CN103530461A - 用于洪水演进数值计算的网格流出率的修正方法 - Google Patents
用于洪水演进数值计算的网格流出率的修正方法 Download PDFInfo
- Publication number
- CN103530461A CN103530461A CN201310478327.5A CN201310478327A CN103530461A CN 103530461 A CN103530461 A CN 103530461A CN 201310478327 A CN201310478327 A CN 201310478327A CN 103530461 A CN103530461 A CN 103530461A
- Authority
- CN
- China
- Prior art keywords
- grid
- per unit
- unit width
- water
- discharge per
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/40—Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种用于洪水演进数值计算的网格流出率的修正方法,包括:通过修正系数对负水深网格进行修正,获得该网格的实际水深,克服了在以往的移动边界计算中,经常发生水面标高低于地面标高的情况,也就是计算后的水深变为负值,即出现负水深网格,从而导致计算域内的质量不能保证守恒,稳定性变差,甚至计算发散而得不到结果,直接影响到洪水演进数值计算无法顺利进行的技术问题,通过引入所述修正系数λ,使当出现水面标高低于地面标高时,洪水演进数值模拟计算得已顺利进行。
Description
技术领域
本发明涉及一种用于洪水演进数值计算的网格流出率的修正方法。
背景技术
洪水灾害是指山丘地区在强降雨影响下,短时间内形成具有较大洪峰流量的洪水。我国地处东亚季风区,山区和丘陵地区占国土地面积的三分之二。其中,洪水灾害的优先预防面积达97万,影响人口1.3亿。近年洪水灾害造成的死亡人数占全国洪涝灾害死亡人数的比例超过70%,成为造成人员伤亡的主要灾种。随着社会经济的发展,洪水灾害的防治工作越来越被重视。
早先,国际通用的洪水灾害的预测技术是对沟道、沟口进行实地采样,根据有可能的灾害种类和等级确定危险指数。最具代表性的是Aulitzky提出的荒溪分类及危险区制图指数法,通过收集9种指标51个具体因子划分出不同等级的危险区。随着地理信息系统、数字高程模型、遥感和卫星遥测等现代科学技术高速发展,基于平面浅水波方程的模拟方法被广泛应用于对流域内洪水、洪水及泥石流等灾害现象的预测和定量分析中。该方法不受模型实验相似性理论的限制,可快速、精确的揭示灾害发生的原因及过程,从而大大提高洪水等突发洪水的预见期。最常用的平面二维模拟数值方法包括有限元法、有限体积法和有限差分法。针对洪水模拟,Jin等提出了使用二阶迎风格式离散动量方程的非线性对流项和二阶leap-frog格式离散线性对流项模拟Nakdong 流域的泛滥过程。Roger 等提出一种MacCormack+TVD格式的边界拟合数值模型,通过检测每个时间步长下的水深是否到达干枯临界值判定动边界范围。丹麦DHI水资源与环境研究院采用隐式交替方向算法开发了水动力学模拟软件Mike21。
在面向洪水泥石流灾害二维数值模拟中,由于流域地形陡峭,水流量急速变化,在较大计算时间步长下的动边界处理过程中,对流出量简单的归零处理往往导致负水深,造成模拟过程中的质量与动量不守恒,最终导致计算数值不稳定甚至计算发散而得不到结果。近年来,Satofuka和Mizuyama(2005)采用一维数值模型计算了明渠洪水对山区河床、水坝造成的影响。而Nakatani等(2008)采用二维数值模拟模型,基于洪水淹没深度和沉降的变化对其形成的冲积扇进行了模拟计算。
由于洪水发生地的地形具有陡峭且凹凸不平的特点,因此洪水的边界范围、流速和水深都急剧变化。在以往的移动边界计算中,经常发生水面标高低于地面标高的情况,也就是计算后的水深变为负值。导致计算域内的质量不能保证守恒,稳定性变差,甚至计算发散而得不到结果,从而直接影响到洪水演进数值模拟计算无法顺利进行。
发明内容
本发明所要解决的技术问题是提供一种用于洪水演进数值计算的网格流出率的修正方法,该修正方法解决了当出现水面标高低于地面标高的情况,洪水演进数值计算无法顺利进行的技术问题。
为了解决上述问题,本发明提供了一种用于洪水演进数值计算的网格流出率的修正方法,包括:
①获取一洪水高发地区的遥感影像,通过该遥感影像建立一计算域内所述洪水高发地区的数字高程模型;
建立所述数字高程模型的方法包括:
所述计算域按照一定空间步长( 、)进行分割后得到二维规则网格模型,定义(i,j)为该二维规则网格模型中一网格,且该网格为正方形网格,其中,设定该二维规则网格模型中任一网格的水深为H,且与该网格按X轴同方向的单宽流量M,与Y轴同方向的单宽流量 N;同时设定所述洪水演进数值计算的时间步n,以及该时间步n对应的时间步长。
②通过单宽流量公式获得所述二维规则网格模型中各网格在n+1时间步的所述单宽流量M和单宽流量 N;其方法,包括:
预设初始条件,即,在n时间步,且设定位于所述计算域的边界上的流量输入起始界的各边界网格的初值参数,该初值参数包括:初始水深,所述单宽流量M的对应流速矢量,以及所述单宽流量N的对应流速矢量;在所述单宽流量公式中位于所述计算域外的网格的初值参数与该网格相邻的一边界网格的初值参数相同,且位于所述计算域内的网格的初值参数的相应取值为0。
以及,所述单宽流量M和单宽流量N的初始值的计算公式:
所述单宽流量公式:
③根据所述各网格在n+1时间步的单宽流量M和单宽流量N,建立所述各网格的水深计算式,即
其中, n+2时间步作为水深计算的起始时间步,H表示所述网格水深,表示在所述起始时间步时网格(i,j)的区域内的水深;表示在n时间步的所述网格的区域内的水深,且该时间步的水深为预设值;表示在n+1时间步的所述网格在X轴方向上流体的流入单宽流量;表示相邻网格在X轴方向上的流入单宽流量,即,所述网格在X轴方向上的流出单宽流量; 表示在n+1时间步的所述网格在Y轴方向上流体的流入单宽流量;表示相邻网格在Y轴方向上的流入单宽流量,即,所述网格在Y轴方向上的流出单宽流量。
④若步骤③计算出一网格的水深H小于0,即该网格为负水深网格,则引入一修正系数重新对该负水深网格的水量进行修正计算,直到该负水深网格修正为实际水深后,再转入步骤②通过所述单宽流量公式获得所述二维规则网格模型中各网格在下一时间步的单宽流量M和单宽流量N。
所述流入总量公式:
所述流出总量公式:
所述计算修正系数λ的公式:
本发明相对于现有技术具有积极的效果:本发明克服了在以往的移动边界计算中,经常发生水面标高低于地面标高的情况,也就是计算后的水深变为负值,即出现负水深网格,从而导致计算域内的质量不能保证守恒,稳定性变差,甚至计算发散而得不到结果,直接影响到洪水演进数值计算无法顺利进行的技术问题,通过引入所述修正系数λ,使当出现水面标高低于地面标高(负水深网格)时,洪水演进数值计算得已顺利进行。
附图说明
为了清楚说明本发明的创新原理及其相比于现有产品的技术优势,下面借助于附图通过应用所述原理的非限制性实例说明一个可能的实施例。在图中:
图1为本发明的一种用于洪水演进数值计算的网格流出率的修正方法的流程图;
图2为本发明中公式(6)和(7)的水流方向示意图。
具体实施方式
参照附图,对本发明的实施方式和实施例进行详细说明。
图1示出本发明的用于洪水演进数值计算的网格流出率的修正方法的流程图,现结合图1所述流程图对该修正方法的各步骤作具体说明。
在步骤S001中,建立计算域内地形的数字高程模型,其具体实施方法包括:获取一洪水高发地区的遥感影像,通过该遥感影像建立一计算域内所述洪水高发地区的数字高程模型。
建立所述数字高程模型的方法包括:
所述计算域按照一定空间步长(、)进行分割后得到二维规则网格模型,定义(i,j)为该二维规则网格模型中一网格,且该网格为正方形网格,即=,其中,设定该二维规则网格模型中任一网格的水深为H,且与该网格按X轴同方向的单宽流量M,与Y轴同方向的单宽流量 N;同时设定所述洪水演进数值计算的时间步n,以及该时间步n对应的时间步长;其中,单宽流量M和单宽流量 N均为矢量,也可以用于表示相应流量的方向。
其中,所述数字高程模型,即 DEM,用一组有序数值阵列形式表示地面高程的一种实体地面模型,定义(i,j)为该二维规则网格模型中一网格,所述网格为正方形网格,也称为栅格DEM;所述i和j的取值i=1,2,3,……,j=1,2,3,……,利用i和j来限定网格在所述二维规则网格模型中的具体位置,即网格(1,1),网格(1,2)类似的表示形式。通过遥感影像建立一计算域内所述洪水高发地区的数字高程模型的技术方案在现有技术中已经公开,这里不再重复。
所述单宽流量:单位宽度上河流或输水管的输水流量,这里的单位宽度即网格。
所述空间步长也可以简称步长,针对DEM空间的分辨力,也就是网格的精度,一般为30M、90M两种,就是用30*30或90*90的DEM网格来表示地形,当然也可以根据计算需要,另外设置相应步长,其中,、分别表示该二维规则网格模型中一个网格的长、宽。
所述时间步n为整个计算过程中的时刻间隔,即计算步,所述时间步n的取值n=1,2,3,……;所述时间步长:相邻两计算步的时间间隔,对应的时间步长,一般可以去0.1s或0.01s,也可以根据计算设置任意时间。
在步骤S002中,通过单宽流量公式获得所述二维规则网格模型中各网格在n+1时间步的所述单宽流量M和单宽流量 N;其方法,包括:
预设初始条件,即,在n时间步,且设定位于所述计算域的边界上的流量输入起始界的各边界网格的初值参数,该初值参数包括:初始水深,所述单宽流量M的对应流速矢量,以及所述单宽流量 N的对应流速矢量;在所述单宽流量公式中位于所述计算域外的网格的初值参数与该网格相邻的一边界网格的初值参数相同,且位于所述计算域内的网格的初值参数的相应取值为0。
以及,所述单宽流量M和单宽流量N的初始值的计算公式:
所述单宽流量公式:
其中,所述初值参数可以通过多参数水文监测仪来获得,获得方式属于现有技术,这里不再详细叙述。
在步骤S003中,根据所述各网格在n+1时间步的单宽流量M和单宽流量N,建立所述各网格的水深计算式,即
其中, n+2时间步作为水深计算的起始时间步,H表示所述网格水深,表示在所述起始时间步时网格(i,j)的区域内的水深;表示在n时间步的所述网格的区域内的水深,且该时间步的水深为预设值;表示在n+1时间步的所述网格在X轴方向上流体的流入单宽流量;表示相邻网格在X轴方向上的流入单宽流量,即,所述网格在X轴方向上的流出单宽流量; 表示在n+1时间步的所述网格在Y轴方向上流体的流入单宽流量;表示相邻网格在Y轴方向上的流入单宽流量,即,所述网格在Y轴方向上的流出单宽流量。
在步骤S004中,判断n+2时间步是否有负水深网格存在。
所述网格流出率修正具体步骤包括:若步骤S003中计算出一网格的水深H小于0,即该网格为负水深网格,则引入一修正系数重新对该负水深网格的水量进行修正计算,直到该负水深网格修正为实际水深后,再转入步骤S002通过所述单宽流量公式获得所述二维网格模型中各网格在下一时间步的单宽流量M和单宽流量N,该下一时间步表示一种循环关系,即开始下一个计算周期。
在步骤S007中,根据公式(1)、(2)、(3)、(4)、(6)、(7)修正当前负水深网格在n+1时间步的流入量和流出量,即,按照公式(1)、(2)、(3)、(4)获得的在n+1时间步的单宽流量M和单宽流量N分别代入公式(6)、(7)。
在步骤S008中,根据上述步骤S007和S006中的相应计算,得出所述负水深网格在n+2时间步的实际水深:
在步骤S009中,输出网格的实际水深。
在步骤S010中,转入步骤S002通过所述单宽流量公式获得所述二维网格模型中各网格在下一时间步的单宽流量M和单宽流量N。
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。
Claims (1)
1.一种用于洪水演进数值计算的网格流出率的修正方法,包括:
①获取一洪水高发地区的遥感影像,通过该遥感影像建立一计算域内所述洪水高发地区的数字高程模型;
建立所述数字高程模型的方法包括:
所述计算域按照一定空间步长( 、)进行分割后得到二维规则网格模型,定义(i,j)为该二维规则网格模型中一网格,且该网格为正方形网格,其中,设定该二维规则网格模型中任一网格的水深为H,且与该网格按X轴同方向的单宽流量M,与Y轴同方向的单宽流量 N;同时设定所述洪水演进数值计算的时间步n,以及该时间步n对应的时间步长;
②通过单宽流量公式获得所述二维规则网格模型中各网格在n+1时间步的所述单宽流量M和单宽流量 N;其方法,包括:
预设初始条件,即,在n时间步,且设定位于所述计算域的边界上的流量输入起始界的各边界网格的初值参数,该初值参数包括:初始水深,所述单宽流量M的对应流速矢量,以及所述单宽流量 N的对应流速矢量;在所述单宽流量公式中位于所述计算域外的网格的初值参数与该网格相邻的一边界网格的初值参数相同,且位于所述计算域内的网格的初值参数的相应取值为0;
以及,所述单宽流量M和单宽流量N的初始值的计算公式:
所述单宽流量公式:
③根据所述各网格在n+1时间步的单宽流量M和单宽流量N,建立所述各网格的水深计算式,即
其中, n+2时间步作为水深计算的起始时间步,H表示所述网格水深,表示在所述起始时间步时网格(i,j)的区域内的水深;表示在n时间步的所述网格的区域内的水深,且该时间步的水深为预设值;表示在n+1时间步的所述网格在X轴方向上流体的流入单宽流量;表示相邻网格在X轴方向上的流入单宽流量,即,所述网格在X轴方向上的流出单宽流量; 表示在n+1时间步的所述网格在Y轴方向上流体的流入单宽流量;表示相邻网格在Y轴方向上的流入单宽流量,即,所述网格在Y轴方向上的流出单宽流量;
④若步骤③计算出一网格的水深H小于0,即该网格为负水深网格,则引入一修正系数重新对该负水深网格的水量进行修正计算,直到该负水深网格修正为实际水深后,再转入步骤②通过所述单宽流量公式获得所述二维规则网格模型中各网格在下一时间步的单宽流量M和单宽流量N;
所述计算修正系数λ的公式:
(8);
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310478327.5A CN103530461A (zh) | 2013-10-14 | 2013-10-14 | 用于洪水演进数值计算的网格流出率的修正方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310478327.5A CN103530461A (zh) | 2013-10-14 | 2013-10-14 | 用于洪水演进数值计算的网格流出率的修正方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103530461A true CN103530461A (zh) | 2014-01-22 |
Family
ID=49932468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310478327.5A Withdrawn CN103530461A (zh) | 2013-10-14 | 2013-10-14 | 用于洪水演进数值计算的网格流出率的修正方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103530461A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103559403A (zh) * | 2013-11-11 | 2014-02-05 | 张驰 | 洪水演进数值模拟计算中网格流出率的修正方法 |
CN104766132A (zh) * | 2015-03-02 | 2015-07-08 | 中国水利水电科学研究院 | 基于遥感的洪水淹没历时模拟系统及方法 |
CN104978741A (zh) * | 2015-06-10 | 2015-10-14 | 中国科学院遥感与数字地球研究所 | 一种基于水平集的水体边界时空无缝插值方法 |
CN106599457A (zh) * | 2016-12-13 | 2017-04-26 | 中国水利水电科学研究院 | 一种基于Godunov格式一、二维耦合技术的山洪数值模拟方法 |
CN109145316A (zh) * | 2017-06-14 | 2019-01-04 | 浙江贵仁信息科技股份有限公司 | 一种二维水动力模型垂向分层耦合方法、系统及终端 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090055143A1 (en) * | 2007-08-16 | 2009-02-26 | Takashi Ichikawa | Simulation method and simulation program |
CN102043888A (zh) * | 2011-01-25 | 2011-05-04 | 大连理工大学 | 一种钻井平台压载水舱阴极保护系统的优化设计方法 |
CN102804187A (zh) * | 2009-06-25 | 2012-11-28 | 旭硝子株式会社 | 物理量计算方法、数值解析方法、物理量计算程序、数值解析程序、物理量计算装置及数值解析装置 |
-
2013
- 2013-10-14 CN CN201310478327.5A patent/CN103530461A/zh not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090055143A1 (en) * | 2007-08-16 | 2009-02-26 | Takashi Ichikawa | Simulation method and simulation program |
CN102804187A (zh) * | 2009-06-25 | 2012-11-28 | 旭硝子株式会社 | 物理量计算方法、数值解析方法、物理量计算程序、数值解析程序、物理量计算装置及数值解析装置 |
CN102043888A (zh) * | 2011-01-25 | 2011-05-04 | 大连理工大学 | 一种钻井平台压载水舱阴极保护系统的优化设计方法 |
Non-Patent Citations (3)
Title |
---|
叶金印 等: "湿润地区中小河流山洪预报方法研究与应用", 《河海大学学报(自然科学版)》 * |
宋新远: "大型滑坡灾害数值模拟研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
马晓: "基于GIS的黄河水土流失评价预测模型研究", 《中国博士学位论文全文数据库 农业科技辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103559403A (zh) * | 2013-11-11 | 2014-02-05 | 张驰 | 洪水演进数值模拟计算中网格流出率的修正方法 |
CN104766132A (zh) * | 2015-03-02 | 2015-07-08 | 中国水利水电科学研究院 | 基于遥感的洪水淹没历时模拟系统及方法 |
CN104978741A (zh) * | 2015-06-10 | 2015-10-14 | 中国科学院遥感与数字地球研究所 | 一种基于水平集的水体边界时空无缝插值方法 |
CN104978741B (zh) * | 2015-06-10 | 2019-04-26 | 中国科学院遥感与数字地球研究所 | 一种基于水平集的水体边界时空无缝插值方法 |
CN106599457A (zh) * | 2016-12-13 | 2017-04-26 | 中国水利水电科学研究院 | 一种基于Godunov格式一、二维耦合技术的山洪数值模拟方法 |
CN106599457B (zh) * | 2016-12-13 | 2017-12-05 | 中国水利水电科学研究院 | 一种基于Godunov格式一、二维耦合技术的山洪数值模拟方法 |
CN109145316A (zh) * | 2017-06-14 | 2019-01-04 | 浙江贵仁信息科技股份有限公司 | 一种二维水动力模型垂向分层耦合方法、系统及终端 |
CN109145316B (zh) * | 2017-06-14 | 2021-05-07 | 浙江贵仁信息科技股份有限公司 | 一种二维水动力模型垂向分层耦合方法、系统及终端 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yao et al. | Bank erosion and accretion along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008 | |
CN103559411A (zh) | 一种基于数字高程模型的洪水演进数值模拟计算修正方法 | |
CN109543275B (zh) | 一种城区地表径流二维数值模拟方法 | |
CN103530461A (zh) | 用于洪水演进数值计算的网格流出率的修正方法 | |
Kalantari et al. | On the utilization of hydrological modelling for road drainage design under climate and land use change | |
JP2008050903A (ja) | 洪水予測方法および洪水予測システム | |
CN113792448B (zh) | 一种河道与泛区凌汛壅水-溃堤-淹没耦合模拟方法 | |
Joseph et al. | Assessment of environmental flow requirements using a coupled surface water-groundwater model and a flow health tool: A case study of Son river in the Ganga basin | |
CN102902893A (zh) | 一种基于dem的汇水区降雨积水深度的计算方法 | |
Supharatid | Skill of precipitation projectionin the Chao Phraya river Basinby multi-model ensemble CMIP3-CMIP5 | |
Xie et al. | Reclamation shifts the evolutionary paradigms of tidal channel networks in the Yellow River Delta, China | |
CN114386337A (zh) | 一种区域汇流和排水模拟方法和装置 | |
Khalil et al. | Floodplain mapping for Indus river: Chashma–Taunsa reach | |
CN104750936A (zh) | 一种基于gis的城市水文径流计算方法及系统 | |
Huang | An effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and downstream topographic characteristics | |
Aniskin et al. | Potential impact of land-use changes on river basin hydraulic parameters subjected to rapid urbanization | |
Wahyudi et al. | Simulating on water storage and pump capacity of “Kencing” river polder system in Kudus regency, Central Java, Indonesia | |
CN103530462A (zh) | 面向山洪演进数值模拟的计算网格流出率的修正方法 | |
Zhong et al. | A study on compound flood prediction and inundation simulation under future scenarios in a coastal city | |
CN103559403A (zh) | 洪水演进数值模拟计算中网格流出率的修正方法 | |
Krishna et al. | Flood frequency analysis of Prakasam barrage reservoir Krishna district, Andhra Pradesh using Weibull, Gringorten and L-moments formula | |
Malekani et al. | Application of GIS in modeling Zilberchai Basin runoff | |
Namadi et al. | The numerical investigation of the effect of subsequent check dams on flood peaks and the time of concentration using the MIKE 11 modeling system (Case study: golabdareh catchment, Iran) | |
Andrássy et al. | Numerical modeling of groundwater flow close to drinking water resources during flood events | |
CN105389453A (zh) | 一种获取水利水电工程入库设计洪水的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20140122 |