CN103559411A - 一种基于数字高程模型的洪水演进数值模拟计算修正方法 - Google Patents

一种基于数字高程模型的洪水演进数值模拟计算修正方法 Download PDF

Info

Publication number
CN103559411A
CN103559411A CN201310571247.4A CN201310571247A CN103559411A CN 103559411 A CN103559411 A CN 103559411A CN 201310571247 A CN201310571247 A CN 201310571247A CN 103559411 A CN103559411 A CN 103559411A
Authority
CN
China
Prior art keywords
grid
per unit
unit width
water
discharge per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201310571247.4A
Other languages
English (en)
Inventor
陈飞军
史煜凯
贾鑫
王伟
付敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310571247.4A priority Critical patent/CN103559411A/zh
Publication of CN103559411A publication Critical patent/CN103559411A/zh
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于数字高程模型的洪水演进数值模拟计算修正方法,包括:通过修正系数对负水深网格进行修正,获得该网格的实际水深,克服了在以往的移动边界计算中,经常发生水面标高低于地面标高的情况,也就是计算后的水深变为负值,即出现负水深网格,从而导致计算域内的质量不能保证守恒,稳定性变差,甚至计算发散而得不到结果,直接影响到洪水演进数值计算无法顺利进行的技术问题,通过引入所述修正系数λ,使当出现水面标高低于地面标高时,洪水演进数值模拟计算得以顺利进行。

Description

一种基于数字高程模型的洪水演进数值模拟计算修正方法
技术领域
本发明涉及一种基于数字高程模型的洪水演进数值模拟计算修正方法。
背景技术
洪水灾害是指山丘地区在强降雨影响下,短时间内形成具有较大洪峰流量的洪水。我国地处东亚季风区,山区和丘陵地区占国土地面积的三分之二。其中,洪水灾害的优先预防面积达97万,影响人口1.3亿。近年洪水灾害造成的死亡人数占全国洪涝灾害死亡人数的比例超过70%,成为造成人员伤亡的主要灾种。随着社会经济的发展,洪水灾害的防治工作越来越被重视。
早先,国际通用的洪水灾害的预测技术是对沟道、沟口进行实地采样,根据有可能的灾害种类和等级确定危险指数。最具代表性的是Aulitzky提出的荒溪分类及危险区制图指数法,通过收集9种指标51个具体因子划分出不同等级的危险区。随着地理信息系统、数字高程模型、遥感和卫星遥测等现代科学技术高速发展,基于平面浅水波方程的模拟方法被广泛应用于对流域内洪水、洪水及尤其是山洪等灾害现象的预测和定量分析中。该方法不受模型实验相似性理论的限制,可快速、精确的揭示灾害发生的原因及过程,从而大大提高洪水等突发洪水的预见期。最常用的平面二维模拟数值方法包括有限元法、有限体积法和有限差分法。针对洪水模拟,Jin等提出了使用二阶迎风格式离散动量方程的非线性对流项和二阶leap-frog格式离散线性对流项模拟Nakdong 流域的泛滥过程。Roger 等提出一种MacCormack+TVD格式的边界拟合数值模型,通过检测每个时间步长下的水深是否到达干枯临界值判定动边界范围。丹麦DHI水资源与环境研究院采用隐式交替方向算法开发了水动力学模拟软件Mike21。
在面向洪水尤其是山洪灾害二维数值模拟中,由于流域地形陡峭,水流量急速变化,在较大计算时间步长下的动边界处理过程中,对流出量简单的归零处理往往导致负水深,造成模拟过程中的质量与动量不守恒,最终导致计算数值不稳定甚至计算发散而得不到结果。近年来,SatofukaMizuyama(2005)采用一维数值模型计算了明渠洪水对山区河床、水坝造成的影响。而Nakatani等(2008)采用二维数值模拟模型,基于洪水淹没深度和沉降的变化对其形成的冲积扇进行了模拟计算。
由于洪水发生地的地形具有陡峭且凹凸不平的特点,因此洪水的边界范围、流速和水深都急剧变化。在以往的移动边界计算中,经常发生水面标高低于地面标高的情况,也就是计算后的水深变为负值。导致计算域内的质量不能保证守恒,稳定性变差,甚至计算发散而得不到结果,从而直接影响到洪水演进数值模拟计算无法顺利进行。
发明内容
本发明所要解决的技术问题是提供一种基于数字高程模型的洪水演进数值模拟计算修正方法,该方法解决了当出现水面标高低于地面标高的情况,洪水演进数值计算无法顺利进行的技术问题。
 为了解决上述问题,本发明提供了一种基于数字高程模型的洪水演进数值模拟计算修正方法,包括:
①利用有理函数模型建立一计算域内的洪水高发地区的数字高程模型,并对所述计算域进行二维规则网格划分,以建立二维规则网格模型及进行网格参数设定,建立所述二维规则网格模型及网格参数设定的方法包括:A:建立所述二维规则网格模型,即所述计算域按照一定空间步长(                                               
Figure 2013105712474100002DEST_PATH_IMAGE004
)进行分割后得到二维规则网格模型,定义(ij)为该二维规则网格模型中一网格,且该网格为正方形网格;B:网格参数设定,即设定该二维规则网格模型中任一网格的水深为H,且与该网格按X轴同方向的单宽流量M,与Y轴同方向的单宽流量 N;同时设定所述洪水演进数值计算的时间步n,以及该时间步n对应的时间步长
Figure 2013105712474100002DEST_PATH_IMAGE006
其中,所述数字高程模型,即 DEM,用一组有序数值阵列形式表示地面高程的一种实体地面模型,定义(ij)为该二维规则网格模型中一网格,所述网格为正方形网格,也称为栅格DEM;所述ij的取值i=1,2,3,……,j=1,2,3,……,利用ij来限定网格在所述二维规则网格模型中的具体位置,即网格(1,1),网格(1,2)类似的表示形式。通过遥感影像建立一计算域内所述洪水高发地区的数字高程模型的技术方案在现有技术中已经公开,这里不再重复。
所述单宽流量:单位宽度上河流或输水管的输水流量,这里的单位宽度即网格。
所述空间步长也可以简称步长,针对DEM空间的分辨力,也就是网格的精度,一般为30M、90M两种,就是用30*30或90*90的DEM网格来表示地形,当然也可以根据计算需要,另外设置相应步长,其中,
Figure 993893DEST_PATH_IMAGE002
Figure 973350DEST_PATH_IMAGE004
分别表示该二维规则网格模型中一个网格的长、宽,这里
Figure 753087DEST_PATH_IMAGE002
=
所述时间步n为整个计算过程中的时刻间隔,即计算步,所述时间步n的取值n=1,2,3,……;所述时间步长
Figure 591697DEST_PATH_IMAGE006
:相邻两计算步的时间间隔,对应的时间步长,一般可以去0.1s或0.01s,也可以根据计算设置任意时间。
②通过单宽流量公式获得所述二维规则网格模型中各网格在n+1时间步的所述单宽流量M和单宽流量 N;其方法,包括:
预设初始条件,即,在n时间步,且设定位于所述计算域的边界上的流量输入起始界的各边界网格的初值参数,该初值参数包括:初始水深
Figure 2013105712474100002DEST_PATH_IMAGE008
,所述单宽流量M的对应流速矢量
Figure DEST_PATH_IMAGE010
,以及所述单宽流量N的对应流速矢量
Figure DEST_PATH_IMAGE012
;在所述单宽流量公式中位于所述计算域外的网格的初值参数与该网格相邻的一边界网格的初值参数相同,且位于所述计算域内的网格的初值参数的相应取值为0。
以及,所述单宽流量M和单宽流量N的初始值的计算公式:
Figure DEST_PATH_IMAGE014
     (1);
Figure DEST_PATH_IMAGE016
     (2);
所述单宽流量公式:
Figure DEST_PATH_IMAGE018
  (3); 
  (4); 
③根据所述各网格在n+1时间步的单宽流量M和单宽流量N,建立所述各网格的水深计算式,即
Figure DEST_PATH_IMAGE022
 (5);
其中, n+2时间步作为水深计算的起始时间步,H表示所述网格水深,
Figure DEST_PATH_IMAGE024
表示在所述起始时间步时网格(ij)的区域内的水深;
Figure DEST_PATH_IMAGE026
表示在n时间步的所述网格的区域内的水深,且该时间步的水深为预设值;
Figure DEST_PATH_IMAGE028
表示在n+1时间步的所述网格在X轴方向上流体的流入单宽流量;
Figure DEST_PATH_IMAGE030
表示相邻网格在X轴方向上的流入单宽流量,即,所述网格在X轴方向上的流出单宽流量; 
Figure DEST_PATH_IMAGE032
表示在n+1时间步的所述网格在Y轴方向上流体的流入单宽流量;
Figure DEST_PATH_IMAGE034
表示相邻网格在Y轴方向上的流入单宽流量,即,所述网格在Y轴方向上的流出单宽流量。 
④若步骤③计算出一网格的水深H小于0,即该网格为负水深网格,则引入一修正系数
Figure DEST_PATH_IMAGE036
重新对该负水深网格的水量进行修正计算,直到该负水深网格修正为实际水深后,再转入步骤②通过所述单宽流量公式获得所述二维规则网格模型中各网格在下一时间步的单宽流量M和单宽流量N
其中,当一网格出现负水深时,根据负水深网格在当前时间步n的单宽流量M和单宽流量N计算出该负水深网格的流入总量
Figure DEST_PATH_IMAGE038
和流出总量
Figure DEST_PATH_IMAGE040
所述流入总量公式:
Figure DEST_PATH_IMAGE042
     (6);
所述流出总量公式:
   (7);
所述计算修正系数λ的公式:
Figure DEST_PATH_IMAGE046
     (8); 
并根据公式(1)、(2)、(3)、(4)、(6)、(7)修正当前负水深网格在n+1时间步的流入量
Figure DEST_PATH_IMAGE048
和流出量
Figure DEST_PATH_IMAGE050
,得出所述负水深网格在n+2时间步的实际水深:
Figure DEST_PATH_IMAGE052
      (9)。
进一步,所述步骤①中,利用有理函数模型建立一计算域内的洪水高发地区的数字高程模型的方法包括:
1)对输入的原始影像数据进行分析和处理,并计算相应的有理数模型的参数,以使用所计算出来的有理函数模型获得立体影像对;
2)对原始影像数据进行控制点及连接点的测量、单片定向,并且对立体影像像素数据与原始影像数据之间的误差进行区域网平差处理,以提高立体影像像素数据与原始影像数据之间的拟合精度;
3)生成近似核线影像、定义匹配模板、测量匹配种子点线、自动影像并生成数字高程模型;以及
4)分别生成数字正射影像图和数字线化图,并利用所得数据完成地图产品的制作。
本发明相对于现有技术具有积极的效果:(1)本发明通过洪水高发地区的地形图建立一计算域内的该洪水高发地区的数字高程模型,即利用地形图建立数字高程模型,由于地形图很容易获得,费用较低,地形图上的等高线含有丰富的高程信息,利用这些高程信息生产DEM数据,可以极大的发挥地形图的作用,通过地形图建立数字高程模型的方式与利用遥感影像建立数字高程的方式相比,具有成本低,而且对硬件要求低等特点;(2)本发明克服了在以往的移动边界计算中,经常发生水面标高低于地面标高的情况,也就是计算后的水深变为负值,即出现负水深网格,从而导致计算域内的质量不能保证守恒,稳定性变差,甚至计算发散而得不到结果,直接影响到洪水演进数值计算无法顺利进行的技术问题,通过引入所述修正系数λ,使当出现水面标高低于地面标高(负水深网格)时,洪水演进数值计算得已顺利进行。
附图说明
为了清楚说明本发明的创新原理及其相比于现有产品的技术优势,下面借助于附图通过应用所述原理的非限制性实例说明一个可能的实施例。在图中:
图1为本发明的一种基于数字高程模型的洪水演进数值模拟计算修正方法的流程图;
图2为本发明中公式(6)和(7)的水流方向示意图。
具体实施方式
参照附图,对本发明的实施方式和实施例进行详细说明。
图1示出本发明的基于数字高程模型的洪水演进数值模拟计算修正方法的流程图,现结合图1所述流程图对该修正的方法的各步骤作具体说明。
在步骤S001中,建立计算域内地形的数字高程模型及对计算域进行二维规则网络划分及网格参数设定,具体是:利用有理函数模型建立一计算域内的洪水高发地区的数字高程模型,并对所述计算域进行二维规则网格划分,以建立二维规则网格模型及进行网格参数设定。
其中,所述步骤S001中,通过利用有理函数模型建立一计算域内的洪水高发地区的数字高程模型的方法如下:
1)对输入的原始影像数据进行分析和处理,并计算相应的有理数模型的参数,以使用所计算出来的有理函数模型获得立体影像对;
2)对原始影像数据进行控制点及连接点的测量、单片定向,并且对立体影像像素数据与原始影像数据之间的误差进行区域网平差处理,以提高立体影像像素数据与原始影像数据之间的拟合精度;
3)生成近似核线影像、定义匹配模板、测量匹配种子点线、自动影像并生成数字高程模型;以及
4)分别生成数字正射影像图和数字线化图,并利用所得数据完成地图产品的制作。
该获得数字高程模型的方法,在中国专利文献 授权公告号CN 101604018 B高分辨率遥感影像数据处理方法及其系统中已被公开,具体可以参照其具体实施方式及附图,这里不再详细描述。
其中,建立所述二维规则网格模型及参数设定的方法包括:
A:建立所述二维规则网格模型,即所述计算域按照一定空间步长(
Figure 850378DEST_PATH_IMAGE002
)进行分割后得到二维规则网格模型,定义(ij)为该二维规则网格模型中一网格,且该网格为正方形网格,即
Figure 871304DEST_PATH_IMAGE002
=
B:网格参数设定,即设定该二维规则网格模型中任一网格的水深为H,且与该网格按X轴同方向的单宽流量M,与Y轴同方向的单宽流量 N;同时设定所述洪水演进数值计算的时间步n,以及该时间步n对应的时间步长
Figure 595863DEST_PATH_IMAGE006
;其中,单宽流量M和单宽流量 N均为矢量,也可以用于表示相应流量的方向。
其中,所述数字高程模型,即 DEM,用一组有序数值阵列形式表示地面高程的一种实体地面模型,定义(ij)为该二维规则网格模型中一网格,所述网格为正方形网格,也称为栅格DEM;所述ij的取值i=1,2,3,……,j=1,2,3,……,利用ij来限定网格在所述二维规则网格模型中的具体位置,即网格(1,1),网格(1,2)类似的表示形式。通过遥感影像建立一计算域内所述洪水高发地区的数字高程模型的技术方案在现有技术中已经公开,这里不再重复。
所述单宽流量:单位宽度上河流或输水管的输水流量,这里的单位宽度即网格。
所述空间步长也可以简称步长,针对DEM空间的分辨力,也就是网格的精度,一般为30M、90M两种,就是用30*30或90*90的DEM网格来表示地形,当然也可以根据计算需要,另外设置相应步长,其中,
Figure 149522DEST_PATH_IMAGE004
分别表示该二维规则网格模型中一个网格的长、宽,这里
Figure 735224DEST_PATH_IMAGE002
=
Figure 728850DEST_PATH_IMAGE004
;也可以采用不规则网格,即长方形网格(矩形网格)的方式实现本实施例,过程与正方形相同,这里不再重复。
所述时间步n为整个计算过程中的时刻间隔,即计算步,所述时间步n的取值n=1,2,3,……;所述时间步长
Figure 970475DEST_PATH_IMAGE006
:相邻两计算步的时间间隔,对应的时间步长,一般可以去0.1s或0.01s,也可以根据计算设置任意时间。
在步骤S002中,通过单宽流量公式获得所述二维规则网格模型中各网格在n+1时间步的所述单宽流量M和单宽流量 N;其方法,包括:
预设初始条件,即,在n时间步,且设定位于所述计算域的边界上的流量输入起始界的各边界网格的初值参数,该初值参数包括:初始水深
Figure 307916DEST_PATH_IMAGE008
,所述单宽流量M的对应流速矢量
Figure 13704DEST_PATH_IMAGE010
,以及所述单宽流量 N的对应流速矢量
Figure 348870DEST_PATH_IMAGE012
;在所述单宽流量公式中位于所述计算域外的网格的初值参数与该网格相邻的一边界网格的初值参数相同,且位于所述计算域内的网格的初值参数的相应取值为0。
以及,所述单宽流量M和单宽流量N的初始值的计算公式:
Figure DEST_PATH_IMAGE054
     (1);
     (2);
所述单宽流量公式:
Figure DEST_PATH_IMAGE058
(3);
  (4);
其中,所述初值参数可以通过多参数水文监测仪来获得,获得方式属于现有技术,这里不再详细叙述。
在步骤S003中,根据所述各网格在n+1时间步的单宽流量M和单宽流量N,建立所述各网格的水深计算式,即
 (5);
其中, n+2时间步作为水深计算的起始时间步,H表示所述网格水深,
Figure 825594DEST_PATH_IMAGE024
表示在所述起始时间步时网格(ij)的区域内的水深;
Figure 904409DEST_PATH_IMAGE026
表示在n时间步的所述网格的区域内的水深,且该时间步的水深为预设值;
Figure 464703DEST_PATH_IMAGE028
表示在n+1时间步的所述网格在X轴方向上流体的流入单宽流量;
Figure 236350DEST_PATH_IMAGE030
表示相邻网格在X轴方向上的流入单宽流量,即,所述网格在X轴方向上的流出单宽流量; 
Figure 750770DEST_PATH_IMAGE032
表示在n+1时间步的所述网格在Y轴方向上流体的流入单宽流量;
Figure 695592DEST_PATH_IMAGE034
表示相邻网格在Y轴方向上的流入单宽流量,即,所述网格在Y轴方向上的流出单宽流量。 
在步骤S004中,判断n+2时间步是否有负水深网格存在。
所述网格流出率修正具体步骤包括:若步骤S003中计算出一网格的水深H小于0,即该网格为负水深网格,则引入一修正系数
Figure 48076DEST_PATH_IMAGE036
重新对该负水深网格的水量进行修正计算,直到该负水深网格修正为实际水深后,再转入步骤S002通过所述单宽流量公式获得所述二维网格模型中各网格在下一时间步的单宽流量M和单宽流量N,该下一时间步表示一种循环关系,即开始下一个计算周期。
在步骤S005中,结合图2,其中,当一网格出现负水深时,根据负水深网格在当前时间步n的单宽流量M和单宽流量N计算出该负水深网格的流入总量
Figure DEST_PATH_IMAGE064
和流出总量
所述流入总量公式:
Figure DEST_PATH_IMAGE068
     (6);
所述流出总量公式:
Figure DEST_PATH_IMAGE070
   (7);
在步骤S006中,用于所述计算修正系数
Figure 744287DEST_PATH_IMAGE036
,该计算修正系数λ的公式:
Figure DEST_PATH_IMAGE072
        (8);
在步骤S007中,根据公式(1)、(2)、(3)、(4)、(6)、(7)修正当前负水深网格在n+1时间步的流入量
Figure DEST_PATH_IMAGE073
和流出量
Figure DEST_PATH_IMAGE074
,即,按照公式(1)、(2)、(3)、(4)获得的在n+1时间步的单宽流量M和单宽流量N分别代入公式(6)、(7)。     
在步骤S008中,根据上述步骤S007和S006中的相应计算,得出所述负水深网格在n+2时间步的实际水深:
Figure DEST_PATH_IMAGE076
      (9);
在步骤S009中,输出网格的实际水深。
在步骤S010中,转入步骤S002通过所述单宽流量公式获得所述二维网格模型中各网格在下一时间步的单宽流量M和单宽流量N
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (2)

1.一种基于数字高程模型的洪水演进数值模拟计算修正方法,包括:
①利用有理函数模型建立一计算域内的洪水高发地区的数字高程模型,并对所述计算域进行二维规则网格划分,以建立二维规则网格模型及进行网格参数设定,建立所述二维规则网格模型及网格参数设定的方法包括:
A:建立所述二维规则网格模型,即所述计算域按照一定空间步长(                                                
Figure 2013105712474100001DEST_PATH_IMAGE001
Figure 169317DEST_PATH_IMAGE002
)进行分割后得到二维规则网格模型,定义(ij)为该二维规则网格模型中一网格,且该网格为正方形网格,即
Figure 564526DEST_PATH_IMAGE001
=
Figure 939750DEST_PATH_IMAGE002
B:网格参数设定,即设定所述二维规则网格模型中任一网格的水深为H,且与该网格按X轴同方向的单宽流量M,与Y轴同方向的单宽流量 N;同时设定所述洪水演进数值计算的时间步n,以及该时间步n对应的时间步长
Figure 2013105712474100001DEST_PATH_IMAGE003
②通过单宽流量公式获得所述二维规则网格模型中各网格在n+1时间步的所述单宽流量M和单宽流量 N;其方法,包括:
预设初始条件,即,在n时间步,且设定位于所述计算域的边界上的流量输入起始界的各边界网格的初值参数,该初值参数包括:初始水深
Figure 886846DEST_PATH_IMAGE004
,所述单宽流量M的对应流速矢量
Figure 2013105712474100001DEST_PATH_IMAGE005
,以及所述单宽流量 N的对应流速矢量
Figure 779978DEST_PATH_IMAGE006
;在所述单宽流量公式中位于所述计算域外的网格的初值参数与该网格相邻的一边界网格的初值参数相同,且位于所述计算域内的网格的初值参数的相应取值为0;
以及,所述单宽流量M单宽流量N的初始值的计算公式:
Figure 2013105712474100001DEST_PATH_IMAGE007
     (1);
     (2);
所述单宽流量公式:
Figure 834708DEST_PATH_IMAGE010
(3);
Figure 406502DEST_PATH_IMAGE012
  (4);
③根据所述各网格在n+1时间步的单宽流量M和单宽流量N,建立所述各网格的水深计算式,即
Figure 160831DEST_PATH_IMAGE014
 (5);
其中, n+2时间步作为水深计算的起始时间步,H表示所述网格水深,
Figure DEST_PATH_IMAGE015
表示在所述起始时间步时网格(ij)的区域内的水深;表示在n时间步的所述网格的区域内的水深,且该时间步的水深为预设值;
Figure DEST_PATH_IMAGE017
表示在n+1时间步的所述网格在X轴方向上流体的流入单宽流量;
Figure 234278DEST_PATH_IMAGE018
表示相邻网格在X轴方向上的流入单宽流量,即,所述网格在X轴方向上的流出单宽流量; 
Figure DEST_PATH_IMAGE019
表示在n+1时间步的所述网格在Y轴方向上流体的流入单宽流量;
Figure 726439DEST_PATH_IMAGE020
表示相邻网格在Y轴方向上的流入单宽流量,即,所述网格在Y轴方向上的流出单宽流量; 
④若步骤③计算出一网格的水深H小于0,即该网格为负水深网格,则引入一修正系数
Figure DEST_PATH_IMAGE021
重新对该负水深网格的水量进行修正计算,直到该负水深网格修正为实际水深后,再转入步骤②通过所述单宽流量公式获得所述二维规则网格模型中各网格在下一时间步的单宽流量M和单宽流量N
其中,当一网格出现负水深时,根据负水深网格在当前时间步n的单宽流量M和单宽流量N计算出该负水深网格的流入总量
Figure 591233DEST_PATH_IMAGE022
和流出总量
Figure DEST_PATH_IMAGE023
所述流入总量公式:
Figure 990991DEST_PATH_IMAGE024
     (6);
所述流出总量公式:   (7);
所述计算修正系数λ的公式:
Figure DEST_PATH_IMAGE027
        (8);
并根据公式(1)、(2)、(3)、(4)、(6)、(7)修正当前负水深网格在n+1时间步的流入量和流出量
Figure DEST_PATH_IMAGE029
,得出所述负水深网格在n+2时间步的实际水深:
Figure DEST_PATH_IMAGE031
      (9)。
2.   根据权利要求1所述的基于数字高程模型的洪水演进数值模拟计算修正方法,其特征在于,所述步骤①中,利用有理函数模型建立一计算域内的洪水高发地区的数字高程模型的方法包括:
1)对输入的原始影像数据进行分析和处理,并计算相应的有理数模型的参数,以使用所计算出来的有理函数模型获得立体影像对;
2)对原始影像数据进行控制点及连接点的测量、单片定向,并且对立体影像像素数据与原始影像数据之间的误差进行区域网平差处理,以提高立体影像像素数据与原始影像数据之间的拟合精度;
3)生成近似核线影像、定义匹配模板、测量匹配种子点线、自动影像并生成数字高程模型;以及
4)分别生成数字正射影像图和数字线化图,并利用所得数据完成地图产品的制作。
CN201310571247.4A 2013-11-13 2013-11-13 一种基于数字高程模型的洪水演进数值模拟计算修正方法 Withdrawn CN103559411A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310571247.4A CN103559411A (zh) 2013-11-13 2013-11-13 一种基于数字高程模型的洪水演进数值模拟计算修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310571247.4A CN103559411A (zh) 2013-11-13 2013-11-13 一种基于数字高程模型的洪水演进数值模拟计算修正方法

Publications (1)

Publication Number Publication Date
CN103559411A true CN103559411A (zh) 2014-02-05

Family

ID=50013657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310571247.4A Withdrawn CN103559411A (zh) 2013-11-13 2013-11-13 一种基于数字高程模型的洪水演进数值模拟计算修正方法

Country Status (1)

Country Link
CN (1) CN103559411A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870699A (zh) * 2014-03-21 2014-06-18 中国地质大学(武汉) 基于双层异步迭代策略的水动力学洪水演进模拟方法
CN105844709A (zh) * 2016-03-25 2016-08-10 中国水利水电科学研究院 复杂河道地形流域洪水演进虚拟仿真的淹没线追踪方法
CN107451372A (zh) * 2017-08-09 2017-12-08 中国水利水电科学研究院 一种运动波与动力波相结合的山区洪水过程数值模拟方法
CN109145316A (zh) * 2017-06-14 2019-01-04 浙江贵仁信息科技股份有限公司 一种二维水动力模型垂向分层耦合方法、系统及终端
CN109190168A (zh) * 2018-07-31 2019-01-11 中国科学院遥感与数字地球研究所 一种实时测量数据支持下的洪水演进模拟动态修正方法
CN111274742A (zh) * 2020-01-17 2020-06-12 西安理工大学 水动力模型数值模拟统一地理空间基准改化方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870699A (zh) * 2014-03-21 2014-06-18 中国地质大学(武汉) 基于双层异步迭代策略的水动力学洪水演进模拟方法
CN103870699B (zh) * 2014-03-21 2017-01-18 中国地质大学(武汉) 基于双层异步迭代策略的水动力学洪水演进模拟方法
CN105844709A (zh) * 2016-03-25 2016-08-10 中国水利水电科学研究院 复杂河道地形流域洪水演进虚拟仿真的淹没线追踪方法
CN105844709B (zh) * 2016-03-25 2019-05-07 中国水利水电科学研究院 复杂河道地形流域洪水演进虚拟仿真的淹没线追踪方法
CN109145316A (zh) * 2017-06-14 2019-01-04 浙江贵仁信息科技股份有限公司 一种二维水动力模型垂向分层耦合方法、系统及终端
CN109145316B (zh) * 2017-06-14 2021-05-07 浙江贵仁信息科技股份有限公司 一种二维水动力模型垂向分层耦合方法、系统及终端
CN107451372A (zh) * 2017-08-09 2017-12-08 中国水利水电科学研究院 一种运动波与动力波相结合的山区洪水过程数值模拟方法
CN109190168A (zh) * 2018-07-31 2019-01-11 中国科学院遥感与数字地球研究所 一种实时测量数据支持下的洪水演进模拟动态修正方法
CN111274742A (zh) * 2020-01-17 2020-06-12 西安理工大学 水动力模型数值模拟统一地理空间基准改化方法
CN111274742B (zh) * 2020-01-17 2023-06-20 西安理工大学 水动力模型数值模拟统一地理空间基准改化方法

Similar Documents

Publication Publication Date Title
CN103559411A (zh) 一种基于数字高程模型的洪水演进数值模拟计算修正方法
Gichamo et al. River cross-section extraction from the ASTER global DEM for flood modeling
Nkiaka et al. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: a case study in the Logone catchment, Lake Chad basin
Ramly et al. Application of HEC-GeoHMS and HEC-HMS as rainfall–runoff model for flood simulation
Du et al. Development and testing of a new storm runoff routing approach based on time variant spatially distributed travel time method
CN102902893B (zh) 一种基于dem的汇水区降雨积水深度的计算方法
Shao et al. RunCA: A cellular automata model for simulating surface runoff at different scales
CN104652347B (zh) 山区非静态水体水位与淹没影响人口关系评价方法
CN103530461A (zh) 用于洪水演进数值计算的网格流出率的修正方法
Remesan et al. Effect of baseline meteorological data selection on hydrological modelling of climate change scenarios
Kabiri et al. Comparison of SCS and Green-Ampt methods in surface runoff-flooding simulation for Klang Watershed in Malaysia
Rao et al. A distributed model for real-time flood forecasting in the Godavari Basin using space inputs
Birgand et al. Measuring flow in non-ideal conditions for short-term projects: Uncertainties associated with the use of stage-discharge rating curves
CN105760666A (zh) 一种基于dem的汇水区临界雨量计算方法
CN107436977A (zh) 复杂河网分流的数值模拟方法
CN110147646B (zh) 一种数值模拟框架下线性挡水构筑物的过流处理方法
CN116167216A (zh) 漫滩路径的生成方法及装置、电子设备、存储介质
Couturier et al. Improvement of surface flow network prediction for the modeling of erosion processes in agricultural landscapes
Huang An effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and downstream topographic characteristics
CN104750936A (zh) 一种基于gis的城市水文径流计算方法及系统
CN103559403A (zh) 洪水演进数值模拟计算中网格流出率的修正方法
CN103530462A (zh) 面向山洪演进数值模拟的计算网格流出率的修正方法
Zhou et al. Modified CN method for small watershed infiltration simulation
Dahm et al. Next generation flood modelling using 3Di: A case study in Taiwan
Gosain et al. Hydrological modelling: A case study of the Kosi Himalayan basin using SWAT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication

Application publication date: 20140205