostatic depth h (h ⁇ ⁇ ).
  • the behavior of the tsunami 7 has an x-axis, a y-axis and a z-axis that are orthogonal to each other, and assuming that the z-axis is opposite to the weight direction, the two-dimensional orthogonal coordinate system having the x-axis and the y-axis.
  • a basic equation of tsunami composed of the following mass conservation equation (1) and equations of motion (2) and (3) (for example, Non-Patent Document 1 and 2).
  • the weight direction is orthogonal to the x-axis direction and the y-axis direction.
  • is the wave height of the tsunami 7
  • M is the linear flow rate in the x-axis direction
  • N is the linear flow rate in the y-axis direction
  • n is the seabed friction coefficient (Manning's roughness coefficient)
  • t is time
  • g gravitational acceleration.
  • the wave height estimation unit 12 does not require a database or an empirical formula for associating the flow velocity U in the x-axis direction and the flow velocity V in the y-axis direction with the wave height ⁇ of the tsunami 7, and thus the basic equation for the tsunami described above.
  • the wave height ⁇ can be calculated from the flow velocity U in the x-axis direction and the flow velocity V in the y-axis direction of the tsunami 7 measured by the tsunami monitoring system 1.
  • FIG. 3 is a plan view for explaining an irradiation area of the transmission radio wave 5 emitted from the transmission / reception antenna 2 of FIG.
  • a transmission radio wave 5 from the transmission / reception antenna 2 is applied to a fan-shaped radio wave irradiation region 14 centering on the transmission / reception antenna 2.
  • the radio wave irradiation region 14 using the radius r from the origin (0, 0) and the clockwise rotation angle ⁇ about the z axis.
  • the flow velocity in each region is measured as an average value at a constant sample time ⁇ t.
  • the sample time ⁇ t varies depending on the processing time of the tsunami monitoring system 1 and the size of the radio wave irradiation area 14, but is generally in the range of several tens of seconds to several minutes.
  • the maximum value of the radius r of the radio wave irradiation region 14 is generally several tens to one hundred kilometers
  • the distance width ⁇ r is several kilometers or less
  • the angle width ⁇ is generally 25 degrees or less. is there.
  • the distance width ⁇ r and the angle width ⁇ are constant in FIG. 3, but the size may be changed according to the position of the radio wave irradiation region 14.
  • the line rate M theta line flow M r and the rotation angle theta direction of radius r direction is calculated from the following equation.
  • U r is the measured flow velocity in the radius r direction
  • U ⁇ is the flow velocity in the rotation angle ⁇ direction
  • D is the total water depth
  • the right side of the equation (5) is a time change of the radius r direction of the flow velocity U r, time t and time (t-Delta] t) flow rate of the two radii r direction measured by the tsunami monitoring system 1 in U r It is possible to calculate using the value of.
  • the distribution of the wave height ⁇ of the tsunami 7 in the radio wave irradiation region 14 of FIG. 3 can be calculated by solving the above-described equation (5) using a numerical analysis method such as a difference method.
  • k means a value corresponding to time t
  • (k ⁇ 1) means a value corresponding to time (t ⁇ t).
  • the tsunami wave height can be directly predicted from the flow velocity distribution of the sea surface measured by radio waves, all tsunamis including unexpected tsunamis can be predicted.
  • the arrival time and the arrival wave height can be accurately predicted.
  • FIG. 4 is a block diagram showing a tsunami monitoring system 1A according to the second embodiment of the present invention and its peripheral components.
  • the tsunami monitoring system 1A shown in FIG. 4 is characterized by including a calculation unit 10A instead of the calculation unit 10 as compared with the tsunami monitoring system 1 shown in FIG.
  • the calculation unit 10A includes a wave height estimation unit 11A instead of the wave height estimation unit 11, and stores water depth distribution data of the hydrostatic depth h of the sea 4 around the transmission / reception antenna 2.
  • a water depth distribution data memory 17 as a first memory.
  • the range around the transmission / reception antenna 2 is appropriately determined depending on the range in which the transmission radio wave 5 can scan the sea, but is generally in the range of tens to hundreds of kilometers.
  • the wave height estimation unit 11 ⁇ / b> A receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and stores the flow velocity data and the sea depth data stored in the water depth distribution data memory 17. 4, the wave height ⁇ of the tsunami 7 is estimated based on the distribution data of the hydrostatic depth h of 4 and the data of the estimated wave height ⁇ is output to the display unit 13.
  • M r U r D ⁇ U r h
  • the distribution data of the still water depth h is read from the water depth distribution data memory 17.
  • the equation (7) described above can be calculated by, for example, the same method as the equation (5) according to the first embodiment to calculate the distribution of the wave height ⁇ of the tsunami 7 in the radio wave irradiation region 14 of FIG. it can.
  • the wave height ⁇ of the tsunami 7 can be estimated with higher accuracy.
  • the above-mentioned equation (7) has been calculated height ⁇ by using the time variation of line rate M r of the radius r direction, for example assuming height ⁇ tsunami is sufficiently smaller than the static water depth h Using the tsunami wave velocity C represented by the following equation (7A) (see Patent Document 4), the distribution of the wave height ⁇ may be calculated by the following equation (7B).
  • the distribution of the wave height ⁇ of the tsunami 7 in the radio wave irradiation region 14 of FIG. 3 can be calculated without using a numerical analysis method such as the difference method, so the distribution of the wave height ⁇ can be calculated in a shorter time. can do.
  • any formula may be used as long as the wave height ⁇ of the tsunami 7 can be estimated based on the flow velocity of the tsunami 7 on the sea surface 3 and the distribution data of the hydrostatic depth h of the sea 4, any formula may be used. .
  • the tsunami monitoring system 1A it is possible to predict the arrival time and the arrival wave height of the tsunami with higher accuracy than in the first embodiment.
  • the radius r has described the case where the direction of the flow velocity U r installed only reception antenna 2 for measuring, further rotation angle theta direction of transmitting and receiving antenna for measuring the flow velocity V theta 2 It is possible to estimate the wave height ⁇ of the tsunami 7 with higher accuracy.
  • the distribution of the wave height ⁇ of the tsunami 7 in the radio wave irradiation region 14 of FIG. 3 can be calculated by solving the equation (10) by a method similar to the equation (5), for example.
  • the right side is obtained from the radius r direction of the flow velocity U r and the rotation angle theta direction of flow velocity V theta at two time measured by the two receiving antennas 2 described above
  • the static water depth h is the water depth distribution of FIG. 4 Obtained from data 17.
  • FIG. 5 is a plan view for explaining a region in which the behavior of the tsunami 7 in FIG. 2 is simulated.
  • one transmission / reception antenna 2 is installed on a land 18, and a bank 27 projects from the land 18.
  • a tsunami 7 having a wave height ⁇ is set to be generated in the region 26, and the radius that is a component in the line-of-sight direction of the transmission / reception antenna 2 is set.
  • FIG. 6A is a plan view showing the result of simulating the behavior of the tsunami 7 of FIG. 5 after 10 minutes.
  • FIG. 6B is a plan view showing the result of simulating the behavior of the tsunami 7 of FIG. 5 after 25 minutes.
  • 6A and 6B illustrate changes in the wave height ⁇ distribution of the tsunami 7 with respect to time, and the tsunami 7 has reached the radio wave irradiation region 14 after 25 minutes.
  • FIG. 7A is a plan view showing the distribution of the wave height ⁇ of FIG. 5 after 25 minutes.
  • FIG. 7B is a plan view showing the distribution of the wave height ⁇ of the tsunami 7 of FIG. 5 after 25 minutes generated by the tsunami monitoring system 1A of FIG. 7A and 7B, the tsunami simulation result and the wave height estimation result calculated by the tsunami monitoring system 1A are compared.
  • the wave height distribution of the tsunami 7 in the radio wave irradiation region 14 25 minutes after the occurrence of the tsunami 7 is illustrated, and the wave height estimation result calculated by the tsunami monitoring system 1A is relatively good with the tsunami simulation result of Non-Patent Document 2. You can see that they match.
  • FIG. 8 is a graph showing a change in the wave height ⁇ of the tsunami 7 in FIGS. 7A and 7B with respect to the radius r from the transmission / reception antenna 2.
  • the tsunami simulation result for the radius r direction and the wave height estimation result are compared.
  • the estimation of the distribution of the wave height ⁇ of the tsunami 7 may be modified by a method other than the above if it is derived from the basic tsunami equation based on the long wave theory. For example, when installing only transmitting and receiving antenna 2 for measuring the radius r direction of the flow velocity U r, in equation (10), remove the rotational angle ⁇ direction component, the above-mentioned formula (5) and (7) Instead, the following formula (11) may be used.
  • the tsunami monitoring system 1 it is possible to predict the arrival time and the arrival wave height of the tsunami with higher accuracy than in the second embodiment.
  • FIG. 9 is a block diagram showing a tsunami monitoring system 1B and its surrounding components according to the fourth embodiment of the present invention.
  • the tsunami monitoring system 1B of FIG. 9 is characterized by including a calculation unit 10B instead of the calculation unit 10A and a display unit 13A instead of the display unit 13 as compared to the tsunami monitoring system 1A of FIG. .
  • the calculation unit 10B includes a wave height estimation unit 11B instead of the wave height estimation unit 11A, and further includes an arrival prediction unit 12 that predicts the time when the tsunami 7 arrives and the wave height ⁇ to reach. It is characterized by that.
  • the arrival prediction unit 12 includes a computer and a program.
  • the wave height estimation unit 11 ⁇ / b> B receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and stores the velocity of the sea 4 stored in the flow velocity and water depth distribution data memory 17. Based on the distribution data of the still water depth h, the wave height ⁇ of the tsunami 7 is estimated, and the data of the estimated wave height ⁇ is output to the display unit 13 and the arrival prediction unit 12.
  • the arrival prediction unit 12 receives the wave height ⁇ data from the wave height estimation unit 11B, and the wave height ⁇ is estimated based on the wave height ⁇ data and the distribution data of the hydrostatic depth h stored in the water depth distribution data memory 17.
  • the arrival time and arrival wave height for the tsunami 7 are predicted, and the predicted arrival time and arrival wave height data are output to the display unit 13A.
  • the display unit 13A displays the data on the wave height ⁇ input from the wave height estimation unit 11A and the data on the predicted arrival time and arrival wave height input from the arrival prediction unit 12.
  • the arrival time of the tsunami 7 is predicted using the following equation (12) (see Patent Document 4) representing the wave velocity C of the tsunami 7.
  • the wave velocity C of tsunami 7 depends only on the hydrostatic depth h.
  • FIG. 10 is a plan view showing a state when the wave height ⁇ of the tsunami 7 is estimated using the tsunami monitoring system 1B of FIG.
  • the wave height distribution estimated by the wave height estimating unit 11 ⁇ / b> A is illustrated, and the arrival time at which the tsunami 7 whose wave height distribution is estimated reaches the installation position of the transmission / reception antenna 2 is predicted.
  • the tsunami 7 travels in a direction toward the transmission / reception antenna 2 after being detected.
  • the arrival time is the depth distribution data 17 and the equation (12) in the radius r direction from the transmission / reception antenna 2 for each region of J in the rotation angle ⁇ direction along the circumferential direction of the fan-shaped radio wave irradiation region 14.
  • the wave speed C of the tsunami 7 can be calculated by using it and integrated until the distance between the tsunami 7 and the transmission / reception antenna 2 becomes zero.
  • FIG. 11 is a time axis waveform diagram showing the result of simulating the change of the wave height ⁇ at the installation position of the transmission / reception antenna 2 with respect to time t.
  • the time change of the water level at the installation position of the transmission / reception antenna 2 by the tsunami simulation of FIGS. 5 and 6 is illustrated, and the arrival time of the tsunami 7 is the time when the water level becomes the maximum water level.
  • the tsunami 7 was detected when the distance from the transmitting / receiving antenna 2 was 45 km. Referring to FIG. 11, it can be seen that the tsunami 7 has reached the installation position of the transmission / reception antenna 2 12 minutes after being detected by the tsunami monitoring system 1B.
  • FIG. 12 is a graph for predicting the time until the tsunami 7 reaches the transmission / reception antenna 2 using the tsunami monitoring system 1B of FIG.
  • the wave velocity C of the tsunami 7 at each position of the radio wave irradiation region 14 described above is calculated, and the time when the distance between the tsunami 7 and the transmission / reception antenna 2 becomes 0 is the predicted arrival time.
  • the predicted arrival time is 12 minutes, which is almost the same as the actual arrival time in FIG. 11, and that it is possible to predict with high accuracy.
  • the tsunami 7 propagates faster as the water depth is deeper, and may come from almost all directions. Therefore, since the tsunami 7 first detected by the tsunami monitoring system 1B does not necessarily reach the installation position of the transmission / reception antenna 2 first, the arrival prediction unit for all the regions in the rotation angle ⁇ direction of the radio wave irradiation region 14 12 is executed, and a safe prediction is made possible by setting the shortest arrival prediction time as the arrival prediction time of the tsunami 7.
  • the wave height ⁇ of the tsunami 7 generally increases in inverse proportion to the fourth root of the hydrostatic depth h by the following Green's equation (13) (see Non-Patent Document 3).
  • ⁇ 0 is the reaching wave height of the tsunami 7
  • h 0 is the hydrostatic depth at a predetermined distance from the installation position of the transmission / reception antenna 2. That is, the wave height ⁇ when reaching the transmitting / receiving antenna 2 can be generally predicted from the wave height ⁇ of the tsunami 7 detected offshore and the hydrostatic depth h at the detection position. However, since the hydrostatic depth h at the installation position of the transmission / reception antenna 2 is 0, if this value is substituted into the equation (13), the value of the wave height ⁇ of the tsunami 7 becomes infinite.
  • the predetermined distance varies depending on the installation position of the transmitting / receiving antenna 2 and the distribution of the surrounding hydrostatic depth h, but is usually 1 to several kilometers.
  • the estimated distribution of the wave height ⁇ is updated every sampling time ⁇ t. That is, these predicted values are updated to the latest data, and the prediction accuracy is improved.
  • the arrival prediction unit 12 since the arrival prediction unit 12 is further provided, the arrival time and the arrival wave height of the tsunami Can be accurately predicted.
  • the arrival time and the arrival wave height of the tsunami 7 are predicted by the arrival prediction unit 12 using the modeled expressions (12) and (13).
  • a tsunami simulation is performed based on the distribution of the wave height ⁇ of the tsunami 7 estimated by the wave height estimation unit 11C, and based on the obtained simulation result.
  • FIG. 13 is a block diagram showing a tsunami monitoring system 1C and its surrounding components according to the fifth embodiment of the present invention.
  • the tsunami monitoring system 1C of FIG. 13 includes a calculation unit 10C instead of the calculation unit 10B.
  • the calculation unit 10C includes a wave height estimation unit 11C instead of the wave height estimation unit 11B, and includes an arrival prediction unit 12A instead of the arrival prediction unit 12, and includes a tsunami simulation unit 15 and terrain data. Is further provided with a terrain data memory 19 as a second memory for storing.
  • the wave height estimation unit 11 ⁇ / b> C receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and is stored in the flow velocity and water depth distribution data memory 17.
  • the wave height ⁇ of the tsunami 7 is estimated based on the distribution data of the hydrostatic depth h of the ocean 4, and the estimated wave height ⁇ data is output to the display unit 13 ⁇ / b> A and the tsunami simulation unit 15.
  • the tsunami simulation unit 15 receives the data of the wave height ⁇ of the tsunami 7 from the wave height estimation unit 11C, and stores the data of the wave height ⁇ and the distribution data of the still water depth h stored in the water depth distribution data memory 17 and the landform data memory 19. Based on the obtained topographic data, the distribution of the wave height ⁇ of the tsunami 7 propagating with the passage of time is simulated, and the simulation result is output to the arrival prediction unit 12A.
  • the above-described topographic data is the position information of the coastline necessary for carrying out the tsunami simulation, and the range of this coastline varies depending on the range of carrying out the tsunami simulation, but generally from the transmitting / receiving antenna 2 The range is from several tens of kilometers to several hundred kilometers.
  • the tsunami simulation is performed using, for example, a tsunami basic equation based on the long wave theory described in Non-Patent Document 2, and the tsunami basic equation is solved to be described later. Any method may be used as long as the wave height ⁇ in the entire region within the radio wave irradiation region 14 in FIG. 14A can be obtained.
  • the arrival prediction unit 12A inputs the wave height distribution data of the tsunami 7 simulated by the tsunami simulation unit 15, predicts the arrival time and the arrival wave height for the tsunami 7 based on the wave height distribution data, and the predicted arrival time And the data of the arrival wave height is output to the display unit 13A. That is, the arrival time and the arrival wave height of the tsunami 7 are predicted by calculating the time change of the water level at the installation position of the transmission / reception antenna 2 from the tsunami simulation result.
  • the display unit 13A displays the wave height ⁇ data input from the wave height estimation unit 11C and the predicted arrival time and arrival wave height data input from the arrival prediction unit 12A.
  • FIG. 14A is a plan view for explaining a region for simulating the behavior of the tsunami 7 propagated by the tsunami simulation unit 15 of FIG.
  • a tsunami simulation region 16 is provided, and a calculation grid for tsunami simulation is formed.
  • the size and shape of the tsunami simulation region 16 may be any size or shape, but generally the size equal to or larger than that of the radio wave irradiation region 14 is used.
  • the coordinate system of the formed calculation grid may be any coordinate system, but generally an orthogonal coordinate system or a cylindrical coordinate system is used.
  • the size of the evaluation region 20 formed by the calculation grid may be any size or shape, but if it is too large, the accuracy of the tsunami simulation deteriorates, so generally it is several kilometers square or less. .
  • the wave height distribution estimated by the wave height estimating unit 11C is set in the region 40 within the tsunami simulation region 16 of FIG. 14A. And run the simulation.
  • FIG. 14B is a flowchart showing the tsunami wave height distribution, tsunami arrival time, and arrival wave height prediction processing executed by the tsunami monitoring system 1C of FIG.
  • the transmission / reception unit 8 generates a transmission signal having a predetermined frequency, and radiates the transmission signal as a transmission radio wave 5 on the sea.
  • the transmitting / receiving antenna 2 receives the received radio wave 6 strongly scattered back on the sea surface 3 as a received signal (step S2).
  • the signal processing unit 9 generates a beat signal having a frequency that is a frequency difference between the transmission signal and the reception signal, and outputs the generated beat signal to the wave height estimation unit 11C.
  • the wave height estimation unit 11C receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and estimates the wave height ⁇ of the tsunami 7 from this flow velocity. .
  • step S5 the tsunami simulation unit 15 inputs the wave height ⁇ data of the tsunami 7 from the wave height estimation unit 11C, the distribution data of the hydrostatic depth h stored in the water depth distribution data memory 17 and the topographic data. Based on the topographic data stored in the memory 19, the wave height distribution of the wave height ⁇ of the tsunami 7 is simulated, and the result is output to the arrival prediction unit 12A.
  • step S ⁇ b> 6 the arrival prediction unit 12 ⁇ / b> A predicts the arrival time and the arrival prediction for the tsunami 7 based on the simulated wave height distribution data of the tsunami 7.
  • step S9 the display unit 13A displays the tsunami 7 wave height data and the predicted tsunami arrival time and arrival wave height data, and the process ends.
  • the tsunami simulation unit 15 may always perform the tsunami simulation based on the estimated wave height distribution.
  • the tsunami simulation is performed only when the estimated wave height is a wave height determined to be a tsunami. You may do it.
  • a tsunami is determined when the estimated wave height or the measured flow velocity exceeds a predetermined threshold. The threshold value is determined in advance in consideration of the height of waves generated by wind and tidal currents, measurement errors in the flow velocity distribution, and the like in the sea area where the tsunami monitoring system 1C is installed.
  • the tsunami simulation is performed using a tsunami basic equation based on a long wave theory such as the method described in Non-Patent Document 2.
  • any method can be used as long as the fundamental equation of tsunami can be solved to obtain the wave height ⁇ in the entire region of FIG. 14A.
  • a method such as a difference method, a finite volume method, and a finite element method is used. May be.
  • the basic equation may be simplified or linearized on the assumption that the hydrostatic depth h is sufficiently large.
  • the tsunami simulation described above may be set to be performed only immediately after detection of tsunami 7 by the wave height estimation unit 11C, but may be set to be performed every measurement sample period ⁇ t by the tsunami monitoring system 1C. . In this case, the latest data can be updated every moment of the sampling period ⁇ t, so that the simulation accuracy can be further improved. Further, as the initial condition for simulating the tsunami 7 propagating with time, only the estimated wave height ⁇ data is used, but the measured flow velocity distribution data may also be used.
  • the tsunami monitoring system 1C According to the tsunami monitoring system 1C according to the above-described embodiment, more complicated tsunami behavior such as tsunami reflection on the coast can be considered as compared with the tsunami monitoring systems 1A and 1C according to the above-described embodiments. Therefore, the arrival time and arrival wave height of the tsunami can be predicted with higher accuracy.
  • the tsunami simulation unit 15 cooperates with the arrival prediction unit 12A based on the wave height distribution of the tsunami 7 estimated by the wave height estimation unit 11C, and the arrival time of the tsunami 7 and Although the arrival wave height is predicted, all these operations may be executed only by the tsunami simulation unit 15A. This will be described below.
  • FIG. 15 is a block diagram showing a tsunami monitoring system 1D and its peripheral components according to the sixth embodiment of the present invention.
  • the tsunami monitoring system 1D of FIG. 15 includes a calculation unit 10D instead of the calculation unit 10C.
  • the calculation unit 10D is characterized by deleting the wave height estimation unit 11C and the arrival prediction unit 12A and including a tsunami simulation unit 15A instead of the tsunami simulation unit 15.
  • the tsunami simulation unit 15 ⁇ / b> A receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 based on the beat signal, and the hydrostatic depth h of the sea 4 stored in the flow velocity and water depth distribution data memory 17. Based on the distribution data, the wave height ⁇ of the tsunami 7 is estimated, the data of the estimated wave height ⁇ of the tsunami 7, the distribution data of the still water depth h stored in the water depth distribution data memory 17, and the data stored in the topographic data memory 19.
  • the wave height distribution of the tsunami 7 propagating as time elapses is simulated, the arrival time and the arrival wave height for the tsunami 7 are predicted based on the simulation result, the predicted arrival time and The arrival wave height data and the calculated wave height ⁇ data are output to the display unit 13A.
  • a tsunami 7 having the wave height ⁇ estimated by the tsunami simulation unit 15A is generated in the region 40 illustrated by the oblique lines in FIG. 14A described above.
  • the terrain data is the location information of the coastline necessary for performing the tsunami simulation.
  • the range of the coastline varies depending on the range of the tsunami simulation, but is generally several tens of kilometers from the transmitting / receiving antenna 2. The range is from 4 to several hundred kilometers.
  • the tsunami simulation is performed using, for example, a tsunami basic equation based on the long wave theory described in Non-Patent Document 2. Any method may be used as long as the wave height ⁇ in the entire region within the radio wave irradiation region 14 of FIG. 14A can be obtained.
  • the operation related to the tsunami simulation of the tsunami simulation unit 15A is the same as the operation of the tsunami simulation unit 15 of the tsunami monitoring system 1C according to the fifth embodiment.
  • the tsunami simulation is performed using a tsunami basic equation based on a long wave theory such as the method described in Non-Patent Document 2.
  • any method can be used as long as the fundamental equation of tsunami can be solved to obtain the wave height ⁇ in the entire region of FIG. 14A.
  • a method such as a difference method, a finite volume method, and a finite element method is used. May be.
  • the basic equation may be simplified or linearized on the assumption that the hydrostatic depth h is sufficiently large as described above.
  • the tsunami simulation described above may be set to be performed only immediately after tsunami 7 is detected by the tsunami simulation unit 15A, but may be set to be performed every measurement sample period ⁇ t by the tsunami monitoring system 1D. . In this case, since the latest data can be updated every moment of the sampling period ⁇ t, the simulation accuracy of the behavior of the tsunami 7 can be further improved.
  • the same effects as those of the tsunami monitoring system 1C according to the fifth embodiment can be obtained.
  • the tsunami monitoring system 1 estimates the wave height ⁇ of the tsunami 7 from only the flow velocity distribution of the sea surface 3 measured by radio waves has been described.
  • the wave height estimation error is accumulated as the distance from the transmission / reception antenna 2 increases in the region of FIG.
  • the tsunami monitoring system 1E of the present embodiment further includes a water level measuring unit 30 that measures the wave height ⁇ , and calibrates the data of the wave height ⁇ estimated at the position where the water level measuring unit 30 is arranged. It is characterized by that.
  • FIG. 16 is a block diagram showing a tsunami monitoring system 1E and its surrounding components according to the seventh embodiment of the present invention.
  • a tsunami monitoring system 1E of FIG. 16 includes a calculation unit 10E instead of the calculation unit 10 as compared with the tsunami monitoring system 1 of FIG. Is further provided. Further, the calculation unit 10E is characterized by including a wave height estimation unit 11D instead of the wave height estimation unit 11 as compared with the calculation unit 10 of FIG.
  • the water level measurement unit 30 measures the wave height ⁇ at each time of the sea 4 at the position where the water level measurement unit 30 is installed, and outputs data of the wave height ⁇ to the wave height estimation unit 11D.
  • the wave height estimation unit 11D receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, the flow velocity data, and the wave height ⁇ data from the water level measurement unit 30. Based on the above, the wave height ⁇ of the tsunami 7 is estimated, and the data of the estimated wave height ⁇ is output to the display unit 13.
  • the wave height estimating unit 11D is based on the data of the wave height ⁇ measured by the water level measuring unit 30, and the water level measuring unit estimated by the equation (6) The difference is that the data of the wave height ⁇ at the position where 30 is arranged is calibrated. A method for calibrating the estimated wave height ⁇ data will be described below.
  • FIG. 17 is a top view illustrating an example of an arrangement position of the water level measurement unit 30 in the tsunami monitoring system 1E according to the present embodiment.
  • the water level measurement unit 30 is disposed in the region 31 in the radio wave irradiation region 14, and the water level measurement unit 30 measures the wave height ⁇ of the tsunami 7 in the region 31.
  • the wave height ⁇ is estimated in order.
  • the same effect as the tsunami monitoring system 1 according to the first embodiment can be obtained. Even when the wave height of the tsunami near the transmission / reception antenna 2 changes suddenly, the water level measurement unit 30 can calibrate the data of the wave height ⁇ at the position where the water level measurement unit 30 is arranged. Compared with the tsunami monitoring system 1 according to the embodiment, the tsunami wave height can be estimated with higher accuracy.
  • the position of the water level measurement unit 30 may be anywhere in the radio wave irradiation region 14, and the water level measurement unit 30 may be arranged outside the region illustrated in FIG.
  • FIG. 18 is a top view showing another example of the arrangement position of the water level measurement unit 30 in the tsunami monitoring system 1E according to the seventh embodiment of the present invention.
  • the water level measurement unit 30 is disposed in the region 31 in the radio wave irradiation region 14, and the water level measurement unit 30 measures the wave height ⁇ of the tsunami 7 in the region 31.
  • the tsunami monitoring system 1A estimates the wave height ⁇ of the tsunami 7 from only the flow velocity distribution of the sea surface 3 measured by radio waves has been described.
  • the wave height estimation error is accumulated as the distance from the transmission / reception antenna 2 increases in the region of FIG.
  • the tsunami monitoring system 1F of the present embodiment further includes a water level measurement unit 30 that measures the wave height ⁇ , and calibrates the data of the wave height ⁇ estimated at the position where the water level measurement unit 30 is disposed. It is characterized by that.
  • FIG. 19 is a block diagram showing a tsunami monitoring system 1F and its surrounding components according to the eighth embodiment of the present invention.
  • a tsunami monitoring system 1F in FIG. 19 includes a calculation unit 10F instead of the calculation unit 10A, as compared with the tsunami monitoring system 1A in FIG. 4 according to the second embodiment, and an arbitrary position in the radio wave irradiation region 14 The water level measuring unit 30 is further provided.
  • the calculation unit 10F includes a wave height estimation unit 11E instead of the wave height estimation unit 11A.
  • the water level measurement unit 30 measures the wave height ⁇ at each time of the sea 4 at the position where the water level measurement unit 30 is installed, and outputs the data of the wave height ⁇ to the wave height estimation unit 11E.
  • the wave height estimating unit 11E receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and stores the data of the flow velocity and the seawater stored in the water depth distribution data memory 17. 4, the wave height ⁇ of the tsunami 7 is estimated based on the distribution data of the hydrostatic depth h of 4 and the wave height ⁇ data from the water level measuring unit 30, and the estimated wave height ⁇ data is output to the display unit 13.
  • the wave height estimation unit 11E operates in the same manner as the wave height estimation unit 11A according to the second embodiment, and compared with the wave height estimation unit 11A according to the second embodiment, the tsunami measured by the water level measurement unit 30 7 is different from calibrating the data of the wave height ⁇ at the position where the water level measuring unit 30 estimated by the equation (7) is arranged based on the data of the wave height ⁇ of 7.
  • the same effect as that of the tsunami monitoring system 1 according to the first embodiment can be obtained. Even when the wave height of the tsunami near the transmission / reception antenna 2 changes suddenly, the water level measurement unit 30 can calibrate the data of the wave height ⁇ at the position where the water level measurement unit 30 is arranged. Compared with the tsunami monitoring system 1 according to the embodiment, the tsunami wave height can be estimated with higher accuracy.
  • the tsunami monitoring system 1B according to the fourth embodiment has been described for the case where the wave height ⁇ of the tsunami 7 is estimated only from the flow velocity distribution of the sea surface 3 measured by radio waves.
  • the wave height estimation error is accumulated as the distance from the transmission / reception antenna 2 increases in the region of FIG.
  • the tsunami monitoring system 1F of the present embodiment further includes a water level measurement unit 30 that measures the wave height ⁇ , and calibrates the data of the wave height ⁇ estimated at the position where the water level measurement unit 30 is disposed. It is characterized by that.
  • FIG. 20 is a block diagram showing a tsunami monitoring system 1G and its surrounding components according to the ninth embodiment of the present invention.
  • a tsunami monitoring system 1G of FIG. 20 includes a calculation unit 10G instead of the calculation unit 10B, as compared with the tsunami monitoring system 1B of FIG.
  • the water level measuring unit 30 is further provided.
  • the calculation unit 10G is characterized by including a wave height estimation unit 11F instead of the wave height estimation unit 11B, as compared with the calculation unit 10B of FIG.
  • the water level measurement unit 30 measures the wave height ⁇ at each time of the sea 4 at the position where the water level measurement unit 30 is installed, and outputs data of the wave height ⁇ to the wave height estimation unit 11F.
  • the wave height estimation unit 11F receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and the ocean 4 stored in the flow velocity data and water depth distribution data memory 17
  • the wave height ⁇ of the tsunami 7 is estimated based on the distribution data of the hydrostatic depth h of the water and the wave height ⁇ data from the water level measurement unit 30, and the estimated wave height ⁇ data is output to the display unit 13 and the arrival prediction unit 12. To do.
  • the wave height estimation unit 11F operates in the same manner as the wave height estimation unit 11B according to the fourth embodiment, and is compared with the wave height estimation unit 11B according to the fourth embodiment at the position where the water level measurement unit 30 is disposed. The difference is that the data of the wave height ⁇ estimated at the position where the water level measuring unit 30 is arranged is calibrated based on the data of the wave height ⁇ .
  • the same effect as that of the tsunami monitoring system 1B according to the fourth embodiment can be obtained. Further, even when the wave height of the tsunami near the transmission / reception antenna 2 changes abruptly, the water level measurement unit 30 can calibrate the data of the wave height ⁇ at the position where the water level measurement unit 30 is arranged. Compared with the tsunami monitoring system 1B according to the embodiment, the tsunami wave height can be estimated with higher accuracy.
  • the tsunami monitoring system 1C according to the fifth embodiment has been described for the case where the wave height ⁇ of the tsunami 7 is estimated only from the flow velocity distribution of the sea surface 3 measured by radio waves. In this case, the wave height estimation error is accumulated as the distance from the transmission / reception antenna 2 increases in the region of FIG.
  • the tsunami monitoring system 1H of the present embodiment further includes a water level measurement unit 30 that measures the wave height ⁇ , and calibrates the data of the wave height ⁇ estimated at the position where the water level measurement unit 30 is disposed. It is characterized by that.
  • FIG. 21 is a block diagram showing a tsunami monitoring system 1H and its surrounding components according to the tenth embodiment of the present invention.
  • the tsunami monitoring system 1H of FIG. 21 includes a calculation unit 10H instead of the calculation unit 10C, and a water level measurement unit 30 disposed at an arbitrary position in the radio wave irradiation region 14 as compared with the tsunami monitoring system 1C of FIG. Is further provided.
  • the calculation unit 10H is characterized by including a wave height estimation unit 11G instead of the wave height estimation unit 11C, as compared with the calculation unit 10C of FIG.
  • the water level measurement unit 30 measures the wave height ⁇ at each time of the sea 4 at the position where the water level measurement unit 30 is installed, and outputs data of the wave height ⁇ to the wave height estimation unit 11G.
  • the wave height estimation unit 11G receives the beat signal from the signal processing unit 9, calculates the flow velocity of the sea surface 3 of the tsunami 7 based on the beat signal, and the ocean 4 stored in the flow velocity data and water depth distribution data memory 17
  • the wave height ⁇ of the tsunami 7 is estimated based on the distribution data of the hydrostatic depth h of the water and the wave height ⁇ data from the water level measurement unit 30, and the estimated wave height ⁇ data is output to the display unit 13 A and the tsunami simulation unit 15. To do.
  • the wave height estimation unit 11G operates in the same manner as the wave height estimation unit 11C according to the fifth embodiment, and the position where the water level measurement unit 30 is arranged as compared with the wave height estimation unit 11C according to the fifth embodiment. The difference is that the data of the wave height ⁇ estimated at the position where the water level measuring unit 30 is arranged is calibrated based on the data of the wave height ⁇ .
  • the same effect as that of the tsunami monitoring system 1C according to the fifth embodiment can be obtained. Even when the wave height of the tsunami near the transmission / reception antenna 2 changes abruptly, the water level measurement unit 30 can calibrate the data of the wave height ⁇ at the position where the water level measurement unit 30 is arranged. Compared with the tsunami monitoring system 1C according to the embodiment, the tsunami wave height can be estimated with higher accuracy.
  • the water level measurement unit 30 is not limited to a method that floats on the sea 4 like a buoy, but a method or spot that measures the wave height using a pressure sensor disposed on the seabed. Any means may be used as long as the local wave height of the sea 4 can be measured in real time, such as those that irradiate radio waves.
  • the water level measuring unit 30 may be arranged at a plurality of locations in the radio wave irradiation region 14 instead of at one location. By arranging a plurality of places, it is possible to predict the wave height distribution with higher accuracy than in the case of one place.
  • the wave height of the tsunami can be predicted directly from the flow velocity distribution of the sea surface measured by radio waves, so all of the tsunami including unexpected tsunamis can be predicted. Tsunami arrival time and arrival wave height can be accurately predicted.
  • 1,1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H Tsunami monitoring system 2 transmit / receive antenna, 3 sea level, 4 sea, 5 transmit radio wave, 6 receive radio wave, 7 tsunami, 8 transmit / receive unit, 9 signal processing unit 10, 10A, 10B, 10C, 10D operation unit, 11, 11A, 11B, 11C, 11D, 11E, 11F, 11G wave height estimation unit, 13, 13A display unit, 18 land, 21 seabed, 17 water depth distribution data memory, 27 Embankment, 12, 12A arrival prediction section, 19 Terrain data memory, 15, 15A tsunami simulation section, 30 water level measurement section, 40 areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 津波を検出するための送信信号を電波として海に向かって放射する送信アンテナと、上記津波に反射された反射波を受信信号として受信する受信アンテナとを備えた津波監視システムにおいて、所定の周波数を有する上記送信信号を発生する信号発生手段と、上記送信信号と上記受信信号との周波数差であるビート信号を生成する信号処理部と、上記電波照射領域を複数の領域に分割し、各領域ごとに、上記ビート信号に基づいて、上記津波の海面の流速を算出し、上記算出された流速から上記津波の波高を推定する波高推定部とを備える。

Description

津波監視システム
 本発明は、レーダによって津波の海面流速を計測し、波高および陸上への到達時間を予測するための津波監視システムに関する。
 近年、日本の沿岸部においては、大地震の発生により津波が来襲することが懸念されている。津波が沿岸に到達する前に、可能な限り早く精度良く到来を予測することは、効率のよい避難行動や対応を行うために重要である。従来、到来する津波を予測するため、幾つかの方法が提案されている。
 例えば、現在の気象庁における津波予報システムでは、予め、津波を発生させる可能性のある断層を設定して津波の数値シミュレーションを行っておき、その結果を津波予報データベースとして蓄積している。実際に地震が発生した時はこのデータベースから発生した地震の位置や規模などに対応する予測結果を検索し、津波警報もしくは注意報の発表を行っている(例えば特許文献1参照)。しかしながら、発生する津波の大きさを予測するのに必要な断層の位置やずれ量は、地震発生時に正確にわかるものではなく、後日のデータ分析に委ねられるため、津波の大きさや到達時間などの発表値には誤差が大きいという問題があった。
 また、別の方法としては、到来する津波を計測することができる、ブイなどの複数個のセンサを海上や海中に配置し、沖合で津波そのものを捕らえる試みも行われている(例えば特許文献2参照)。しかしながら、この方法では空間的に点のデータしか得られないため、広い範囲にわたって到来する津波の波高や到来方向を詳細に予測するには十分とはいえなかった。さらに、電源の確保及び信号伝播路の確保に多額の費用を要し、また海上及び海中のセンサが必要なため、そのメンテナンスが容易でないという問題があった。
 上述した問題を解決するために、近年、海洋レーダによる津波の監視が始められつつある(例えば特許文献3参照)。海洋レーダは、陸上に設置したアンテナから海面に電波を照射し、海面の波浪による後方散乱波を受信して周波数解析することにより百km程度の幅広い領域における海流、波浪、海上風などを測定することができる。海洋レーダは広範囲を同時間に観測できるという特徴があり、陸上から観測できるため長期間の観測にも適している。しかしながら、海洋レーダにおいては、アンテナから照射される電波の視線方向の海面流速成分のみしか計測することができず、到来する津波の波高を直接計測することはできない。
 従って、特許文献3記載の津波監視システムにおいては、計測された流速や地形モデル等の条件に基づき、予め用意された津波の経験則(例えば波高=流速v×ある関数F、到達時間T=距離/位相速度など。)から、近傍の海岸の津波到達時間と波高の予測値を取得する必要があり、事前に津波の流速パターンから津波特性を予測するのに必要なデータベースを構築し、取得された流速分布をこれらデータベースに照合する必要がある。
特開2013-40898号公報 特許第3512330号公報 特許第2721486号公報 特許第4534200号公報
高橋智幸著、「津波防災における数値計算の利用」、日本流体力学会数値流体力学部門Web会誌、2004年11月、第12巻、第2号、p.23-32 F. Imamura, Ahmet Cevdet Yalciner and Gulizar Ozyurt、"TSUNAMI MODELLING MANUAL (TUNAMI model)"、[online]、2006年4月、[2013年4月8日検索]、インターネット<URL : http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf> 高橋智幸著、「津波のメカニズム」、パリティ、Vol.26、No.11、2011年11月、p34-41
 しかしながら、特許文献3記載の津波監視システムでは、全ての津波のパターンに対して事前にシミュレーションを行うことは事実上不可能であるので、十分な精度で津波を予測することができないという問題があった。また、想定外の津波においては精度がさらに悪化するという問題があった。
 本発明の目的は以上の問題点を解決し、到来する津波の波高を十分な精度で直接的に予測することができる津波監視システムを提供することにある。
 本発明に係る津波監視システムは、
 津波を検出するための送信信号を電波として海に向かって放射する送信アンテナと、上記津波に反射された反射波を受信信号として受信する受信アンテナとを備えた津波監視システムにおいて、
 所定の周波数を有する上記送信信号を発生する信号発生手段と、
 上記送信信号と上記受信信号との周波数差であるビート信号を生成する信号処理部と、
 上記電波照射領域を複数の領域に分割し、各領域ごとに、上記ビート信号に基づいて、上記津波の海面の流速を算出し、上記算出された流速から上記津波の波高を推定する波高推定部とを備えたことを特徴とする。
 本発明に係る津波監視システムによれば、電波によって計測された海面の流速分布から津波の波高を直接的に予測することができるので、想定外の津波を含めた全ての津波の到達時間と到達波高とを精度良く予測することができる。
本発明の第1の実施の形態に係る津波監視システム1及びその周辺の構成要素を示すブロック図である。 図1の津波7の波高η及び全水深Dを説明するための断面図である。 図1の送受信アンテナ2から発射された送信電波5の照射領域を説明するための平面図である。 本発明の第2の実施の形態に係る津波監視システム1A及びその周辺の構成要素を示すブロック図である。 図2の津波7の波高ηをシミュレーションする領域を説明するための平面図である。 10分後の図5の波高ηをシミュレーションした結果を示す平面図である。 25分後の図5の波高ηをシミュレーションした結果を示す平面図である。 25分後の図5の波高ηの分布を示す平面図である。 図4の津波監視システム1Aにより生成された、25分後の図5の津波7の波高ηの分布を示す平面図である。 送受信アンテナ2から半径rに対する、図7A及び図7Bの津波7の波高ηの変化を示すグラフである。 本発明の第4の実施の形態に係る津波監視システム1B及びその周辺の構成要素を示すブロック図である。 図9の津波監視システム1Bを用いて津波7の波高ηを推定する時の状態を示す平面図である。 時間tに対する送受信アンテナ2の設置位置での波高ηの変化をシミュレーションした結果を示す時間軸波形図である。 図9の津波監視システム1Bを用いて津波7が送受信アンテナ2に到達するまでの時間を予測するグラフである。 本発明の第5の実施の形態に係る津波監視システム1C及びその周辺の構成要素を示すブロック図である。 図13の津波シミュレーション部15が伝播する津波7の挙動をシミュレーションする領域を説明するための平面図である。 図13の津波監視システム1Cにより実行される津波波高分布並びに津波到達時間及び到達波高の予測処理を示すフローチャートである。 本発明の第6の実施の形態に係る津波監視システム1D及びその周辺の構成要素を示すブロック図である。 本発明の第7の実施の形態に係る津波監視システム1E及びその周辺の構成要素を示すブロック図である。 本発明の第7の実施の形態に係る津波監視システム1Eにおける水位計測部30の配置位置の一例を示す上面図である。 本発明の第7の実施の形態に係る津波監視システム1Eにおける水位計測部30の配置位置の別の例を示す上面図である。 本発明の第8の実施の形態に係る津波監視システム1F及びその周辺の構成要素を示すブロック図である。 本発明の第9の実施の形態に係る津波監視システム1G及びその周辺の構成要素を示すブロック図である。 本発明の第10の実施の形態に係る津波監視システム1H及びその周辺の構成要素を示すブロック図である。
 以下、本発明に係る実施の形態について図面を参照して説明する。なお、以下の各実施の形態において、同様の構成要素については同一の符号を付して説明を省略する。
 第1の実施の形態.
 図1は、本発明の第1の実施の形態に係る津波監視システム1及びその周辺の構成要素を示すブロック図である。図1の津波監視システム1は、送信電波5が海上を走査できるような位置に設けられた送受信アンテナ2と、送受信部8と、信号処理部9と、演算部10と、表示部13とを備えて構成される。また、演算部10は、計算機とプログラムとからなる波高推定部11を備えて構成される。また、送受信アンテナ2は、陸18上に設置されたが、送受信アンテナ2の位置は送信電波5が海上を走査できるような位置であればどこでもよく、例えば海4に設置してもよい。また、図1において送受信アンテナ2の形状を円柱形状ないしは線形状としたが、電波を送受信できればどのような種類や形状であってもよい。例えば、送受信アンテナ2の種類はアレー状のアンテナであってもよい。さらに、送受信アンテナ2は送信アンテナと受信アンテナとを一体としたが、送信アンテナと受信アンテナとを別々に設けられてもよい。
 送受信部8は、所定の周波数を有する送信信号を発生し、当該送信信号を送受信アンテナ2に出力する信号発生手段を含む。また、送受信部8は、後述する送受信アンテナ2から受信信号を受信し、当該受信信号を信号処理部9に出力する受信手段を含む。なお、図1において送受信部8は一体の場合について記載したが、送信部と受信部の2つに分かれた構成としてもよく、送受信部8および信号処理部9の構成がどのような構成であっても本発明を適用することができる。
 送受信アンテナ2は、津波7を検出するための送信信号を海上に送信電波5として放射する。さらに、送受信アンテナ2は、海面3上で強く後方散乱された受信電波6を受信信号として受信し、当該受信信号を送受信部8に出力する。なお、この後方散乱はブラック散乱と呼ぶ。
 信号処理部9は、送受信部8が生成した送信信号と送受信アンテナ2が受信した受信信号とを乗算し、当該乗算された結果の信号をビート信号として波高推定部11に出力する。すなわち、信号処理部9は、送信信号と受信信号との周波数差の周波数を有するビート信号を生成する。ここで、受信電波6はドップラー効果を受けて変調されており、その変調量は海面3の流速に依存し、ビート信号として算出する。さらに、信号処理部9には、送信信号と受信信号との乗算結果の信号からその高調波成分をフィルタリングで除去する機能を有する。
 波高推定部11は、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、この流速から津波7の波高ηを推定し、推定された波高ηのデータを表示部13に出力する。ここで、送信電波5の電波照射領域14を後述する図3等のように複数の領域に分割し、各領域ごとに津波7の海面3の流速を算出して、その領域での津波7の波高ηを推定する。また、表示部13は、波高推定部11から入力した波高ηのデータを表示する。
 以上のように構成された津波監視システム1の波高推定部11の動作について以下に説明する。
 図2は、図1の津波7の波高η及び全水深Dを説明するための断面図である。図2において、hは静水深を示し、ηは津波7の波高を示す。なお、静水深hは波が立っていない場合の海底21から海面3までの水深であって、津波7の波高ηは波が立っている場合の静水深hから海面3までの水深のことである。従って、波が立っている場合の海底21から海面3までの全水深Dは波高ηと静水深hとの和となる。なお、一般に津波7の波長λは、静水深hより十分に大きい(h<<λ)。従って、津波7の挙動は、互いに直交するx軸、y軸及びz軸を有し、当該z軸は重量方向と逆向きであると仮定すると、x軸及びy軸を有する2次元直交座標系では以下の質量保存式(1)と運動方程式(2)及び(3)とから構成される長波理論の基礎方程式(以下、津波の基礎方程式と呼ぶ。)によって表現できる(例えば非特許文献1及び2参照。)。なお、重量方向は、x軸方向及びy軸方向と直交するものとする。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、ηは津波7の波高であり、Mはx軸方向の線流量であり、Nはy軸方向の線流量であり、nは海底摩擦係数(マニングの粗度係数)であり、Dは全水深であり(静水深h及び波高ηを用いると、D=h+ηとなる。)、tは時間であり、gは重力加速度である。
 なお、上述した長波理論では、津波の流速は深さ方向(z軸方向)に略一定と仮定できるので、津波7のx軸方向の流速U及びy軸方向の流速VはそれぞれU=M/D、V=N/Dとして算出される。すなわち、津波監視システム1によって計測された海面3のx軸方向の流速U及びy軸方向の流速Vは、xy平面上の座標により決定付けられる。従って、波高推定部12では、x軸方向の流速U及びy軸方向の流速Vと津波7の波高ηとを関連付けるためのデータベースや経験式を必要とすることなしに、上述した津波の基礎方程式に基づいて、津波監視システム1により計測された津波7のx軸方向の流速U及びy軸方向の流速Vから波高ηを算出できる。
 図3は、図1の送受信アンテナ2から発射された送信電波5の照射領域を説明するための平面図である。図3において、送受信アンテナ2からの送信電波5は送受信アンテナ2を中心とする扇形の電波照射領域14に照射される。ここで、送受信アンテナ2を設置した場所を原点(0,0)として、原点(0,0)からの半径r及びz軸を中心とした時計回りの回転角θを用いて、電波照射領域14を距離幅Δr及び角度幅Δθの幅で番号I=1~II、J=1~JJの領域に区分する。なお、各領域での流速は一定のサンプル時間Δtでの平均値として計測される。このサンプル時間Δtは津波監視システム1の処理時間や電波照射領域14の大きさ等によって異なるが、一般に数十秒から数分の範囲とされる。また、計測条件によって異なるが、電波照射領域14の半径rの最大値は数十~百キロメートルとされ、距離幅Δrは数キロメートル以下、角度幅Δθは25度以下とされるのが一般的である。また、図3では簡単のため、距離幅Δrと角度幅Δθを一定としたが、電波照射領域14の位置に応じてそれぞれに大きさを変化させてもよい。
 図3において、半径r方向の線流量M及び回転角θ方向の線流量Mθは次式から算出される。
Figure JPOXMLDOC01-appb-M000010
 ここで、Uは計測された半径r方向の流速であって、Uθは回転角θ方向の流速であって、Dは全水深である。
 本実施の形態では、半径r方向の流速Uを計測するための送受信アンテナ2を1台だけ設置している。従って、回転角θ方向の流速Uθは計測しないで、半径r方向の流速Uのみを計測する。なお、半径r方向の流速Uを用いて津波7の波高ηを算出する方程式(5)は、上述した津波の基礎方程式から以下のように導かれる。
 先ず、上述した運動方程式(2)を円筒座標系に変換し、回転角θ方向成分を削除する。次に、全水深Dの大きさに比べて波高ηの大きさは十分に小さいと仮定すると、全水深Dの大きさは静水深hの大きさとほぼ等しくなるので、すなわちD=hを上記変形された運動方程式代入すると以下の式(4)が導かれる。
Figure JPOXMLDOC01-appb-M000011
 次に、静水深hが十分大きいものとし、M=UD≒Uhとして単純化して整理すると、次式(5)が導かれる。この式(5)を解くことによって、半径r方向の流速Uから津波7の波高ηを算出することができる。
Figure JPOXMLDOC01-appb-M000012
 ここで、式(5)の右辺は半径r方向の流速Uの時間変化であり、時間t及び時間(t-Δt)において津波監視システム1によって計測された2つの半径r方向の流速Uの値を用いて算出することができる。
 上述した式(5)を例えば差分法などの数値解析手法を用いて解くことによって、図3の電波照射領域14での津波7の波高ηの分布を算出することができる。ここで、図3の領域において差分した次式(6)を、I=1~II、J=1~JJの全領域について順に解くことによって津波7の波高ηの分布を算出することができる。
Figure JPOXMLDOC01-appb-M000013
 ここで、kは時間tに対応する値、(k-1)は時間(t-Δt)に対応する値を意味する。
 なお、上述した式(6)の差分式は一例であって、式(5)を波高ηについて数値的に解き、I=1~II、J=1~JJの全領域において津波7の波高ηを算出できれば、これ以外の方法であってもよい。
 以上の実施の形態に係る津波監視システム1によれば、電波によって計測された海面の流速分布から津波の波高を直接的に予測することができるので、想定外の津波を含めた全ての津波の到達時間と到達波高とを精度良く予測することができる。
 第2の実施の形態.
 図4は、本発明の第2の実施の形態に係る津波監視システム1A及びその周辺の構成要素を示すブロック図である。図4の津波監視システム1Aは、図1の津波監視システム1に比較して、演算部10の代わりに演算部10Aを備えたことを特徴とする。また、演算部10Aは、図1の演算部10に比較して、波高推定部11の代わりに波高推定部11Aを備え、さらに送受信アンテナ2周囲の海4の静水深hの水深分布データを格納する第1のメモリである水深分布データメモリ17を備えたことを特徴とする。ここで、送受信アンテナ2周囲の範囲は送信電波5が海上を走査できる範囲などによって適宜決められるが、一般には数十キロから数百キロの範囲とされる。
 波高推定部11Aは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、当該流速のデータ及び水深分布データメモリ17に格納された海4の静水深hの分布データに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13に出力する。
 以上のように構成された津波監視システム1Aの波高推定部11Aの動作について以下に説明する。
 第1の実施の形態に係る式(5)は、静水深hが十分大きいと仮定し、M=UD≒Uhとして単純化されたので、計算負荷が小さくなるというメリットがある。しかしながら、このような単純化をせずに式(5)に相当する次式(7)から津波7の波高ηを第1の実施の形態に比較してより高い精度を推定することができる。
Figure JPOXMLDOC01-appb-M000014
 ここで、半径r方向の線流量Mは計測された半径r方向の流速Uを用いてM=UD≒Uhとして求められる。なお、静水深hの分布データは、水深分布データメモリ17から読み出される。
 上述した式(7)は、例えば第1の実施の形態に係る式(5)と同様の方法で解くことによって、図3の電波照射領域14における津波7の波高ηの分布を算出することができる。この場合には、第1の実施の形態に係る津波監視システム1と比較すると、さらに津波7の波高ηを精度良く推定することができる。
 なお、上述した式(7)は、半径r方向の線流量Mの時間変化を用いることにより波高ηを算出したが、例えば津波の波高ηが静水深hに比べて十分小さいと仮定して、次式(7A)で表される津波の波速C(特許文献4参照。)を用いて、波高ηの分布を次式(7B)により算出してもよい。
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016
 上述した式(7B)を用いて波高分布を算出すれば、ある1つの時刻における1地点での流速Uと静水深hとのみから波高ηを求めることができる。従って、例えば差分法などの数値解析手法を用いなくても、図3の電波照射領域14での津波7の波高ηの分布を算出することができるので、より短時間で波高ηの分布を算出することができる。なお、このように、津波7の海面3の流速と、海4の静水深hの分布データとに基づいて、津波7の波高ηを推定することができれば、どのような式を用いてもよい。
 以上の実施の形態に係る津波監視システム1Aによれば、第1の実施の形態に比較すると、さらに津波の到達時間と到達波高とを精度良く予測することができる。
 第3の実施の形態.
 第2の実施の形態では、半径r方向の流速Uを計測するための送受信アンテナ2のみを設置した場合について説明したが、さらに回転角θ方向の流速Vθを計測するための送受信アンテナ2を設置することによって、さらに精度高く津波7の波高ηを推定することが可能となる。
 第1の実施の形態に係る運動方程式(2)及び(3)を変形し、全水深Dの大きさに比べて波高ηの大きさは十分に小さいと仮定すると、全水深Dの大きさは静水深hの大きさとほぼ等しいので、D=hを上記変形された運動方程式に代入して整理すると式(8)及び式(9)が導かれる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 次に、半径rで微分された式(8)と回転角θで微分された式(9)とを加算すると、津波7の波高ηを推定する式(10)が導かれる。
Figure JPOXMLDOC01-appb-M000019
 次に、式(10)を例えば式(5)と同様の方法で解くことによって、図3の電波照射領域14における津波7の波高ηの分布を算出することができる。ここで、右辺は上述した2本の送受信アンテナ2で計測された2つの時間における半径r方向の流速U及び回転角θ方向の流速Vθから得られ、静水深hは図4の水深分布データ17から得られる。
 図5は、図2の津波7の挙動をシミュレーションする領域を説明するための平面図である。図5において、1本の送受信アンテナ2が陸18に設置され、当該陸18からは堤防27が突き出ている。ここで、時間経過に伴って伝播する津波7の挙動をシミュレーションするための初期条件として、領域26において波高ηの津波7が発生するように設定し、送受信アンテナ2の視線方向の成分である半径r方向の流速Uのみを使用し、波高推定に必要な時間間隔Δtを60秒に設定した。
 次に、本実施の形態に係る方法によって波高η分布を推定した結果と、非特許文献2の津波シミュレーションによって算出された波高η分布とを比較した。この比較結果について以下に説明する。
 図6Aは、10分後の図5の津波7の挙動をシミュレーションした結果を示す平面図である。また、図6Bは、25分後の図5の津波7の挙動をシミュレーションした結果を示す平面図である。図6A及び図6Bにおいて、時間に対する津波7の波高η分布変化が図示されており、25分後には電波照射領域14内に津波7が到達している。
 図7Aは、25分後の図5の波高ηの分布を示す平面図である。また、図7Bは、図4の津波監視システム1Aにより生成された、25分後の図5の津波7の波高ηの分布を示す平面図である。図7A及び図7Bにおいて、津波シミュレーション結果と津波監視システム1Aにより算出された波高推定結果とが比較されている。ここで、津波7の発生から25分後の電波照射領域14における津波7の波高分布が図示され、津波監視システム1Aにより算出された波高推定結果は非特許文献2の津波シミュレーション結果と比較的良く一致していることがわかる。
 図8は、送受信アンテナ2から半径rに対する、図7A及び図7Bの津波7の波高ηの変化を示すグラフである。図8において、半径r方向に対する津波シミュレーション結果と波高推定結果とが比較される。ここでは、図5における回転角θ=25度の線上における半径方向の波高ηの分布が図示されており、津波監視システム1Aにより算出された波高推定結果は非特許文献2の津波シミュレーション結果と良く一致しており、本実施の形態に係る効果が確認できる。
 上述したように、津波7の波高ηの分布の推定は、長波理論に基づく津波の基礎方程式から導出されれば上述以外の方法で式の変形を行ってもよい。例えば半径r方向の流速Uを計測するための送受信アンテナ2のみ設置する場合には、式(10)において、回転角θ方向成分を削除し、上述した式(5)及び式(7)の代わりに次式(11)を用いてもよい。
Figure JPOXMLDOC01-appb-M000020
 以上の実施の形態に係る津波監視システム1によれば、第2の実施の形態に比較すると、さらに津波の到達時間と到達波高とを精度良く予測することができる。
 第4の実施の形態.
 図9は、本発明の第4の実施の形態に係る津波監視システム1B及びその周辺の構成要素を示すブロック図である。図9の津波監視システム1Bは、図4の津波監視システム1Aに比較して、演算部10Aの代わりに演算部10Bを備え、表示部13の代わりに表示部13Aを備えたことを特徴とする。また、演算部10Bは、演算部10Aに比較して、波高推定部11Aの代わりに波高推定部11Bを備え、さらに津波7が到達する時間や到達する波高ηを予測する到達予測部12を備えたことを特徴とする。さらに、到達予測部12は、計算機及びプログラムを備えて構成される。
 波高推定部11Bは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、この流速及び水深分布データメモリ17に格納された海4の静水深hの分布データに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13及び到達予測部12に出力する。
 到達予測部12は、波高推定部11Bから波高ηのデータを入力し、当該波高ηのデータ及び水深分布データメモリ17に格納された静水深hの分布データに基づいて、波高ηが推定された津波7に対する到達時間や到達波高を予測し、当該予測された到達時間及び到達波高のデータを表示部13Aに出力する。また、表示部13Aは、波高推定部11Aから入力した波高ηのデータ並びに到達予測部12から入力した予測された到達時間及び到達波高のデータを表示する。
 以上のように構成された津波監視システム1Bの到達予測部12の動作について以下に説明する。
 まず、津波7の波速Cを表す次式(12)(特許文献4参照。)を用いて、津波7の到達時間を予測する。
Figure JPOXMLDOC01-appb-M000021
 ここで、津波7の波速Cは静水深hのみに依存する。
 図10は、図9の津波監視システム1Bを用いて津波7の波高ηを推定する時の状態を示す平面図である。図10において、波高推定部11Aにより推定された波高分布が図示され、波高分布が推定された津波7が送受信アンテナ2の設置位置に到達する到達時間が予測される。ここで、津波7は検知されてから送受信アンテナ2に向かう方向に進行すると仮定する。
 図10において、到達時間は、扇形の電波照射領域14の周方向に沿って回転角θ方向の各Jの各領域について、送受信アンテナ2から半径r方向の水深分布データ17及び式(12)を用いて津波7の波速Cを算出し、津波7と送受信アンテナ2との間の距離が0になるまで積分することによって算出することができる。
 図11は、時間tに対する送受信アンテナ2の設置位置での波高ηの変化をシミュレーションした結果を示す時間軸波形図である。ここで、図5及び図6の津波シミュレーションによる送受信アンテナ2の設置位置での水位の時間変化を図示し、津波7の到達時間は水位が最高水位となる時間とした。また、送受信アンテナ2からの距離が45キロメートルの時点で津波7を検知したものと仮定した。図11を参照すると、津波7は津波監視システム1Bにより検知されてから12分後に送受信アンテナ2の設置位置に到達していることが分かる。
 図12は、図9の津波監視システム1Bを用いて津波7が送受信アンテナ2に到達するまでの時間を予測するグラフである。ここで、上述した電波照射領域14の各位置での津波7の波速Cを算出し、津波7と送受信アンテナ2との距離が0になる時間が到達予測時間である。図12において、到達予測時間は12分であることが分かり、図11の実際の到達時間とほぼ一致し、精度の高い予測が可能であることが理解できる。
 なお、津波7は水深が深いところほど速く伝播し、さらに略全方位から到来する場合もあり得る。従って、最初に津波監視システム1Bにより検知された津波7が先に送受信アンテナ2の設置位置に到達するとは限らないので、電波照射領域14の回転角θ方向の全ての領域に対して到達予測部12による予測が実行され、最も短い到達予測時間を津波7の到達予測時間とすることによって安全な予測を可能とする。
 次に、到達予測部12における到達波高の予測について説明する。
 沖合での津波7が浅い沿岸域に近づき伝播速度が遅くなると、津波7の前部が遅れ出し、それに後部が追いつくため津波7の波高ηが増大する。津波7の波高ηは以下のグリーンの式(13)により、一般に静水深hの4乗根に反比例して大きくなる(非特許文献3参照。)。
Figure JPOXMLDOC01-appb-M000022
 ここで、ηは津波7の到達波高であって、hは送受信アンテナ2の設置位置から所定の距離での静水深である。すなわち、送受信アンテナ2到達時の波高ηは、一般には沖合で検知された津波7の波高ηと検知位置での静水深hから予想できる。しかしながら、送受信アンテナ2の設置位置での静水深hは0であるため、式(13)にこの値を代入すると津波7の波高ηの値は無限大となってしまう。そこで、津波7が送受信アンテナ2の設置位置から所定の距離に到達した時点での静水深hとし、その時点での津波7の波高ηを到達波高ηとする。ここで、所定の距離とは、送受信アンテナ2の設置位置や周囲の静水深hの分布によって異なるが、通常は1キロメートル~数キロメートルである。また、推定された波高ηの分布はサンプル時間Δtごとに更新する。すなわち、これらの予測値は最新のデータに更新され、予測精度を向上させる。
 以上の実施の形態に係る津波監視システム1Bによれば、第2の実施の形態に係る津波監視システム1Aに比較すると、さらに到達予測部12を備えたので、さらに津波の到達時間と到達波高とを精度良く予測することができる。
 第5の実施の形態.
 第4の実施の形態においては、津波7の到達時間と到達波高を到達予測部12にて、モデル化された式(12)及び式(13)を用いて予測した。これに対して、本実施の形態では、扇形の電波照射領域14において、波高推定部11Cにより推定された津波7の波高ηの分布に基づいて津波シミュレーションを実施し、得られたシミュレーション結果に基づいて津波7の到達時間と到達波高とを予測することによって、さらに津波7の到達時間と到達波高の予測精度を向上させることができる。
 図13は、本発明の第5の実施の形態に係る津波監視システム1C及びその周辺の構成要素を示すブロック図である。図13の津波監視システム1Cは、図9の津波監視システム1Bに比較して、演算部10Bの代わりに演算部10Cを備えたことを特徴とする。また、演算部10Cは、演算部10Bに比較して、波高推定部11Bの代わりに波高推定部11Cを備え、到達予測部12の代わりに到達予測部12Aを備え、津波シミュレーション部15及び地形データを格納する第2のメモリである地形データメモリ19をさらに備えたことを特徴とする。
 図13において、波高推定部11Cは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、この流速及び水深分布データメモリ17に格納された海4の静水深hの分布データに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13A及び津波シミュレーション部15に出力する。
 津波シミュレーション部15は、波高推定部11Cから津波7の波高ηのデータを入力し、当該波高ηのデータと水深分布データメモリ17に格納された静水深hの分布データと地形データメモリ19に格納された地形データとに基づいて、時間経過に伴って伝播する津波7の波高ηの分布をシミュレーションし、そのシミュレーション結果を到達予測部12Aに出力する。ここで、時間経過に伴って伝播する津波7の挙動をシミュレーションするための初期条件として、後述する図14Aの斜線で図示された領域40において波高推定部11Cにおいて推定された波高ηの分布を有する津波7が発生するように設定される。また、上述した地形データとは、津波シミュレーションを実施するために必要な海岸線の位置情報であって、この海岸線の範囲は、津波シミュレーションを実施する範囲によって異なるが、一般的には送受信アンテナ2から数十キロメートル四方~数百キロメートル四方の範囲とされる。なお、津波シミュレーションは、第3の実施の形態において説明したように、例えば非特許文献2記載の長波理論に基づく津波の基礎方程式を用いて実施されるが、津波の基礎方程式を解いて、後述する図14Aの電波照射領域14内の全領域での波高ηを求めることができればどのような方法を用いてもよい。
 到達予測部12Aは、津波シミュレーション部15によってシミュレーションされた津波7の波高分布データを入力し、その波高分布データに基づいて、津波7に対する到達時間や到達波高を予測し、当該予測された到達時間及び到達波高のデータを表示部13Aに出力する。すなわち、津波シミュレーション結果から、送受信アンテナ2の設置位置における水位の時間変化を算出することによって、津波7の到達時間と到達波高とを予測する。
 表示部13Aは、波高推定部11Cから入力した波高ηのデータ並びに到達予測部12Aから入力した予測された到達時間及び到達波高のデータを表示する。
 次に、津波シミュレーション部15の動作について以下に説明する。
 図14Aは、図13の津波シミュレーション部15が伝播する津波7の挙動をシミュレーションする領域を説明するための平面図である。図14Aにおいて、津波シミュレーション領域16が設けられ、津波シミュレーション用の計算格子が形成される。津波シミュレーション領域16の大きさや形状は、どのような大きさや形状であってもよいが、一般的には電波照射領域14と同等かもしくはそれ以上の大きさが用いられる。また、形成される計算格子の座標系はどのような座標系であってもよいが、一般的には直交座標系または円筒座標系が用いられる。さらに、計算格子により形成された評価領域20の寸法も、どのような大きさや形状であってもよいが、大きすぎると津波シミュレーションの精度が悪化するので、一般的には数キロメートル角以下とする。
 次に、時間経過に伴って伝播する津波7の波高ηをシミュレーションするための初期条件として、図14Aの津波シミュレーション領域内16内の領域40において波高推定部11Cによって推定された波高分布を設定してシミュレーションを実施する。
 図14Bは、図13の津波監視システム1Cにより実行される津波波高分布並びに津波到達時間及び到達波高の予測処理を示すフローチャートである。図14BのステップS1では、送受信部8が所定の周波数を有する送信信号を発生し、当該送信信号を海上に送信電波5として放射する。次に、送受信アンテナ2は、海面3上で強く後方散乱された受信電波6を受信信号として受信する(ステップS2)。ステップS3では、信号処理部9が、送信信号と受信信号との周波数差の周波数を有するビート信号を生成し、当該生成されたビート信号を波高推定部11Cに出力する。ステップS4では、波高推定部11Cが、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、この流速から津波7の波高ηを推定する。
 ステップS5では、津波シミュレーション部15が、波高推定部11Cから津波7の波高ηのデータを入力し、当該波高ηのデータと水深分布データメモリ17に格納された静水深hの分布データと地形データメモリ19に格納された地形データとに基づき、津波7の波高ηの波高分布をシミュレーションし、その結果を到達予測部12Aに出力する。次に、ステップS6では、到達予測部12Aが、シミュレーションされた津波7の波高分布データに基づいて、津波7に対する到達時間及び到達予測を予測する。ステップS9では、表示部13Aは、津波7の波高データ並びに予測された津波到達時間及び到達波高のデータを表示し、当該処理は終了する。
 また、津波シミュレーション部15では、推定された波高分布に基づいて、常に津波シミュレーションを実施してもよいが、推定された波高が津波と判断される波高の場合に限り、当該津波シミュレーションを実施するようにしてもよい。ここで、例えば推定された波高や計測された流速の大きさなどが所定のしきい値を超えるときに津波と判断される。なお、しきい値は、津波監視システム1Cが設置される海域において、風や潮流によって発生する波の高さや流速分布の計測誤差等を考慮して予め決定する。
 なお、津波シミュレーションは、例えば非特許文献2記載の方法などの長波理論に基づく津波の基礎方程式を用いて実施される。また、津波の基礎方程式を解いて、図14Aの全領域での波高ηを求めることができればどのような方法であってもよく、例えば差分法、有限体積法及び有限要素法などの方法を用いてもよい。さらに、上述したように静水深hが十分大きいと仮定して基礎方程式を簡略化してもよいし、線形化してもよい。
 なお、上述した津波シミュレーションは、波高推定部11Cによる津波7検知直後だけに実施するように設定してもよいが、津波監視システム1Cによる計測サンプル周期Δtごとに実施するように設定してもよい。この場合には、サンプル周期Δtごとに時々刻々と最新のデータに更新を行なうことが可能となるので、よりシミュレーションの精度を向上させることが可能となる。また、時間経過に伴って伝播する津波7をシミュレーションするための初期条件として、推定された波高ηのデータのみを用いたが、さらに計測された流速分布データも用いてもよい。
 以上の実施の形態に係る津波監視システム1Cによれば、上述した実施の形態に係る津波監視システム1A及び1Cに比較すると、さらに海岸での津波の反射など複雑な津波挙動も考慮することができるので、より精度高く、津波の到達時間と到達波高とを予測することができる。
 第6の実施の形態.
 第5の実施の形態に係る津波監視システム1Cは、波高推定部11Cにより推定された津波7の波高分布に基づき、津波シミュレーション部15が到達予測部12Aと連携して、津波7の到達時間及び到達波高を予測したが、これらの動作をすべて津波シミュレーション部15Aのみで実行してもよい。これについて以下に説明する。
 図15は、本発明の第6の実施の形態に係る津波監視システム1D及びその周辺の構成要素を示すブロック図である。図15の津波監視システム1Dは、図13の津波監視システム1Cに比較すると、演算部10Cの代わりに演算部10Dを備えたことを特徴とする。また、演算部10Dは、図13の演算部10Cに比較すると、波高推定部11C及び到達予測部12Aを削除し、津波シミュレーション部15の代わりに津波シミュレーション部15Aを備えたことを特徴とする。
 津波シミュレーション部15Aは、信号処理部9からビート信号を受信して、当該ビート信号に基づき海面3の流速を算出し、この流速及び水深分布データメモリ17に格納された海4の静水深hの分布データに基づいて、津波7の波高ηを推定し、推定された津波7の波高ηのデータと、水深分布データメモリ17に格納された静水深hの分布データと、地形データメモリ19に格納された地形データとに基づいて、時間経過に伴って伝播する津波7の波高分布をシミュレーションし、そのシミュレーション結果に基づいて津波7に対する到達時間や到達波高を予測し、当該予測された到達時間及び到達波高のデータ並びに算出された波高ηのデータを表示部13Aに出力する。
 ここで、時間経過に伴って伝播する津波7をシミュレーションするための初期条件として、上述した図14Aの斜線で図示された領域40において津波シミュレーション部15Aにより推定された波高ηを有する津波7が発生するように設定される。また、地形データは、津波シミュレーションを実施するために必要な海岸線の位置情報であって、この海岸線の範囲は、津波シミュレーションを実施する範囲によって異なるが、一般的には送受信アンテナ2から数十キロメートル四方から数百キロメートル四方の範囲とされる。なお、津波シミュレーションは、第3の実施の形態において説明したように、例えば非特許文献2記載の長波理論に基づく津波の基礎方程式を用いて実施されるが、津波の基礎方程式を解いて、上述した図14Aの電波照射領域14内の全領域での波高ηを求めることができればどのような方法を用いてもよい。
 また、津波シミュレーション部15Aの津波シミュレーションに関する動作については、第5の実施の形態に係る津波監視システム1Cの津波シミュレーション部15の動作と同様である。
 なお、津波シミュレーションは、例えば非特許文献2記載の方法などの長波理論に基づく津波の基礎方程式を用いて実施される。また、津波の基礎方程式を解いて、図14Aの全領域での波高ηを求めることができればどのような方法であってもよく、例えば差分法、有限体積法及び有限要素法などの方法を用いてもよい。さらに、上述したように静水深hが十分大きいと仮定して基礎方程式を簡略化してもよいし、もしくは線形化してもよい。
 なお、上述した津波シミュレーションは、津波シミュレーション部15Aによる津波7検知直後だけに実施するように設定してもよいが、津波監視システム1Dによる計測サンプル周期Δtごとに実施するように設定してもよい。この場合には、サンプル周期Δtごとに時々刻々と最新のデータに更新を行なうことが可能となるので、より津波7の挙動のシミュレーション精度を向上させることが可能となる。
 以上の実施の形態に係る津波監視システム1Dによれば、第5の実施の形態に係る津波監視システム1Cと同様の効果を得ることができる。
 第7の実施の形態.
 第1の実施の形態に係る津波監視システム1は、電波によって計測された海面3の流速分布のみから津波7の波高ηを推定する場合について説明した。この場合には、図3の領域において送受信アンテナ2から遠方に向かうにつれて波高推定誤差が蓄積されることとなる。これに対して、本実施の形態の津波監視システム1Eは、波高ηを計測する水位計測部30をさらに備え、当該水位計測部30が配置された位置において推定された波高ηのデータを校正することを特徴とする。
 図16は、本発明の第7の実施の形態に係る津波監視システム1E及びその周辺の構成要素を示すブロック図である。図16の津波監視システム1Eは、図1の津波監視システム1に比較して、演算部10の代わりに演算部10Eを備え、電波照射領域14内の任意の位置に配置された水位計測部30をさらに備えたことを特徴とする。また、演算部10Eは、図1の演算部10に比較して、波高推定部11の代わりに波高推定部11Dを備えたことを特徴とする。
 図16において、水位計測部30は、水位計測部30が設置された位置での海4の各時刻における波高ηを計測し、当該波高ηのデータを波高推定部11Dに出力する。波高推定部11Dは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、当該流速のデータ及び水位計測部30からの波高ηのデータに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13に出力する。
 以上のように構成された津波監視システム1Eの波高推定部11Dの動作について以下に説明する。
 波高推定部11Dは、第1の実施の形態に係る波高推定部11と比較すると、水位計測部30により計測された波高ηのデータに基づいて、式(6)により推定された当該水位計測部30が配置された位置での波高ηのデータを校正することが異なる。以下に、推定された波高ηのデータを校正する方法を説明する。
 図17は、本実施の形態に係る津波監視システム1Eにおける水位計測部30の配置位置の一例を示す上面図である。図17では、水位計測部30が電波照射領域14内の領域31に配置され、当該水位計測部30は領域31での津波7の波高ηを計測する。次に、計測された波高ηのデータに基づいて、前進差分式である式(6)を用いて電波照射領域14内の領域I=2,3,…,II、J=1の位置での波高ηを順番に推定する。
 以上の実施の形態に係る津波監視システム1Eによれば、第1の実施の形態に係る津波監視システム1と同様の効果を得ることができる。また、送受信アンテナ2近傍の津波の波高が急激に変化した場合でも、水位計測部30により当該水位計測部30が配置された位置での波高ηのデータを校正することができるので、第1の実施の形態に係る津波監視システム1と比較すると、さらに津波の波高を精度良く推定することが可能となる。
 また、水位計測部30の配置位置は、電波照射領域14内のどこでもよく、図17で図示された領域以外に水位計測部30を配置することも可能である。
 図18は、本発明の第7の実施の形態に係る津波監視システム1Eにおける水位計測部30の配置位置の別の例を示す上面図である。図18では、水位計測部30が電波照射領域14内の領域31に配置され、当該水位計測部30は領域31での津波7の波高ηを計測する。次に、当該水位計測部30により計測された領域31の津波7の波高ηのデータに基づいて、前進差分式である式(6)を用いて電波照射領域14内の領域I=4,5,…,II、J=2の位置での津波7の波高ηを順番に推定する。また、当該水位計測部30により計測された領域31の津波7の波高ηのデータに基づいて、後退差分式である以下の式(14)を用いて電波照射領域14内の領域I=2,1、J=2の位置での津波7の波高ηを順番に推定する。
Figure JPOXMLDOC01-appb-M000023
 上述した本発明の第7の実施形態に係る変形例においても、本実施形態と同様の動作及び効果を有することができる。
 第8の実施の形態.
 第2の実施の形態に係る津波監視システム1Aは、電波によって計測された海面3の流速分布のみから津波7の波高ηを推定する場合について説明した。この場合には、図3の領域において送受信アンテナ2から遠方に向かうにつれて波高推定誤差が蓄積されることとなる。これに対して、本実施の形態の津波監視システム1Fは、波高ηを計測する水位計測部30をさらに備え、当該水位計測部30が配置された位置において推定された波高ηのデータを校正することを特徴とする。
 図19は、本発明の第8の実施の形態に係る津波監視システム1F及びその周辺の構成要素を示すブロック図である。図19の津波監視システム1Fは、第2の実施の形態に係る図4の津波監視システム1Aに比較して、演算部10Aの代わりに演算部10Fを備え、電波照射領域14内の任意の位置に配置された水位計測部30をさらに備えたことを特徴とする。また、演算部10Fは、図4の演算部10Aに比較して、波高推定部11Aの代わりに波高推定部11Eを備えたことを特徴とする。
 図19において、水位計測部30は、水位計測部30が設置された位置での海4の各時刻における波高ηを計測し、当該波高ηのデータを波高推定部11Eに出力する。波高推定部11Eは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、当該流速のデータ、水深分布データメモリ17に格納された海4の静水深hの分布データ及び当該水位計測部30からの波高ηのデータに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13に出力する。
 以上のように構成された津波監視システム1Fの波高推定部11Eの動作について以下に説明する。
 波高推定部11Eは、第2の実施の形態に係る波高推定部11Aと同様の動作をし、第2の実施の形態に係る波高推定部11Aと比較すると、水位計測部30により測定された津波7の波高ηのデータに基づいて、式(7)により推定された当該水位計測部30が配置された位置での波高ηのデータを校正することが異なる。
 以上の実施の形態に係る津波監視システム1Fによれば、第1の実施の形態に係る津波監視システム1と同様の効果を得ることができる。また、送受信アンテナ2近傍の津波の波高が急激に変化した場合でも、水位計測部30により当該水位計測部30が配置された位置での波高ηのデータを校正することができるので、第1の実施の形態に係る津波監視システム1と比較すると、さらに津波の波高を精度良く推定することが可能となる。
 第9の実施の形態.
 第4の実施の形態に係る津波監視システム1Bは、電波によって計測された海面3の流速分布のみから津波7の波高ηを推定する場合について説明した。この場合には、図3の領域において送受信アンテナ2から遠方に向かうにつれて波高推定誤差が蓄積されることとなる。これに対して、本実施の形態の津波監視システム1Fは、波高ηを計測する水位計測部30をさらに備え、当該水位計測部30が配置された位置において推定された波高ηのデータを校正することを特徴とする。
 図20は、本発明の第9の実施の形態に係る津波監視システム1G及びその周辺の構成要素を示すブロック図である。図20の津波監視システム1Gは、第4の実施の形態に係る図9の津波監視システム1Bに比較して、演算部10Bの代わりに演算部10Gを備え、電波照射領域14内の任意の位置に配置された水位計測部30をさらに備えたことを特徴とする。また、演算部10Gは、図9の演算部10Bに比較して、波高推定部11Bの代わりに波高推定部11Fを備えたことを特徴とする。
 図20において、水位計測部30は、水位計測部30が設置された位置での海4の各時刻における波高ηを計測し、当該波高ηのデータを波高推定部11Fに出力する。波高推定部11Fは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、当該流速データ、水深分布データメモリ17に格納された海4の静水深hの分布データ及び当該水位計測部30からの波高ηのデータに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13及び到達予測部12に出力する。
 以上のように構成された津波監視システム1Gの波高推定部11Fの動作について以下に説明する。
 波高推定部11Fは、第4の実施の形態に係る波高推定部11Bと同様の動作をし、第4の実施の形態に係る波高推定部11Bと比較すると、水位計測部30が配置された位置での波高ηのデータに基づいて、当該水位計測部30が配置された位置において推定された波高ηのデータを校正することが異なる。
 以上の実施の形態に係る津波監視システム1Gによれば、第4の実施の形態に係る津波監視システム1Bと同様の効果を得ることができる。また、送受信アンテナ2近傍の津波の波高が急激に変化した場合でも、水位計測部30により当該水位計測部30が配置された位置での波高ηのデータを校正することができるので、第4の実施の形態に係る津波監視システム1Bと比較すると、さらに津波の波高を精度良く推定することが可能となる。
 第10の実施の形態.
 第5の実施の形態に係る津波監視システム1Cは、電波によって計測された海面3の流速分布のみから津波7の波高ηを推定する場合について説明した。この場合には、図3の領域において送受信アンテナ2から遠方に向かうにつれて波高推定誤差が蓄積されることとなる。これに対して、本実施の形態の津波監視システム1Hは、波高ηを計測する水位計測部30をさらに備え、当該水位計測部30が配置された位置において推定された波高ηのデータを校正することを特徴とする。
 図21は、本発明の第10の実施の形態に係る津波監視システム1H及びその周辺の構成要素を示すブロック図である。図21の津波監視システム1Hは、図13の津波監視システム1Cに比較して、演算部10Cの代わりに演算部10Hを備え、電波照射領域14内の任意の位置に配置された水位計測部30をさらに備えたことを特徴とする。また、演算部10Hは、図13の演算部10Cに比較して、波高推定部11Cの代わりに波高推定部11Gを備えたことを特徴とする。
 図21において、水位計測部30は、水位計測部30が設置された位置での海4の各時刻における波高ηを計測し、当該波高ηのデータを波高推定部11Gに出力する。波高推定部11Gは、信号処理部9からビート信号を受信して、当該ビート信号に基づき、津波7の海面3の流速を算出し、当該流速データ、水深分布データメモリ17に格納された海4の静水深hの分布データ及び当該水位計測部30からの波高ηのデータに基づいて、津波7の波高ηを推定し、推定された波高ηのデータを表示部13A及び津波シミュレーション部15に出力する。
 以上のように構成された津波監視システム1Hの波高推定部11Gの動作について以下に説明する。
 波高推定部11Gは、第5の実施の形態に係る波高推定部11Cと同様の動作をし、第5の実施の形態に係る波高推定部11Cと比較すると、水位計測部30が配置された位置での波高ηのデータに基づいて、当該水位計測部30が配置された位置において推定された波高ηのデータを校正することが異なる。
 以上の実施の形態に係る津波監視システム1Hによれば、第5の実施の形態に係る津波監視システム1Cと同様の効果を得ることができる。また、送受信アンテナ2近傍の津波の波高が急激に変化した場合でも、水位計測部30により当該水位計測部30が配置された位置での波高ηのデータを校正することができるので、第5の実施の形態に係る津波監視システム1Cと比較すると、さらに津波の波高を精度良く推定することが可能となる。
 なお、上述した第7~第10の実施の形態において、水位計測部30は、ブイのように海4の上に浮かぶ方式の他、海底に配置された圧力センサによって波高を計測する方式やスポット的に電波を照射するものなど、リアルタイムで海4の局所的な波高を計測することができれば、どのような手段を用いてもよい。当然ながら水位計測部30は電波照射領域14において1箇所でなく複数個所配置してもよい。複数個所配置することで、1箇所の場合より精度良く波高分布を予測することができる。
 以上詳述したように、本発明に係る津波監視システムによれば、電波によって計測された海面の流速分布から津波の波高を直接的に予測することができるので、想定外の津波を含めた全ての津波の到達時間と到達波高とを精度良く予測することができる。
 1,1A,1B,1C,1D,1E,1F,1G,1H 津波監視システム、2 送受信アンテナ、3 海面、4 海、5 送信電波、6 受信電波、7 津波、8 送受信部、9 信号処理部、10,10A,10B,10C,10D 演算部、11,11A,11B,11C,11D,11E,11F,11G 波高推定部、13,13A 表示部、18 陸、21 海底、17 水深分布データメモリ、27 堤防、12,12A 到達予測部、19 地形データメモリ、15,15A 津波シミュレーション部、30 水位計測部、40 領域。

Claims (11)

  1.  津波を検出するための送信信号を電波として海に向かって放射する送信アンテナと、上記津波に反射された反射波を受信信号として受信する受信アンテナとを備えた津波監視システムにおいて、
     所定の周波数を有する上記送信信号を発生する信号発生手段と、
     上記送信信号と上記受信信号との周波数差の周波数を有するビート信号を生成する信号処理部と、
     上記電波照射領域を複数の領域に分割し、各領域ごとに、上記ビート信号に基づいて、上記津波の海面の流速を算出し、上記算出された流速から上記津波の波高を推定する波高推定部とを備えたことを特徴とする津波監視システム。
  2.  上記津波の波高に基づいて、上記津波に対する到達時間及び到達波高を予測する到達予測部をさらに備えたことを特徴とする請求項1記載の津波監視システム。
  3.  上記到達予測部は、上記到達波高を、
    Figure JPOXMLDOC01-appb-M000001
    により算出し、
     ここで、ηは津波の到達波高であり、hは上記送信アンテナ及び上記受信アンテナの設置位置から所定の距離での静水深であることを特徴とする請求項2記載の津波監視システム。
  4.  上記推定された津波の波高に基づいて、津波の挙動の津波シミュレーションを実行する津波シミュレーション部をさらに備えたことを特徴とする請求項1~3のうちのいずれか1つに記載の津波監視システム。
  5.  上記波高推定部は、上記津波の波高を、
    Figure JPOXMLDOC01-appb-M000002
    により算出し、
     ここで、rは上記送信アンテナを中心とした半径であり、ηは上記津波の波高であり、tは時間であり、Uは半径r方向の流速であることを特徴とする請求項1~4のうちのいずれか1つに記載の津波監視システム。
  6.  上記波高推定部は、上記津波の波高を、
    Figure JPOXMLDOC01-appb-M000003
    により算出し、
     ここで、rは上記送信アンテナを中心とした半径であり、ηは上記津波の波高であり、hは海の静水深であり、gは重力加速度であり、Mは半径r方向の線流量であり、nは海底摩擦係数であることを特徴とする請求項1~4のうちのいずれか1つに記載の津波監視システム。
  7.  上記波高推定部は、上記津波の波高を、
    Figure JPOXMLDOC01-appb-M000004
    により算出し、
     ここで、ηは上記津波の波高であり、hは海の静水深であり、gは重力加速度であり、Uは上記送信アンテナを中心とした半径r方向の流速であることを特徴とする請求項1~4のうちのいずれか1つに記載の津波監視システム。
  8.  上記波高推定部は、上記津波の波高を、
    Figure JPOXMLDOC01-appb-M000005
    により算出し、
     ここで、rは上記送信アンテナを中心とした半径であり、θは上記送信アンテナを中心とした時計回りの回転角であり、ηは上記津波の波高であり、hは海の静水深であり、Mは半径r方向の線流量であり、Mθは回転角θ方向の線流量であり、gは重力加速度であり、tは時間であることを特徴とする請求項1~4のうちのいずれか1つに記載の津波監視システム。
  9.  上記波高推定部は、上記津波の波高を、
    Figure JPOXMLDOC01-appb-M000006
    により算出し、
     ここで、rは上記送信アンテナを中心とした半径であり、ηは上記津波の波高であり、hは海の静水深であり、Mは半径r方向の線流量であり、gは重力加速度であり、tは時間であることを特徴とする請求項1~4のうちのいずれか1つに記載の津波監視システム。
  10.  上記海における上記静水深hの分布データを格納するメモリをさらに備え、上記波高推定部は、上記メモリに格納された上記静水深hの分布データに基づいて上記津波の波高を推定することを特徴とする請求項6~9のうちのいずれか1つに記載の津波監視システム。
  11.  上記津波の波高を計測するための1つ以上の水位計測部をさらに備え、上記波高推定部は、上記水位計測部により計測される上記津波の波高のデータに基づいて、上記津波の波高を推定することを特徴とする請求項1~10のうちのいずれか1つに記載の津波監視システム。
PCT/JP2014/051353 2013-05-31 2014-01-23 津波監視システム WO2014192326A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015519687A JP5905646B2 (ja) 2013-05-31 2014-01-23 津波監視システム
US14/890,323 US9544748B2 (en) 2013-05-31 2014-01-23 Tsunami monitoring radar system including transmitting antenna for radiating transmission signal for detecting tsunami as radio wave toward sea
DE112014002638.7T DE112014002638T5 (de) 2013-05-31 2014-01-23 Tsunami-überwachungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013115734 2013-05-31
JP2013-115734 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192326A1 true WO2014192326A1 (ja) 2014-12-04

Family

ID=51988372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051353 WO2014192326A1 (ja) 2013-05-31 2014-01-23 津波監視システム

Country Status (5)

Country Link
US (1) US9544748B2 (ja)
JP (1) JP5905646B2 (ja)
DE (1) DE112014002638T5 (ja)
MY (1) MY171962A (ja)
WO (1) WO2014192326A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749563A (zh) * 2015-03-26 2015-07-01 武汉大学 从高频地波雷达海洋回波一阶Bragg谐振峰中提取浪高的方法
WO2016155484A1 (zh) * 2015-03-31 2016-10-06 清华大学 海啸预测方法以及装置、海啸预警方法以及装置
CN107025772A (zh) * 2016-02-02 2017-08-08 深圳市赛特磁源科技有限公司 一种海啸预警系统及其方法
WO2018062064A1 (ja) * 2016-09-29 2018-04-05 三菱電機株式会社 浸水予測システム、予測方法、プログラム
US20190108297A1 (en) * 2016-05-24 2019-04-11 China Institute Of Water Resources And Hydropower Research Simulation method of surface water flow movement process in surface irrigation
JP2020056649A (ja) * 2018-10-01 2020-04-09 東電設計株式会社 津波予測装置、方法、及びプログラム
US11035953B2 (en) * 2016-08-25 2021-06-15 Mitsubishi Electric Corporation Radar apparatus
JP2021529303A (ja) * 2018-06-19 2021-10-28 タレス 航空機搭載レーダを用いて波高を測定するための方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1929489B1 (en) * 2005-09-20 2012-08-22 ScandiNova Systems AB A foil winding pulse transformer
FR3041449B1 (fr) * 2015-09-17 2017-12-01 Dcns Procede et dispositif d'amelioration de la securite de plateforme maritime
JP6381856B2 (ja) * 2016-04-22 2018-08-29 三菱電機株式会社 レーダ信号処理装置及びレーダ信号処理方法
US10042051B2 (en) * 2016-04-27 2018-08-07 Codar Ocean Sensors, Ltd. Coastal HF radar system for tsunami warning
US10282622B2 (en) * 2016-12-09 2019-05-07 Hitachi Kokusai Electric Inc. Marine intrusion detection system and method
CN108008392B (zh) * 2017-11-22 2021-07-06 哈尔滨工业大学 一种基于船载高频地波雷达的海洋表面风场测量方法
SE1950499A1 (en) * 2019-04-24 2020-09-29 Seaward Tsunami Alarm Ab A device and a method for detection of and warning against tsunamis
KR20210014890A (ko) * 2019-07-31 2021-02-10 삼성전자주식회사 전자 장치 및 전자 장치에서 저전력 기반 통신 연결 방법
CN115495941B (zh) * 2022-11-18 2023-03-28 海南浙江大学研究院 一种基于响应面的海底滑坡海啸的快速预报方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218254A (ja) * 1993-04-01 1995-08-18 Unyusho Kowan Gijutsu Kenkyusho 海象計
JPH08292273A (ja) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho 津波・海象監視予測装置
JP2006209712A (ja) * 2005-01-25 2006-08-10 Kaiyo Chosa Kyokai 津波検知装置
JP2009229424A (ja) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp 津波監視装置
JP2010175377A (ja) * 2009-01-29 2010-08-12 Nagano Japan Radio Co レーダ装置、海洋レーダ観測装置およびドップラ周波数データ算出方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031789A1 (fr) * 1995-04-07 1996-10-10 Yoshio Kushida Procede et dispositif de detection de diastrophisme
CA2170561C (en) * 1996-02-28 2001-01-30 Raymond Wood Gas, fire and earthquake detector
JP2876528B1 (ja) 1998-01-14 1999-03-31 科学技術庁防災科学技術研究所長 圧力変化計測装置
JP3512330B2 (ja) 1998-03-30 2004-03-29 日立造船株式会社 津波計測用ブイ
WO2006134912A1 (ja) * 2005-06-17 2006-12-21 Murata Manufacturing Co., Ltd. レーダ装置
JP4780285B2 (ja) * 2005-07-08 2011-09-28 独立行政法人港湾空港技術研究所 津波情報提供方法および津波情報提供システム
JP4758759B2 (ja) * 2005-12-27 2011-08-31 株式会社ミツトヨ 地震災害防止システム
JP2007248293A (ja) 2006-03-16 2007-09-27 Mitsubishi Electric Corp 海洋レーダ装置
US20080021657A1 (en) * 2006-07-21 2008-01-24 International Business Machines Corporation Utilizing rapid water displacement detection systems and satellite imagery data to predict tsunamis
GB201103642D0 (en) * 2011-03-03 2011-04-13 Univ Bradford Methods and systems for detection of liquid surface fluctuations
JP5924469B2 (ja) * 2011-07-13 2016-05-25 株式会社藤縄地震研究所 津波監視システム
JP5862108B2 (ja) 2011-08-19 2016-02-16 日本電気株式会社 津波高さ予測システム、津波高さ予測装置、津波高さ予測方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218254A (ja) * 1993-04-01 1995-08-18 Unyusho Kowan Gijutsu Kenkyusho 海象計
JPH08292273A (ja) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho 津波・海象監視予測装置
JP2006209712A (ja) * 2005-01-25 2006-08-10 Kaiyo Chosa Kyokai 津波検知装置
JP2009229424A (ja) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp 津波監視装置
JP2010175377A (ja) * 2009-01-29 2010-08-12 Nagano Japan Radio Co レーダ装置、海洋レーダ観測装置およびドップラ周波数データ算出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOJI TOKIMATSU ET AL.: "Jishin Tsunami Hazard no Hyoka", 20 January 2010 (2010-01-20), pages 58 - 61 *
TOMOYUKI TAKAHASHI: "Application of Numerical Simulation to Tsunami Disaster Prevention", THE JAPAN SOCIETY OF FLUID MECHANICS SUCHI RYUTAI RIKIGAKU BUMON WEB KAISHI, vol. 12, no. 2, November 2004 (2004-11-01), pages 23 - 32 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749563A (zh) * 2015-03-26 2015-07-01 武汉大学 从高频地波雷达海洋回波一阶Bragg谐振峰中提取浪高的方法
WO2016155484A1 (zh) * 2015-03-31 2016-10-06 清华大学 海啸预测方法以及装置、海啸预警方法以及装置
CN107025772A (zh) * 2016-02-02 2017-08-08 深圳市赛特磁源科技有限公司 一种海啸预警系统及其方法
US20190108297A1 (en) * 2016-05-24 2019-04-11 China Institute Of Water Resources And Hydropower Research Simulation method of surface water flow movement process in surface irrigation
US10579756B2 (en) * 2016-05-24 2020-03-03 China Institute Of Water Resources And Hydropower Research Simulation method of surface water flow movement process in surface irrigation
US11035953B2 (en) * 2016-08-25 2021-06-15 Mitsubishi Electric Corporation Radar apparatus
JP6370525B1 (ja) * 2016-09-29 2018-08-08 三菱電機株式会社 浸水予測システム、予測方法、プログラム
WO2018062064A1 (ja) * 2016-09-29 2018-04-05 三菱電機株式会社 浸水予測システム、予測方法、プログラム
JP2021529303A (ja) * 2018-06-19 2021-10-28 タレス 航空機搭載レーダを用いて波高を測定するための方法
JP7308869B2 (ja) 2018-06-19 2023-07-14 タレス 航空機搭載レーダを用いて波高を測定するための方法
JP2020056649A (ja) * 2018-10-01 2020-04-09 東電設計株式会社 津波予測装置、方法、及びプログラム
WO2020071327A1 (ja) * 2018-10-01 2020-04-09 東電設計株式会社 津波予測装置、方法、及びプログラム
JP7156613B2 (ja) 2018-10-01 2022-10-19 東電設計株式会社 津波予測装置、方法、及びプログラム

Also Published As

Publication number Publication date
JP5905646B2 (ja) 2016-04-20
US9544748B2 (en) 2017-01-10
US20160157073A1 (en) 2016-06-02
JPWO2014192326A1 (ja) 2017-02-23
DE112014002638T5 (de) 2016-03-17
MY171962A (en) 2019-11-09

Similar Documents

Publication Publication Date Title
JP5905646B2 (ja) 津波監視システム
Lynett et al. Inter-model analysis of tsunami-induced coastal currents
JP6521777B2 (ja) 津波監視システム
Brêda et al. Assimilation of satellite altimetry data for effective river bathymetry
Synolakis et al. Validation and verification of tsunami numerical models
Böse et al. PreSEIS: A neural network-based approach to earthquake early warning for finite faults
Sraj et al. Uncertainty quantification and inference of Manning’s friction coefficients using DART buoy data during the Tōhoku tsunami
JP6179911B1 (ja) 変状度判定方法及び変状度判定システム
JP6132990B2 (ja) 状態推定装置
JP5007391B2 (ja) 津波波源推定方法及び津波波高予測方法並びにその関連技術
Alford et al. A real-time system for forecasting extreme waves and vessel motions
JP6370525B1 (ja) 浸水予測システム、予測方法、プログラム
Grilli et al. Tsunami detection by high frequency radar beyond the continental shelf: ii. extension of time correlation algorithm and validation on realistic case studies
JP7156613B2 (ja) 津波予測装置、方法、及びプログラム
Dube et al. Storm surge modeling and applications in coastal areas
Bottema et al. Effective fetch and non-linear four-wave interactions during wave growth in slanting fetch conditions
Liu et al. Algorithm for HF radar vector current measurements
Shiba Layered model sound speed profile estimation
JP2013007728A (ja) 巨大地震の震源域リアルタイム推定法
Dhanya et al. Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake
Park et al. Novel method for the estimation of vertical temperature profiles using a coastal acoustic tomography system
Dhanya et al. Deterministic tsunami hazard map for India
Pereira et al. Breakwater control system and structural analysis: physical and numerical modelling (Port of Funchal, Madeira Island, Portugal)
Enders Flow Characterization at a Turbulent Tidal Energy Site in Minas Passage, Bay of Fundy
JP2016138819A (ja) リアルタイム震度を用いた震度予測システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519687

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201507118

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14890323

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002638

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804302

Country of ref document: EP

Kind code of ref document: A1