WO2017200293A1 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2017200293A1
WO2017200293A1 PCT/KR2017/005110 KR2017005110W WO2017200293A1 WO 2017200293 A1 WO2017200293 A1 WO 2017200293A1 KR 2017005110 W KR2017005110 W KR 2017005110W WO 2017200293 A1 WO2017200293 A1 WO 2017200293A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalate
ethylhexyl
based material
dibenzoate
group
Prior art date
Application number
PCT/KR2017/005110
Other languages
English (en)
French (fr)
Inventor
김현규
이미연
조윤기
문정주
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170059726A external-priority patent/KR101994251B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/752,087 priority Critical patent/US11572453B2/en
Priority to ES17799650T priority patent/ES2925701T3/es
Priority to EP17799650.1A priority patent/EP3327076B1/en
Priority to CN201780003053.0A priority patent/CN108026322B/zh
Publication of WO2017200293A1 publication Critical patent/WO2017200293A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/675Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
    • C07C69/704Citric acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/02Condensation polymers of aldehydes or ketones only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a plasticizer composition and a resin composition comprising the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, trimellitate-based, and other polymer-based plastics continue.
  • the plasticizer is appropriately added with various additives such as resins such as polyvinyl chloride (PVC), fillers, stabilizers, pigments, and antifog additives to give a variety of processing properties, such as extrusion, injection molding, calendaring, etc. It is used in a variety of products, from pipes, flooring, wallpaper, sheets, artificial leather, tarpaulins, tapes and food packaging.
  • resins such as polyvinyl chloride (PVC)
  • fillers such as polyvinyl chloride (PVC)
  • stabilizers such as polyvinyl chloride (PVC)
  • plasticizers should be used in consideration of discoloration, transferability, and mechanical properties.
  • plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. are blended with PVC resins according to the characteristics required for different industries such as tensile strength, elongation, light resistance, transition, gelling or absorption rate. Done.
  • the present inventors are plasticizer compositions that can improve poor physical properties caused by structural limitations while continuing research on plasticizers, and are environmentally friendly when mixed with resin compositions, while improving workability by improving absorption rate and plasticization efficiency. It is possible to reduce the total amount of the plasticizer to be applied to improve the physical properties such as the transfer characteristics and heating loss, and to improve the tensile strength and elongation to confirm the plasticizer composition excellent in mechanical properties and to complete the present invention.
  • a terephthalate-based material comprising at least one dibenzoate-based compound represented by Formula 1; And citrate-based material represented by Formula 2, wherein the weight ratio of the terephthalate-based material and dibenzoate-based material is 99: 1 to 1:99, and the citrate-based material is terephthalate-based material and Plasticizer composition is provided that is 1 to 100 parts by weight relative to 100 parts by weight of the total weight of the dibenzoate-based material.
  • R is an alkylene group having 2 to 4 carbon atoms
  • n is an integer of 1 to 3.
  • R1 to R3 are each independently an alkyl group having 4 to 12 carbon atoms, and R4 is hydrogen or an acetyl group.
  • At least one resin 100 selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomer
  • a resin composition comprising 5 to 150 parts by weight of the above-described plasticizer composition, based on parts by weight, is provided.
  • the resin composition may be applied to manufacture at least one selected from the group consisting of wires, flooring materials, automotive interior materials, films, sheets, wallpaper, and tubes.
  • Plasticizer composition according to an embodiment of the present invention when used in the resin composition, while improving the eco-friendliness, the workability can be improved by improving the absorption rate and plasticization efficiency, and improved physical properties such as transfer characteristics and heating loss It is possible to reduce the total amount of plasticizer applied, and to improve mechanical strength by improving tensile strength and elongation.
  • distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
  • steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. .
  • washing with water may be performed, and then the reaction solution is dehydrated to remove moisture.
  • the filtrate was added to the reaction solution from which the water was removed, and the resultant was stirred for a while, and then filtered to obtain 1326.7 g (yield: 99.0%) of di (2-ethylhexyl) terephthalate.
  • Diisononyl terephthalate was finally obtained using isononyl alcohol instead of 2-ethylhexanol in Preparation Example 1.
  • Trans-esterification reaction was carried out for 2 hours at the reaction temperature of °C, dibutyl terephthalate (DBTP), butyl (2-ethylhexyl) terephthalate (BEHTP) and di (2-ethylhexyl) terephthalate (DEHTP), respectively
  • DBTP dibutyl terephthalate
  • BEHTP butyl (2-ethylhexyl) terephthalate
  • DEHTP di (2-ethylhexyl) terephthalate
  • the reaction product was mixed and distilled to remove butanol and 2-ethylhexyl alcohol and finally to prepare a first mixture.
  • Diisononyl terephthalate (DINTP), (2-ethylhexyl) using diisononyl terephthalate and 2-ethylhexanol instead of using di (2-ethylhexyl) terephthalate and n-butanol in Preparation Example 4
  • DINTP Diisononyl terephthalate
  • EHINTP isononyl terephthalate
  • DEHTP di (2-ethylhexyl) terephthalate
  • a composition comprising isononyl (2-propylheptyl) terephthalate (INPHTP) and diisononylterephthalate (DINTP) in the range of 2.7 wt%, 31.0 wt% and 66.3 wt%, respectively.
  • the trans esterification reaction was carried out using 1000 g of TOC prepared in Preparation Example 9 and 300 g of n-butanol as reaction raw materials, and finally 840 g of butyloctyl citrate was obtained.
  • the mixture is about 2.2 wt% TBC in order of molecular weight, about 18.7 wt% of two citrates in which two 2-ethylhexyl groups are exchanged with butyl groups, and the sum of these materials is about 20.9 wt%, about 2 wt%
  • the mixture of two citrates in which one 2-ethylhexyl group was exchanged with a butyl group was about 45.4% by weight, about 5% by weight, and a TOC of about 33.7% by weight, about 3% by weight.
  • Examples and Comparative Examples were configured as shown in Tables 1 to 3 below.
  • the weight part of the citrate below is a value compared to 100 parts by weight of the total weight of the mixture of the TP material and the dibenzoate material.
  • Example 9 DEHTP DEGDB 5: 5 TOC (20)
  • Example 10 DINTP / OINTP / DOTP DEGDB 6: 4 BOC (10)
  • Example 11 DEHTP DPGDB 6: 4 TOC (25)
  • Example 12 DINTP DPGDB 5: 5 TOC (50)
  • the plasticizers of Examples 1 to 8 and Comparative Examples 1 to 3 and 5 were used as experimental specimens.
  • the specimen was prepared by referring to ASTM D638, 40 parts by weight of plasticizer, 40 parts by weight of plasticizer, 3 parts by weight of stabilizer (LOX 912 NP) were mixed with a mixer, and the roll mill was operated at 170 ° C. for 4 minutes, and the press was pressed. 1T and 3T sheets were produced by working at 180 to 2.5 minutes (low pressure) and 2 minutes (high pressure). Using each specimen, the following physical property tests were performed and the results are summarized in Table 4 below.
  • Shore hardness (Shore “D”) 3T 10s at 25 ° C. was measured using ASTM D2240.
  • Tensile Strength (kgf / mm2) Load Value (kgf) / Thickness (mm) x Width (mm)
  • Elongation (%) calculated after elongation / initial length x 100.
  • test specimens having a thickness of 2 mm or more were obtained, and a glass plate was attached to both sides of the test specimens, and a load of 1 kgf / cm 2 was applied thereto.
  • the test piece was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight loss was measured before and after leaving the glass plate and specimen plate in the oven.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Absorption rate was evaluated by measuring the time required for the resin and the ester compound to be mixed to stabilize the torque of the mixer by using a Planatary mixer (Brabender, P600) under the conditions of 77 °C, 60rpm.
  • Example 1 48.0 285.6 311.2 1.32 1.10 4:56
  • Example 2 48.1 288.1 310.5 1.68 0.98 5:22
  • Example 3 46.0 285.1 325.4 0.58 1.20 4:33
  • Example 5 44.0 254.7 288.6 2.55 3.04 3:50
  • Example 6 46.3 260.8 280.9 1.70 2.40 4:18
  • Example 7 43.5 268.7 293.4 2.60 2.68 4:05
  • Example 8 42.4 248.0 245.5 3.70 3.20 3:38
  • Comparative Example 2 it may be difficult to commercialize even in a suitable use for a specific physical property because the properties are not particularly excellent and all the properties are low, Comparative Example 3 is extremely poor in tensile strength and significantly poor transfer loss and heating loss It shows the physical properties and the absorption rate is too fast, which can cause problems in processability.
  • Comparative Example 5 also shows that the citrate is excessively added up to 80 parts by weight, up to 100 parts by weight, has poor heating loss and transition loss, and the absorption rate is too fast, thereby causing a problem in workability.
  • the mechanical properties are basically supported, but they exhibit a considerable level of physical properties in the amount of heat loss and transition loss. It can be seen that the amount can be controlled in a small amount at an appropriate level, and it can be confirmed that the absorption rate is generally similar, so that there will be no problem in processing. In addition, it can be seen that in the case of the embodiments having a somewhat low tensile strength or elongation, the hardness can be compensated for in terms of plasticization efficiency.
  • Example 9 48.5 295.1 315.0 1.02 0.75 5:55
  • Example 10 48.2 290.5 304.7 1.42 0.95 5:08
  • Example 11 47.2 298.7 302.5 0.77 0.60 5:05
  • Example 12 49.0 317.0 308.5 0.50 0.72 6:44
  • Comparative Example 1 48.9 236.7 288.6 3.21 1.63 7:15 Comparative Example 2 48.8 237.5 293.5 2.87 2.23 5:20
  • Comparative Example 3 45.5 204.5 256.0 5.20 11.20 2:10 Comparative Example 4 50.3 265.4 245.0 2.50 1.08 9:25
  • Comparative Example 1 As expected, not only tensile strength and elongation, but also low transfer loss and heating loss, and high hardness, it is difficult to compensate for plasticization efficiency. can confirm.
  • Comparative Example 2 may be difficult to commercialize even in a suitable use for a specific physical property because the properties are not particularly excellent and all the properties are low, the plasticization efficiency may be excellent in Comparative Example 3, but the tensile strength is extremely poor and transition Loss amount and heating loss also show a very poor level of physical properties and the absorption rate is too fast, which can cause problems in processability.
  • Comparative Example 4 Although the hardness is too high, the plasticization efficiency is poor, the tensile strength and the elongation are significantly lower than those of the examples. It can be confirmed that can have.
  • the present invention has a technical feature to provide a plasticizer composition that can improve the poor physical properties caused by the structural limitations.
  • the plasticizer composition is a terephthalate-based material; A dibenzoate-based material comprising at least one dibenzoate-based compound represented by Formula 1; And citrate-based material represented by Formula 2, wherein the weight ratio of the terephthalate-based material and dibenzoate-based material is 99: 1 to 1:99, and the citrate-based material is terephthalate-based material and It is 1 to 80 parts by weight based on 100 parts by weight of the total weight of the dibenzoate-based material.
  • R is an alkylene group having 2 to 4 carbon atoms
  • n is an integer of 1 to 3.
  • R1 to R3 are each independently an alkyl group having 4 to 12 carbon atoms, and R4 is hydrogen or an acetyl group.
  • the terephthalate-based material is di (2-ethylhexyl) terephthalate (DEHTP), diisononyl terephthalate (DINTP), diisodecyl terephthalate (DIDTP), di (2-propylheptyl) terephthalate, diamyl tere Phthalate (DATP), dibutyl terephthalate (DBTP), butyl isononyl terephthalate (BINTP), butyl (2-ethylhexyl) terephthalate (BEHTP), amyl isononyl terephthalate (AINTP), isononyl (2 -Propylheptyl) terephthalate (INPHTP), amyl (2-propylheptyl) terephthalate (APHTP), amyl (2-ethylhexyl) terephthalate (AEHTP), (2-ethylhexyl) (2
  • the terephthalate-based material is a single compound, di (2-ethylhexyl) terephthalate (DEHTP), diisononyl terephthalate (DINTP), diisodecyl terephthalate (DIDTP), di (2- It may be propylheptyl) terephthalate, diamyl terephthalate (DATP), dibutyl terephthalate (DBTP), if the terephthalate-based material is a mixture of three terephthalate-based material may be mixed, for example For example, a first mixture of di (2-ethylhexyl) terephthalate, butyl (2-ethylhexyl) terephthalate and dibutyl terephthalate, diisononyl terephthalate, butylisononyl terephthalate and dibutyl terephthalate A second mixture of phthalates, a third mixture of
  • each component is 3.0 to 99.0 mol% in the order of the component description of each mixture; 0.5 to 96.5 mol% and 0.5 to 96.5 mol%; may be mixed.
  • the composition ratio may be a mixture composition ratio produced by the esterification reaction, and may be an intended composition ratio by additionally mixing a specific compound, and the mixture composition ratio may be appropriately adjusted to suit desired physical properties.
  • a plasticizer composition further comprising a dibenzoate-based material comprising at least one dibenzoate-based compound in addition to the terephthalate-based material.
  • the dibenzoate-based compound may be represented by Formula 1 below.
  • R is an alkylene group having 2 to 4 carbon atoms
  • n is an integer of 1 to 3.
  • the dibenzoate-based compound represented by Formula 1 may be a compound in which an alkylene group and a dibenzoate group are sequentially bonded to both sides based on a central ether group.
  • n 2 or more
  • the number of carbon atoms of the alkylene group represented by R may be the same or different.
  • the same alkylene group is bonded, and may have 2 to 4 carbon atoms, and an alkyl group having 1 to 3 carbon atoms as a branch. Can be combined.
  • the carbon number of the branches is preferably smaller than the carbon number of the main chain bonded to the dibenzoate group.
  • n 2 or more
  • a non-hybrid dibenzoate compound when the alkylene groups bonded by R are the same as each other, it may be referred to as a non-hybrid dibenzoate compound, and when different from each other, it may be referred to as a hybrid dibenzoate compound.
  • a non-hybrid dibenzoate-based compound when used as a plasticizer composition, a non-hybrid dibenzoate-based compound may be more common than a hybrid dibenzoate-based compound, and in the present specification, when there is no mention of hybrid or non-hybridization, all of the Rs are the same non-hybrid dibenzoate-based compound. Can be treated as a compound.
  • R may be any one selected from the group consisting of ethylene, propylene, isopropylene, butylene, and isobutylene, but is not limited thereto. More preferably, the dibenzoate-based compound represented by Formula 1 may be diethylene glycol dibenzoate, dipropylene glycol dibenzoate, or triethylene glycol dibenzoate.
  • the dibenzoate-based material containing at least one dibenzoate-based compound may be the diethylene glycol dibenzoate, diisopropylene glycol dibenzoate or triethylene glycol dibenzoate, or a mixture thereof.
  • the mixture may further include a dibenzoate-based compound meeting the definition of R.
  • the terephthalate-based material and the dibenzoate-based material in the plasticizer composition may be included in a weight ratio of 99: 1 to 1:99, and the upper limit of the weight ratio range is 99: 1. , 95: 5, 90:10, 85:15, 80:20, 70:30 or 60:40 can be applied, and the lower limit is 1:99, 5:95, 10:90, 15:85, 20: 80, 30:70 or 40:60 may apply.
  • the plasticizer composition may further include a citrate-based material as the third mixture, including the terephthalate-based material and the dibenzoate-based material, and the citrate-based material. May be represented by the following formula (2).
  • R1 to R3 are each independently an alkyl group having 4 to 12 carbon atoms, and R4 is hydrogen or an acetyl group.
  • R1 to R3 of Formula 2 are each independently a butyl group, isobutyl group, hexyl group, heptyl group, isoheptyl group, 2-ethylhexyl group, isononyl group, 2-propylheptyl group, It may be an isodecyl group, an undecyl group, or a dodecyl group, and each of R1 to R3 may be the same as or different from each other.
  • preferably having 4 or more carbon atoms it may be preferable not to exceed 12, butyl group, isobutyl group, amyl group, 2-ethylhexyl group, isononyl group, 2-propylhep It may be preferred to apply a tilde, isodecyl group, undecyl group or dodecyl group.
  • the citrate wherein R1 to R3 is an alkyl group having 4 to 12 carbon atoms and different alkyl groups are, for example, a sheet having a citrate having a combination substituent of butyl group and 2-ethylhexyl group, a combination substituent of butyl group and heptyl group Citrate having a combination substituent of isononyl group and 2-propylheptyl group, citrate having a combination substituent of 2-ethylhexyl group and 2-propylheptyl group, a combination substituent of isodecyl group and 2-ethylhexyl group Citrate having, and the like, in addition to this may be selected from 4 to 12 carbon atoms, a citrate having a combination substituent of two alkyl groups having a different carbon number may be applied, the alkyl group may be a straight chain or branched chain.
  • the citrate wherein R1 to R3 is an alkyl group having 4 to 12 carbon atoms and the same alkyl group is, for example, tributyl citrate (TBC), triamyl citrate (TAC), triheptyl citrate (THpC), tri (2-ethylhexyl) citrate (TEHC), triisononyl citrate (TiNC), tri (2-propylheptyl) citrate (TPHC) and the like can be applied, in addition to any alkyl group having 4 to 12 carbon atoms can be applied. have.
  • the upper limit of the number of carbon atoms of the alkyl group is preferably 12. If the number of carbon atoms exceeds 12, there is a fear of deterioration of properties such as absorption rate and plasticization efficiency due to excessive increase in molecular weight.
  • R1 to R3 may preferably have 4 to 10 carbon atoms, 4 to 9 carbon atoms, and 4 to 8 carbon atoms.
  • trialkyl citrate or dinalkyl-malkyl citrate may be applied, such as the hybrid or non-hybrid alkyl substituted citrate compound.
  • R4 is acetyl.
  • the group there may be a disadvantage in that the physical properties of the plasticizer, in particular, the workability and gelling properties of the plasticizer are lowered somewhat.
  • Such citrate-based material may be included in an amount of 1 to 80 parts by weight based on 100 parts by weight of the total weight of the terephthalate-based material and the dibenzoate-based material, and preferably 3 to 80 parts by weight and 5 to 50 parts by weight. Can be.
  • the citrate-based material is included in the above-described range, since the weight loss characteristics such as heating loss and migration resistance can be greatly improved in the range where the plasticization efficiency is not lowered, thereby providing a plasticizer composition having excellent processability and improved physical properties. can do.
  • a blending method can be applied, the blending production method is as follows.
  • the plasticizer composition may be prepared by preparing a terephthalate-based material and a dibenzoate-based material, and blending the terephthalate-based material and the dibenzoate-based material in a specific ratio such as 1:99 to 99: 1 by weight.
  • the terephthalate-based material and the dibenzoate-based material may be a single compound or a mixture.
  • any one alcohol selected from the group consisting of 2-ethylhexyl alcohol, isononyl alcohol, 2-propylheptyl alcohol, amyl alcohol, butyl alcohol and isobutyl alcohol is reacted with terephthalic acid.
  • Direct esterification to; through the terephthalate-based material can be prepared.
  • the direct esterification may include adding terephthalic acid to an alcohol, then adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydration and filtration by distillation under reduced pressure.
  • the alcohol may be used in the range of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of terephthalic acid.
  • the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactate, lithium fluoride, potassium chloride, cesium chloride, calcium chloride, Metal salts such as iron chloride and aluminum phosphate, metal oxides such as heteropolyacids, natural / synthetic zeolites, cation and anion exchange resins, tetraalkyl titanate and organic metals such as polymers thereof.
  • the catalyst may use tetraalkyl titanate.
  • the amount of the catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight or 2 to 4% by weight based on 100% by weight of the total reactants. And, in the case of heterogeneous catalysts, it may be in the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
  • reaction temperature may be in the range of 180 to 280 ° C, 200 to 250 ° C, or 210 to 230 ° C.
  • a transesterification reaction described later may be used.
  • dimethyl terephthalate and trans esterification with the above-mentioned alcohols such as isononyl alcohol
  • diisononyl terephthalate can be produced in a yield of 98% or more.
  • the terephthalate compound may be prepared and mixed through the above-described direct esterification reaction, and prepared by adding two or more kinds of alcohols in the direct esterification reaction and reacting the same. It may be.
  • the terephthalate-based material is a mixture
  • the terephthalate compound may be prepared through a trans esterification reaction in which any alcohol selected from isobutyl alcohol, amyl alcohol, 2-ethylhexyl alcohol, isononyl alcohol, and 2-propylheptyl alcohol is reacted.
  • trans-esterification reaction refers to a reaction in which an alcohol reacts with an ester as shown in Scheme 1, where R " of the ester is interchanged with R ′ of the alcohol as shown in Scheme 1 below:
  • the trans-esterification reaction has the advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can proceed under a non-catalyst, it can solve the problem when using an acid catalyst.
  • di (2-ethylhexyl) terephthalate and butyl alcohol may be prepared by di- (2-ethylhexyl) terephthalate, butyl (2-ethylhexyl) terephthalate and dibutylterephthalate by the trans-esterification reaction.
  • And may be specifically formed in amounts of 10% to 50%, 0.5% to 50%, and 35% to 80% by weight.
  • the mixture prepared by the trans-esterification reaction can control the composition ratio of the mixture according to the amount of alcohol added.
  • the amount of the alcohol added may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the terephthalate compound.
  • the molar fraction of the terephthalate compound participating in the trans-esterification reaction will increase as the terephthalate compound contains more alcohol, the content of the two terephthalate compounds as a product in the mixture may increase. And, correspondingly, the content of the unreacted terephthalate compound may show a tendency to decrease.
  • the molar ratio of the reactant terephthalate compound and the alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, within this range, high process efficiency and processability There is an effect of obtaining an ester plasticizer composition excellent in an improvement effect.
  • composition ratio of the mixture of the three terephthalate-based materials is not limited to the above range, and the composition ratio may be changed by additionally adding one of the three terephthalates, and the possible mixed composition ratio may be As shown.
  • the trans-esterification reaction is carried out for 10 minutes to 10 hours under a reaction temperature of 120 °C to 190 °C, preferably 135 °C to 180 °C, more preferably 141 °C to 179 °C, It is preferably carried out at 30 minutes to 8 hours, more preferably 1 to 6 hours. It is possible to effectively obtain a mixture that is a terephthalate-based material of a desired composition ratio within the temperature and time range.
  • the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • the trans-esterification reaction may be carried out under an acid catalyst or a metal catalyst, in which case the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • trans-esterification reaction may further comprise the step of distilling off the unreacted alcohol and reaction by-products, for example, the ester compound represented by the formula (3).
  • the distillation may be, for example, two-stage distillation that is separated by using a difference between the break points of the alcohol and the reaction by-product.
  • the distillation may be mixed distillation.
  • the mixed distillation means distilling butanol and reaction by-products simultaneously.
  • the direct esterification reaction and the trans esterification reaction may also be applied to prepare the dibenzoate-based and citrate-based materials described above.
  • the contents may be applied in the same manner as those used to prepare the terephthalate-based material. .
  • the plasticizer composition thus prepared is 5 to 150 parts by weight, 40 to 100 parts by weight based on 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polyketone, polystyrene, polyurethane, and thermoplastic elastomer. Or in the range of 5 to 50 parts by weight to provide an effective resin composition for extrusion / injection molding, compound prescription, calendering prescription, sheet prescription and plastisol prescription.
  • a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polyketone, polystyrene, polyurethane, and thermoplastic elastomer.
  • the plasticizer composition can be applied to the production of wires, flooring, automotive interior, film, sheet, wallpaper or tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것으로, 수지 조성물의 가소제로서 사용시 수지 조성물에 사용할 경우, 친환경성을 확보하면서, 흡수 속도 및 가소화 효율의 향상으로 가공성이 개선될 수 있고, 이행 특성 및 가열 감량 등의 물성이 향상되어 적용되는 가소제의 총량을 줄일 수 있으며, 인장강도와 신율의 향상으로 기계적 물성까지도 우수한 가소제를 제공할 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련출원과의 상호인용
본 출원은 2016년 05월 18일자 한국 특허 출원 제10-2016-0060831호 및 2017년 05월 15일자 한국 특허 출원 제10-2017-0059726호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 트리멜리테이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
일반적으로 가소제는 폴리염화비닐(PVC)등의 수지와 충진재, 안정제, 안료, 방담제 등 여러가지 첨가제를 적절하게 첨가하여 다양한 가공물성을 부여하여 압출성형, 사출성형, 캘린더링 등의 가공법에 의하여 전선, 파이프, 바닥재, 벽지, 시트, 인조가죽, 타포린, 테이프 및 식품 포장재 업종의 제품에 이르기까지 다양한 제품들의 소재로 사용된다.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
현재 가소제 시장 상황은 프탈레이트 가소제에 대한 환경 이슈로 인해 친환경 가소제의 개발이 업계에서 경쟁적으로 진행되고 있으며, 최근에는 친환경 가소제 중에서 범용 제품으로 사용중에 있는 디(2-에틸헥실)테레프탈레이트(DEHTP)의 가소화 효율, 이행성 등의 품질 열세를 극복하기 위한 신규 제품들의 개발이 이루어지고 있다.
이에 상기 디(2-에틸헥실)테레프탈레이트보다 우수한 신규 조성물의 제품을 개발함으로써, 염화비닐계 수지에 대한 가소제로서 최적 적용할 수 있는 기술에 대한 연구가 계속 필요한 실정이다.
이에 본 발명자들은 가소제에 대한 연구를 계속하던 중 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물로, 수지 조성물에 혼용시 친환경적이면서도, 흡수 속도 및 가소화 효율의 향상으로 가공성이 개선될 수 있고, 이행 특성 및 가열 감량 등의 물성이 향상되어 적용되는 가소제의 총량을 줄일 수 있으며, 인장강도와 신율의 향상으로 기계적 물성까지도 우수한 가소제 조성물을 확인하고 본 발명을 완성하기에 이르렀다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질; 하기 화학식 1로 표시되는 디벤조에이트계 화합물을 1 이상 포함하는 디벤조에이트계 물질; 및 하기 화학식 2로 표시되는 시트레이트계 물질;을 포함하고, 상기 테레프탈레이트계 물질 및 디벤조에이트계 물질의 중량비는 99:1 내지 1:99이며, 상기 시트레이트계 물질은 테레프탈레이트계 물질 및 디벤조에이트계 물질의 총 중량 100 중량부 대비 1 내지 100 중량부인 것인 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2017005110-appb-I000001
상기 화학식 1에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
[화학식 2]
Figure PCTKR2017005110-appb-I000002
상기 화학식 2에서, R1 내지 R3은 각각 독립적으로, 탄소수가 4 내지 12인 알킬기이고, R4는 수소 또는 아세틸기이다.
상기 과제를 해결하기 위하여 본 발명의 또 다른 일 실시예에 따르면, 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상의 수지 100 중량부에 대하여, 전술한 가소제 조성물을 5 내지 150 중량부로 포함하는 것인 수지 조성물이 제공된다.
상기 수지 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 및 튜브로 이루어진 군에서 선택된 1 종 이상을 제조하는 데에 적용될 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 친환경성을 확보하면서, 흡수 속도 및 가소화 효율의 향상으로 가공성이 개선될 수 있고, 이행 특성 및 가열 감량 등의 물성이 향상되어 적용되는 가소제의 총량을 줄일 수 있으며, 인장강도와 신율의 향상으로 기계적 물성까지도 우수할 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예 1: 디(2-에틸헥실)테레프탈레이트의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; TPA) 498.0 g, 2-에틸헥실 알코올(2-EH) 1170 g (TPA: 2-EH의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54 g(TPA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디(2-에틸헥실)테레프탈레이트 1326.7 g(수율: 99.0 %)을 얻었다.
제조예 2: 디이소노닐테레프탈레이트의 제조
상기 제조예 1에서 2-에틸헥산올을 사용한 대신 이소노닐 알코올을 사용하여 최종적으로 디이소노닐 테레프탈레이트를 얻었다.
제조예 3: 디부틸테레프탈레이트의 제조
상기 제조예 1에서 2-에틸헥산올을 사용한 대신 부탄올을 사용하여 최종적으로 디부틸 테레프탈레이트를 얻었다.
제조예 4: DEHTP / BEHTP / DBTP의 TP 혼합물의 제조
교반기, 응축기 및 데칸터가 설치된 반응기에 제조예 1에서 얻은 디(2-에틸헥실)테레프탈레이트 2000g 및 n-부탄올 340g (DEHTP 100 중량부를 기준으로 17 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스테르화 반응시켜, 디부틸테레프탈레이트(DBTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 4.0 중량%, 35.0 중량% 및 61.0 중량% 범위로 포함하는 조성물을 얻었다.
상기 반응 생성물을 혼합 증류하여 부탄올 및 2-에틸헥실 알코올을 제거하고 최종적으로 제1혼합물을 제조하였다.
제조예 5: DINTP / EHINTP / DEHTP의 TP 혼합물의 제조
상기 제조예 4에서 디(2-에틸헥실)테레프탈레이트 및 n-부탄올을 사용한 대신 디이소노닐테레프탈레이트 및 2-에틸헥산올을 사용하여 디이소노닐테레프탈레이트(DINTP), (2-에틸헥실)이소노닐테레프탈레이트(EHINTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 2.5 중량%, 30.5 중량% 및 67.0 중량% 범위로 포함하는 조성물을 얻었다.
제조예 6: DINTP / EHINTP / DEHTP의 TP 혼합물의 제조
상기 제조예 4에서 디(2-에틸헥실)테레프탈레이트 및 n-부탄올을 사용한 대신 디(2-프로필헵틸)테레프탈레이트 및 이소노닐 알코올을 사용하여 디(2-프로필헵틸)테레프탈레이트(DINTP), 이소노닐(2-프로필헵틸)테레프탈레이트(INPHTP) 및 디이소노닐테레프탈레이트(DINTP)를 각각 2.7 중량%, 31.0 중량% 및 66.3 중량% 범위로 포함하는 조성물을 얻었다.
제조예 7: DEGDB의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 2 리터 반응기에 정제 벤조산(Benzoic acid; BA) 1221 g, 디에틸렌 글리콜 530.5 g (BA: DEG의 몰비 (2.0):(1.0)), 촉매로써 티타늄계 촉매 (TIPT, tetraisopropyl titanate)를 2.0 g, Xylene을 소량 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되면 생성수의 제거가 원할하도록 Xyxlene의 양을 조절하여 주고, 반응물중 중간체인 모노벤조에이트의 함량이 5% 이하에서 반응을 종결한다. 이후, 제조예 1과 유사한 방법으로 최종 제품인 디에틸렌 글리콜 벤조에이트 1,530g(수율: 98%)을 얻었다.
제조예 8: TBC의 제조
반응 원료로서 시트릭산 384 g과 부탄올 580 g을 사용하여, 최종적으로 트리부틸시트레이트(tributyl citrate) 706 g(수율: 98%)을 얻었다.
제조예 9: TOC의 제조
반응 원료로서 시트릭산 384 g과 2-에틸헥산올 1014 g을 사용하여, 최종적으로 트리-2-에틸헥실시트레이트(tri-2-ethylhexyl citrate) 1029 g(수율: 98%)을 얻었다.
제조예 10: TiNC의 제조
반응 원료로서 시트릭산 384 g과 이소노난올 1123 g을 사용하여, 최종적으로 트리이소노닐시트레이트(triisobutyl citrate) 1111 g(수율: 98%)을 얻었다.
제조예 11: BOC253의 제조
반응 원료로서 상기 제조예 9에서 제조된 TOC 1000 g과 n-부탄올 300 g을 사용하여, 트랜스 에스테르화 반응을 수행하였고, 최종적으로 부틸옥틸 시트레이트(butyloctyl citrate) 840 g을 얻었다.
상기 혼합물은 분자량 순서대로 TBC가 약 2.2 중량%, 두 개의 2-에틸헥실기가 부틸기로 교환된 2 종의 시트레이트가 약 18.7 중량%로 이 세 물질의 합이 약 20.9 중량%로서 약 2 중량비이고, 한 개의 2-에틸헥실기가 부틸기로 교환된 2 종의 시트레이트의 합이 약 45.4 중량%로서 약 5 중량비이며, TOC가 약 33.7 중량%로서 약 3 중량비로 혼합물이 제조되었다.
실시예 1 내지 12, 비교예 1 내지 5
상기 제조예 1 내지 11에서 제조된 물질들과, 시판되는 물질들을 이용하여 아래 표 1 내지 3과 같이 실시예 및 비교예를 구성하였다. 아래의 시트레이트의 중량부는 TP계 물질과 디벤조에이트계 물질의 혼합 총 중량의 100 중량부 대비한 수치이다.
TP계 물질 디벤조에이트계 혼합비 시트레이트(중량부)
실시예 1 DEHTP DEGDB 7:3 TBC(10)
실시예 2 DINTP DEGDB 8:2 TBC(10)
실시예 3 DEHTP/BEHTP/DBTP DEGDB 6:4 TBC(10)
실시예 4 DPHTP/INPHTP/DINTP DPGDB 5:5 TBC(20)
실시예 5 DEHTP DPGDB 8:2 TBC(50)
실시예 6 DINTP TEGDB 7:3 TBC(25)
실시예 7 DEHTP DEGDB 7:3 TBC(50)
실시예 8 DEHTP DEGDB 7:3 TBC(75)
* GL300TM: DEHTP, (주)LG화학 제품
TP계 물질 디벤조에이트계 혼합비 시트레이트(중량부)
실시예 9 DEHTP DEGDB 5:5 TOC(20)
실시예 10 DINTP/OINTP/DOTP DEGDB 6:4 BOC(10)
실시예 11 DEHTP DPGDB 6:4 TOC(25)
실시예 12 DINTP DPGDB 5:5 TOC(50)
* GL300TM: DEHTP, (주)LG화학 제품
TP계 물질 디벤조에이트계 혼합비 시트레이트(중량부)
비교예 1 GL300*
비교예 2 DEHTP DEGDB 75:25
비교예 3 DBTP DEGDB 6:4
비교예 4 DEHTP DEGDB 8:2 TINC(100)
비교예 5 DEHTP DPGDB 7:3 TBC(100)
* GL300TM: DEHTP, (주)LG화학 제품
실험예 1: 시편 제작 및 성능 평가 1
실시예 1 내지 8 및 비교예 1 내지 3 및 5의 가소제를 실험용 시편으로 사용하였다. 상기 시편 제작은 ASTM D638을 참조하여, PVC 100 중량부에 가소제 40 중량부, 안정제(LOX 912 NP) 3 중량부를 믹서로 배합한 다음 롤 밀을 170℃에서 4 분간 작업하였고, 프레스(press)를 이용하여 180에서 2.5분(저압) 및 2분(고압)으로 작업하여 1T 및 3T 시트를 제작하였다. 각 시편을 사용하여 다음과 같은 물성 시험을 수행하고 결과를 하기 표 4에 정리하였다.
<시험 항목>
경도(hardness)
ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "D") 3T 10s를 측정하였다.
인장강도(tensile strength)
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜) x 폭(㎜)
신율 (elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 시험편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
가열 감량(volatile loss) 측정
상기 제작된 시편을 100℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (100℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
흡수 속도 측정
흡수속도는 77℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스테르 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하여 평가하였다.
경도(Shore D) 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(m:s)
실시예 1 48.0 285.6 311.2 1.32 1.10 4:56
실시예 2 48.1 288.1 310.5 1.68 0.98 5:22
실시예 3 46.0 285.1 325.4 0.58 1.20 4:33
실시예 4 47.6 275.4 298.5 1.88 1.17 4:15
실시예 5 44.0 254.7 288.6 2.55 3.04 3:50
실시예 6 46.3 260.8 280.9 1.70 2.40 4:18
실시예 7 43.5 268.7 293.4 2.60 2.68 4:05
실시예 8 42.4 248.0 245.5 3.70 3.20 3:38
비교예 1 48.9 236.7 288.6 3.21 1.63 7:15
비교예 2 48.8 237.5 293.5 2.87 2.23 5:20
비교예 3 45.5 204.5 256.0 5.20 11.20 2:10
비교예 5 41.0 235.4 230.5 5.80 17.50 1:35
상기 표 4를 참조하면, 시트레이트를 첨가하지 않은 비교예 2 및 3과, 과량 첨가한 비교예 5, 그리고 기존의 가소제로 사용되었으나 흡수속도, 이행성, 인장강도 또는 가소화 효율(경도) 등에 개선이 필요했던 비교예 1을 실시예 1 내지 8과 비교하여 보면, 비교예 1의 경우 예상되던 바와 같이 인장강도가 실시예들에 비하여 열악함을 확인할 수 있고, 흡수속도 역시 7분이 초과되어 가공 시간이 과도하게 길고 인장강도나 신율이 크게 낮으며 가소화 효율이 떨어져 가공성, 생산성 및 제조원가 상승 등에 문제를 일으킬 가능성이 있음을 유추할 수 있다.
또한, 비교예 2의 경우 특별히 우수한 물성이 없고 모든 물성들이 낮아 특정 물성에 적합한 용도로조차 상용화 하기 어려울 수 있으며, 비교예 3의 경우 인장강도가 극히 열악하고 이행 손실량과 가열 감량도 상당히 열악한 수준의 물성을 나타내고 있으며 흡수속도 또한 너무 빨라 가공성에 문제를 일으킬 수 있음을 확인할 수 있다.
그리고, 비교예 5 역시 시트레이트가 80 중량부를 넘어 100 중량부까지 과량 첨가됨으로 인하여, 열악한 가열 감량과 이행 손실량을 가지며 흡수속도도 너무 빨라 가공성에 문제가 있음을 알 수 있다.
반면에, 실시예 1 내지 8의 가소제를 사용한 경우에는 기본적으로 기계적 물성이 뒷받침 되면서도 가열 감량 및 이행 손실량에 있어서 상당 수준의 물성을 나타내고 있어 가소제가 동량 사용되는 경우 이행 손실량이 큰 가소제에 비하여 사용되는 양을 적절한 수준에서 적은 양으로 제어할 수 있다는 점을 알 수 있고, 흡수 속도가 전체적으로 비슷하여 가공에 있어서도 문제가 없을 것이라는 점을 확인할 수 있다. 또한, 인장강도나 신율이 다소 낮은 실시예들의 경우에는 경도가 낮아 가소화 효율 측면에서 이를 보완해 줄 수 있다는 것을 확인할 수 있다.
실험예 2: 시편 제작 및 성능 평가 2
실시예 9 내지 12 및 비교예 1 내지 4의 가소제를 실험용 시편으로 사용하였다. 상기 시편 제작 및 물성 평가는 상기 실험예 1과 동일하게 하였으며, 그 결과를 하기 표 5에 정리하였다.
경도(Shore D) 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(m:s)
실시예 9 48.5 295.1 315.0 1.02 0.75 5:55
실시예 10 48.2 290.5 304.7 1.42 0.95 5:08
실시예 11 47.2 298.7 302.5 0.77 0.60 5:05
실시예 12 49.0 317.0 308.5 0.50 0.72 6:44
비교예 1 48.9 236.7 288.6 3.21 1.63 7:15
비교예 2 48.8 237.5 293.5 2.87 2.23 5:20
비교예 3 45.5 204.5 256.0 5.20 11.20 2:10
비교예 4 50.3 265.4 245.0 2.50 1.08 9:25
상기 표 5를 참조하면, 시트레이트를 첨가하지 않은 비교예 2 및 3과, 과량 첨가한 비교예 4, 그리고 기존의 가소제로 사용되었으나 흡수속도, 이행성, 인장강도 신율 등에 개선이 필요했던 비교예 1을 실시예 9 내지 12와 비교하여 보면, 비교예 1의 경우 예상되던 바와 같이 인장강도 및 신율 뿐만 아니라 이행 손실량이나 가열 감량이 모두 낮은 수준이며, 경도도 높아 가소화 효율에서 보완해 주기도 어렵다는 점을 확인할 수 있다.
또한, 비교예 2의 경우 특별히 우수한 물성이 없고 모든 물성들이 낮아 특정 물성에 적합한 용도로조차 상용화 하기 어려울 수 있으며, 비교예 3의 경우 가소화 효율은 우수할 수 있으나, 인장강도가 극히 열악하고 이행 손실량과 가열 감량도 상당히 열악한 수준의 물성을 나타내고 있으며 흡수속도 또한 너무 빨라 가공성에 문제를 일으킬 수 있음을 확인할 수 있다.
그리고, 비교예 4는 경도가 너무 높아 가소화 효율이 열악함에도 불구하고 인장강도와 신율이 실시예들에 비하여 크게 낮음을 알 수 있으며, 흡수속도도 상당히 느려 가소화 효율과 연계되어 가공성에 심각한 영향을 미칠 수 있음을 확인할 수 있다.
반면에, 실시예 9 내지 12의 가소제를 사용한 경우에는 기본적으로 인장강도와 신율과 같은 기계적 물성이 우수한 수준으로 뒷받침 되면서도 가열 감량 및 이행 손실량에 있어서 준수한 물성을 나타내고 있어 가소제가 동량 사용되는 경우 이행 손실량이 큰 가소제에 비하여 사용되는 양을 적절한 수준에서 적은 양으로 제어할 수 있다는 점을 알 수 있고, 흡수 속도 및 경도 역시 양호한 수준으로서 가공성도 우수하다는 점을 알 수 있다.
따라서, 상기 표 4 및 5의 결과를 통해서, 가소제로서 테레프탈레이트계 물질과 디벤조에이트계 물질을 사용하면서 시트레이트계 물질까지 함께 혼용하는 경우에는 기계적 물성뿐만 아니라 이행 손실량과 가열 감량을 낮출 수 있고 가공성도 우수한 수준으로 제어할 수 있다는 점을 확인할 수 있으며, 시트레이트의 탄소수를 적절한 수준에서 조절함으로써 물성을 제어할 수 있다는 점을 알 수 있다.
이하, 본 발명에 대하여 상세하게 설명한다.
우선, 본 발명에서는 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물을 제공하는데 기술적 특징을 갖는다.
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 테레프탈레이트계 물질; 하기 화학식 1로 표시되는 디벤조에이트계 화합물을 1 이상 포함하는 디벤조에이트계 물질; 및 하기 화학식 2로 표시되는 시트레이트계 물질;을 포함하고, 상기 테레프탈레이트계 물질 및 디벤조에이트계 물질의 중량비는 99:1 내지 1:99이며, 상기 시트레이트계 물질은 테레프탈레이트계 물질 및 디벤조에이트계 물질의 총 중량 100 중량부 대비 1 내지 80 중량부인 것이다.
[화학식 1]
Figure PCTKR2017005110-appb-I000003
상기 화학식 1에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
[화학식 2]
Figure PCTKR2017005110-appb-I000004
상기 화학식 2에서, R1 내지 R3은 각각 독립적으로, 탄소수가 4 내지 12인 알킬기이고, R4는 수소 또는 아세틸기이다.
상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디이소데실테레프탈레이트(DIDTP), 디(2-프로필헵틸)테레프탈레이트, 디아밀테레프탈레이트(DATP), 디부틸테레프탈레이트(DBTP), 부틸이소노닐테레프탈레이트(BINTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP), 아밀이소노닐테레프탈레이트(AINTP), 이소노닐(2-프로필헵틸)테레프탈레이트(INPHTP), 아밀(2-프로필헵틸)테레프탈레이트(APHTP), 아밀(2-에틸헥실)테레프탈레이트(AEHTP), (2-에틸헥실)(2-프로필헵틸)테레프탈레이트(EHPHTP) 및 (2-에틸헥실)이소노닐테레프탈레이트(EHINTP)로 이루어진 군에서 선택된 단일 화합물 또는 2 이상의 화합물이 혼합된 혼합물인 것일 수 있다.
보다 상세히, 상기 테레프탈레이트계 물질이 단일 화합물인 경우에는, 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디이소데실테레프탈레이트(DIDTP), 디(2-프로필헵틸)테레프탈레이트, 디아밀테레프탈레이트(DATP), 디부틸테레프탈레이트(DBTP)일 수 있고, 상기 테레프탈레이트계 물질이 혼합물인 경우에는 3 종의 테레프탈레이트계 물질이 혼합된 것일 수 있고, 예를 들면, 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제1혼합물, 디이소노닐테레프탈레이트, 부틸이소노닐테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제2혼합물, 디(2-에틸헥실)테레프탈레이트, (2-에틸헥실)이소노닐테레프탈레이트 및 디이소노닐테레프탈레이트가 혼합된 제3혼합물, 디(2-프로필헵틸) 테레프탈레이트, 이소노닐(2-프로필헵틸) 테레프탈레이트 및 디이소노닐 테레프탈레이트가 혼합된 제4혼합물, 디(2-에틸헥실) 테레프탈레이트, (2-에틸헥실)(2-프로필헵틸) 테레프탈레이트 및 디(2-프로필헵틸) 테레프탈레이트가 혼합된 제5혼합물, 또는 디아밀 테레프탈레이트, 아밀(이소노닐) 테레프탈레이트 및 디이소노닐 테레프탈레이트가 혼합된 제6혼합물일 수 있다.
구체적으로, 상기 제1 내지 제6혼합물의 경우, 특정 조성 비율을 가질 수 있으며, 각 혼합물의 구성성분 기재 순서대로 각각의 성분들이 3.0 내지 99.0 몰%; 0.5 내지 96.5 몰% 및 0.5 내지 96.5 몰%;로 혼합된 것일 수 있다.
상기 조성 비율은 에스테르화 반응으로 생성되는 혼합 조성 비율일 수 있고, 특정 화합물을 부가적으로 더 혼합하여 의도된 조성 비율일 수 있으며, 원하는 물성에 맞도록 혼합 조성 비율을 적절히 조절할 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 테레프탈레이트계 물질에 더하여 1종 이상의 디벤조에이트계 화합물을 포함하는 디벤조에이트계 물질을 더 포함하는 가소제 조성물을 제공할 수 있다. 상기 디벤조에이트계 화합물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2017005110-appb-I000005
상기 화학식 1에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
구체적으로, 상기 화학식 1로 표시되는 디벤조에이트계 화합물은 중심의 에테르기를 기준으로 양측에 알킬렌기와 디벤조에이트기가 순차로 결합되어 있는 화합물일 수 있다. n이 2 이상인 경우에는 R로 표시되는 알킬렌기의 탄소수는 동일하거나 상이할 수 있으나, 바람직하게는 동일한 알킬렌기가 결합되고, 탄소수가 2 내지 4일 수 있으며, 가지로서 탄소수가 1 내지 3인 알킬기가 결합될 수 있다. 가지가 결합되는 경우 가지의 탄소수는 디벤조에이트기와 결합되는 주쇄의 탄소수보다 작은 것이 바람직하다.
이 때, 상기 n이 2 이상인 경우, R로 결합되는 알킬렌기가 서로 동일한 경우에는 비혼성 디벤조에이트계 화합물이라고 칭하여 질 수 있고, 서로 상이한 경우에는 혼성 디벤조에이트계 화합물이라고 칭하여 질 수 있다. 다만, 가소제 조성물로 사용시 혼성 디벤조에이트계 화합물 보다는 비혼성 디벤조에이트계 화합물이 일반적일 수 있고, 본 명세서에서 혼성 또는 비혼성의 언급이 없는 경우에는 상기 R은 모두 동일한 비혼성 디벤조에이트계 화합물로 취급될 수 있다.
상기 화학식 1에서 R은 에틸렌, 프로필렌, 이소프로필렌, 부틸렌 및 이소부틸렌으로 이루어진 군에서 선택된 어느 하나인 것이 바람직할 수 있으나, 이에 한정되는 것은 아니다. 보다 바람직하게, 상기 화학식 1로 표시되는 디벤조에이트계 화합물은 디에틸렌 글리콜 디벤조에이트, 디프로필렌 글리콜 디벤조에이트, 또는 트리에틸렌 글리콜 디벤조에이트일 수 있다.
이와 같은 디벤조에이트계 화합물을 1 종 이상 포함하는 디벤조에이트계 물질은 상기 디에틸렌 글리콜 디벤조에이트, 디이소프로필렌 글리콜 디벤조에이트 또는 트리에틸렌 글리콜 디벤조에이트일 수 있고, 이들의 혼합물일 수도 있으며, 이에 상기 R의 정의에 맞는 디벤조에이트계 화합물을 더 포함하는 혼합물일 수도 있다.
본 발명의 일 실시예에 따르면 상기 가소제 조성물 내에 테레프탈레이트계 물질과 디벤조에이트계 물질은 중량비로 99:1 내지 1:99로 포함되는 것일 수 있고, 상기 중량비 범위의 상한으로는, 99:1, 95:5, 90:10, 85:15, 80:20, 70:30 또는 60:40이 적용될 수 있고, 하한으로는 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 또는 40:60이 적용될 수 있다. 바람직하게는 90:10 내지 20:80, 더 바람직하게는 90:10 내지 30:70일 수 있다.
본 발명에서와 같이 테레프탈레이트계 물질과, 디벤조에이트계 물질을 혼합하여 가소제 조성물에 적용할 경우, 친환경성을 확보하면서도, 흡수 속도, 가소화 효율, 이행성, 가열감량 등의 물성이 개선될 수 있다.
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 상기 테레프탈레이트계 물질과 디벤조에이트계 물질을 포함하면서, 제3의 혼합물로서, 시트레이트계 물질을 더 포함할 수 있고, 상기 시트레이트계 물질은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2017005110-appb-I000006
상기 화학식 2에서, R1 내지 R3은 각각 독립적으로, 탄소수가 4 내지 12인 알킬기이고, R4는 수소 또는 아세틸기이다.
상기 시트레이트계 물질은 화학식 2의 R1 내지 R3이 각각 독립적으로, 부틸기, 이소부틸기, 헥실기, 헵틸기, 이소헵틸기, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 이소데실기, 운데실기 또는 도데실기일 수 있으며, 상기 R1 내지 R3 각각은 서로 동일할 수 있고, 서로 상이할 수도 있다.
다만, 바람직하게는 탄소수가 4 이상인 것이 적용될 수 있고, 12개는 초과하지 않는 편이 바람직할 수 있으므로, 부틸기, 이소부틸기, 아밀기, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 이소데실기, 운데실기 또는 도데실기가 적용되는 것이 바람직할 수 있다.
상기 R1 내지 R3이 탄소수 4 내지 12의 알킬기이면서, 서로 알킬기가 상이한 시트레이트는, 예를 들면, 부틸기와 2-에틸헥실기의 조합 치환기를 갖는 시트레이트, 부틸기와 헵틸기의 조합 치환기를 갖는 시트레이트, 이소노닐기와 2-프로필헵틸기의 조합 치환기를 갖는 시트레이트, 2-에틸헥실기와 2-프로필헵틸기의 조합 치환기를 갖는 시트레이트, 이소데실기와 2-에틸헥실기의 조합 치환기를 갖는 시트레이트 등이 있을 수 있고, 이 외에도 탄소수 4 내지 12 사이에서 선택되고, 탄소수가 서로 다른 두 알킬기의 조합 치환기를 갖는 시트레이트 등이 적용될 수 있으며, 상기 알킬기는 직쇄 또는 분지쇄일 수 있다.
상기 R1 내지 R3이 탄소수 4 내지 12의 알킬기이면서, 서로 알킬기가 동일한 시트레이트는, 예를 들면, 트리부틸 시트레이트(TBC), 트리아밀 시트레이트(TAC), 트리헵틸 시트레이트(THpC), 트리(2-에틸헥실) 시트레이트(TEHC), 트리이소노닐 시트레이트(TiNC), 트리(2-프로필헵틸)시트레이트(TPHC) 등이 적용될 수 있으며, 이 외에도 탄소수 4 내지 12의 알킬기라면 적용될 수 있다.
알킬기의 탄소수 상한으로는 바람직하게는 12개인 것을 적용할 수 있으며, 탄소수가 12개를 초과하게 되면, 분자량의 과도한 증가로 인하여 흡수속도, 가소화 효율 저하 등의 특성 열화의 우려가 있다.
경우에 따라서는 상기 화학식 2에서 R1 내지 R3는 탄소수가 4 내지 10인 것이 바람직할 수 있고, 4 내지 9일 수 있으며, 4 내지 8일 수 있다.
한편, 상기 혼성 또는 비혼성 알킬 치환 시트레이트 화합물과 같이 트리 알킬 시트레이트, 혹은 디n알킬-m알킬 시트레이트 등이 적용될 수 있는데, 시트레이트계 가소제에 아세틸기가 존재하는 경우, 즉, R4가 아세틸기인 경우에는 가소제의 물성, 특히 가소화 효율의 저하에 따른 가공성, 겔링성이 다소 저하되는 단점이 있을 수 있다. 또한, 제조함에 있어 부산물로 발생되는 폐초산을 처리하기 위한 경제적, 설비적 비용이 추가되어야 부담도 존재할 수 있다.
다시 말해서, 시트레이트계 가소제가 상기 화학식 2의 R4가 아세틸기인 경우에는 수소인 경우에 비하여, 가소화 효율의 저하, 이를 극복하기 위한 가소제의 증량 투입 및 이를 통한 제품 가격 상승 등의 문제가 동반될 수 있고, R7이 아세틸기인 시트레이트계 물질을 적용하는 경우에는, 시장성, 경제성 및 물성 등 다양한 측면에서의 고려가 필요하다.
이와 같은 시트레이트계 물질은 상기 테레프탈레이트계 물질과 디벤조에이트계 물질의 혼합 총 중량 100 중량부 대비 1 내지 80 중량부로 포함될 수 있고, 바람직하게는 3 내지 80 중량부, 5 내지 50 중량부가 포함될 수 있다.
시트레이트계 물질이 상기한 범위로 포함되는 경우에는 가소화 효율이 저하되지 않는 범위에서 가열감량과 내이행성 등의 감량 특성이 크게 개선될 수 있으므로, 가공성이 우수하면서도 물성이 개선된 가소제 조성물을 제공할 수 있다.
본 발명에서 상기 가소제 조성물을 제조하는 방식은, 블렌딩 방식을 적용할 수 있는 것으로, 상기 블렌딩 제조 방식은 일례로 다음과 같다.
테레프탈레이트계 물질과 디벤조에이트계 물질을 준비하고, 상기 테레프탈레이트계 물질과 디벤조에이트계 물질을 중량비로서, 1:99 내지 99:1 등의 특정 비율로 블렌딩하여 상기 가소제 조성물을 제조할 수 있으며, 상기 테레프탈레이트계 물질과 상기 디벤조에이트계 물질은 단일 화합물일 수도 있고 혼합물일 수도 있다.
상기 테레프탈레이트계 물질이 단일 화합물인 경우, 2-에틸헥실 알코올, 이소노닐 알코올, 2-프로필헵틸 알코올, 아밀 알코올, 부틸 알코올 및 이소부틸 알코올로 이루어진 군에서 선택된 어느 하나의 알코올과, 테레프탈산이 반응하는 직접 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조할 수 있다.
상기 직접 에스테르화 반응은, 알코올에 테레프탈산을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 준비될 수 있다.
상기 알코올은, 테레프탈산 100 몰% 기준으로 150 내지 500 몰%, 200 내지 400 몰%, 200 내지 350 몰%, 250 내지 400 몰%, 혹은 270 내지 330 몰% 범위 내로 사용될 수 있다.
상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 180 내지 280℃, 200 내지 250℃, 혹은 210 내지 230℃ 범위 내일 수 있다.
한편, 상기 단일 화합물인 테레프탈레이트를 제조함에 있어서, 후술하는 트랜스 에스테르화 반응을 이용할 수도 있다. 예를 들면, 디메틸테레프탈레이트를 이용하여, 전술한 알코올들, 예컨대 이소노닐 알코올과 트랜스 에스테르화 반응을 하는 경우, 디이소노닐테레프탈레이트를 98% 이상의 수율로 제조할 수 있다.
상기 테레프탈레이트계 물질이 혼합물인 경우, 전술한 직접 에스테르화 반응을 통해서 테레프탈레이트 화합물이 제조된 후 혼합되는 것일 수 있고, 상기 직접 에스테르화 반응에서 알코올을 2 종 이상 투입하여 반응시키는 것을 통하여 제조되는 것일 수 있다.
또는, 상기 테레프탈레이트계 물질이 혼합물인 경우, 디(2-에틸헥실)테레프탈레이트, 디(2-프로필헵틸)테레프탈레이트 및 디이소노닐테레프탈레이트 중에서 선택된 어느 하나의 테레프탈레이트 화합물과, 부틸 알코올, 이소부틸 알코올, 아밀 알코올, 2-에틸헥실 알코올, 이소노닐 알코올 및 2-프로필헵틸 알코올 중에서 선택된 어느 하나의 알코올이 반응하는 트랜스 에스테르화 반응;을 통하여 테레프탈레이트 화합물을 제조할 수 있다.
본 발명에서 사용되는 "트랜스-에스테르화 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2017005110-appb-I000007
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.
또한, 상기 트랜스-에스테르화 반응은 산-알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있다.
예를 들어, 디(2-에틸헥실)테레프탈레이트와 부틸 알코올은 상기 트랜스-에스테르화 반응에 의해, 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트의 혼합물이 생성될 수 있고, 상기 3 종의 테레프탈레이트는 혼합물 총 중량에 대해 각각 3.0 중량% 내지 70 중량%, 0.5 중량% 내지 50 중량%, 및 0.5 중량% 내지 85 중량%의 양으로 형성될 수 있으며, 구체적으로 10 중량% 내지 50 중량%, 0.5 중량% 내지 50 중량%, 및 35 중량% 내지 80 중량%의 양으로 형성될 수 있다. 상기 범위 내에서는 공정 효율이 높고 가공성 및 흡수속도가 우수한 테레프탈레이트계 물질(혼합물)을 수득하는 효과가 있다.
또한, 상기 트랜스-에스테르화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다.
상기 알코올의 첨가량은 테레프탈레이트 화합물 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.
상기 테레프탈레이트는 화합물은 알코올의 첨가량이 많을수록, 트랜스-에스테르화 반응에 참여하는 테레프탈레이트 화합물의 몰분율(mole fraction)이 커질 것이므로, 상기 혼합물에 있어서 생성물인 두 개의 테레프탈레이트 화합물의 함량이 증가할 수 있고, 이에 상응하여 미반응으로 존재하는 테레프탈레이트 화합물의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 반응물인 테레프탈레이트 화합물과 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 에스테르계 가소제 조성물을 수득하는 효과가 있다.
다만, 상기 3 종의 테레프탈레이트계 물질의 혼합물의 조성 비율이 상기 범위에 제한되는 것은 아니며, 3 종의 테레프탈레이트 중 어느 하나를 추가 투입하여 그 조성비를 변경할 수 있으며, 가능한 혼합 조성 비율은 전술한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응은 120℃ 내지 190℃, 바람직하게는 135℃ 내지 180℃, 더욱 바람직하게는 141℃ 내지 179℃의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 테레프탈레이트계 물질인 혼합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스-에스테르화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스-에스테르화 반응 후 미반응 알코올과 반응 부산물, 예를 들면 화학식 3으로 표시되는 에스테르계 화합물을 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 증류는 일례로 상기 알코올과 반응 부산물의 끊는점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다.
또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스테르계 가소제 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 부탄올과 반응 부산물을 동시에 증류하는 것을 의미한다.
상기 직접 에스테르화 반응과 트랜스 에스테르화 반응은 전술한 디벤조에이트계 물질 및 시트레이트계 물질을 제조하는 데에도 적용될 수 있다. 이와 같이, 디벤조에이트계 물질 및 시트레이트계 물질을 직접 에스테르화 반응 또는 트랜스 에스테르화 반응을 통해서 제조하는 경우에는 상기 테레프탈레이트계 물질을 제조하는 데에 적용된 내용과 동일하게 그 내용들이 적용될 수 있다.
이같이 제조된 가소제 조성물은 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리케톤, 폴리스타이렌, 폴리우레탄, 및 열가소성 엘라스토머 중에서 선택된 수지 100 중량부에 대하여, 5 내지 150 중량부, 40 내지 100 중량부, 혹은 5 내지 50 중량부 범위 내로 포함하여 압출/사출 성형용, 컴파운드 처방, 캘린더링 처방, 시트 처방 및 플라스티졸 처방에 모두 효과적인 수지 조성물을 제공할 수 있다.
일례로, 상기 가소제 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 혹은 튜브 제조에 적용할 수 있다.

Claims (10)

  1. 테레프탈레이트계 물질; 하기 화학식 1로 표시되는 디벤조에이트계 화합물을 1 이상 포함하는 디벤조에이트계 물질; 및 하기 화학식 2로 표시되는 시트레이트계 물질;을 포함하고,
    상기 테레프탈레이트계 물질 및 디벤조에이트계 물질의 중량비는 99:1 내지 1:99이며,
    상기 시트레이트계 물질은 테레프탈레이트계 물질 및 디벤조에이트계 물질의 총 중량 100 중량부 대비 1 내지 80 중량부인 것인 가소제 조성물:
    [화학식 1]
    Figure PCTKR2017005110-appb-I000008
    상기 화학식 1에서,
    R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
    [화학식 2]
    Figure PCTKR2017005110-appb-I000009
    상기 화학식 2에서,
    R1 내지 R3은 각각 독립적으로, 탄소수가 4 내지 12인 알킬기이고, R4는 수소 또는 아세틸기이다.
  2. 제2항에 있어서,
    상기 테레프탈레이트계 물질 대 디벤조에이트계 물질의 중량비는 90:10 내지 30:70인 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디이소데실테레프탈레이트(DIDTP), 디(2-프로필헵틸)테레프탈레이트, 디아밀테레프탈레이트(DATP), 디부틸테레프탈레이트(DBTP), 부틸이소노닐테레프탈레이트(BINTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP), 아밀이소노닐테레프탈레이트(AINTP), 이소노닐(2-프로필헵틸)테레프탈레이트(INPHTP), 아밀(2-프로필헵틸)테레프탈레이트(APHTP), 아밀(2-에틸헥실)테레프탈레이트(AEHTP), (2-에틸헥실)(2-프로필헵틸)테레프탈레이트(EHPHTP) 및 (2-에틸헥실)이소노닐테레프탈레이트(EHINTP)로 이루어진 군에서 선택된 단일 화합물 또는 2 이상의 화합물이 혼합된 혼합물인 것인 가소제 조성물.
  4. 제3항에 있어서,
    상기 단일 화합물은 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디이소데실테레프탈레이트(DIDTP), 디(2-프로필헵틸)테레프탈레이트, 디아밀테레프탈레이트(DATP) 및 디부틸테레프탈레이트(DBTP)로 이루어진 군에서 선택된 어느 하나인 것인 가소제 조성물.
  5. 제3항에 있어서,
    상기 혼합물은 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제1혼합물,
    디이소노닐테레프탈레이트, 부틸이소노닐테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제2혼합물,
    디(2-에틸헥실)테레프탈레이트, (2-에틸헥실)이소노닐테레프탈레이트 및 디이소노닐테레프탈레이트가 혼합된 제3혼합물,
    디(2-프로필헵틸) 테레프탈레이트, 이소노닐(2-프로필헵틸) 테레프탈레이트 및 디이소노닐 테레프탈레이트가 혼합된 제4혼합물,
    디(2-에틸헥실) 테레프탈레이트, (2-에틸헥실)(2-프로필헵틸) 테레프탈레이트 및 디(2-프로필헵틸) 테레프탈레이트가 혼합된 제5혼합물, 또는
    디아밀 테레프탈레이트, 아밀(이소노닐) 테레프탈레이트 및 디이소노닐 테레프탈레이트가 혼합된 제6혼합물인 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 디벤조에이트계 화합물은 디에틸렌 글리콜 디벤조에이트(DEGDB), 디프로필렌 글리콜 디벤조에이트(DPGDB) 및 트리에틸렌 글리콜 디벤조에이트(TEGDB)로 이루어진 군에서 선택된 1 이상인 것인 가소제 조성물.
  7. 제1항에 있어서,
    상기 화학식 2에서, R4는 수소인 것인 가소제 조성물.
  8. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  9. 제8항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리케톤, 폴리프로필렌, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
  10. 제8항에 있어서,
    상기 수지 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 및 튜브로 이루어진 군에서 선택된 1 종 이상을 제조하는 데에 적용되는 것인 수지 조성물.
PCT/KR2017/005110 2016-05-18 2017-05-17 가소제 조성물 및 이를 포함하는 수지 조성물 WO2017200293A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/752,087 US11572453B2 (en) 2016-05-18 2017-05-17 Plasticizer composition and resin composition including the same
ES17799650T ES2925701T3 (es) 2016-05-18 2017-05-17 Composición plastificante y composición de resina que comprende la misma
EP17799650.1A EP3327076B1 (en) 2016-05-18 2017-05-17 Plasticizer composition and resin composition comprising same
CN201780003053.0A CN108026322B (zh) 2016-05-18 2017-05-17 增塑剂组合物和包含该增塑剂组合物的树脂组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160060831 2016-05-18
KR10-2016-0060831 2016-05-18
KR1020170059726A KR101994251B1 (ko) 2016-05-18 2017-05-15 가소제 조성물 및 이를 포함하는 수지 조성물
KR10-2017-0059726 2017-05-15

Publications (1)

Publication Number Publication Date
WO2017200293A1 true WO2017200293A1 (ko) 2017-11-23

Family

ID=60325258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005110 WO2017200293A1 (ko) 2016-05-18 2017-05-17 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (3)

Country Link
EP (1) EP3327076B1 (ko)
ES (1) ES2925701T3 (ko)
WO (1) WO2017200293A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220204727A1 (en) * 2020-12-29 2022-06-30 Hanwha Solutions Corporation Plasticizer composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116176A (ko) * 2008-01-28 2010-10-29 에보니크 옥세노 게엠베하 테레프탈산의 디이소노닐 에스테르의 혼합물, 이의 제조 방법 및 이의 용도
KR20130119947A (ko) * 2010-11-24 2013-11-01 에보니크 옥세노 게엠베하 열가소성 물질 응용물을 위한 가소제로서의 디이소노닐 테레프탈레이트 (dint)
US20130310473A1 (en) * 2010-11-24 2013-11-21 Evonik Oxeno Gmbh Dint in expanded pvc pastes
WO2015101569A1 (en) * 2014-01-03 2015-07-09 Tarkett Gdl Improved phtalate-free polyvinyl chloride plastisol compositions
KR20150123346A (ko) * 2010-12-30 2015-11-03 에메랄드 칼라마 케미칼, 엘엘씨 디벤조에이트 가소제의 블렌드
KR20160060831A (ko) 2014-11-20 2016-05-31 엘지디스플레이 주식회사 곡면형 패널 및 이를 이용한 액정표시장치
KR20170059726A (ko) 2015-11-23 2017-05-31 한국전기연구원 분산전원의 기능을 시험하기 위한 시스템 및 그 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372912B2 (en) * 2005-08-12 2013-02-12 Eastman Chemical Company Polyvinyl chloride compositions
EP2810932A1 (en) * 2013-06-06 2014-12-10 ExxonMobil Chemical Patents Inc. Improvements in or relating to plasticiser esters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116176A (ko) * 2008-01-28 2010-10-29 에보니크 옥세노 게엠베하 테레프탈산의 디이소노닐 에스테르의 혼합물, 이의 제조 방법 및 이의 용도
KR20130119947A (ko) * 2010-11-24 2013-11-01 에보니크 옥세노 게엠베하 열가소성 물질 응용물을 위한 가소제로서의 디이소노닐 테레프탈레이트 (dint)
US20130310473A1 (en) * 2010-11-24 2013-11-21 Evonik Oxeno Gmbh Dint in expanded pvc pastes
KR20150123346A (ko) * 2010-12-30 2015-11-03 에메랄드 칼라마 케미칼, 엘엘씨 디벤조에이트 가소제의 블렌드
WO2015101569A1 (en) * 2014-01-03 2015-07-09 Tarkett Gdl Improved phtalate-free polyvinyl chloride plastisol compositions
KR20160060831A (ko) 2014-11-20 2016-05-31 엘지디스플레이 주식회사 곡면형 패널 및 이를 이용한 액정표시장치
KR20170059726A (ko) 2015-11-23 2017-05-31 한국전기연구원 분산전원의 기능을 시험하기 위한 시스템 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327076A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220204727A1 (en) * 2020-12-29 2022-06-30 Hanwha Solutions Corporation Plasticizer composition

Also Published As

Publication number Publication date
EP3327076B1 (en) 2022-06-29
EP3327076A1 (en) 2018-05-30
ES2925701T3 (es) 2022-10-19
EP3327076A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074056A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017200293A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017018741A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2022035138A1 (ko) 아세틸 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153236A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15752087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE