WO2017200328A1 - 비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매 - Google Patents

비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매 Download PDF

Info

Publication number
WO2017200328A1
WO2017200328A1 PCT/KR2017/005193 KR2017005193W WO2017200328A1 WO 2017200328 A1 WO2017200328 A1 WO 2017200328A1 KR 2017005193 W KR2017005193 W KR 2017005193W WO 2017200328 A1 WO2017200328 A1 WO 2017200328A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
amorphous
rutile
crystalline
anatase
Prior art date
Application number
PCT/KR2017/005193
Other languages
English (en)
French (fr)
Inventor
이효영
김영민
황희민
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2017200328A1 publication Critical patent/WO2017200328A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • B01J35/40
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • C09C1/0084Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound containing titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present application is an amorphous rutile -TiO 2, an anatase crystalline or non-crystalline -TiO 2 and rutile TiO 2 -TiO amorphous material comprising two, method of producing the amorphous TiO 2 material, and a photocatalyst comprising said amorphous TiO 2 material It is about.
  • Photocatalysts are one of the most attractive candidates for photosensitive decomposition of water that can produce hydrogen during processing.
  • TiO 2 which exhibits relatively high reactivity and chemical stability under ultraviolet light, has attracted attention.
  • TiO 2 nanoparticles have a large surface area for fast rates of surface reactions, which are widely used as photocatalysts for various solar-based clean energy and environmental technologies.
  • TiO 2 In order to maximize the absorption of the TiO 2 under the sunlight, in addition to the already doped with the doping metal, inorganic components, and Ti + 3 species in many studies I have tried to change the composition of TiO 2. Through doping, the light absorption characteristic of TiO 2 was improved. For example, nitrogen-doped TiO 2 responds to solar irradiation but still lacks its absorption in visible and infrared light.
  • the present application is an amorphous rutile -TiO 2, an anatase crystalline or non-crystalline -TiO 2 and rutile TiO 2 -TiO amorphous material comprising two, method of producing the amorphous TiO 2 material, and a photocatalyst comprising said amorphous TiO 2 material To provide.
  • a first aspect of the present application is to provide an amorphous rutile, amorphous TiO 2 material comprising -TiO 2.
  • Second aspect of the present application is to a mixture of a reducing agent in the crystalline rutile TiO 2 materials including -TiO 2 reduced the crystalline rutile -TiO 2, which comprises forming an amorphous rutile -TiO 2, amorphous TiO 2
  • a third aspect of the present application is to provide an amorphous rutile -TiO 2, or a crystalline and amorphous rutile anatase -TiO 2 -TiO 2, which comprises an amorphous TiO 2 material of the first aspect of the present application comprises a photocatalyst .
  • the crystalline rutile by reduction of nanoparticles including -TiO 2 formed amorphous rutile TiO 2 amorphous materials including -TiO 2, or a crystalline anatase -TiO 2 and the crystalline rutile -TiO 2 the crystalline of the rutile nanoparticles including man -TiO 2, selectively providing an amorphous rutile -TiO 2 and amorphous crystalline anatase TiO 2 material comprising -TiO 2 was formed by reduction.
  • the amorphous TiO 2 materials include amorphous rutile -TiO 2, amorphous or crystalline anatase and rutile -TiO 2 -TiO 2.
  • the amorphous rutile -TiO 2 comprises the reduction of titanium dioxide (reduced TiO 2) having a non-crystalline.
  • the amorphous rutile -TiO 2 formed by reducing the crystalline rutile -TiO 2 is a mixture of TiO 2 nanoparticles and the reducing agent being produced by a room temperature solution process, wherein the reducing agent is A-TiO 2 (anatase -TiO 2), while the well-maintained R TiO 2 (rutile -TiO 2) a can be selectively reduced to, a jilseohwa crystalline anatase having an open structure (open structure) -TiO 2 and chaotic amorphous rutile Phase selective conversion to -TiO 2 is possible.
  • the mechanism may be due to the large difference in the protonation constants between TiO 2 and R-A-TiO 2 on the pH conditions.
  • the amorphous material is an amorphous TiO 2 rutile, including -TiO 2, or indicate the black, anatase or rutile and amorphous -TiO 2 -TiO 2 about 7: 3 ratio, including It may represent a blue color, and the amorphous TiO 2 material representing the blue color may include a close ordered / ordered disordered crystal.
  • the blue amorphous TiO 2 composite material forms a new order / disorder / water junction in aqueous electrolyte, which is very high photocatalyst H 2 and hydroxy radicals without cocatalyst. radicals).
  • the blue amorphous TiO 2 material comprising the order / order / water junction is, for example, about 0.5 wt% Pt (co-catalyst) in photocatalytic decomposition of water.
  • a hydrogen production rate of 13.89 mmol / h ⁇ g and about 3.46 mmol / h ⁇ g without using any cocatalyst was shown, which was type-in each of ordered crystalline anatase-TiO 2 and disordered amorphous rutile-TiO 2. It may be due to electrons / holes internally separated via II bandgap alignment, as well as due to well-defined surface reactions, H 2 generation, and hole localization. Therefore, using a selective conversion of mixed-phase TiO 2 , a completely new approach to improving solar absorption and charge separation in blue TiO 2 can yield the best hydrogen generating photocatalyst reported to date.
  • 1A shows A-TiO 2 (left-white), R-TiO 2 (middle-black), and P-25 (right-blue) suspensions after Li / EDA treatment for 6 days, in one embodiment of the present application.
  • 1b is the XRD pattern of Li / EDA-treated P-25 crystals using different treatment times (A: anatase phase and R: rutile phase), and
  • FIG. 1C shows HR- of P-25.
  • FIG. 1D shows an HR-TEM image of blue P-25 and a selected-area electron diffraction pattern; Scale bar: 10 nm, magnified TEM image was taken at the junction (red squares: P-25, green squares: blue P-25), FIG. 1E shows P-25 (left) and blue P-25 crystals ( Right): black corresponds to the visual color of the reduced R-TiO 2 .
  • FIG. 2 shows an XRD pattern of A-TiO 2 crystals and A-TiO 2 (A6-rTiO 2 ) treated with Li-EDA for 6 days, an R-TiO 2 crystal and Li- for 6 days, according to one embodiment of the present disclosure.
  • FIG. 3 shows P-25 (P-TiO 2 ), blue amorphous TiO 2 (reduced amorphous TiO 2 composite material, P6-rTiO 2 ), and black amorphous R-TiO 2 (R6- in one embodiment of the present disclosure).
  • rTiO 2 shows Raman spectra: The Raman spectra of P-25 and blue P-25 showed five distinct bands at 149, 400, 520 (a doublet), and 637 cm ⁇ 1 .
  • R-TiO 2 (A), Li-EDA treated R-TiO 2 (B) for 20 hours, and black rutile TiO 2 treated with Li-EDA for 6 days ( C) HR-TEM image.
  • FIG. 5 is a graph showing EDT surface areas of P-25 and blue P-25 in one embodiment of the present application.
  • FIG. 6 is a TEM image of P-25 (A) and blue P-25 (B) in one embodiment of the present application.
  • FIG. 7A shows the results of Ti 2p (left) and O 1s (right) XPS spectra of P-25 and blue P-25 in one embodiment of the present application
  • FIG. 7B is A-TiO 2 , R-TiO 2 , P -25, and UV-vis absorption spectra of Li / EDA-treated materials
  • FIG. 7c is the valence vs. XPS spectrum of A-TiO 2 , R-TiO 2 , and Li / EDA-treated materials
  • FIG. 7d is 7b is a calculated bandgap diagram formed by combining 7b with FIG.
  • FIG. 7c (left: A-TiO 2 / R-TiO 2 , right: Li / EDA-treated A-TiO 2 / black R-TiO 2 ), FIG.
  • a comparison of the electronic structures on the original and reduced TiO 2 surfaces calculated using the PBE + U approach (U 3.2 eV for the 3d orbitals of Ti) is shown: magnified image for detailed examination of band alignment and defect states Are shown on the right, and the dark areas represent the conduction and valence bands in the polymorph, respectively, and the energy values in each structure are compared to the internal Ti 3p optalal levels. It was aligned, as a reference indicates with respect to the vacuum energy level.
  • FIG. 8A is an XPS spectrum of Ti 2p of P25 TiO 2 (P-TiO 2 ) and Li-EDA-treated P6-rTiO 2
  • FIG. 8B is an XPS spectrum of O 1s
  • FIG. 8C Are Ti 2p XPS spectra of rutile TiO 2 (R-TiO 2 ) and Li-EDA treated R6-rTiO 2 with a single crystal phase
  • FIG. 8D shows the original anatase TiO 2 (A-TiO 2 ) and Li
  • the Ti 2p XPS spectrum of A6-rTiO 2 treated with -EDA is shown.
  • FIG. 10 shows TEM images and corresponding EELS spectra obtained at the indicated points, in one embodiment of the present disclosure.
  • FIG. 11 is P25 TiO 2 (P-TiO 2 ), Rutile TiO 2 (R-TiO 2 ), as a graph of modified Kubelka-Munk function versus light energy, in one embodiment of the present disclosure.
  • FIG. 13A is a complete XPS spectrum of Li-EDA treated anatase TiO 2 (A6-rTiO 2 ) in one embodiment of the present disclosure
  • FIG. 13B is a diagram of Li-EDA treated rutile TiO 2 (R6-rTiO 2 ). Is the complete XPS spectrum
  • FIG. 13C is the complete XPS spectrum of Li-EDA treated P25 TiO 2 (P6-rTiO 2 )
  • FIG. 13D is the spectrum of Li 1s and Cl of blue P-25 (P6-rTiO 2 ) Deconvolution is shown.
  • Figure 15 shows, in one embodiment of the present application, (A) solar spectral radiation (AM 1.5G, 100 mW / cm 2 ) and (B) photon flow converted from the solar spectral radiation.
  • FIG. 16 is a graph showing an electron spin resonance (ESR) analysis result of generating hydroxy radicals in water using UV (ultraviolet) light and sunlight according to an embodiment of the present disclosure. .
  • ESR electron spin resonance
  • Figure 17a is according to one embodiment of the invention, rutile TiO 2 and Li-EDA and O 1s XPS spectrum of the treated rutile TiO 2
  • Figure 17b is of the O 1s anatase TiO 2 and Li-EDA-treated anatase TiO 2 XPS spectra
  • FIG. 17C shows the O 1s XPS spectra of P25 TiO 2 and Li-EDA treated P25 TiO 2 .
  • FIG. 18 is a graph illustrating mapping of TEM energy loss electrons to reduced blue P25 TiO 2;
  • 20 is an edge graph of transmission electron microscope energy loss electron data of a blue P25 TiO2 sample.
  • the term "combination (s) thereof" included in the expression of a makushi form refers to one or more mixtures or combinations selected from the group consisting of components described in the expression of makushi form, It means to include one or more selected from the group consisting of the above components.
  • a and-or B means “A or B, or A and B”.
  • a first aspect of the present application is to provide an amorphous rutile, amorphous TiO 2 material comprising -TiO 2.
  • the amorphous rutile-TiO 2 may be formed by selective reduction of crystalline rutile-TiO 2 , but is not limited thereto.
  • the amorphous TiO 2 material may be in the form of black nanoparticles, but may not be limited thereto.
  • the amorphous TiO 2 material may be to include a complex comprising adding a crystalline anatase -TiO 2 with the amorphous rutile -TiO 2, but may not be limited thereto.
  • the amorphous TiO 2 material containing a complex comprising adding a crystalline anatase -TiO 2 with the amorphous rutile -TiO 2 has the form of nanoparticles of blue.
  • the amorphous rutile-TiO 2 is to have a disordered reduced rutile phase formed by reduction of crystalline rutile-TiO 2 .
  • the amorphous material is TiO 2, including crystalline rutile -TiO the reduced rutile -TiO 2 in the amorphous is formed by reducing a 2, or represents the black;
  • the amorphous material is TiO 2, rutile crystalline -TiO 2 and at the crystalline anatase TiO 2 nanoparticles comprising a rutile crystalline -TiO 2 -TiO 2 man optionally wherein the amorphous black of the reduced rutile formed by the reduction of the one including -TiO 2 and crystalline anatase -TiO 2 together represent a blue color, the open frame jilseohwa the crystalline anatase phase -TiO 2, and to the disordered amorphous rutile -TiO 2 having the selective switching (open structure) are possible.
  • the amorphous material is TiO 2, but may be an indication of a blue color, including the nanoparticles comprising the crystalline anatase -TiO 2 and the reduced non-crystalline rutile -TiO 2, it may not be limited to have.
  • TiO 2 wherein the amorphous TiO 2 material comprises 70% crystalline anatase -TiO 2 crystalline and 30% rutile -TiO 2 Among the nanoparticles, only the crystalline rutile-TiO 2 may be selectively reduced, and in this case, may represent blue.
  • the amorphous TiO 2 material will reducing rutile -TiO 2 man by the selective reduction, the reduced non-crystalline rutile -TiO 2 TiO 2 is converted into a black, non-crystalline anatase reduction -TiO 2 As it represents white, the composite material comprising anatase-TiO 2 and reduced amorphous rutile-TiO 2 may be blue.
  • the amorphous materials according to the TiO 2 content of the crystalline anatase -TiO 2 and the reduced non-crystalline rutile -TiO 2 was 7: 1 to 3, or 7 to 10: 3 can be of, but are not limited to no.
  • the amorphous the the crystalline anatase TiO 2 in the material -TiO 2 and the ratio of the reduced rutile amorphous -TiO 2 to 7: there may be a 3.
  • the reduced non-crystalline rutile -TiO 2 may not be, but could be to include the key having a disordered phase reduced rutile (disorderd reduced rutile phase) stability, limited to this.
  • the amorphous TiO 2 material exhibiting blue color may include an ordered anatase phase and a reduced disordered rutile phase, but may not be limited thereto.
  • the blue-crystalline amorphous TiO 2 material includes not only unchanged A-TiO 2 on the (101) plane, but also R-TiO 2 having disordered components, and distinct junctions of the A-TiO 2 and R-TiO 2 ).
  • the amorphous rutile-TiO 2 is the intensity of the (110), (101), (111) and (211) peaks of the peaks of the X-ray diffraction pattern of crystalline rutile-TiO 2 Reduced or do not exhibit the peaks.
  • the amorphous rutile-TiO 2 may have an intensity of 80% or more of the peaks of the (110), (101), (111), and (211) peaks of the peaks of the X-ray diffraction pattern of the crystalline rutile-TiO2. At least%, at least 90%, at least 95%, at least 97%, or at least 99%, or do not exhibit the peaks.
  • the amorphous rutile-TiO 2 is that the intensity of the B1g , and B2g band of the Raman spectrum of crystalline rutile- TiO 2 is reduced or do not exhibit the bands.
  • the amorphous rutile-TiO 2 may have an intensity of at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, of the B1g and B2g bands of the Raman spectrum of the crystalline rutile- TiO 2 . Or reduced by more than 99% or not showing the bands.
  • the amorphous rutile-TiO 2 may include, but is not limited to, a —OH group.
  • Second aspect of the present application is to a mixture of a reducing agent in the crystalline rutile TiO 2 materials including -TiO 2 reduced the crystalline rutile -TiO 2, which comprises forming an amorphous rutile -TiO 2, amorphous TiO 2
  • TiO 2 material comprising the crystalline rutile -TiO 2 may be one having a nano-particle form.
  • the amorphous material is TiO 2 may be one having the form of nano-particles of the black comprising the amorphous rutile -TiO 2.
  • the amorphous material is TiO 2 may be one having the nanoparticles in the form of blue, including the amorphous and the crystalline anatase-rutile -TiO 2 -TiO 2.
  • a TiO 2 nano-particles having a closely and order / disorder blue containing crystal TiO 2 converted to nanoparticles of anatase phase and a rutile phase, an amorphous according to one embodiment of the present TiO 2 material, TiO 2 nano-particles and a mixture of reducing agents have been manufactured by the room-temperature solution process, wherein the reducing agent is a-TiO 2, while maintaining a well (anatase -TiO 2) R-TiO 2 (rutile -TiO 2) a can be selectively attacked, the jilseohwa having an open structure (open structure) anatase TiO 2, and it is possible to selectively switch the disordered to rutile TiO 2.
  • the mechanism may be due to the large difference in the protonation constants between TiO 2 and R-A-TiO 2 on the pH conditions.
  • the reducing agent may include an alkali metal and a basic organic solvent, but is not limited thereto.
  • the alkali metal may include Li, Na, K, Rb, or Cs, but is not limited thereto.
  • the basic organic solvent may include alkylamine, dialkylamine, cyclicalkylamine, or dicyclic alkylamine.
  • the alkyl may have 1 to 10 carbon atoms, 1 to 8 carbon atoms, Linear or branched alkyl having 1 to 6 carbon atoms, or 1 to 4 carbon atoms, and the cyclic alkyl group may have 3 to 10 carbon atoms, 3 to 8 carbon atoms, or 3 to 6 carbon atoms.
  • the basic organic solvent may include one selected from the group consisting of isopropylamine, bis (isopropyl) amine, diethylamine, dicyclohexylamine, ethylenediamine, and combinations thereof. It is not limited to this.
  • the reducing agent may include, but is not limited to, a solution of an alkali metal dissolved in a basic organic solvent.
  • the reducing agent may include a basic organic solvent including an alkali metal, and amines, such as Lithium in ethylenediamine (Li / EDA).
  • Li / EDA Lithium in ethylenediamine
  • the Li / EDA may be a metallic Li foil. It may be one containing a dissolved in diamine.
  • the reduction may be performed in a closed and anhydrous state, but may not be limited thereto.
  • the reduction may be performed at room temperature, but may not be limited thereto.
  • a third aspect of the present application is to provide an amorphous rutile -TiO 2, or a crystalline and amorphous rutile anatase -TiO 2 -TiO 2, which comprises an amorphous TiO 2 material of the first aspect of the present application comprises a photocatalyst .
  • the photocatalyst may be a photocatalytic decomposition activity of water, but may not be limited thereto.
  • the photocatalyst may be to include the amorphous TiO 2 material having a nano-particles in the form of black comprising the amorphous rutile -TiO 2, but may not be limited thereto.
  • the photocatalyst is, the amorphous rutile -TiO 2, and may be, but including the amorphous TiO 2 material having a nano-particles in the form of blue comprising the crystalline anatase -TiO 2, limited to It may not be.
  • a TiO 2 nano-particles having a closely and order / disorder blue containing crystal TiO 2 converted to nanoparticles of anatase phase and a rutile phase, the blue TiO 2 nanoparticle solution It forms a new order / disorder / water junction in the electrolyte, which can exhibit very high photocatalyst H 2 and hydroxy radical generation without cocatalyst.
  • the blue TiO 2 comprising the order / order / water junction is about 13.89 mmol / h ⁇ g and any cocatalyst, for example using about 0.5 wt% Pt (cocatalyst) Hydrogen production rate of about 3.46 mmol / h ⁇ g without the use of, due to electrons / holes internally separated via type-II bandgap alignment in ordered anatase TiO 2 and disordered rutile TiO 2, respectively. And may be due to well-defined surface reactions, H 2 generation, and hole localization as well.
  • the photocatalyst is one which comprises an amorphous TiO 2 composite material showing a reduced black, including nano-particles comprising the reduced non-crystalline rutile -TiO 2, but may not be limited to have.
  • the reduced amorphous TiO 2 composite material may include a partially reduced amorphous rutile TiO 2 , but may not be limited thereto.
  • the photocatalyst is one which comprises the reduction of amorphous TiO 2 composite material that exhibits a blue color, including nano-particles comprising the anatase -TiO 2 and the reduced non-crystalline rutile -TiO 2
  • this may not be limited.
  • the reduced amorphous TiO 2 composite material will for the crystalline rutile reduction -TiO 2 only by the partially reduced, the reduced non-crystalline rutile -TiO 2, is converted to black TiO 2, As the unreduced anatase-TiO 2 is white, the composite material comprising anatase-TiO 2 and reduced amorphous rutile-TiO 2 may be blue.
  • the amorphous materials according to the TiO 2 content of the crystalline anatase -TiO 2 and the reduced non-crystalline rutile -TiO 2 was 7: 1 to 3, or 7 to 10: 3 can be of, but are not limited to no.
  • the amorphous the the crystalline anatase TiO 2 in the material -TiO 2 and the ratio of the reduced rutile amorphous -TiO 2 to 7: there may be a 3.
  • the blue TiO 2 nanoparticles may include an ordered anatase phase and a disordered reduced amorphous rutile phase, but may not be limited thereto.
  • the blue TiO 2 is anatase, as well as -TiO 2 unchanging 101 side, also shows amorphous rutile -TiO 2 having the chaotic component, the anatase -TiO 2 and amorphous rutile distinct bonding -TiO 2 (junction) Indicates.
  • the blue TiO 2 nanoparticles form a new order / disorder / water junction in an aqueous solution electrolyte, using this as a photocatalyst, very high photocatalyst H without cocatalyst It can indicate 2 occurrences.
  • the order / disorder / Water Blue TiO 2 nanoparticles having a junction -TiO 2 anatase and rutile type -II band alignment at the interface formed -TiO 2 With excellent charge separation efficiency, it is possible to prevent electron loss by suppressing charge recombination, but may not be limited thereto.
  • the type-II band alignment (conduction band) and the valence band (conduction band) in the separation and movement of electrons and holes which are important factors that determine the effective photocatalyst ( Among the three band alignment types (valence band), this means a band alignment type that enables rapid movement and separation of electrons and holes.
  • Photons generated from black TiO 2 with conventional core / shell nanostructures must migrate from the ordered core to the disordered shell through a tunneling process to contact water. As a result, the single-phase interface between the disordered TiO 2 shell and water increases the likelihood of charge recombination when there is no electron acceptor (eg, Pt) on the shell surface.
  • nanoparticles comprising the amorphous TiO 2 material according to an embodiment of the present application by having an order / disorder / water conjugation to efficiently separate the redox site for the oxidation and reduction process (redox site), The phenomenon can be regarded as an important surface engineering technique to realize high efficiency H 2 production without coenzymes from TiO 2 .
  • Photocatalysts loaded with Pt were obtained by a photo-deposition method.
  • the photocatalyst H 2 production experiment was carried out in a 100 mL Pyrex round-bottom flask, the inlet of which was sealed by a silicone rubber septum and carried out at ambient temperature and atmospheric pressure.
  • a solar simulator (Oriel Sol 3A, class AAA) with a filtered 450 W xenon lamp was used as the light source and Si reference cells (VLSI standards, Oriel P) to produce 1 solar intensity of 100 mW / cm 2 . / N 91150 V) was used to make appropriate adjustments.
  • 20 mg photocatalyst was dispersed in a mixture of 35 mL water and 35 mL methanol. The suspension was bubbled with nitrogen to nearly remove dissolved oxygen. During the photocatalytic reaction, the suspension was continuously stirred to ensure uniform radiation.
  • Time-correlated single-photon counting was performed to measure the exciton lifetime (charge decomposition efficiency).
  • a second harmonic (SHG 375 nm) of Ti: sapphire laser (Mira900, Coherent), which can be adjusted using ⁇ 150 fs pulse width and 76 MHz repetition rate, was used as the excitation source.
  • PL luminescence was analyzed by using a collection optic and a monochromator (SP-2150i, Acton).
  • TCSPC modules (PicoHarp, PicoQuant) with MCP-PMT (R3809U-59, Hamamatsu) were used for ultrafast detection.
  • the overall instrument reaction operation (IRF) was less than 130 ps and the instantaneous time decomposition was less than 10 ps.
  • the actual fluorescence reduction and deconvolution of the IRF was performed by using fitting software to estimate the time constants associated with each exponent reduction (FlouFit, PicoQuant). All measurements were performed under vacuum at 20 K.
  • Cold photoluminescence was measured by using a light collection and monochromator (SP-2150i, Acton) in conjunction with a photomultiplier tube (PD-174, Acton).
  • Phase changes in color and crystals were first achieved by treating A-TiO 2 (approximately 20 nm), R-TiO 2 (approximately 140 nm), and P-25 (20-40 nm) with Li-EDA solution.
  • Li-EDA solution was first achieved.
  • FIG. 1A A-TiO 2 showed unchanged white (left) and X-ray diffraction (XRD) patterns (FIG. 2), while white crystalline R-TiO 2 turned black amorphous TiO 2 .
  • Fully reduced conversion (middle, FIG. 1A), its original XRD peak almost disappeared in Li-EDA treated P25 TiO 2 (R6-rTiO 2 ) (FIG. 2).
  • the color of the P-25 turned blue.
  • FIG. 1B shows the XRD pattern of P-25 according to the treatment time of Li / EDA solution, but after 6 days of treatment, there was no noticeable change in the anatase peak, but it was observed that the crystalline rutile peak disappeared almost completely.
  • Raman spectra further showed the structural change of R-TiO 2 induced by the Li-EDA solution treatment (FIG. 3).
  • the HR-TEM image of the blue P-25 showed a distinct junction with disordered components as well as the anatase of the unchanged (101) side (FIG. 1D).
  • the limiting field electron diffraction spectrum of the disordered portion of the solution-treated P-25 was similar to that of the black R-TiO 2 and can therefore be reasonably designated as the disordered R-TiO 2 portion.
  • Obvious grain boundaries can be identified by enlarged HR-TEM (red and green squares), indicating that a clear interface is maintained.
  • BET Brunauer-Emmett-Teller
  • FIG. 19 is a low-loss graph of blue P25 TiO 2 , and the difference in the O group was confirmed by the difference in crystal structure of the surface and the center.
  • the graph shows more oxygen vacancy on the surface, which means more Ti 3+ is formed.
  • FIG. 7A (left), Ti 2p X-ray photoelectron spectroscopy (XPS) of blue P-25 showed a small peak at 456.6 eV in deconvolution of the Ti 2p3 / 2 peak; The peak is related to the Ti ions in the charge state (Ti + 3) reduction on the TiO 2 surface.
  • XPS X-ray photoelectron spectroscopy
  • OOH surface OH
  • FIG. 10 The formation of oxygen vacancies in the reduced R-TiO 2 was further analyzed by electron energy loss spectroscopy (EELS) technique (FIG. 10). As shown in FIG. 10, the EELS of the Ti-L and OK in the rectangular region was found to be insufficient at the point indicated by "1-1” compared to the point indicated by the oxygen "1-2", the EELS results According to XPS analysis, it was clearly shown that oxygen deficiency was selectively generated in R-TiO 2 .
  • EELS electron energy loss spectroscopy
  • the characteristics of the electronic structure change after Li / EDA treatment were measured by UV-vis absorption spectra in combination with valence band (VB) XPS.
  • FIG. 8B the UV-vis absorption spectrum showed strong and wide background absorption at wavelengths longer than 800 nm while black R-TiO 2 showed no noticeable change in the spectra of A-TiO 2 before and after treatment. ( ⁇ h ⁇ ) 1/2 vs. for various TiO 2 samples.
  • the Tauc plot of hv showed that the indirect bandgap energies of fresh anatase and rutile were approximately 3.15 eV and 3.0 eV, respectively (FIG. 11).
  • the onset of optical absorption of the black rutile nanocrystals was reduced to approximately 1.0 eV, which is comparable to the value of typical black TiO 2 .
  • the blue P-25 exhibited strong absorption in the visible range as well as an apparent red shift (approximately 430 nm) in absorption over the visible range.
  • the VB XPS spectra showed that the VB maxima of A-TiO 2 and RTiO 2 were 2.38 eV and 2.18 eV, respectively, whereas the black RTiO 2 showed a major absorption onset at 1.42 eV, as well as the band tail ( tail) showed a blue shift of maximum energy associated with pointing towards vacuum ultraviolet (UV) of approximately -0.04 eV (FIG. 7C). Therefore, as shown in FIG. 7D, the bandgap diagram can be made by combining UV-vis absorption with the VB XPS spectrum, which represents a type-II band alignment. As shown in FIG.
  • Efb flat band potentials
  • Efb of A-TiO 2 and R-TiO 2 was 0.715 and 0.445 V vs.
  • RHE reversible hydrogen electrode
  • CB conduction band
  • the difference in CB state between the obtained A-TiO 2 and R-TiO 2 is 0.18 eV. This can be considered as underestimated approximately 0.08 eV.
  • the EDA superbase provides a high pH state that weakens rutile TiO 2 stability, which means that the Gibbs free energy of rutile is significantly improved.
  • a strong reducing agent induced by the chelate metallic Li the lower binding energy of Ti-O in rutile TiO 2 can be decomposed. Unsaturated bonds in the disordered TiO 2 result in high affinity for protons. Therefore, when washed with diluted HCl, the protons are introduced into disordered TiO 2 to form Ti-H or Ti-OH bonds.
  • FIG. 15 shows photon flow converted from (a) solar spectral radiation (AM 1.5G, 100 mW / cm 2 ) and (b) the solar spectral radiation in this embodiment. It was found that the photon flow from the sunlight was almost identical, and thus the activity of the photocatalyst TiO 2 was found.
  • FIG. 16 is a graph illustrating measurement results of electron spin resonance (ESR) analysis for generating hydroxy radicals in water using UV (ultraviolet) light and sunlight.
  • ESR electron spin resonance
  • the present researchers have demonstrated a selective switching to jilseohwa having a crystalline anatase TiO 2 and a disordered amorphous rutile TiO 2 a simple room temperature solution of the structure held the commercial P-25 using the process (open structure).
  • the reducing agent Li / EDA lithium in ethylenediamine
  • the reducing agent Li / EDA is used to achieve order / chaos / water conjugation when the resulting so-called blue TiO 2 is used for photocatalyst H 2 production under simulated sunlight (AM 1.5G).
  • the new blue TiO 2 comprising the order / disorder / water junctions produced a hydrogen production rate of 13.46 mmol / h ⁇ g and 3.46 mmol / h ⁇ g without the use of any cocatalyst using 0.5 wt% Pt (cocatalyst).
  • this jilseohwa the TiO 2 anatase and the rutile-type disordered through -II bandgap alignment may be due to the electron / hole separated by a dot, as well as good in TiO 2 respectively define the surface reaction, H 2 occurs , And hole localization. Therefore, an entirely new approach to improve solar absorption and charge separation in blue TiO 2 using selective conversion of mixed-phase TiO 2 has led to the best hydrogen generating photocatalyst reported to date.

Abstract

비결정질 루타일-TiO2, 또는 상기 비결정질 루타일-TiO2와 함께 결정질 아나타제-TiO2를 추가 포함하는 복합체를 포함하는, 비결정질 TiO2 물질, 상기 비결정질 TiO2 물질의 제조방법, 및 상기 비결정질 TiO2 물질을 포함하는 광촉매에 관한 것이다.

Description

[규칙 제26조에 의한 보정 02.06.2017] 비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매
본원은, 비결정질 루타일-TiO2, 또는 결정질 아나타제-TiO2 및 비결정질 루타일-TiO2를 포함하는 비결정질 TiO2 물질, 상기 비결정질 TiO2 물질의 제조방법, 및 상기 비결정질 TiO2 물질을 포함하는 광촉매에 관한 것이다.
에너지 위기와 함께, 사람들은 환경친화적 개발을 위해 청정 에너지를 찾고 있다. 반도체계 광촉매는 공정 동안 수소를 생성할 수 있는 물의 광 감응 22분해에 대한 가장 매력적인 후보 중 하나이다. 광촉매 중에서도, 자외선 하에서 상대적으로 높은 반응성 및 화학 안정성을 나타내는 TiO2가 주목받고 있다. TiO2 나노입자는 표면 반응의 빠른 속도를 위해 넓은 표면적을 가지며, 이것은 다양한 태양-기반 청정 에너지 및 환경적 기술을 위한 광촉매로서 폭넓게 사용된다.
태양광 하에서 TiO2의 흡수를 극대화하기 위하여, 많은 연구에서 이미 금속, 무기 성분, 및 Ti3 + 종으로 도핑한 것으로 추가 도핑하여 TiO2의 조성을 바꾸기 위해 시도했다. 도핑을 통해, TiO2의 빛 흡수 특성이 향상되었다. 예를 들어, 질소-도핑된 TiO2는 태양 조사에 반응하지만, 가시광 및 적외선에서의 그것의 흡수가 여전히 부족하다.
종래의 연구에서는 다양한 방법과 반응물(reagent)로서 TiO2의 태양광에 대한 밴드갭을 감소시키고 흡수를 증가시키기 위해 노력했다.
한편, 2011년에, X. B Chen 등은 수소 기체로 TiO2 표면의 형태를 개질한 TiO2를 최초로 환원시켰고, TiO2의 표면상에 무질서 층을 형성했다[Xiaobo Chen, Lei Liu, Peter Y. Yu and Samuel S. Mao, "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals" Science, vol. 331, no. 6018 (February 11, 2011), pp.746-750]. 빛 흡수 및 전하 분리 또한 증가되었다. 상기 방법에 따라, 수소 처리된 TiO2에 대한 다양한 조건들이 수많은 문헌에서 공지되었다. 그러나, 초고온 하에서의 H2 기체의 어닐링은 공업 생산에 있어서 매우 위험하다. 따라서, 종래의 기술을 대체할 신규한 제조 방법의 연구가 요구되고 있다.
본원은, 비결정질 루타일-TiO2, 또는 결정질 아나타제-TiO2 및 비결정질 루타일-TiO2를 포함하는 비결정질 TiO2 물질, 상기 비결정질 TiO2 물질의 제조방법, 및 상기 비결정질 TiO2 물질을 포함하는 광촉매를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 비결정질 루타일-TiO2를 포함하는, 비결정질 TiO2 물질을 제공한다.
본원의 제 2 측면은, 결정질 루타일-TiO2을 포함하는 TiO2 물질을 환원제를 혼합하여 상기 결정질 루타일-TiO2를 환원시켜 비결정질 루타일-TiO2을 형성하는 것을 포함하는, 비결정질 TiO2 물질의 제조방법을 제공한다.
본원의 제 3 측면은, 비결정질 루타일-TiO2, 또는 결정질 아나타제-TiO2 및 비결정질 루타일-TiO2를 포함하는, 본원의 제 1 측면에 따른 비결정질 TiO2 물질을 포함하는, 광촉매를 제공한다.
본원의 일 구현예에 있어서, 결정질 루타일-TiO2를 포함하는 나노입자를 환원시켜 형성된 비결정질 루타일-TiO2을 포함하는 비결정질 TiO2 물질, 또는 결정질 아나타제-TiO2 및 결정질 루타일-TiO2를 포함하는 나노입자 중 상기 결정질 루타일-TiO2만 선택적으로 환원시켜 형성된 비결정질 루타일-TiO2과 결정질 아나타제-TiO2 를 포함하는 비결정질 TiO2 물질을 제공한다. 따라서, 상기 비결정질 TiO2 물질은 비결정질 루타일-TiO2, 또는 비결정질 루타일-TiO2 및 결정질 아나타제-TiO2를 포함한다. 여기서, 상기 비결정질 루타일-TiO2은 비결정성을 갖는 환원된 이산화티타늄(reduced TiO2)을 포함한다.
본원의 일 구현예에 따르면, 결정질 루타일-TiO2을 환원시켜 형성되는 비결정질 루타일-TiO2는, TiO2 나노입자와 환원제를 혼합하여 상온 용액 공정에 의해 제조되고, 상기 환원제가 A-TiO2(아나타제-TiO2)를 잘 유지하면서 R-TiO2(루타일-TiO2)를 선택적으로 환원시킬 수 있어, 열린 구조(open structure)를 갖는 질서화된 결정질 아나타제-TiO2 및 무질서한 비결정질 루타일-TiO2로의 상 선택적 전환이 가능하다. 상기 메커니즘은 pH 상태에 대한 R-TiO2와 A-TiO2 사이에 양성자화 상수의 큰 차이에 기인될 수 있다.
본원의 일 구현예에 있어서, 상기 비결정질 TiO2 물질은 비결정질 루타일-TiO2을 포함하여 흑색을 나타내거나, 또는 아나타제-TiO2 및 비결정질 루타일-TiO2를 약 7 : 3의 비율로 포함하여 청색을 나타내는 것일 수 있으며, 상기 청색을 나타내는 비결정질 TiO2 물질은 밀접한 질서/무질서 결정을 포함하는 것일 수 있다. 또한, 상기 청색을 나타내는 비결정질 TiO2 복합체 물질은 수용액 전해질 중에서 신규한 질서/무질서/물 접합(order/disorder/water junction)을 형성하고, 이것은 보조촉매 없이 매우 높은 광촉매 H2 및 히드록시 라디칼(hydroxyl radical) 발생을 나타낼 수 있다.
본원의 일 구현예에 있어서, 상기 질서/무질서/물 접합을 포함하는 청색 비결정질 TiO2 물질은, 예를 들어, 물의 광촉매적 분해 방응에 있어서, 약 0.5 wt% Pt(보조촉매)를 사용하여 약 13.89 mmol/h·g 및 어떠한 보조촉매의 사용 없이 약 3.46 mmol/h·g의 수소 생성 속도를 나타냈으며, 이것은 질서화된 결정질 아나타제-TiO2 및 무질서화된 비결정질 루타일-TiO2 각각에서 타입-Ⅱ 밴드갭 정렬을 통해 내적으로 분리된 전자/정공 때문일 수 있고, 뿐만 아니라 잘-정의된 표면 반응, H2 발생, 및 정공 국부화(hole localization) 때문일 수 있다. 그러므로, 혼합된-상 TiO2의 선택적 전환을 이용하여 청색 TiO2에서 태양광 흡수 및 전하 분리를 향상시키기 위한 완전히 새로운 접근이 현재까지 보고된 가장 우수한 수소 생성 광촉매를 수득할 수 있다.
도 1a는 본원의 일 실시예에 있어서, 6 일 동안 Li/EDA 처리한 후의 A-TiO2(왼쪽-흰색), R-TiO2(중간-흑색), 및 P-25(오른쪽-청색) 현탁액의 포토그래프이고, 도 1b는 상이한 처리 시간을 이용하여 Li/EDA-처리된 P-25 결정의 XRD 패턴(A: 아나타제 상 및 R: 루타일 상)이며, 도 1c는 P-25의 HR-TEM 이미지 및 제한시야 전자회절(selected-area electron diffraction) 패턴이며; 스케일바: 10 nm, 도 1d는 청색 P-25의 HR-TEM 이미지 및 제한시야 전자회절(selected-area electron diffraction) 패턴; 스케일바: 10 nm, 확대된 TEM 이미지는 접합 부분에서 수행된 것이고(적색 사각형: P-25, 녹색 사각형: 청색 P-25), 도 1e는 P-25(왼쪽) 및 청색 P-25 결정(오른쪽)의 개략도를 나타낸 것이다: 흑색은 환원된 R-TiO2의 시각적 색과 일치함.
도 2는 본원의 일 실시예에 있어서, A-TiO2 결정 및 6 일 동안 Li-EDA 처리된 A-TiO2(A6-rTiO2)의 XRD 패턴, R-TiO2 결정 및 6 일 동안 Li-EDA 처리된 R-TiO2(R6-rTiO2)의 XRD 패턴, 및 P25(P-TiO2) 결정 및 2 일(P2-rTiO2), 4 일(P4-rTiO2), 6 일(P6-rTiO2) 동안 Li-EDA 처리된 각각의 패턴을 나타낸다. 환원된 TiO2 복합체 물질 (P2-rTiO2, P4-rTiO2, P6-rTiO2)의 경우 반응시간에 따라 XRD 패턴 2θ의 27.4°(110), 36.1°(101), 41.3°(111) 및 54.3°(211) 피크의 강도가 점점 감소하게 되고 사라지는 것을 발견할 수 있다. 이 피크들은 루타일 상의 것이며, 반응시간이 길어짐에 따라 환원되어 결정성의 루타일의 함유량이 줄어들고 비결정질의 루타일이 되는 것을 확인할 수 있다.
도 3은 본원의 일 실시예에 있어서, P-25(P-TiO2), 청색 비결정질 TiO2(환원된 비결정질 TiO2 복합체 물질, P6-rTiO2), 및 흑색 비결정질 R-TiO2(R6-rTiO2)의 라만 스펙트럼을 나타낸 것이다: 상기 P-25 및 청색 P-25의 라만 스펙트럼은 149, 400, 520(a doublet), 및 637 cm-1에서 다섯 개의 분명한 밴드를 나타냈고, 이것은 아나타제의 기본적인 Eg , B1g , A1g & B2g ,E2g 모드에 속하는 반면, 루타일에 대한 448 및 612 cm-1에서 위치하는 두 개의 활성 모드(B1g, B2g)가 완전히 소멸된 것으로부터 결정질 루타일이 비결정질 루타일이 환원되었음을 확인할 수 있다.
도 4는 본원의 일 실시예에 있어서, R-TiO2(A), 20 시간 동안 Li-EDA 처리된 R-TiO2(B), 및 6 일 동안 Li-EDA 처리된 흑색 루타일 TiO2(C)의 HR-TEM 이미지이다.
도 5는 본원의 일 실시예에 있어서, P-25 및 청색 P-25의 EDT 표면적을 나타낸 그래프이다.
도 6은 본원의 일 실시예에 있어서, P-25(A) 및 청색 P-25(B)의 TEM 이미지이다.
도 7a는 본원의 일 실시예에 있어서, P-25 및 청색 P-25의 Ti 2p(왼쪽) 및 O 1s(오른쪽) XPS 스펙트럼 결과이고, 도 7b는 A-TiO2, R-TiO2, P-25, 및 Li/EDA-처리된 물질들의 UV-vis 흡수 스펙트럼이며, 도 7c는 A-TiO2, R-TiO2, 및 Li/EDA-처리된 물질들의 가전자대 XPS 스펙트럼, 도 7d는 도 7b와 도 7c를 조합함으로써 형성된 계산된 밴드갭 다이어그램(왼쪽: A-TiO2/R-TiO2, 오른쪽: Li/EDA-처리된 A-TiO2/흑색 R-TiO2)이고, 도 7e는 PBE+ U 접근법을 이용하여 계산된 본래의 및 환원된 TiO2 표면에서 전자적 구조의 비교(U = Ti의 3d 오비탈에 대한 3.2 eV)를 나타낸 것이다: 밴드 정렬 및 결함 상태의 자세한 검토를 위한 확대된 이미지는 오른쪽에 나타내었고, 어두운 부분은 각각 다형체(polymorph)에서 전도대 및 가전자대를 나타냄, 각각의 구조에서 에너지 값은 내부 Ti 3p 오피탈 준위를 비교하여 정렬되었고, 기준으로서 진공 에너지 준위에 대하여 나타냄.
도 8a는 본원의 일 실시예에 있어서, P25 TiO2(P-TiO2) 및 Li-EDA 처리된 P6-rTiO2의 Ti 2p의 XPS 스펙트럼이고, 도 8b는 O 1s의 XPS 스펙트럼이며, 도 8c는 단독의 결정상을 가진 루타일 TiO2(R-TiO2) 및 Li-EDA 처리된 R6-rTiO2의 Ti 2p XPS 스펙트럼이며, 및 도 8d는 원래의 아나타제 TiO2(A-TiO2) 및 Li-EDA 처리된 A6-rTiO2의 Ti 2p XPS 스펙트럼을 나타낸 것이다.
도 9는 본원의 일 실시예에 있어서, 루타일 TiO2 및 흑색 R-TiO2(A)와 원래의 아나타제 TiO2 및 Li-EDA 처리된 A-TiO2(B)의 O 1s XPS 스펙트럼을 비교하여 나타낸 것이다.
도 10은 본원의 일 실시예에 있어서, 표시된 지점에서 수득된 TEM 이미지 및 그에 상응하는 EELS 스펙트럼을 나타낸 것이다.
도 11은 본원의 일 실시예에 있어서, 변형된 쿠벨카-뭉크(Kubelka-Munk) 함수 대 빛 에너지의 그래프로 P25 TiO2(P-TiO2), 루타일 TiO2(R-TiO2), 아나타제TiO2(A-TiO2) 및 각각의 샘플에 Li-EDA 처리된 rTiO2들(P6-rTiO2, R6-rTiO2, A6-rTiO2)이다.
도 12는 본원의 일 실시예에 있어서, 1 kHz 주파수에서 측정된 A-TiO2 및 RTiO2의 Mott-Schottky 그래프이다.
도 13a는 본원의 일 실시예에 있어서, Li-EDA 처리된 아나타제 TiO2(A6-rTiO2)의 완전한 XPS 스펙트럼이고, 도 13b는 Li-EDA 처리된 루타일 TiO2(R6-rTiO2)의 완전한 XPS 스펙트럼이며, 도 13c는 Li-EDA 처리된 P25 TiO2(P6-rTiO2)의 완전한 XPS 스펙트럼이고, 및 도 13d는 청색 P-25(P6-rTiO2)의 Li 1s 및 Cl의 스펙트럼의 디콘볼루션을 나타낸 것이다.
도 14는 본원의 일 실시예에 있어서, 흑색 TiO21H 고체 NMR 스펙트럼이다.
도 15는 본원의 일 실시예에 있어서, (A) 태양광 스펙트럼 방사(AM 1.5G, 100 mW/cm2) 및 (B) 상기 태양광 스펙트럼 방사로부터 전환된 광자 흐름을 나타낸 것이다.
도 16은 본원의 일 실시예에 있어서, UV(자외선) 빛 및 태양광을 이용하여 물속에서 히드록시 라디칼(hydroxyl radical)을 발생시키는 전자 스핀 공명(electron spin resonance, ESR) 분석 결과 그래프를 나타낸 것이다.
도 17a는 본원의 일 실시예에 있어서, 루타일 TiO2 및 Li-EDA 처리된 루타일 TiO2의 O 1s XPS 스펙트럼이고, 도 17b는 아나타제 TiO2 및 Li-EDA 처리된 아나타제 TiO2의 O 1s XPS 스펙트럼이며, 도 17c는 P25 TiO2 및 Li-EDA 처리된 P25 TiO2의 O 1s XPS 스펙트럼에 대한 것이다.
도 18은 환원된 청색의 P25 TiO2에 대한 투과전자현미경 에너지손실전자에 대한 맵핑 그래프이다.
도 19는 청색의 P25 TiO2의 낮은 에너지 손실 그래프이다.
도 20은 청색의 P25 TiO2 샘플의 투과전자현미경 에너지손실전자 데이터의 가장자리 그래프이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 “전기적으로 연결”되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~ 를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합(들)”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, “A 및-또는 B”의 기재는 “A 또는 B, 또는 A 및 B”를 의미한다.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되지 않을 수 있다.
본원의 제 1 측면은, 비결정질 루타일-TiO2를 포함하는, 비결정질 TiO2 물질을 제공한다.
본원의 일 구현예에 있어서, 상기 비결정질 루타일-TiO2는 결정질 루타일-TiO2의 선택적 환원에 의해 형성된 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 비결정질 TiO2 물질은 흑색의 나노입자 형태를 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 비결정질 TiO2 물질은 상기 비결정질 루타일-TiO2와 함께 결정질 아나타제-TiO2를 추가 포함하는 복합체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 이 경우, 상기 비결정질 루타일-TiO2와 함께 결정질 아나타제-TiO2를 추가 포함하는 복합체를 포함하는 상기 비결정질 TiO2 물질은 청색의 나노입자 형태를 가진다.
본원의 일 구현예에 있어서, 상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2이 환원되어 형성되는 무질서한 루타일 상(disorderd reduced rutile phase)을 갖는 것이다.
본원의 일 구현예에 있어서, 상기 비결정질 TiO2 물질은, 결정질 루타일-TiO2을 환원시켜 형성되는 상기 비결정질의 환원된 루타일-TiO2을 포함하여 흑색을 나타내거나; 또는, 상기 비결정질 TiO2 물질은, 결정질 루타일-TiO2와 결정질 아나타제-TiO2를 포함하는 TiO2 나노입자에서 상기 결정질 루타일-TiO2만 선택적으로 환원되어 형성된 상기 비결정질의 흑색의 환원된 루타일-TiO2와 결정질 아나타제-TiO2를 함께 포함하여 청색을 나타내며, 열린 구조(open structure)를 갖는 질서화된 결정질 아나타제-TiO2 및 무질서한 비결정질 루타일-TiO2로의 상 선택적 전환이 가능하다.
본원의 일 구현예에 있어서, 상기 비결정질 TiO2 물질은 상기 결정질 아나타제-TiO2 및 상기 환원된 비결정질 루타일-TiO2를 포함하는 나노입자를 포함하여 청색을 나타내는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 상기 비결정질 TiO2 물질은 70% 결정질 아나타제-TiO2 및 30% 결정질 루타일-TiO2을 포함하는 TiO2 나노입자 중 상기 결정질 루타일-TiO2만 선택적으로 환원되어 형성될 수 있으며, 이 경우 청색을 나타내는 것일 수 있다. 이와 관련하여, 상기 비결정질 TiO2 물질은 상기 선택적 환원에 의해 루타일-TiO2만 환원시키는 것이며, 상기 환원된 비결정질 루타일-TiO2는 흑색 TiO2로 변환되고, 환원되지 않은 결정질 아나타제-TiO2가 백색을 나타냄에 따라 아나타제-TiO2 및 환원된 비결정질 루타일-TiO2를 포함하는 복합체 물질은 청색을 나타내는 것일 수 있다. 이 때, 상기 비결정질 TiO2 물질에 있어서 상기 결정질 아나타제-TiO2 및 상기 환원된 비결정질 루타일-TiO2의 비율은 7 : 1 내지 3, 또는 7 내지 10 : 3인 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 비결정질 TiO2 물질에 있어서 상기 결정질 아나타제-TiO2 및 상기 환원된 비결정질 루타일-TiO2의 비율은 7 : 3 인 것일 수 있다.
본원의 일 구현예에 있어서, 상기 환원된 비결정질 루타일-TiO2는 무질서한 환원된 루타일 상(disorderd reduced rutile phase)을 갖는 비결정성을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 청색을 나타내는 비결정질 TiO2 물질은 질서화된 아나타제 상 및 환원되어 무질서한 루타일 상(disorderd reduced rutile phase)을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 청색을 나타내는 비결정질 TiO2 물질은 변함없는 (101) 면의 A-TiO2 뿐만 아니라, 무질서한 성분을 갖는 R-TiO2를 포함하며, 상기 A-TiO2 및 R-TiO2의 뚜렷한 접합(junction)을 나타낸다.
본원의 일 구현예에 있어서, 상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2의 X-선 회절 패턴의 피크들 중 (110), (101), (111) 및 (211) 피크들의 강도가 감소되거나 상기 피크들을 나타내지 않는 것이다. 예들 들어, 상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2의 X-선 회절 패턴의 피크들 중 (110), (101), (111) 및 (211) 피크들의 강도가 80% 이상, 85% 이상, 90% 이상, 95% 이상, 97% 이상, 또는 99% 이상 감소되거나 상기 피크들을 나타내지 않는 것이다.
본원의 일 구현예에 있어서, 상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2의 라만 스펙트럼의 B1g, 및 B2g 밴드의 강도가 감소되거나 상기 밴드들을 나타내지 않는 것이다. 예를 들어, 상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2의 라만 스펙트럼의 B1g, 및 B2g 밴드의 강도가 80% 이상, 85% 이상, 90% 이상, 95% 이상, 97% 이상, 또는 99% 이상 감소되거나 상기 밴드들을 나타내지 않는 것이다.
본원의 일 구현예에 있어서, 상기 비결정질 루타일-TiO2는 -OH 기를 포함하는 것일 수 있으나, 이에 제한되지는 않는다.
본원의 제 2 측면은, 결정질 루타일-TiO2을 포함하는 TiO2 물질을 환원제를 혼합하여 상기 결정질 루타일-TiO2를 환원시켜 비결정질 루타일-TiO2을 형성하는 것을 포함하는, 비결정질 TiO2 물질의 제조 방법을 제공한다.
본원의 일 구현예에 있어서, 상기 결정질 루타일-TiO2을 포함하는 TiO2 물질은 나노입자 형태를 가지는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 비결정질 TiO2 물질은 상기 비결정질 루타일-TiO2를 포함하는 흑색의 나노입자 형태를 가지는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 결정질 루타일-TiO2을 포함하는 TiO2 물질은 결정질 아나타제-TiO2를 추가 포함하는 나노입자 형태를 가지는 것이고, 상기 환원제를 혼합하여 상기 결정질 루타일-TiO2만이 선택적으로 환원되어 상기 비결정질 루타일-TiO2가 형성되는 것일 수 있다. 예를 들어, 상기 비결정질 TiO2 물질은 상기 비결정질 루타일-TiO2 및 상기 결정질 아나타제-TiO2를 포함하는 청색의 나노입자 형태를 가지는 것일 수 있다.
본원의 일 구현예에 있어서, 밀접한 질서/무질서 결정을 포함하는 청색 TiO2 나노입자로 변환된 아나타제 상 및 루타일 상을 가지는 TiO2 나노입자를 제조할 수 있으며, 본원의 일 구현예에 따른 비결정질 TiO2 물질은, TiO2 나노입자와 환원제를 혼합하여 상온 용액 공정에 의해 제조되고, 상기 환원제가 A-TiO2(아나타제-TiO2)를 잘 유지하면서 R-TiO2(루타일-TiO2)를 선택적으로 공격할 수 있어, 열린 구조(open structure)를 갖는 질서화된 아나타제 TiO2 및 무질서한 루타일 TiO2로의 상 선택적 전환이 가능하다. 상기 메커니즘은 pH 상태에 대한 R-TiO2와 A-TiO2 사이에 양성자화 상수의 큰 차이에 기인될 수 있다.
본원의 일 구현예에 있어서, 상기 환원제는 알칼리 금속 및 염기성 유기 용매를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리 금속은 Li, Na, K, Rb, 또는 Cs 등을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 염기성 유기 용매는 알킬아민, 디알킬아민, 사이클릭알킬아민, 또는 디사이클릭알킬아민을 포함할 수 있으며, 예를 들어, 상기 알킬은 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6, 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬일 수 있고, 상기 사이클릭알킬기는 탄소수 3 내지 10, 탄소수 3 내지 8, 또는 탄소수 3 내지 6일 수 있다. 예를 들어, 상기 염기성 유기 용매는 이소프로필아민, 비스(이소프로필)아민, 디에틸아민, 디사이클로헥실아민, 에틸렌디아민, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 환원제는 알칼리 금속을 염기성 유기 용매에 용해시킨 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 상기 환원제는 Li/EDA(lithium in ethylenediamine)과 같이 알칼리 금속, 및 아민류 포함하는 염기성 유기 용매를 포함하는 것일 수 있으며, 이 경우, 상기 Li/EDA는 금속성 Li 호일(foil)을 에틸렌디아민에 용해시킨 것을 포함하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 환원은 밀폐 및 무수의 상태에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 환원은 상온에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 3 측면은, 비결정질 루타일-TiO2, 또는 결정질 아나타제-TiO2 및 비결정질 루타일-TiO2를 포함하는, 본원의 제 1 측면에 따른 비결정질 TiO2 물질을 포함하는, 광촉매를 제공한다.
본원의 일 구현예에 있어서, 상기 광촉매는 물의 광촉매적 분해 활성을 나타내는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 광촉매는, 상기 비결정질 루타일-TiO2를 포함하는 흑색의 나노입자 형태를 가지는 상기 비결정질 TiO2 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 광촉매는, 상기 비결정질 루타일-TiO2 및 상기 결정질 아나타제-TiO2를 포함하는 청색의 나노입자 형태를 가지는 상기 비결정질 TiO2 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 밀접한 질서/무질서 결정을 포함하는 청색 TiO2 나노입자로 변환된 아나타제 상 및 루타일 상을 가지는 TiO2 나노입자를 제조할 수 있으며, 상기 청색 TiO2 나노입자는 수용액 전해질 중에서 신규한 질서/무질서/물 접합(order/disorder/water junction)을 형성하고, 이것은 보조촉매 없이 매우 높은 광촉매 H2 및 히드록시 라디칼(hydroxyl radical) 발생을 나타낼 수 있다.
본원의 일 구현예에 있어서, 상기 질서/무질서/물 접합을 포함하는 청색 TiO2는, 예를 들어, 약 0.5 wt% Pt(보조촉매)를 사용하여 약 13.89 mmol/h·g 및 어떠한 보조촉매의 사용 없이 약 3.46 mmol/h·g의 수소 생성 속도를 나타냈으며, 이것은 질서화된 아나타제 TiO2 및 무질서화된 루타일 TiO2 각각에서 타입-Ⅱ 밴드갭 정렬을 통해 내적으로 분리된 전자/정공 때문일 수 있고, 뿐만 아니라 잘 정의된 표면 반응, H2 발생, 및 정공 국부화(hole localization) 때문일 수 있다.
그러므로, 혼합된-상 TiO2의 선택적 전환을 이용하여 청색 TiO2에서 태양광 흡수 및 전하 분리를 향상시키기 위한 완전히 새로운 접근이 현재까지 보고된 가장 우수한 수소 생성 광촉매를 수득할 수 있다.
본원의 일 구현예에 있어서, 상기 광촉매는 상기 환원된 비결정질 루타일-TiO2를 포함하는 나노입자를 포함하여 흑색을 나타내는 환원된 비결정질 TiO2 복합체 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 환원된 비결정질 TiO2 복합체 물질은 부분적으로 환원된 비결정질 루타일 TiO2을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 광촉매는 상기 아나타제-TiO2 및 상기 환원된 비결정질 루타일-TiO2를 포함하는 나노입자를 포함하여 청색을 나타내는 상기 환원된 비결정질 TiO2 복합체 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 환원된 비결정질 TiO2 복합체 물질은 상기 부분적 환원에 의해 결정질 루타일-TiO2만 환원시키는 것이며, 상기 환원된 비결정질 루타일-TiO2는 흑색 TiO2로 변환되고, 환원되지 않은 아나타제-TiO2가 백색을 나타냄에 따라 아나타제-TiO2 및 환원된 비결정질 루타일-TiO2를 포함하는 복합체 물질은 청색을 나타내는 것일 수 있다. 이 때, 상기 비결정질 TiO2 물질에 있어서 상기 결정질 아나타제-TiO2 및 상기 환원된 비결정질 루타일-TiO2의 비율은 7 : 1 내지 3, 또는 7 내지 10 : 3인 것일 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 상기 비결정질 TiO2 물질에 있어서 상기 결정질 아나타제-TiO2 및 상기 환원된 비결정질 루타일-TiO2의 비율은 7 : 3 인 것일 수 있다.
본원의 일 구현예에 있어서, 상기 청색 TiO2 나노입자는 질서화된 아나타제 상 및 무질서한 환원된 비결정질 루타일 상(disorderd reduced rutile phase)을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 청색 TiO2는 변함없는 (101) 면의 아나타제-TiO2 뿐만 아니라, 무질서한 성분을 갖는 비결정질 루타일-TiO2도 나타내며, 상기 아나타제-TiO2 및 비결정질 루타일-TiO2의 뚜렷한 접합(junction)을 나타낸다.
본원의 일 구현예에 있어서, 상기 청색 TiO2 나노입자는 수용액 전해질 중에서 신규한 질서/무질서/물 접합(order/disorder/water junction)을 형성하고, 이것을 광촉매로서 사용하여 보조촉매 없이 매우 높은 광촉매 H2 발생을 나타낼 수 있다.
본원의 일 구현예에 있어서, 상기 질서/무질서/물 접합을 갖는 청색 TiO2 나노입자는 아나타제-TiO2 및 루타일-TiO2의 계면에서 형성된 타입-Ⅱ 밴드 정렬(type-Ⅱ band alignment) 때문에 우수한 전하 분리 효율을 가지고, 전하 재결합을 억제함으로써 전자 손실을 방지할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 타입-Ⅱ 밴드 정렬(type-Ⅱ band alignment)은, 효율적인 광촉매를 결정짓는 중요 요인인 전자와 정공의 분리 및 이동에 있어서, 전도대(conduction band)와 가전자대(valence band)의 3 가지의 밴드 정렬 타입 중 전자와 정공의 빠른 이동과 분리가 가능한 밴드 정렬 타입을 의미한다.
종래의 코어/쉘 나노구조를 갖는 흑색 TiO2로부터 광발생된 전자는 물과 접촉하기 위해 터널링(tunneling) 공정을 통하여 질서화된 코어에서 무질서된 쉘로 이동해야만 한다. 그 결과, 무질서화된 TiO2 쉘과 물 사이의 단일-상 계면은 상기 쉘 표면 상에 전자 수용체(예를 들어, Pt)가 없을 때 전하 재결합의 가능성이 증가한다. 반면, 본원의 일 구현예에 따른 상기 비결정질 TiO2 물질을 포함하는 나노입자는, 질서/무질서/물 접합을 가짐으로써 산화 및 환원 공정을 위한 산화환원 사이트(redox site)를 효율적으로 분리하고, 상기 현상은 TiO2로부터 보조효소 없이 고효율 H2 생성을 실현하기 위해 중요한 표면 엔지니어링 기술로 간주될 수 있다.
이하, 본원의 실시예를 상세히 설명한다. 그러나, 본원이 이에 제한되지 않을 수 있다.
[실시예]
<결정질 아나타제 -비결정질 루타일 상을 함유하는 비결정질 TiO 2 복합체 및 광촉매의 제조, 및 분석>
14 mg 금속성 Li 호일(foil)은 1 mmol/mL 용매화된 전자 용액을 형성하기 위하여 20 mL 에탄디아민에서 용해되었다. 200 mg 건조된 TiO2 나노결정(아나타제, 크기: ~25 nm, 루타일, 크기: ~140 nm, P-25, 크기: 20~40 nm)이 상기 용액에 첨가되었고, 6 일 동안 교반되었다(주의: 상기 반응은 밀폐되고 무수의 상태에서 수행되는 것이 필요함). 충분한 반응 후, 1 mol/L HCl이 초과 전자를 퀀치(quench)하고 Li염을 형성하기 위해서 상기 혼합물에 천천히 적하되었다. 최종적으로, 상기 수득된 복합체는 탈이온수에 여러 번 세척되었고, 진공 오븐에서 상온에서 건조되었다.
Pt가 로딩된 광촉매는 광-증착 방법에 의해 수득되었다. 상기 광촉매 H2 생성 실험은 100 mL Pyrex 둥근-바닥 플라스크에서 수행되었고, 그 입구는 실리콘 고무 셉텀에 의하여 밀봉되었고, 주위 온도 및 대기 압력에서 수행되었다.
필터링된 450 W 제논 램프를 구비한 태양광 시뮬레이터(Oriel Sol 3A, class AAA)가 광 소스로서 사용되었고, 100 mW/cm2의 1 태양광 강도를 생성하기 위하여 Si 기준 셀(VLSI standards, Oriel P/N 91150 V)을 사용하여 적절한 조정이 수행되었다. 전형적인 실험에서, 20 mg 광촉매가 35 mL 물과 35 mL 메탄올의 혼합물에 분산되었다. 상기 현탁액은 용해된 산소를 거의 제거하기 위해 질소로 버블링되었다. 상기 광촉매 반응 과정 동안, 상기 현탁액은 균일한 방사(irradiation)를 확보하기 위해 지속적으로 교반되었다. 상기 생성된 샘플 1 mL는 밀봉된 유리 주사기를 이용하여 수집되었고, 수소와 산소 함량이 가스 크로마토그래피에 의해 분석되었다(Agilent technologies 7890A GC system, USA). H2 생성 속도/cm2를 측정하기 위하여, 상기 반응기는 0.5 cm 두께의 흑색 폼(foam)을 사용하여 1 cm2 면적을 덮었다.
시간-상관 단광자 계수법(time-correlated single-photon counting, TCSPC)은 여기자(exiton) 수명을 측정하기 위해 수행되었다(전하 분해 효율). ~150 fs 펄스 너비 및 76 MHz 반복속도를 이용하여 조정할 수 있는 Ti: 사파이어 레이저(Mira900, Coherent)의 2 차 하모닉(SHG = 375 nm)이 여기 소스로서 사용되었다. PL 발광은 광 수집(collection optic) 및 단색화장치(monochromater)(SP-2150i, Acton)를 이용함으로써 분석되었다. MCP-PMT(R3809U-59, Hamamatsu)를 구비한 TCSPC 모듈(PicoHarp, PicoQuant)은 초고속 검출을 위해 사용되었다. 상기 전체 기기 반응 작동(IRF)은 130 ps 미만이었고, 순간 시간 분해는 10 ps 미만이었다. 실제 형광발광 감소 및 IRF의 디콘볼루션(deconvolution)은 각각의 지수 감소와 연관된 시간 상수를 추정하기 위하여 피팅(fitting) 소프트웨어를 사용함으로써 수행되었다(FlouFit, PicoQuant). 모든 측정은 20 K에서 진공하에서 수행되었다.
저온 광발광(fs-PL)은 광전 증폭관(photomultiplier tube)(PD-174, Acton)과 연결된 광 수집 및 단색화장치(SP-2150i, Acton)를 이용함으로써 측정되었다.
<분석 결과>
색 및 결정의 상(phase) 변화는 A-TiO2(대략 20 nm), R-TiO2(대략 140 nm), 및 P-25(20~40 nm)를 Li-EDA 용액으로 처리함으로써 처음으로 관찰되었다. 도 1a에 나타낸 바와 같이, A-TiO2는 변화되지 않은 백색(왼쪽) 및 X-선 회절(XRD) 패턴(도 2)을 나타내었고, 반면, 백색 결정질R-TiO2는 흑색 비결정질 TiO2로 완전히 환원 변환되었으며(중간, 도 1a), 이것의 원래 XRD 피크는 Li-EDA 처리된 P25 TiO2(R6-rTiO2)에서는 거의 사라졌다(도 2). 흥미롭게도, 상기 P-25의 색은 청색으로 바뀌었다. 상기 중간 색은 백색 및 흑색의 혼합의 결과인 것으로 사료된다. 도 1b는 Li/EDA 용액 처리 시간에 따른 P-25의 XRD 패턴을 나타낸 것으로서, 6 일 처리 후에 상기 아나타제 피크에서 눈의 띄는 변화는 없었으나, 결정질 루타일 피크가 거의 완전히 사라지는 것을 관찰하였다. 라만 스펙트럼은 상기 Li-EDA 용액 처리에 의해 유도된 R-TiO2의 구조적 변화를 추가로 나타내었다(도 3).
고분해능 투과전자현미경(HR-TEM) 이미지 및 샘플의 제한시야 전자회절(selected-area electron diffraction)에 의해 나타낸 바와 같이(도 4), 흑색 R-TiO2의 원자 배열은 매우 무질서하고, 심지어 나노도메인(nanodomain)의 단범위 질서(shortrange ordering)도 뚜렷하게 관찰되지 않는다. 순수한 P-25 결정의 HR-TEM 이미지는 잘-정렬된 아나타제-루타일 계면을 뚜렷하게 나타내었고, 여기에서 상기 TiO2의 격자 간격은 A-TiO2의 (101) 면에 대해 0.352 nm 및 R-TiO2의 (110) 면에 대해 0.32nm였다(도 1c). 극명하게 대조적으로, 청색 P-25의 HR-TEM 이미지는 변함없는(101) 면의 아나타제 뿐만 아니라 무질서한 성분을 갖는 뚜렷한 접합(junction)을 나타내었다(도 1d). 상기 용액-처리된 P-25(청색 P-25)의 무질서한 부분의 제한시야 전자회절 스펙트럼은 흑색 R-TiO2의 스펙트럼과 유사하였고, 따라서 무질서한 R-TiO2 부분으로서 합리적으로 지정될 수 있다. 명백한 결정 경계(grain boundary)는 확대된 HR-TEM에 의해 확인될 수 있는데(적색 및 녹색 사각형), 이것은 명확한 계면이 유지됨을 나타낸다. 상기 P-25 나노입자의 Brunauer-Emmett-Teller(BET) 값은 47.9 m2/g이었고, 상기 청색 P-25 나노입자는 53.1 m2/g로 증가되었다; 상기 약간의 증가는 루타일의 텍스처(texture) 변화에 기인될 수 있다(도 5). P-25 및 청색 P-25의 저분해능 TEM 이미지는 입자 크기 분포에서 변화가 없다는 것을 나타냈다(도 6). 상기 청색 P-25에서 아나타제 및 무질서한 무정형 비결정질 상으로 형성된 제안된 헤테로접합(hetero junction)은 도식화하여 도 1e에 나타내었다. 상기 용액 처리 후 수득된 단일 P-25 입자가 물에 분산될 때, 본 연구원들은 질서/무질서/물 접합의 형성을 알 수 있었다.
도 18은 환원된 청색의 P25 TiO2에 대한 TEM EELS에 대한 맵핑 그래프이다. Ti의 외각전자구름에서 나오는 파장을 측정하여 Ti원소와 O원소를 보아 TiO2임을 확인하였다.
도 19는 청색의 P25 TiO2의 Low-loss 그래프로서, 표면과 중심부에 대한 결정구조 차이로 O그룹의 차이를 확인하였다. 위 그래프 결과 표면에서 좀더 많은 산소결핍(Oxygen vacancy)이 나타나고, 이는 Ti3+가 좀 더 형성됨을 의미한다.
도 20은 청색의 P25 TiO2 샘플의 TEM EELS 데이터의 edge 그래프이다. Ti의 L 전자각 비교시 C 피크가 표면에서 좀더 낮고 이는 결핍(vacancy)를 의미한다. 또한 O그룹의 K 전자각 비교시 534 부분의 산소결핍(Oxygen vacancy) 피크가 증가함을 볼 수 있다.
도 7a(왼쪽)에서, 청색 P-25의 Ti 2p X-선 광전자 분광분석(XPS)은 Ti 2p3/2 피크의 디콘볼루션(deconvolution)에서 456.6 eV에서 작은 피크를 나타냈다; 상기 피크는 상기 TiO2 표면 상에서 환원된 전하 상태(Ti3 +)의 Ti 이온과 관련있다. 대응하여, O 1s XPS 스펙트럼에서(도 9의 A), 증가된 표면 OH (OOH) 종(species)은 531 ± 0.2 eV에서 관찰되었다. 도 9에 의해 확인된 바와 같이, 용액 처리 후 상기 P-25에서 증가된 OH 종은 P-25의 환원된 루타일 상 때문일 수 있다. 도 17a와 같이 청색의 TiO2의 경우 Li-EDA 처리후 OH 그룹이 증가하는 것을 볼 수 있는데, 이는 Li-EDA 처리에 의해서 루타일의 Ti-O-Ti 결합이 Ti-OH로 치환된 현상을 설명하는 것이다. 즉, 결정질 루타일과 비결정질 루타일의 O1s XPS 피크 분석 결과, 532 eV에서 Li-EDA 처리된 비결정질 루타일의 OH 피크가 크게 증가되는 것을 볼 수 있었다(도 17a). XPS 그래프의 0H 그룹 (532 eV)의 세기는 생성된 OH 그룹의 양과 비례하여 나타나는 것을 확인할 수 있다. 즉, 루타일을 20% 정도만을 포함하는 P25의 Li-FDA 처리 결과, OH 그룹을 나타내는 532 eV 에서의 강도가 Ti-O-Ti 결합 1 기준 0.2 정도의 세기를 보였고(도 17c), 비결정질 루타일은 1에 가까운 세기를 보였다(도 17a).
상기 환원된 R-TiO2에서 산소 결함(vacancies)의 형성은 전자 에너지 손실 분광분석(EELS) 기술에 의해 추가도 분석되었다(도 10). 도 10에 나타낸 바와 같이, 직사각형 영역에서 상기 Ti-L 및 O-K의 EELS는 산소가 "1-2"로 표시된 지점과 비교하여 "1-1"로 표시된 지점에서 부족한 것으로 나타났으며, 상기 EELS 결과는 XPS 분석에 따라 산소 결핍이 R-TiO2에서 선택적으로 발생되는 것을 분명하게 나타냈다.
Li/EDA 처리 후 전자적 구조 변화의 특징은 가전자대(VB) XPS와 조합하여 UV-vis 흡수 스펙트럼에 의해 측정되었다. 도 8b에서, UV-vis 흡수 스펙트럼은 흑색 R-TiO2가 800 nm 보다 더 긴 파장에서 강하고 넓은 배경 흡수를 나타내는 반면, 처리 전후의 A-TiO2의 스펙트럼들에서 눈에 띄는 변화는 없었다. 다양한 TiO2 샘플에 대한 (αhν)1/2 vs. hν의 Tauc 플롯은 순수한(fresh) 아나타제 및 루타일의 간접 밴드갭 에너지들이 각각 대략 3.15 eV 및 3.0 eV임을 나타냈다(도 11). 그러나, 흑색 루타일 나노결정의 광학적 흡수의 온셋(onset)은 대략 1.0 eV까지 감소되었고, 이것은 전형적인 흑색 TiO2의 값에 필적한다. 예상된 것처럼, 청색 P-25는 가시광 범위에서 강한 흡수능을 나타냈을 뿐만 아니라 가시광 범위에 대한 흡수에서 명백한 적색 이동(대략 430 nm)을 나타내었다. 상기 VB XPS 스펙트럼은 A-TiO2 및 RTiO2의 VB 최대값이 각각 2.38 eV 및 2.18 eV인 것을 나타내었고, 반면, 흑색 RTiO2는 1.42 eV에서 주요 흡수 온셋을 나타내었으며, 뿐만 아니라, 밴드 테일(tail)이 대략 -0.04 eV의 진공 자외선(UV)쪽으로 향하는 것과 관련이 있는 최대 에너지의 청색 이동을 나타내었다(도 7c). 그러므로, 도 7d에 나타낸 바와 같이, 상기 밴드갭 다이어그램은 UV-vis 흡수와 상기 VB XPS 스펙트럼을 조합함으로써 만들 수 있고, 이것은 타입-Ⅱ 밴드 정렬을 나타낸다. 도 12에 나타낸 바와 같이, 밴드갭 구조를 결정하기 위하여, 상기 A-TiO2 및 R-TiO2의 플랫 밴드 포텐셜(Efb)은 Mott-Schottky 플롯을 이용하여 측정됐다. A-TiO2 및 R-TiO2의 Efb는 각각 0.715 및 0.445 V vs. RHE(가역 수소 전극: reversible hydrogen electrode)이었고, 이것은 R-TiO2의 전도대(CB) 상태가 A-TiO2 보다 더 높은 0.27 eV라는 것을 의미한다. 본원의 VB XPS 결과 및 밴드갭 값에 따르면, 상기 수득된 A-TiO2와 R-TiO2 사이의 CB 상태의 차이는 0.18 eV이다. 이것은 대략 0.08 eV 과소 평가된 것으로서 고려될 수 있다. 상기 발견은 시뮬레이션 결과와 매우 일치한다(도 7e). 도 13에 나타낸 바와 같이, Li-EDA 처리한 각각의 TiO2 샘플들의 Li원소나 Cl원소 불순물은 잔존하지 않았다. 54.9 eV에서 결합 에너지는 LiOH에 해당되고, 반면에 54.9 eV 보다 높은 다른 피크들은 일부 전자 끄는 기(electron withdrawing group) 때문이다.
EDA 초염기가 루타일 TiO2 안정성을 약화시키는 높은 pH 상태를 제공하여, 이것은 루타일의 Gibbs 자유에너지가 현저히 향상됨을 의미한다. 킬레이트 금속성 Li에 의해 유도된 강한 환원제와 반응될 때, 루타일 TiO2에서 Ti-O의 더 낮은 결합 에너지가 분해될 수 있다. 상기 무질서화된 TiO2에서 불포화된 결합은 양성자에 대한 높은 친화력을 야기한다. 그러므로, 희석된 HCl을 이용하여 세척된 경우, 상기 양성자는 무질서화된 TiO2로 도입되어 Ti-H 또는 Ti-OH 결합을 형성한다.
1) O-Ti-O-Ti-O-Ti-O + e- → …O-Ti + O-Ti-O-Ti-O…
2) …O-Ti + O-Ti-O-Ti-O… + H → …O-Ti-H + HO-Ti-O-Ti-O…
본 발명자들은 Li 1s XPS를 수집함으로써 무질서한 R-TiO2 격자에서 Li 종 잔여물의 가능성을 추가로 제외했다. 본원에서, 흑색 R-TiO2는 밴드갭의 상당한 축소(narrowing)을 나타냈으며, 이것은, 1H 고체-상태 핵자기공명(NMR)에 의해 확인된 것처럼, R-TiO2의 양성자화의 원인인 되는 것으로 추측된다(도 14).
도 15는 본 실시예에 있어서, (a) 태양광 스펙트럼 방사(AM 1.5G, 100 mW/cm2) 및 (b) 상기 태양광 스펙트럼 방사로부터 전환된 광자 흐름을 나타낸 것이다. 태양광으로부터의 광자 흐름이 거의 일치하는 것을 나타내었으며, 따라서 광촉매 TiO2에 활성을 주는 것을 알 수 있다.
도 16은, UV(자외선) 빛 및 태양광을 이용하여 물속에서 히드록시 라디칼(hydroxyl radical)을 발생시키는 전자 스핀 공명(electron spin resonance, ESR) 분석 결과를 측정하여 나타낸 그래프이다. 각각 루타일-TiO2(R-TiO2), 환원된 루타일-TiO2(R6-rTiO2), 아나타제-TiO2(A-TiO2), 환원된 아나타제-TiO2(A6-rTiO2), P-25 TiO2(P-rTiO2), 및 환원된 P-25 TiO2(P6-rTiO2)의 히드록시 라디칼 생성 특성을 나타내었다: (a) 물과 에탄올이 섞인 용액에서 UV 빛 조사시의 각 라디칼 생성 특성, (b) 수용액에서 UV 빛 조사시의 각각의 라디칼 생성 특성, (c) 수용액에서 태양광 조사시 각각의 라디칼 생성 특성, 및 (d) 수용액에서 bandpass filter를 이용한 가시광선 영역의 특정 파장(410 nm 및 510 nm) 빛 조사시의 라디칼 생성 특성을 나타낸 그래프이다.
본원에서, 본 연구원들은 간단한 상온 용액 공정을 이용하여 상업용 P-25를 열린 구조(open structure)를 갖는 질서화된 결정질 아나타제 TiO2 및 무질서한 비결정질 루타일 TiO2로의 상 선택적 전환을 증명하였다. 상기 환원제인 Li/EDA(lithium in ethylenediamine)는, 상기 결과물인 이른바 청색 TiO2가 모의 태양광 하에서 광촉매 H2 생성을 위해 사용되었을 때(AM 1.5G), 질서/무질서/물 접합을 달성하기 위하여 처음 개발되었다. 상기 질서/무질서/물 접합을 포함하는 신규 청색 TiO2는 0.5 wt% Pt(보조촉매)를 사용하여 13.89 mmol/h·g 및 어떠한 보조촉매의 사용 없이 3.46 mmol/h·g의 수소 생성 속도를 나타냈으며, 이것은 질서화된 아나타제 TiO2 및 무질서화된 루타일 TiO2 각각에서 타입-Ⅱ 밴드갭 정렬을 통해 내적으로 분리된 전자/정공 때문일 수 있고, 뿐만 아니라 잘-정의된 표면 반응, H2 발생, 및 정공 국부화(hole localization) 때문일 수 있다. 그러므로, 혼합된-상 TiO2의 선택적 전환을 이용하여 청색 TiO2에서 태양광 흡수 및 전하 분리를 향상시키기 위한 완전히 새로운 접근이 현재까지 보고된 가장 우수한 수소 생성 광촉매를 수득하게 하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 비결정질 루타일-TiO2를 포함하는, 비결정질 TiO2 물질.
  2. 제 1 항에 있어서,
    상기 비결정질 루타일-TiO2는 결정질 루타일-TiO2의 선택적 환원에 의해 형성된 것인, 비결정질 TiO2 물질.
  3. 제 1 항에 있어서,
    상기 비결정질 루타일-TiO2와 함께 결정질 아나타제-TiO2를 추가 포함하는 복합체를 포함하는, 비결정질 TiO2 물질.
  4. 제 3 항에 있어서,
    상기 비결정질 TiO2 물질은 청색의 나노입자 형태를 가지는 것인, 비결정질TiO2 물질.
  5. 제 1 항에 있어서,
    상기 비결정질 TiO2 물질은 흑색의 나노입자 형태를 가지는 것인, 비결정질 TiO2 물질.
  6. 제 1 항에 있어서,
    상기 비결정질 루타일-TiO2은 무질서한 루타일 상(disorderd reduced rutile phase)을 갖는 것인, 비결정질 TiO2 물질.
  7. 제 1 항에 있어서,
    상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2의 X-선 회절 패턴의 피크들 중 (110), (101), (111) 및 (211) 피크들의 강도가 감소되거나 상기 피크들을 나타내지 않는 것인, 비결정질 TiO2 물질.
  8. 제 1 항에 있어서,
    상기 비결정질 루타일-TiO2은 결정질 루타일-TiO2의 라만 스펙트럼의 B1g, 및 B2g 밴드의 강도가 감소되거나 상기 밴드들을 나타내지 않는 것인, 비결정질 TiO2 물질.
  9. 제 1 항에 있어서,
    상기 비결정질 루타일-TiO2는 -OH 기를 포함하는 것인, 비결정질 TiO2 물질.
  10. 결정질 루타일-TiO2을 포함하는 TiO2 물질을 환원제를 혼합하여 상기 결정질 루타일-TiO2를 환원시켜 비결정질 루타일-TiO2을 형성하는 것을 포함하는, 비결정질 TiO2 물질의 제조방법.
  11. 제 10 항에 있어서,
    상기 비결정질 TiO2 물질은 상기 비결정질 루타일-TiO2를 포함하는 흑색의 나노입자 형태를 가지는 것인, 비결정질 TiO2 물질의 제조방법.
  12. 제 10 항에 있어서,
    상기 결정질 루타일-TiO2을 포함하는 TiO2 물질은 결정질 아나타제-TiO2를 추가 포함하는 나노입자 형태를 가지는 것이고, 상기 환원제를 혼합하여 상기 결정질 루타일-TiO2만이 선택적으로 환원되어 상기 비결정질 루타일-TiO2가 형성되는 것인, 비결정질 TiO2 물질의 제조방법.
  13. 제 12 항에 있어서,
    상기 비결정질 TiO2 물질은 상기 비결정질 루타일-TiO2 및 상기 결정질 아나타제-TiO2를 포함하는 청색의 나노입자 형태를 가지는 것인, 비결정질 TiO2 물질의 제조방법.
  14. 제 10 항에 있어서,
    상기 환원제는 알칼리 금속 및 염기성 유기 용매를 포함하는 것인, 비결정질 TiO2 물질의 제조방법.
  15. 제 14 항에 있어서,
    상기 염기성 유기 용매는 알킬아민, 디알킬아민, 사이클릭알킬아민, 또는 디사이클릭알킬아민을 포함하는 것인, 비결정질 TiO2 물질의 제조방법.
  16. 제 10 항에 있어서,
    상기 환원은 밀폐 및 무수의 상태에서 수행되는 것인, 비결정질 TiO2 물질의 제조방법.
  17. 제 10 항에 있어서,
    상기 환원은 상온에서 수행되는 것인, 비결정질 TiO2 물질의 제조방법.
  18. 비결정질 루타일-TiO2, 또는 결정질 아나타제-TiO2 및 비결정질 루타일-TiO2를 포함하는, 제 1 항 내지 제 9 항 중 어느 한 항에 따른 비결정질 TiO2 물질을 포함하는, 광촉매.
  19. 제 18 항에 있어서,
    상기 광촉매는, 상기 비결정질 루타일-TiO2를 포함하는 흑색의 나노입자 형태를 가지는 상기 비결정질 TiO2 물질을 포함하는 것인, 광촉매.
  20. 제 18 항에 있어서,
    상기 광촉매는, 상기 비결정질 루타일-TiO2 및 상기 결정질 아나타제-TiO2를 포함하는 청색의 나노입자 형태를 가지는 상기 비결정질 TiO2 물질을 포함하는 것인, 광촉매.
PCT/KR2017/005193 2016-05-18 2017-05-18 비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매 WO2017200328A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160060972 2016-05-18
KR10-2016-0060972 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017200328A1 true WO2017200328A1 (ko) 2017-11-23

Family

ID=60325292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005193 WO2017200328A1 (ko) 2016-05-18 2017-05-18 비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매

Country Status (2)

Country Link
KR (1) KR101907124B1 (ko)
WO (1) WO2017200328A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717952A (zh) * 2021-02-25 2021-04-30 郑州大学 一种氨硼烷水解析氢用催化剂PtNiOx/TiO2-VO及其制备方法
CN113336265A (zh) * 2021-03-10 2021-09-03 北京航空航天大学 一种具有高含量氧空位缺陷的黑色二氧化钛b纳米片制备方法
CN114686916A (zh) * 2022-03-07 2022-07-01 深圳先进技术研究院 一种氧化锌纳米棒阵列光阳极及其制备方法
CN115106073A (zh) * 2022-05-20 2022-09-27 深圳大学 光催化产氢的掺氢氧化钛纳米棒及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184776B1 (ko) * 2018-04-05 2020-12-01 한양대학교 산학협력단 루타일 상 및 아나타제 상이 결합된 이산화티타늄 분말, 그 제조 방법 및 이를 포함하는 광촉매
KR102082872B1 (ko) 2018-06-04 2020-02-28 재단법인대구경북과학기술원 백금 나노입자가 광증착된 블루 티타니아 나노입자, 이의 제조방법 및 이를 이용하여 co2의 ch4 전환 방법
KR102042995B1 (ko) * 2018-07-18 2019-11-11 성균관대학교산학협력단 도핑된 이산화 티타늄, 이의 제조 방법, 및 이를 포함하는 촉매
KR102085756B1 (ko) * 2018-08-17 2020-03-06 연세대학교 산학협력단 3상 이산화 타이타늄 나노 입자 및 이의 제조 방법
KR102219540B1 (ko) 2019-06-27 2021-02-24 재단법인대구경북과학기술원 백금 나노입자가 광증착된 그래핀으로 랩핑된 블루 티타니아 복합체, 이의 제조방법 및 이를 이용한 co2의 선택적 광전환 방법
KR102257999B1 (ko) * 2019-09-09 2021-05-28 성균관대학교산학협력단 이산화티타늄 복합체, 이의 제조 방법, 및 이를 포함하는 광촉매
KR102283316B1 (ko) 2019-11-18 2021-07-30 재단법인대구경북과학기술원 바이메탈릭-블루 티타니아 복합체, 이의 제조방법 및 이를 이용한 co2의 광전환 방법
KR102285567B1 (ko) 2019-11-22 2021-08-04 재단법인대구경북과학기술원 Co2의 선택적 광전환용 광촉매, 이의 제조방법 및 이를 이용한 co2의 선택적 광전환 방법
KR102308030B1 (ko) * 2020-02-20 2021-10-07 성균관대학교산학협력단 이산화티타늄 코어-쉘 구조체 및 이의 제조 방법
KR20220052481A (ko) * 2020-10-21 2022-04-28 성균관대학교산학협력단 이산화티타늄 복합체 및 이의 제조 방법
KR102604820B1 (ko) * 2020-11-27 2023-11-22 성균관대학교산학협력단 3 급 아민으로부터 아미드기를 포함하는 화합물의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089213A (ja) * 2003-09-16 2005-04-07 Tayca Corp 酸化チタンの製造方法
KR101265781B1 (ko) * 2011-01-20 2013-06-07 (주)엠케이 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851102B2 (ja) * 2011-03-02 2016-02-03 石原産業株式会社 ルチル型酸化チタンナノ粒子及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089213A (ja) * 2003-09-16 2005-04-07 Tayca Corp 酸化チタンの製造方法
KR101265781B1 (ko) * 2011-01-20 2013-06-07 (주)엠케이 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, XIAOBO: "Black titanium dioxide (Ti02) nanomaterials", CHEMICAL SOCIETY REVIEWS, pages 1861 - 1885, XP055600701 *
TOMINAKA, SATOSHI: "Topotactic Reduction Yielding Black Titanium Oxide Nanostructures as Metallic Electronic Conductors", INORGANIC CHEMISTRY, pages 10136 - 10140, XP055600703 *
WANG, LUYANG: "Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature", CHEMICAL COMMUNICATIONS, pages 1224 - 1226, XP055600702 *
ZHANG, KAN: "An order/disorder/water junction system for highly efficient co-catalyst-free photocalytic ic hydrogen generation", ENERGY & ENVIRONMENTAL SCIENCE, 18 November 2015 (2015-11-18), XP055600704 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717952A (zh) * 2021-02-25 2021-04-30 郑州大学 一种氨硼烷水解析氢用催化剂PtNiOx/TiO2-VO及其制备方法
CN112717952B (zh) * 2021-02-25 2022-10-25 郑州大学 一种氨硼烷水解析氢用催化剂PtNiOx/TiO2-VO及其制备方法
CN113336265A (zh) * 2021-03-10 2021-09-03 北京航空航天大学 一种具有高含量氧空位缺陷的黑色二氧化钛b纳米片制备方法
CN114686916A (zh) * 2022-03-07 2022-07-01 深圳先进技术研究院 一种氧化锌纳米棒阵列光阳极及其制备方法
CN115106073A (zh) * 2022-05-20 2022-09-27 深圳大学 光催化产氢的掺氢氧化钛纳米棒及其制备方法和应用
CN115106073B (zh) * 2022-05-20 2024-03-29 深圳大学 光催化产氢的掺氢氧化钛纳米棒及其制备方法和应用

Also Published As

Publication number Publication date
KR101907124B1 (ko) 2018-10-12
KR20170130315A (ko) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2017200328A1 (ko) 비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매
Tang et al. Novel Z‐scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation
Lu et al. In situ fabrication of BiVO4-CeVO4 heterojunction for excellent visible light photocatalytic degradation of levofloxacin
Wu et al. In-situ construction of Bi/defective Bi4NbO8Cl for non-noble metal based Mott-Schottky photocatalysts towards organic pollutants removal
Hao et al. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight
Kumar et al. Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting
Mao et al. Fabrication of highly efficient Bi 2 WO 6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr (VI) from wastewater
Cao et al. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties
Wang et al. A facile synthesis of CdSe quantum dots-decorated anatase TiO2 with exposed {0 0 1} facets and its superior photocatalytic activity
Cao et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts
Li et al. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity
Xu et al. Controllable reduced black titania with enhanced photoelectrochemical water splitting performance
Zhang et al. Construction of TiO2 nanobelts-Bi2O4 heterojunction with enhanced visible light photocatalytic activity
Chu et al. Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr (VI) on MoSe2
Wang et al. Understanding the charge separation and transfer in mesoporous carbonate-doped phase-junction TiO2 nanotubes for photocatalytic hydrogen production
Janbandhu et al. CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst
Xia et al. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity
She et al. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
Li et al. Hollow SnO2 nanotubes decorated with ZnIn2S4 nanosheets for enhanced visible-light photocatalytic activity
Zhang et al. Construction of Z-scheme heterojunction by coupling Bi2Sn2O7 and BiOBr with abundant oxygen vacancies: Enhanced photodegradation performance and mechanism insight
Yang et al. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles
Zhu et al. All-solid-state Z-scheme heterostructures of 1T/2H-MoS2 nanosheets coupled V-doped hierarchical TiO2 spheres for enhanced photocatalytic activity
Wang et al. In situ template-free synthesis of a novel 3D p–n heteroarchitecture Ag 3 PO 4/Ta 3 N 5 photocatalyst with high activity and stability under visible radiation
Liang et al. Designing heterointerface in BiOBr/g-C3N4 photocatalyst to enhance visible-light-driven photocatalytic performance in water purification
Wang et al. Size effect and enhanced photocatalytic activity of CuO sheet-like nanostructures prepared by a room temperature solution phase chemical method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17799685

Country of ref document: EP

Kind code of ref document: A1