WO2017200267A1 - Temperature measurement wafer sensor and method for manufacturing same - Google Patents

Temperature measurement wafer sensor and method for manufacturing same Download PDF

Info

Publication number
WO2017200267A1
WO2017200267A1 PCT/KR2017/005058 KR2017005058W WO2017200267A1 WO 2017200267 A1 WO2017200267 A1 WO 2017200267A1 KR 2017005058 W KR2017005058 W KR 2017005058W WO 2017200267 A1 WO2017200267 A1 WO 2017200267A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
temperature measuring
buried
sensor
temperature
Prior art date
Application number
PCT/KR2017/005058
Other languages
French (fr)
Korean (ko)
Inventor
김태완
강상우
김용규
권수용
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160059678A external-priority patent/KR101746558B1/en
Priority claimed from KR1020170024524A external-priority patent/KR20180098429A/en
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2017200267A1 publication Critical patent/WO2017200267A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a temperature measuring wafer sensor and a method for manufacturing the same, in particular, it is possible to prevent the heat of the temperature measuring unit from escaping to the outside, and to maintain the characteristics as the temperature measuring unit for a long time stably and continuously,
  • the present invention relates to a temperature measuring wafer sensor capable of grasping temperature uniformity in detail, and a manufacturing method thereof.
  • the temperature sensor wafer is a sensor for indirectly measuring the actual temperature of the wafer when the reaction proceeds in the reaction apparatus containing the wafer. After the groove is formed on the wafer surface, a thermocouple is implanted in the groove. will be. After the wafer for temperature sensor is placed in the reactor instead of the wafer, the thermoelectric power from the thermocouple planted on the wafer for temperature sensor is measured and converted into temperature while the reactor is in the same condition as the actual reaction. The temperature of the wafer at the time of reaction can be measured indirectly. Thermocouples generate thermoelectric power in proportion to the temperature at which the thermocouple junction is located due to their inherent characteristics. The thermocouple is used as a sensor for measuring temperature by amplifying the thermoelectric power and converting it into temperature.
  • thermocouple contact 11-1 of the thermocouple 11 by digging into the wafer 10 is sealed with a bonding material 12 of ceramics, and the thermocouple connection line 11-2 connected to the thermocouple contact 11-1. Most have a structure in which the wafer 10 is exposed to the outside.
  • the ambient temperature around the wafer becomes lower than the temperature of the wafer.
  • the length of the portion embedded in the wafer of the thermocouple connection line is short.
  • the heat of the thermocouple contact which generates the electromotive force according to the temperature, is easily escaped to the outside of the wafer through the thermocouple connection line having good thermal conductivity.
  • the temperature of the contact is lower than the actual temperature of the wafer. For example, when the ambient temperature around the wafer is about 1000 ⁇ ⁇ , the temperature measured is about 15-20 ⁇ ⁇ lower. That is, the conventional temperature sensor wafer as described above has a disadvantage in that the temperature response speed is slow and much influenced by the ambient temperature of the wafer.
  • thermocouple connection line 2A and 2B show a cross-sectional view and a plan view, respectively, of a wafer for a temperature sensor according to a second conventional technique.
  • the thermocouple connection line shown in the plan view (FIG. 2B) shows only the portion embedded in the bonding material. Not only the thermocouple contact 21-1 is buried in the wafer 20, but the thermocouple connecting line 21-2 is bent in a semicircular shape into a hole formed in the wafer 20 and sealed with a bonding material 23 of ceramics. At this time, a part of the thermocouple connecting line 21-2 connected to the thermocouple contact 21-1 is exposed. 2b shows a wafer.
  • the amount of heat flowing per unit time of a material is proportional to the thermal conductivity, the cross-sectional area of the thermocouple and the temperature difference, and inversely proportional to the length of the thermocouple.
  • the amount of heat flowing through the thermocouple connection line is inversely proportional to the length of the thermocouple connection line.
  • thermocouple connection line is semi-circularly used and used as a wafer for a temperature sensor shown in the related art, since the length of the thermocouple connection line embedded in the wafer is long, the heat of the thermocouple contact does not escape relatively, so the temperature of the wafer is more accurate. You can make measurements.
  • the wafer for the temperature sensor according to the second conventional technology is difficult to bend the thermocouple connection line into the groove of the wafer during the manufacturing process, and the lifespan of the thermocouple connection line is easily degraded during the use of the temperature sensor wafer. There is a shortcoming.
  • thermocouple contacts 11-1 and 21-1 and the thermocouple connection lines 21-1 and 21-2 may be connected using a film instead of the bonding materials 22 and 23 described above.
  • a film instead of the bonding materials 22 and 23 described above.
  • using the film as described above is easy to manufacture, but due to the characteristics of the film itself, it is unstable at a high temperature, there is a disadvantage that the thermocouple connection line is easily boiled or thinly connected.
  • the wafer is heated by receiving heat from the susceptor while being placed on the susceptor. At this time, heat is generated during the conduction of heat from the susceptor to the wafer, resulting in a temperature difference between the susceptor and the wafer. For example, even if the susceptor's temperature is set to 1000 ° C., the actual temperature of the wafer will be less than this.
  • test wafers As part of this, several test wafers (dummy wafers) have been proposed. Examples are wafer temperature measuring apparatuses disclosed in Japanese Patent Application Laid-Open No. 2000-31231 (published on Feb. 8, 2000) and process condition measuring apparatuses disclosed in US Pat. No. 7,540,188 (registered on June 6, 2009).
  • the wafer temperature measuring device disclosed in Japanese Laid-Open Patent Publication No. 2000-31231 uses a thermocouple, and since the element wires and lead wires are drawn out from the RTD provided in the recess of the wafer, the RTD is placed inside the wafer. If a large number of wires and lead wires are too complicated to be entangled, there is a disadvantage that can not be installed a lot of resistance thermometer in several places. Therefore, they are vulnerable to detailed temperature uniformity over the entire surface of the wafer.
  • the problem to be solved by the present invention is a buried temperature measuring wafer sensor that can not only prevent the heat of the temperature measuring unit from escaping to the outside, but also maintain the characteristics as the temperature measuring unit for a long time stably and continuously. It is to provide a manufacturing method.
  • an object of the present invention is to provide a multi-layer resistance multi-point temperature measurement wafer sensor capable of grasping temperature uniformity with respect to the entire surface of the wafer in detail, and a manufacturing method thereof.
  • An embedded temperature measuring wafer sensor includes a wafer sensor having a temperature measuring part on a wafer, wherein the wafer has a buried groove in which the temperature measuring part is buried, and the temperature measuring part is provided in the buried groove. It is characterized by being embedded.
  • the temperature measuring unit includes a temperature sensor and a connection wiring connecting the temperature sensor to the outside of the wafer, and the temperature sensor and the connection wiring may be embedded in the buried groove.
  • the temperature measuring part may be a thermocouple.
  • the temperature measuring unit includes a first connection wire and a second connection wire made of different materials; And a contact portion in which the first connection wire and the second connection wire are in contact with each other, the first connection wire and the second connection wire; And a contact portion is preferably embedded in the buried groove.
  • the buried groove may be formed to the outermost end of the wafer.
  • the buried groove may have an insulating layer therein, and a temperature measuring part may be buried in the insulating layer.
  • the wafer preferably further includes a protective layer covering the temperature measuring part.
  • the temperature measuring unit may be a metal material deposited in the buried groove.
  • the temperature measuring unit may be a wire is inserted into the buried groove.
  • the temperature measuring part is made of a metal material, and the metal material is preferably selected from the group consisting of copper, gold, platinum, nickel, titanium, and combinations thereof.
  • One embodiment of the present invention is a wafer temperature measuring system including the wafer sensor and a plate on which the wafer sensor is mounted.
  • a method of manufacturing a wafer sensor having a temperature measuring unit on a wafer comprising: forming a buried groove for embedding the temperature measuring unit on the wafer; Embedding the temperature measuring part in the formed filling groove; And forming a protective layer covering the temperature measuring part.
  • the multilayer resistance multi-point temperature measurement wafer sensor according to another embodiment of the present invention, the electrode portion formed with a plurality of electrode wiring on the wafer; A resistor installed on the wafer so as to be positioned on a different layer from the electrode, wherein a plurality of unit resistors are connected in series by a connection wiring; An interlayer insulating layer disposed between the electrode portion and the resistor portion; And a conductive plug installed in the via hole of the interlayer insulating layer such that one end of each of the electrode wirings is electrically connected to both ends of the unit resistors.
  • the resistor unit is disposed above the electrode unit.
  • the resistor unit may be installed to be exposed to the surface.
  • the resistance part is made of a metal wiring divided into a narrow portion and a wide portion, it is preferable that the narrow line width serves as the unit resistance and the wide line portion serves as the connection wiring.
  • a voltage measuring terminal for collecting the other end of each of the electrode wirings is provided on the wafer.
  • a method for manufacturing a multilayer resistance type multi-point temperature measuring wafer sensor comprising: forming an electrode part including a plurality of electrode wirings on a wafer; Forming an interlayer insulating layer on the electrode portion; Forming a plurality of via holes in the interlayer insulating layer to expose one end of each of the electrode wirings; Forming a conductive plug in the via hole for electrical connection with the electrode wirings; And a metal wire in which both ends of the unit resistance are electrically connected to the metal plug while being divided into a narrow line width and a wide portion such that a portion having a narrow line width serves as a unit resistance and a portion having a wide line serves as a connection wiring. Forming on the insulating layer to obtain a resistance portion.
  • the temperature measuring portion since the buried groove in which the temperature measuring portion is buried is formed on the wafer, and the temperature measuring portion is buried in the buried groove, the temperature measuring portion can be formed to be thick enough, so that the temperature measuring portion has a bulk property. It can have a stable effect even at high temperatures.
  • the present invention is manufactured by embedding the temperature measuring unit in the buried groove, not only can prevent the heat of the temperature measuring unit from escaping to the outside, it is not broken and stable, and the characteristics as the temperature measuring unit continuously and stably It can be maintained for a long time.
  • the present invention manufactures the temperature measuring part embedded in the buried groove, there is no connection wiring in the space above the wafer, thereby providing a simple and simple temperature measuring wafer sensor.
  • the electrode part and the resistor part are formed in different layers, the unit resistance and the connection wiring of the resistor part can be provided on the entire surface of the wafer without being disturbed by the electrode part. Therefore, the temperature uniformity can be understood in detail with respect to the entire wafer surface.
  • FIG. 1 is a cross-sectional view of a wafer for a temperature sensor according to a first technique
  • 2A and 2B are a cross-sectional view and a plan view of a wafer for a temperature sensor according to a conventional second technology
  • FIG. 3 is a schematic diagram for explaining a buried temperature measuring wafer sensor 1 according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view of FIG. 3,
  • thermocouple 5 is a partially enlarged view for explaining an example in which the temperature measuring unit according to the present invention is a thermocouple
  • FIG. 6 is a cross-sectional view illustrating an example of an insulating layer and a protective layer formed in a buried groove according to the present invention
  • FIG. 7 is a perspective view for explaining an example in which the filling groove according to the present invention is formed to the outermost portion of the wafer,
  • FIG. 8 is a flowchart illustrating a method of manufacturing a buried temperature measuring wafer sensor according to another embodiment of the present invention.
  • FIG. 9 is a circuit diagram for explaining a multilayer resistance multi-point temperature measuring wafer sensor 1 according to the present invention.
  • FIG. 10 is a view for explaining the structure of a multi-layer resistive multi-point temperature measuring wafer sensor 1 according to the present invention.
  • FIG. 11 is a view for explaining a method for manufacturing a multilayer resistance multi-point temperature measurement wafer sensor 1 according to the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 3 is a schematic view for explaining the embedded temperature measuring wafer sensor 1 according to an embodiment of the present invention
  • Figure 4 is a cross-sectional view of FIG.
  • the present invention relates to a wafer sensor provided with a temperature measuring unit 120 on the wafer 110.
  • the wafer 110 may be used for semiconductor manufacturing. However, in the present invention, the wafer 110 is not limited to this.
  • the wafer 110 may include a measuring plate that is heat treated by an electric furnace or a hot plate, or a thin plate used in such a condition. That is, it may be a thin plate to be subjected to heat treatment, a member having such a surface shape and such a heat capacity, or the thin plate itself to be subjected to heat treatment.
  • the temperature measuring unit 120 is a means capable of measuring the surface temperature of the wafer on the wafer 110.
  • the temperature measuring unit 120 may be a thermocouple or a resistor.
  • RTD resistance temperature detector
  • Thermoresistor The present inventors made the present invention based on a thermocouple as a temperature measuring unit, but the present invention can be applied to various temperature measuring units in addition to the present invention.
  • the wafer 110 has a buried groove 111 in which the temperature measuring part 120 is embedded, and the temperature measuring part 120 includes the buried groove 111.
  • the shape or manufacturing method of the buried groove 111 is not particularly limited, and includes all methods known in the art.
  • the buried groove 111 may be formed to have a cross section of a rectangle, a polygon, a semicircle, or a circle by an etching method.
  • a buried groove 111 in which the temperature measuring part 120 is embedded is formed on the wafer 110, and the temperature measuring part 120 is buried in the buried groove 111 so that the temperature measuring part Since the 120 can be formed sufficiently thick, the temperature measuring part 120 can be manufactured to have a bulk property, thereby having a stable effect even at a high temperature.
  • the temperature measuring unit 120 may be one or more, and in the case of two or more, it is more preferable to uniformly grasp the entire temperature of the wafer image 110.
  • the temperature measuring unit 120 includes a connection wire 122 connecting the temperature sensor 121 and the temperature sensor 121 to the outside of the wafer 110, and the temperature sensor 121 and the connection wiring ( 122 may be embedded in the buried groove 111.
  • the temperature sensor 121 actually measures the temperature on the wafer 110, and the temperature sensor 121 may be the same as the temperature measuring unit 120 described above. That is, in the present invention, it is preferable that not only the temperature sensor 121 actually measuring the temperature but also the connection wiring 122 connected thereto are embedded in the buried groove 111.
  • the present invention is manufactured by embedding the temperature sensor 121 and the connection wiring 122 in the buried groove 111, it is possible to prevent the heat escape to the outside by the connection wiring 122, as well as cut off It is stable without support, and the characteristics as the temperature measuring unit 120 can be stably and continuously maintained for a long time.
  • the temperature measuring unit 120 or the connection wiring 122 may be a metal material is deposited in the buried groove 111.
  • the metal material is not particularly limited and includes all of a variety of those known in the art. That is, a metal material is formed in the buried groove 111 on the wafer 110 by the deposition method. Then, the temperature measuring part 120 can be easily buried in the buried groove 111 and can be firmly fixed, thereby increasing stability.
  • the temperature measuring unit 120 or the connection wiring 122 is made of a metal material, and the metal material is preferably selected from the group consisting of copper, gold, platinum, nickel, titanium, and combinations thereof. . Since aluminum has a low temperature even when heated, it is preferable to use copper, gold, platinum, nickel, titanium, or the like. More preferably, although gold (Au) or platinum (Pt) may be used as the metal material, in order to form the temperature measuring unit 120 or the connection wiring 122 in a large area on the wafer 110, copper, It is more preferable to use nickel, titanium, and the like in terms of convenience of manufacturing.
  • the temperature measuring unit 120 or the connection wiring 122 may be a wire is inserted into the buried groove 111. That is, the temperature measuring unit 120 or the connection wiring 122 according to the present invention is composed of a wire, not deposition.
  • the metal wire may be manufactured by inserting it into the buried groove 111. The use of the wire in this way is possible because the buried groove 111 is already formed on the wafer 110 as in the present invention.
  • thermocouple thermocouple
  • thermocouple connection line In the case of the conventional thermocouple wafer sensor, the heat is leaked to the outside by the thermocouple connection line.When connecting the thermocouple connection line to the thermocouple contact point using the film, it is unstable at high temperature due to the characteristics of the film itself. There was a disadvantage that the connection line is easily boiled or thinly connected.
  • thermocouple since the thermocouple is embedded in the buried groove on the wafer, there are no disadvantages as described above.
  • the temperature measuring unit 120 may include a first connection wire 122a and a second connection wire 122b made of different materials; And a contact portion 121a in which the first connection wiring 122a and the second connection wiring 122b are in contact with each other; the first connection wiring 122a and the second connection wiring 122b; And a contact portion 121a; is preferably embedded in the buried groove 111.
  • the different materials may be one of the metal materials described above. Using the first connection wire 122a and the second connection wire 122b made of different materials, the temperature measuring part 120 is thermocoupled by embedding the buried groove 111 so that a part thereof overlaps. It can be implemented.
  • the shape or size of the contact portion 121a is not particularly limited. That is, the contact portion 121a may be circular, rectangular, polygonal, or straight.
  • FIG. 6 is a cross-sectional view for explaining an example of the insulating layer 120 and the protective layer 140 is formed in the buried groove 111 according to the present invention.
  • the buried groove 111 has an insulating layer 120 therein, and the temperature measuring unit 120 is buried on the insulating layer 120.
  • the method of forming the insulating layer 120 in the buried groove 111 is not particularly limited, and includes all forms known in the art.
  • the present invention includes an insulating layer 120 between the temperature measuring unit 120 and the wafer 110, to prevent the influence of the temperature deviation caused by the wafer 110 itself, and to measure the temperature in the buried groove 111 It is preferable to embed the portion 120 more easily.
  • the wafer 110 preferably further includes a protective layer 140 covering the temperature measuring part 120. That is, the passivation layer is covered on the temperature measuring part 120. As a result, it is possible to prevent an unexpected external change coming on the wafer 110 or an effect caused by a state change on the wafer, which is more preferable.
  • FIG. 7 is a perspective view for explaining an example in which the filling groove 111 according to the present invention is formed to the outermost angle of the wafer 110.
  • the buried groove 111 is formed to the outermost end of the wafer (110).
  • thermocouple wire Conventionally, the length or area of the thermocouple wire was exposed to the upper part of the wafer, and in some cases, not only the tip of the thermocouple wire was buried but also a part of the main body, but some of the thermocouple wire was still exposed to the outside.
  • the present invention is characterized in that the entire temperature measuring unit 120 is buried in the buried groove 111 of the wafer 110 through the buried groove 111 formed on the wafer 110, thereby stable at high temperatures.
  • the characteristics as a temperature sensor can be stably and continuously maintained for a long time.
  • the present invention may further include a connection terminal 160 connecting the connection wiring 122 and the external lead wiring 150 of the temperature measuring part 120 to some side surfaces of the wafer 110 (FIG. 1). Reference).
  • FIG. 8 is a flowchart illustrating a method of manufacturing the buried temperature measuring wafer sensor 1 according to another embodiment of the present invention.
  • a buried groove 111 for filling the temperature measuring part on the wafer 110.
  • the method of forming the buried groove 111 is not particularly limited.
  • the shape or size of the buried groove 111 is also not particularly limited, and it is preferable to correspond to the temperature sensor 121 and / or the connection wiring 122 so as to bury the temperature measuring unit 120 to be described later.
  • the step of embedding the temperature measuring part 120 in the buried groove 111 formed For example, it is possible to form the temperature sensor 121 and / or the connection wiring 122 by depositing a metal material or inserting a wire. In particular, it is a feature of the present invention to form a metal material or a wire is embedded only in the buried groove 111.
  • the upper surface of the temperature sensor 121 and / or the connection wiring 122 preferably has a plane of the same height as the wafer (110).
  • the protective layer 140 covering the temperature measuring part 120.
  • the method for forming the protective layer 140 is not particularly limited, and various methods known in the art may be used.
  • the present invention is a wafer temperature measuring system including the above-described wafer sensor 1 and a plate (not shown) on which the wafer sensor 1 is placed.
  • the plates include various forms well known in the art.
  • Such a wafer temperature measuring system may be applied to an existing system and may be implemented as a new system for the wafer sensor 1 according to the present invention.
  • the multilayer resistance multi-point temperature measuring wafer sensor 201 includes an electrode 220 and a resistor 230 disposed on the wafer 210.
  • the electrode unit 220 includes a plurality of electrode wirings 221, and the resistor unit 230 includes a plurality of unit resistors 231 connected in series by the connection wiring 232.
  • One end of each electrode wiring 221 is electrically connected to both ends of the unit resistor 231, and the other end thereof is collected at the voltage measuring terminal 240.
  • the number of points (P1, P2, Pn) should be large in order to closely grasp the temperature nonuniformity with respect to the entire surface of the wafer 210, the electrode portion 220 and the resistance portion 230 is present on the same plane In this case, the installation space of the series resistor 231 and the connection wiring 232 is limited because the electrode wiring 221 is installed. Therefore, the electrode unit 220 and the resistor unit 230 may be disposed on different planes.
  • FIG. 10 is a view for explaining the structure of a multi-layer resistance multi-point temperature measurement wafer sensor 201 according to the present invention
  • Figure 10a is a side view
  • Figure 10b is a plan view of the resistor 230.
  • the electrode part 220 is formed by forming a plurality of electrode wirings 221 in parallel on the wafer 210.
  • the resistor unit 230 is installed to be located on a different layer from the electrode unit 220 by the interlayer insulating layer 250, and the plurality of unit resistors 231 are connected in series by the connection wiring 232.
  • the resistor unit 230 is formed of a metal wiring divided into a narrow portion and a wide portion.
  • the narrow line width serves as the unit resistor 231 and the wide line width serves as the connection wiring 232. It is preferable that the unit resistance 231 be longer than the connection wiring 232 so that the resistance of the unit resistance 231 is higher.
  • the metal wiring does not mean only pure metal but also refers to all materials used as wiring materials in the semiconductor field, such as silicide.
  • One end of the electrode wirings 221 is electrically connected to both ends of the unit resistors 231 by a conductive plug 255 provided in the via hole of the interlayer insulating layer 250.
  • the resistor unit 230 is more preferably positioned above the electrode unit 220. This is because it is important to know the temperature and uniformity on the surface of the wafer 210 because the actual process is performed in the semiconductor device manufacturing process.
  • the resistance unit 230 may be installed to expose the surface of the wafer so that the temperature inside the process chamber is reflected.
  • a protective layer (not shown) may be further formed on the resistor unit 230 so that the metal wiring constituting the resistor unit 230 does not deteriorate due to oxidation at a high temperature. Degradation of the metallization can cause errors in accurate potential difference measurements.
  • FIG. 11 is a view for explaining a method of manufacturing a multilayer resistance multi-point temperature measurement wafer sensor 201 according to the present invention.
  • the metal layer is patterned to form an electrode part 220 including a plurality of electrode wirings 221.
  • an interlayer insulating layer 250 is formed on the electrode part 220, and a via hole is formed in the interlayer insulating layer 250 so that one end of each of the electrode wirings 221 is exposed.
  • a conductive plug 255 is formed in the via hole for electrical connection with the wirings 221.
  • the metal layer is patterned to form a resistor unit 230 including a metal wiring divided into a narrow portion and a wide portion. .
  • the unit resistor 231 and the connection wiring 232 of the resistor unit 230 prevent the electrode unit 220 from interfering with each other. It can be installed on the entire surface of the wafer 210 without receiving. Therefore, the temperature uniformity of the entire surface of the wafer 210 can be grasped in detail.

Abstract

A temperature measurement wafer sensor according to the present invention is characterized in that a burying groove, in which a temperature measurement part is buried, is formed on a wafer and the temperature measurement part is buried in the burying groove. The temperature measurement part can be formed to be sufficiently thick and thus can be manufactured to have a bulk property, so as to allow the wafer sensor to be stable even at a high temperature. Further, according to the present invention, an electrode part and a resistor part are formed in different layers to thus allow a unit resistor of the resistor part and a connection wire to be installed in the overall area of the wafer without the hindrance of the electrode part. Therefore, the present invention enables temperature uniformity with respect to the overall area of the wafer to be grasped in detail.

Description

온도측정 웨이퍼 센서 및 그 제조방법Temperature measuring wafer sensor and its manufacturing method
본 발명은 온도측정 웨이퍼 센서 및 그 제조방법에 관한 것으로서, 특히 온도측정부의 열이 외부로 빠져나가는 것을 방지할 수 있고, 온도측정부로서의 특성을 안정되게 지속적으로 장기간 유지시킬 수 있으며, 웨이퍼의 전면적에 대해 온도 균일도를 세밀하게 파악할 수 있는 온도측정 웨이퍼 센서 및 그 제조방법에 관한 것이다. The present invention relates to a temperature measuring wafer sensor and a method for manufacturing the same, in particular, it is possible to prevent the heat of the temperature measuring unit from escaping to the outside, and to maintain the characteristics as the temperature measuring unit for a long time stably and continuously, The present invention relates to a temperature measuring wafer sensor capable of grasping temperature uniformity in detail, and a manufacturing method thereof.
온도센서용 웨이퍼는 웨이퍼가 들어 있는 반응장치 속에서 반응이 진행될 때, 웨이퍼의 실제온도가 얼마인지를 간접적으로 측정하기 위한 센서로, 웨이퍼 표면에 홈을 낸 후에 홈에 열전쌍(thermocouple)을 심어 놓은 것이다. 이 온도센서용 웨이퍼를 반응장치 속에 웨이퍼 대신 넣은 후, 반응장치를 실제 반응시와 동일한 조건으로 만들어 놓은 상태에서 온도센서용 웨이퍼에 심어져 있는 열전쌍으로부터 나오는 열기전력을 측정하여 온도로 환산하면, 실제 반응시의 웨이퍼의 온도를 간접적으로 측정할 수 있다. 열전쌍은 그 고유특성상 열전쌍접점이 위치한 곳의 온도에 비례하는 열기전력을 발생하는 것이며, 그 열기전력을 증폭시켜 온도로서 환산시켜 온도측정을 하는 측정기의 센서로서 사용된다.The temperature sensor wafer is a sensor for indirectly measuring the actual temperature of the wafer when the reaction proceeds in the reaction apparatus containing the wafer. After the groove is formed on the wafer surface, a thermocouple is implanted in the groove. will be. After the wafer for temperature sensor is placed in the reactor instead of the wafer, the thermoelectric power from the thermocouple planted on the wafer for temperature sensor is measured and converted into temperature while the reactor is in the same condition as the actual reaction. The temperature of the wafer at the time of reaction can be measured indirectly. Thermocouples generate thermoelectric power in proportion to the temperature at which the thermocouple junction is located due to their inherent characteristics. The thermocouple is used as a sensor for measuring temperature by amplifying the thermoelectric power and converting it into temperature.
도 1은 종래의 제 1 기술에 의한 온도센서용 웨이퍼를 나타낸 단면도이다. 웨이퍼(10)에 홈을 파서 열전쌍(11)의 열전쌍접점(11-1)을 세라믹류의 본딩물질(12)로 밀봉하고, 열전쌍접점(11-1)에 연결된 열전쌍연결선(11-2)의 대부분을 웨이퍼(10)의 외부에 노출시킨 구조를 가지고 있다.1 is a cross-sectional view showing a wafer for a temperature sensor according to a first conventional technique. The thermocouple contact 11-1 of the thermocouple 11 by digging into the wafer 10 is sealed with a bonding material 12 of ceramics, and the thermocouple connection line 11-2 connected to the thermocouple contact 11-1. Most have a structure in which the wafer 10 is exposed to the outside.
웨이퍼가 반응장치내에서 복사광을 받아 온도가 상승할 경우에 웨이퍼 주변의 분위기 온도는 웨이퍼의 온도보다 낮은 상태가 되는데, 종래의 온도센서용 웨이퍼는 열전쌍연결선의 웨이퍼 속에 파묻힌 부분의 길이가 짧기 때문에 온도에 따른 기전력을 발생시키는 열전쌍접점의 열이 열전도가 좋은 열전쌍연결선을 통하여 쉽게 웨이퍼 외부로 빠져나가게 된다. 그에 따라 그 접점의 온도는 웨이퍼의 실제 온도보다 낮게 나타나게 된다. 예를 들어, 웨이퍼 주변의 분위기 온도가 1000℃정도일 경우에 측정되는 온도는 약 15∼20℃정도 낮게 나타난다. 즉, 상기와 같은 종래의 온도센서용 웨이퍼는 온도응답속도가 느리고, 웨이퍼의 주변온도에 영향을 많이 받는 단점이 있다.When the wafer receives radiation in the reactor and the temperature rises, the ambient temperature around the wafer becomes lower than the temperature of the wafer. In the conventional temperature sensor wafer, the length of the portion embedded in the wafer of the thermocouple connection line is short. The heat of the thermocouple contact, which generates the electromotive force according to the temperature, is easily escaped to the outside of the wafer through the thermocouple connection line having good thermal conductivity. As a result, the temperature of the contact is lower than the actual temperature of the wafer. For example, when the ambient temperature around the wafer is about 1000 占 폚, the temperature measured is about 15-20 占 폚 lower. That is, the conventional temperature sensor wafer as described above has a disadvantage in that the temperature response speed is slow and much influenced by the ambient temperature of the wafer.
도 2a와 도 2b는 종래의 제 2 기술에 의한 온도센서용 웨이퍼의 단면도와 평면도를 각각 나타낸 것이다. 평면도(도 2b)에 보인 열전쌍연결선은 본딩물질에 파묻힌 부분만을 나타낸 것이다. 열전쌍접점(21-1)만 웨이퍼(20)속에 묻힌 것이 아니라, 웨이퍼(20)에 형성된 홀에 열전쌍연결선(21-2)을 반원형으로 휘어 넣어서 세라믹류의 본딩물질(23)로 밀봉한 것이다. 이 때, 열전쌍접점(21-1)에 연결된 열전쌍연결선(21-2)은 그 일부가 노출되어 있다. 도 2b에서 20은 웨이퍼를 나타낸 것이다.2A and 2B show a cross-sectional view and a plan view, respectively, of a wafer for a temperature sensor according to a second conventional technique. The thermocouple connection line shown in the plan view (FIG. 2B) shows only the portion embedded in the bonding material. Not only the thermocouple contact 21-1 is buried in the wafer 20, but the thermocouple connecting line 21-2 is bent in a semicircular shape into a hole formed in the wafer 20 and sealed with a bonding material 23 of ceramics. At this time, a part of the thermocouple connecting line 21-2 connected to the thermocouple contact 21-1 is exposed. 2b shows a wafer.
일반적으로 물질의 단위시간당 흘러나가는 열량은 열전도도, 열전쌍연결선의 단면적 및 온도차에 비례하고 열전쌍연결선의 길이에 반비례한다. 이를 상기 종래 기술에 적용하면, 웨이퍼 내부의 온도와 웨이퍼 외부의 온도가 같고, 열전쌍연결선의 단면적과 열전도도가 같은 경우에는 열전쌍연결선을 통하여 흘러나가는 열량은 열전쌍연결선의 길이에 반비례한다. 따라서, 종래 제 2 기술에 보인 온도센서용 웨이퍼와 같이, 열전쌍연결선을 반원형으로 풀어 사용할 경우, 웨이퍼 속에 파묻힌 열전쌍연결선의 길이가 길어서 상대적으로 열전쌍접점의 열이 빠져나오지는 않기 때문에 보다 정확한 웨이퍼의 온도측정을 할 수 있다.In general, the amount of heat flowing per unit time of a material is proportional to the thermal conductivity, the cross-sectional area of the thermocouple and the temperature difference, and inversely proportional to the length of the thermocouple. When applied to the prior art, when the temperature inside the wafer and the temperature outside the wafer are the same, and the cross-sectional area and the thermal conductivity of the thermocouple connection line are the same, the amount of heat flowing through the thermocouple connection line is inversely proportional to the length of the thermocouple connection line. Therefore, when the thermocouple connection line is semi-circularly used and used as a wafer for a temperature sensor shown in the related art, since the length of the thermocouple connection line embedded in the wafer is long, the heat of the thermocouple contact does not escape relatively, so the temperature of the wafer is more accurate. You can make measurements.
그러나 종래의 제 2 기술에 의한 온도센서용 웨이퍼는 제작하는 과정에서 열전쌍연결선을 웨이퍼의 홈에 휘어넣기가 어렵고, 상기 온도센서용 웨이퍼를 사용하는 중에는 열전쌍연결선의 휘어진 부분이 쉽게 열화되기 때문에 수명이 짧아지는 단점이 있다.However, the wafer for the temperature sensor according to the second conventional technology is difficult to bend the thermocouple connection line into the groove of the wafer during the manufacturing process, and the lifespan of the thermocouple connection line is easily degraded during the use of the temperature sensor wafer. There is a shortcoming.
또한, 일부에서는 상기한 본딩물질(22, 23) 대신에 필름을 이용해서 열전쌍접점(11-1, 21-1)과 열전쌍연결선(21-1, 21-2)을 연결하기도 한다. 그러나, 이와 같이 필름을 이용하는 것은 제조하기는 쉽지만, 필름 자체의 특성 때문에 고온에서 불안정하고, 열전쌍연결선이 쉽게 끓어지거나 얇게 연결되는 등의 단점이 있다.In some cases, the thermocouple contacts 11-1 and 21-1 and the thermocouple connection lines 21-1 and 21-2 may be connected using a film instead of the bonding materials 22 and 23 described above. However, using the film as described above is easy to manufacture, but due to the characteristics of the film itself, it is unstable at a high temperature, there is a disadvantage that the thermocouple connection line is easily boiled or thinly connected.
한편, 반도체 제조공정에서 웨이퍼는 서셉터 상에 올려 놓인 상태에서 서셉터로 부터 열을 전달받아 가열된다. 이 때 서셉터에서 웨이퍼로 열이 전도되는 과정에서 열 손실이 발생되므로 서셉터와 웨이퍼 사이에 온도 차이가 나게 된다. 예컨대, 서셉터의 온도를 1000℃로 세팅하더라도 웨이퍼의 실제 온도는 이 보다 못하게 된다는 것이다. Meanwhile, in the semiconductor manufacturing process, the wafer is heated by receiving heat from the susceptor while being placed on the susceptor. At this time, heat is generated during the conduction of heat from the susceptor to the wafer, resulting in a temperature difference between the susceptor and the wafer. For example, even if the susceptor's temperature is set to 1000 ° C., the actual temperature of the wafer will be less than this.
따라서 웨이퍼의 실제 온도를 정확히 파악할 필요가 있다. 이 때, 웨이퍼 내에서의 온도 균일성이 떨어지면 부분별로 공정조건이 달라지는 결과가 되어 공정 신뢰도가 떨어지게 되기 때문에 웨이퍼 전면적에 대한 온도 균일도를 파악하는 것이 매우 중요하다. Therefore, it is necessary to know the actual temperature of the wafer accurately. At this time, it is very important to understand the temperature uniformity of the entire surface of the wafer since the temperature uniformity in the wafer is reduced, resulting in a change in process conditions for each part, resulting in poor process reliability.
이러한 일환으로 여러 가지 테스트 웨이퍼(더미 웨이퍼)가 제안되었다. 일본 특개 제2000-31231호(2000.1.28.공개)에 개시된 웨이퍼 온도측정 장치나, 미국 특허 제7,540,188호(2009.6.2.등록)에 개시된 공정조건 측정장치가 바로 이러한 예들이다. As part of this, several test wafers (dummy wafers) have been proposed. Examples are wafer temperature measuring apparatuses disclosed in Japanese Patent Application Laid-Open No. 2000-31231 (published on Feb. 8, 2000) and process condition measuring apparatuses disclosed in US Pat. No. 7,540,188 (registered on June 6, 2009).
상기 일본 특개 제2000-31231호(2000.1.28.공개)에 개시된 웨이퍼 온도측정 장치는 열전대를 이용하는 것으로서 웨이퍼의 오목부에 설치된 측온저항체로부터 소선과 리드선들이 외부 인출되어 이루어지기 때문에 웨이퍼 내에 측온저항체를 많이 설치할 경우 소선과 리드선들이 너무 복잡하게 얽히게 되므로, 측온저항체를 여러 군데에 많이 설치할 수 없다는 단점이 있다. 따라서 웨이퍼의 전면적에 대해 온도 균일도를 세밀하게 파악하는 데에 취약하다. The wafer temperature measuring device disclosed in Japanese Laid-Open Patent Publication No. 2000-31231 (published on Feb. 8, 2000) uses a thermocouple, and since the element wires and lead wires are drawn out from the RTD provided in the recess of the wafer, the RTD is placed inside the wafer. If a large number of wires and lead wires are too complicated to be entangled, there is a disadvantage that can not be installed a lot of resistance thermometer in several places. Therefore, they are vulnerable to detailed temperature uniformity over the entire surface of the wafer.
따라서 본 발명이 해결하고자 하는 과제는, 온도측정부의 열이 외부로 빠져나가는 것을 방지할 수 있을 뿐만 아니라, 온도측정부로서의 특성을 안정되게 지속적으로 장기간 유지시킬 수 있는, 매립형 온도측정 웨이퍼 센서 및 그 제조방법을 제공하는 것이다. Accordingly, the problem to be solved by the present invention is a buried temperature measuring wafer sensor that can not only prevent the heat of the temperature measuring unit from escaping to the outside, but also maintain the characteristics as the temperature measuring unit for a long time stably and continuously. It is to provide a manufacturing method.
또한, 본 발명이 해결하고자 하는 과제는, 웨이퍼의 전면적에 대해 온도 균일도를 세밀하게 파악할 수 있는 다층 저항식 다점 온도측정 웨이퍼 센서 및 그 제조방법을 제공하는 데 있다. In addition, an object of the present invention is to provide a multi-layer resistance multi-point temperature measurement wafer sensor capable of grasping temperature uniformity with respect to the entire surface of the wafer in detail, and a manufacturing method thereof.
본 발명의 일 실시형태에 따른 매립형 온도측정 웨이퍼 센서는, 웨이퍼 상에 온도측정부가 구비된 웨이퍼 센서에 있어서, 상기 웨이퍼는 상기 온도측정부가 매립되는 매립홈을 가지고, 상기 온도측정부는 상기 매립홈에 매립된 것을 특징으로 한다. An embedded temperature measuring wafer sensor according to an embodiment of the present invention includes a wafer sensor having a temperature measuring part on a wafer, wherein the wafer has a buried groove in which the temperature measuring part is buried, and the temperature measuring part is provided in the buried groove. It is characterized by being embedded.
상기 온도측정부는 온도센서와 상기 온도센서를 웨이퍼 외부와 연결하는 연결배선을 포함하고, 상기 온도센서와 연결배선은 상기 매립홈에 매립된 것이 가능하다. The temperature measuring unit includes a temperature sensor and a connection wiring connecting the temperature sensor to the outside of the wafer, and the temperature sensor and the connection wiring may be embedded in the buried groove.
상기 온도측정부는 열전쌍(thermocouple)인 것일 수 있다. The temperature measuring part may be a thermocouple.
상기 온도측정부는 서로 다른 물질로 이루어진 제1연결배선과 제2연결배선; 및 상기 제1연결배선과 제2연결배선이 접점된 접점부;를 가지고, 상기 제1연결배선과 제2연결배선; 및 접점부;는 상기 매립홈에 매립된 것이 바람직하다. The temperature measuring unit includes a first connection wire and a second connection wire made of different materials; And a contact portion in which the first connection wire and the second connection wire are in contact with each other, the first connection wire and the second connection wire; And a contact portion is preferably embedded in the buried groove.
상기 매립홈은 웨이퍼의 최외각 끝까지 형성된 것이 가능하다. The buried groove may be formed to the outermost end of the wafer.
상기 매립홈은 내부에 절연층을 가지고, 상기 절연층 위에 온도측정부가 매립된 것일 수 있다. The buried groove may have an insulating layer therein, and a temperature measuring part may be buried in the insulating layer.
상기 웨이퍼는 상기 온도측정부를 덮는 보호층을 더 포함하는 것이 바람직하다.The wafer preferably further includes a protective layer covering the temperature measuring part.
상기 온도측정부는 금속물질이 상기 매립홈에 증착된 것이 가능하다. The temperature measuring unit may be a metal material deposited in the buried groove.
상기 온도측정부는 와이어가 상기 매립홈에 삽입된 것일 수 있다. The temperature measuring unit may be a wire is inserted into the buried groove.
상기 온도측정부는 금속물질로 이루어지고, 상기 금속물질은 구리, 금, 백금, 니켈, 티타늄 및 이것의 조합으로 이루어진 군에서 선택된 것이 바람직하다. The temperature measuring part is made of a metal material, and the metal material is preferably selected from the group consisting of copper, gold, platinum, nickel, titanium, and combinations thereof.
상기 온도측정부는 2개 이상인 것이 가능하다. It is possible to have two or more said temperature measuring parts.
본 발명의 일 실시형태는, 상기한 웨이퍼 센서와, 상기 웨이퍼 센서가 올려지는 플레이트를 포함하는 웨이퍼 온도측정 시스템이다.One embodiment of the present invention is a wafer temperature measuring system including the wafer sensor and a plate on which the wafer sensor is mounted.
본 발명의 일 실시형태는, 웨이퍼 상에 온도측정부가 구비된 웨이퍼 센서의 제조방법에 있어서, 상기 웨이퍼 상에 온도측정부를 매립하기 위한 매립홈을 형성하는 단계; 상기 형성된 매립홈에 상기 온도측정부를 매립하는 단계; 및 상기 온도측정부를 덮는 보호층을 형성하는 단계;를 포함하는 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서의 제조방법이다.In one embodiment of the present invention, a method of manufacturing a wafer sensor having a temperature measuring unit on a wafer, the method comprising: forming a buried groove for embedding the temperature measuring unit on the wafer; Embedding the temperature measuring part in the formed filling groove; And forming a protective layer covering the temperature measuring part.
한편, 본 발명의 다른 일 실시형태에 따른 다층 저항식 다점 온도측정 웨이퍼 센서는, 웨이퍼 상에 복수개의 전극배선이 형성되어 이루어지는 전극부; 상기 웨이퍼 상에서 상기 전극부와 다른 층에 위치하도록 설치되며, 복수개의 단위저항이 연결배선에 의해 직렬 연결되어 이루어지는 저항부; 상기 전극부와 저항부 사이에 설치되는 층간절연층; 및 상기 전극배선 각각의 일단이 상기 단위저항들의 양단에 전기적으로 연결되도록 상기 층간절연층의 비아홀에 설치되는 도전플러그; 를 포함하여 이루어짐으로써, 상기 전극부를 통하여 상기 저항부에서의 전위차를 측정하여 상기 웨이퍼의 온도 균일도를 간파하는 것이다. On the other hand, the multilayer resistance multi-point temperature measurement wafer sensor according to another embodiment of the present invention, the electrode portion formed with a plurality of electrode wiring on the wafer; A resistor installed on the wafer so as to be positioned on a different layer from the electrode, wherein a plurality of unit resistors are connected in series by a connection wiring; An interlayer insulating layer disposed between the electrode portion and the resistor portion; And a conductive plug installed in the via hole of the interlayer insulating layer such that one end of each of the electrode wirings is electrically connected to both ends of the unit resistors. By including the, by measuring the potential difference in the resistance portion through the electrode portion to observe the temperature uniformity of the wafer.
상기 저항부는 상기 전극부보다 위에 위치하도록 설치되는 것이 바람직하다. Preferably, the resistor unit is disposed above the electrode unit.
상기 저항부는 표면에 노출되도록 설치될 수 있다. The resistor unit may be installed to be exposed to the surface.
상기 저항부는 선폭이 좁은 부분과 넓은 부분으로 구분되는 금속배선으로 이루어짐으로써 선폭이 좁은 부분이 상기 단위저항의 역할을 하고 선폭이 넓은 부분이 상기 연결배선의 역할을 하도록 하는 것이 바람직하다. The resistance part is made of a metal wiring divided into a narrow portion and a wide portion, it is preferable that the narrow line width serves as the unit resistance and the wide line portion serves as the connection wiring.
또한, 상기 전극배선들 각각의 타단을 취합하는 전압측정단자가 상기 웨이퍼에 설치되는 것이 바람직하다. In addition, it is preferable that a voltage measuring terminal for collecting the other end of each of the electrode wirings is provided on the wafer.
본 발명의 다른 일 실시형태에 따른 다층 저항식 다점 온도측정 웨이퍼 센서 제조방법은, 웨이퍼 상에 복수개의 전극배선으로 이루어지는 전극부를 형성하는 단계; 상기 전극부 상에 층간절연층을 형성하는 단계; 상기 전극배선들 각각의 일단이 노출되도록 상기 층간절연층에 복수개의 비아홀을 형성하는 단계; 상기 전극배선들과의 전기적 접속을 위하여 상기 비아홀에 도전플러그를 형성하는 단계; 및 선폭이 좁은 부분이 단위저항 역할을 하고 선폭이 넓은 부분이 연결배선 역할을 하도록 선폭이 좁은 부분과 넓은 부분으로 구분되면서 상기 단위저항의 양단이 상기 금속플러그에 전기적으로 접속되는 금속배선을 상기 층간절연층 상에 형성하여 저항부를 얻는 단계;를 포함한다. According to another aspect of the present invention, there is provided a method for manufacturing a multilayer resistance type multi-point temperature measuring wafer sensor, the method comprising: forming an electrode part including a plurality of electrode wirings on a wafer; Forming an interlayer insulating layer on the electrode portion; Forming a plurality of via holes in the interlayer insulating layer to expose one end of each of the electrode wirings; Forming a conductive plug in the via hole for electrical connection with the electrode wirings; And a metal wire in which both ends of the unit resistance are electrically connected to the metal plug while being divided into a narrow line width and a wide portion such that a portion having a narrow line width serves as a unit resistance and a portion having a wide line serves as a connection wiring. Forming on the insulating layer to obtain a resistance portion.
본 발명에 의하면, 웨이퍼 상에 온도측정부가 매립되는 매립홈이 형성되어 있고 온도측정부는 상기 매립홈에 매립되어 있어서, 온도측정부를 충분히 두껍게 형성할 수 있기 때문에 상기 온도측정부가 벌크 성질을 갖도록 제조할 수 있고, 이를 통해서 고온에서도 안정한 효과를 갖는다. According to the present invention, since the buried groove in which the temperature measuring portion is buried is formed on the wafer, and the temperature measuring portion is buried in the buried groove, the temperature measuring portion can be formed to be thick enough, so that the temperature measuring portion has a bulk property. It can have a stable effect even at high temperatures.
또한, 본 발명은 온도측정부를 매립홈에 매립하여 제조함으로서, 상기 온도측정부의 열이 외부로 빠져나가는 것을 방지할 수 있을 뿐만 아니라, 끊어지지도 않고 안정하며, 온도측정부로서의 특성을 안정되게 지속적으로 장기간 유지시킬 수 있다. In addition, the present invention is manufactured by embedding the temperature measuring unit in the buried groove, not only can prevent the heat of the temperature measuring unit from escaping to the outside, it is not broken and stable, and the characteristics as the temperature measuring unit continuously and stably It can be maintained for a long time.
나아가, 본 발명은 온도측정부를 매립홈에 매립하여 제조하기 때문에, 웨이퍼 위쪽 공간에 연결배선들이 없어서, 간결하고 단순한 형태의 온도측정 웨이퍼 센서를 제공할 수 있다. Furthermore, since the present invention manufactures the temperature measuring part embedded in the buried groove, there is no connection wiring in the space above the wafer, thereby providing a simple and simple temperature measuring wafer sensor.
한편, 본 발명에 의하면, 상기 전극부와 저항부가 서로 다른 층에 형성되기 때문에 상기 저항부의 단위저항과 연결배선을 상기 전극부의 방해를 받지 않고 웨이퍼의 전면적에 설치할 수 있다. 따라서 웨이퍼 전면적에 대해서 온도 균일도를 세밀하게 파악할 수 있게 된다. Meanwhile, according to the present invention, since the electrode part and the resistor part are formed in different layers, the unit resistance and the connection wiring of the resistor part can be provided on the entire surface of the wafer without being disturbed by the electrode part. Therefore, the temperature uniformity can be understood in detail with respect to the entire wafer surface.
도 1은 종래 제 1 기술에 의한 온도센서용 웨이퍼의 단면도이고,1 is a cross-sectional view of a wafer for a temperature sensor according to a first technique,
도 2a와 도 2b는 종래 제 2 기술에 의한 온도센서용 웨이퍼의 단면도와 평면도이고,2A and 2B are a cross-sectional view and a plan view of a wafer for a temperature sensor according to a conventional second technology,
도 3은 본 발명의 일 실시예에 따른 매립형 온도측정 웨이퍼 센서(1)를 설명하기 위한 모식도이고,3 is a schematic diagram for explaining a buried temperature measuring wafer sensor 1 according to an embodiment of the present invention,
도 4는 도 3의 단면도이고,4 is a cross-sectional view of FIG. 3,
도 5는 본 발명에 따른 온도측정부가 열전쌍(thermocouple)인 것의 일례를 설명하기 위한 부분확대도이고,5 is a partially enlarged view for explaining an example in which the temperature measuring unit according to the present invention is a thermocouple,
도 6은 본 발명에 따른 매립홈에 절연층과 보호층이 형성된 것의 일례를 설명하기 위한 단면도이고,6 is a cross-sectional view illustrating an example of an insulating layer and a protective layer formed in a buried groove according to the present invention;
도 7은 본 발명에 따른 매립홈이 웨이퍼의 최외각까지 형성된 것의 일례를 설명하기 위한 사시도이고,7 is a perspective view for explaining an example in which the filling groove according to the present invention is formed to the outermost portion of the wafer,
도 8은 본 발명의 다른 일 실시예에 따른 매립형 온도측정 웨이퍼 센서의 제조방법을 설명하기 위한 순서도이다. 8 is a flowchart illustrating a method of manufacturing a buried temperature measuring wafer sensor according to another embodiment of the present invention.
도 9는 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(1)를 설명하기 위한 회로도; 9 is a circuit diagram for explaining a multilayer resistance multi-point temperature measuring wafer sensor 1 according to the present invention;
도 10은 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(1)의 구조를 설명하기 위한 도면;10 is a view for explaining the structure of a multi-layer resistive multi-point temperature measuring wafer sensor 1 according to the present invention;
도 11은 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(1)의 제조방법을 설명하기 위한 도면이다. 11 is a view for explaining a method for manufacturing a multilayer resistance multi-point temperature measurement wafer sensor 1 according to the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
도 3은 본 발명의 일 실시예에 따른 매립형 온도측정 웨이퍼 센서(1)를 설명하기 위한 모식도이고, 도 4는 도 3의 단면도이다. 3 is a schematic view for explaining the embedded temperature measuring wafer sensor 1 according to an embodiment of the present invention, Figure 4 is a cross-sectional view of FIG.
여기에 도시된 바와 같이, 본 발명은 웨이퍼(110) 상에 온도측정부(120)가 구비된 웨이퍼 센서에 대한 것이다. As shown here, the present invention relates to a wafer sensor provided with a temperature measuring unit 120 on the wafer 110.
상기 웨이퍼(110)는 반도체 제조용으로 사용되는 것일 수 있다. 그러나, 본 발명에서 웨이퍼(110)는 이것으로 제한되지 않는다. 상기 웨이퍼(110)는 전기로나 핫플레이트 등에 의해서 열처리되는 측정판, 또는 그와 같은 조건에서 사용되는 박판 등을 포함할 수 있다. 즉, 열처리 대상이 되는 박판이나, 그와 같은 표면 형상 및 그와 같은 열용량을 가지는 부재, 또는 열처리 대상이 되는 박판 그 자체일 수 있다. The wafer 110 may be used for semiconductor manufacturing. However, in the present invention, the wafer 110 is not limited to this. The wafer 110 may include a measuring plate that is heat treated by an electric furnace or a hot plate, or a thin plate used in such a condition. That is, it may be a thin plate to be subjected to heat treatment, a member having such a surface shape and such a heat capacity, or the thin plate itself to be subjected to heat treatment.
상기 온도측정부(120)는 웨이퍼(110) 상에서 상기 웨이퍼의 표면 온도를 측정할 수 있는 수단이다. 상기 온도측정부(120)는 열전쌍(thermocouple)이거나 저항체일 수 있다. 예를 들어, 열전변환소자(thermoelectric), 저항온도측정기(RTD; Resistance Temperature Detector), 측온 저항체(Thermoresistor)인 것이 가능하다. 본 발명자들은 온도측정부로서 열전쌍(thermocouple)을 기반으로 본 발명을 하였지만, 본 발명은 이외에 다양한 온도측정부에도 적용 가능하다. The temperature measuring unit 120 is a means capable of measuring the surface temperature of the wafer on the wafer 110. The temperature measuring unit 120 may be a thermocouple or a resistor. For example, it is possible to be a thermoelectric device, a resistance temperature detector (RTD), or a thermometer (Thermoresistor). The present inventors made the present invention based on a thermocouple as a temperature measuring unit, but the present invention can be applied to various temperature measuring units in addition to the present invention.
이러한 웨이퍼 센서(1)에 있어서, 본 발명에 의하면 상기 웨이퍼(110)는 상기 온도측정부(120)가 매립되는 매립홈(111)을 가지고, 상기 온도측정부(120)는 상기 매립홈(111)에 매립된 것을 특징으로 한다. 상기 매립홈(111)의 형상 내지 제조방법은 특별히 제한되지 않고, 이 기술분야에 알려진 모든 방법을 포함한다. 예를 들어, 상기 매립홈(111)은 식각 방법에 의해 사각형, 다각형, 또는 반원, 원형의 단면을 갖도록 형성될 수 있다. In the wafer sensor 1, according to the present invention, the wafer 110 has a buried groove 111 in which the temperature measuring part 120 is embedded, and the temperature measuring part 120 includes the buried groove 111. ) Is embedded in. The shape or manufacturing method of the buried groove 111 is not particularly limited, and includes all methods known in the art. For example, the buried groove 111 may be formed to have a cross section of a rectangle, a polygon, a semicircle, or a circle by an etching method.
본 발명에 의하면, 웨이퍼(110) 상에 온도측정부(120)가 매립되는 매립홈(111)이 형성되어 있고 온도측정부(120)는 상기 매립홈(111)에 매립되어 있어서, 온도측정부(120)를 충분히 두껍게 형성할 수 있기 때문에 상기 온도측정부(120)가 벌크 성질을 갖도록 제조할 수 있고, 이를 통해서 고온에서도 안정한 효과를 갖는다. According to the present invention, a buried groove 111 in which the temperature measuring part 120 is embedded is formed on the wafer 110, and the temperature measuring part 120 is buried in the buried groove 111 so that the temperature measuring part Since the 120 can be formed sufficiently thick, the temperature measuring part 120 can be manufactured to have a bulk property, thereby having a stable effect even at a high temperature.
상기 온도측정부(120)는 1개 이상인 것이 가능하고, 2개 이상인 경우 웨이퍼 상(110)의 전체 온도를 균일하게 파악할 수 있어서 더욱 바람직하다. The temperature measuring unit 120 may be one or more, and in the case of two or more, it is more preferable to uniformly grasp the entire temperature of the wafer image 110.
또한, 상기 온도측정부(120)는 온도센서(121)와 상기 온도센서(121)를 웨이퍼(110) 외부와 연결하는 연결배선(122)을 포함하고, 상기 온도센서(121)와 연결배선(122)은 상기 매립홈(111)에 매립된 것이 가능하다. 상기 온도센서(121)는 웨이퍼(110) 상에서 실제로 온도를 측정하는 것이며, 상기 온도센서(121)는 상술한 온도측정부(120)와 동일한 것일 수 있다. 즉, 본 발명은 실제로 온도를 측정하는 온도센서(121) 뿐만 아니라 이와 연결된 연결배선(122) 까지도 매립홈(111)에 매립된 것이 바람직하다. 이러한 본 발명은 온도센서(121)와 연결배선(122)을 매립홈(111)에 매립하여 제조함으로서, 상기 연결배선(122)에 의해 열이 외부로 빠져나가는 것을 방지할 수 있을 뿐만 아니라, 끊어지지도 않고 안정하며, 온도측정부(120)로서의 특성을 안정되게 지속적으로 장기간 유지시킬 수 있다. In addition, the temperature measuring unit 120 includes a connection wire 122 connecting the temperature sensor 121 and the temperature sensor 121 to the outside of the wafer 110, and the temperature sensor 121 and the connection wiring ( 122 may be embedded in the buried groove 111. The temperature sensor 121 actually measures the temperature on the wafer 110, and the temperature sensor 121 may be the same as the temperature measuring unit 120 described above. That is, in the present invention, it is preferable that not only the temperature sensor 121 actually measuring the temperature but also the connection wiring 122 connected thereto are embedded in the buried groove 111. The present invention is manufactured by embedding the temperature sensor 121 and the connection wiring 122 in the buried groove 111, it is possible to prevent the heat escape to the outside by the connection wiring 122, as well as cut off It is stable without support, and the characteristics as the temperature measuring unit 120 can be stably and continuously maintained for a long time.
또한, 상기 온도측정부(120) 또는 연결배선(122)은 금속물질이 상기 매립홈(111)에 증착된 것이 가능하다. 상기 금속물질은 특별히 제한되지 않고, 이 기술분야에 알려진 다양한 모든 것을 포함한다. 즉, 금속물질을 웨이퍼(110) 상의 매립홈(111)에 증착의 방법으로 형성하는 것이다. 그러면, 상기 온도측정부(120)를 매립홈(111)에 매립하기가 용이할 뿐만 아니라, 단단하게 고정시킬 수 있어서, 안정성이 높아지는 효과가 있다. In addition, the temperature measuring unit 120 or the connection wiring 122 may be a metal material is deposited in the buried groove 111. The metal material is not particularly limited and includes all of a variety of those known in the art. That is, a metal material is formed in the buried groove 111 on the wafer 110 by the deposition method. Then, the temperature measuring part 120 can be easily buried in the buried groove 111 and can be firmly fixed, thereby increasing stability.
다만, 본 발명은 상기 온도측정부(120) 또는 연결배선(122)이 금속물질로 이루어지고, 상기 금속물질은 구리, 금, 백금, 니켈, 티타늄 및 이것의 조합으로 이루어진 군에서 선택된 것이 바람직하다. 알루미늄은 가열하더라도 온도가 낮기 때문에, 구리, 금, 백금, 니켈, 티타늄 등을 사용하는 것이 바람직하다. 더욱 바람직하게는, 상기 금속물질로서 금(Au)이나 백금(Pt)을 이용할 수도 있지만, 웨이퍼(110) 상의 넓은 면적에 온도측정부(120) 또는 연결배선(122)을 형성하기 위해서는, 구리, 니켈, 티타늄 등을 이용하는 것이 제조의 편의성 측면에서 더욱 바람직하다. However, in the present invention, the temperature measuring unit 120 or the connection wiring 122 is made of a metal material, and the metal material is preferably selected from the group consisting of copper, gold, platinum, nickel, titanium, and combinations thereof. . Since aluminum has a low temperature even when heated, it is preferable to use copper, gold, platinum, nickel, titanium, or the like. More preferably, although gold (Au) or platinum (Pt) may be used as the metal material, in order to form the temperature measuring unit 120 or the connection wiring 122 in a large area on the wafer 110, copper, It is more preferable to use nickel, titanium, and the like in terms of convenience of manufacturing.
또한, 상기 온도측정부(120) 또는 연결배선(122)은 와이어가 상기 매립홈(111)에 삽입된 것일 수 있다. 즉, 본 발명에 따른 온도측정부(120) 또는 연결배선(122)을 증착이 아닌 와이어로 구성하는 것이다. 예를 들어, 금속 와이어를 매립홈(111)에 삽입하여 제조할 수 있다. 이와 같이 와이어를 이용하는 것은 웨이퍼(110) 상에 본 발명처럼 매립홈(111)이 이미 형성되어 있기 때문에, 구현 가능한 것이다. In addition, the temperature measuring unit 120 or the connection wiring 122 may be a wire is inserted into the buried groove 111. That is, the temperature measuring unit 120 or the connection wiring 122 according to the present invention is composed of a wire, not deposition. For example, the metal wire may be manufactured by inserting it into the buried groove 111. The use of the wire in this way is possible because the buried groove 111 is already formed on the wafer 110 as in the present invention.
도 5는 본 발명에 따른 온도측정부(120)가 열전쌍(thermocouple)인 것의 일례를 설명하기 위한 부분확대도이고, 여기에 도시된 바와 같이, 본 발명에 따른 온도측정부(120)는 열전쌍(thermocouple)일 수 있다. 5 is a partially enlarged view for explaining an example in which the temperature measuring unit 120 according to the present invention is a thermocouple, and as shown here, the temperature measuring unit 120 according to the present invention may include a thermocouple ( thermocouple).
기존에 열전쌍을 이용하는 온도측정용 웨이퍼 센서의 경우 열전쌍연결선에 의해 열이 외부로 유출되는 단점이 있었고, 필름을 이용해서 열전쌍접점에 열전쌍연결선을 연결하는 경우 필름 자체의 특성 때문에 고온에서 불안정하고, 열전쌍연결선이 쉽게 끓어지거나 얇게 연결되는 등의 단점이 있었다. In the case of the conventional thermocouple wafer sensor, the heat is leaked to the outside by the thermocouple connection line.When connecting the thermocouple connection line to the thermocouple contact point using the film, it is unstable at high temperature due to the characteristics of the film itself. There was a disadvantage that the connection line is easily boiled or thinly connected.
그러나, 본 발명에 의하면, 열전쌍을 웨이퍼 상의 매립홈에 매립하기 때문에, 상기와 같은 단점이 없다. However, according to the present invention, since the thermocouple is embedded in the buried groove on the wafer, there are no disadvantages as described above.
그 중에서도, 특히 상기 온도측정부(120)는 서로 다른 물질로 이루어진 제1연결배선(122a)과 제2연결배선(122b); 및 상기 제1연결배선(122a)과 제2연결배선(122b)이 접점된 접점부(121a);를 가지고, 상기 제1연결배선(122a)과 제2연결배선(122b); 및 접점부(121a);는 상기 매립홈(111)에 매립된 것이 바람직하다. 상기 서로 다른 물질은 상기한 금속물질 중 하나일 수 있다. 서로 다른 물질로 이루어진 제1연결배선(122a)과 제2연결배선(122b)을 이용하여, 그것의 일부가 중첩되도록 매립홈(111)에 매립함으로서, 온도측정부(120)를 열전쌍(thermocouple)으로 구현 가능하다. In particular, the temperature measuring unit 120 may include a first connection wire 122a and a second connection wire 122b made of different materials; And a contact portion 121a in which the first connection wiring 122a and the second connection wiring 122b are in contact with each other; the first connection wiring 122a and the second connection wiring 122b; And a contact portion 121a; is preferably embedded in the buried groove 111. The different materials may be one of the metal materials described above. Using the first connection wire 122a and the second connection wire 122b made of different materials, the temperature measuring part 120 is thermocoupled by embedding the buried groove 111 so that a part thereof overlaps. It can be implemented.
상기 접점부(121a)의 형상이나 크기는 특별히 제한되지 않는다. 즉, 상기 접점부(121a)는 원형, 사각형, 다각형, 일자형인 것이 가능하다.The shape or size of the contact portion 121a is not particularly limited. That is, the contact portion 121a may be circular, rectangular, polygonal, or straight.
도 6은 본 발명에 따른 매립홈(111)에 절연층(120)과 보호층(140)이 형성된 것의 일례를 설명하기 위한 단면도이다.6 is a cross-sectional view for explaining an example of the insulating layer 120 and the protective layer 140 is formed in the buried groove 111 according to the present invention.
여기에 도시된 바와 같이, 본 발명의 다른 특징은 상기 매립홈(111)이 내부에 절연층(120)을 가지고, 상기 절연층(120) 위에 온도측정부(120)가 매립된 것일 수 있다. 매립홈(111)에 절연층(120)을 형성하는 방법은 특별히 제한되지 않고, 이 기술분야에 알려진 모든 형태를 포함한다. 이러한 본 발명은 온도측정부(120)와 웨이퍼(110) 사이에 절연층(120)을 포함함으로서, 상기 웨이퍼(110) 자체에 의한 온도편차의 영향을 방지하고, 매립홈(111)에 온도측정부(120)를 매설하는 것을 더욱 용이하게 할 수 있어서 바람직하다. As shown here, another feature of the present invention may be that the buried groove 111 has an insulating layer 120 therein, and the temperature measuring unit 120 is buried on the insulating layer 120. The method of forming the insulating layer 120 in the buried groove 111 is not particularly limited, and includes all forms known in the art. The present invention includes an insulating layer 120 between the temperature measuring unit 120 and the wafer 110, to prevent the influence of the temperature deviation caused by the wafer 110 itself, and to measure the temperature in the buried groove 111 It is preferable to embed the portion 120 more easily.
또한, 본 발명에 의하면, 상기 웨이퍼(110)는 상기 온도측정부(120)를 덮는 보호층(140)을 더 포함하는 것이 바람직하다. 즉, 온도측정부(120) 위에 패시베이션 레이어를 덮는 것이다. 그러면, 웨이퍼(110) 위에서 들어오는 예기치 않은 외부변화나 또는 웨이퍼 상부의 상태 변화에 따른 영향을 방지할 수 있어서, 더욱 바람직하다. In addition, according to the present invention, the wafer 110 preferably further includes a protective layer 140 covering the temperature measuring part 120. That is, the passivation layer is covered on the temperature measuring part 120. As a result, it is possible to prevent an unexpected external change coming on the wafer 110 or an effect caused by a state change on the wafer, which is more preferable.
도 7은 본 발명에 따른 매립홈(111)이 웨이퍼(110)의 최외각까지 형성된 것의 일례를 설명하기 위한 사시도이다. 7 is a perspective view for explaining an example in which the filling groove 111 according to the present invention is formed to the outermost angle of the wafer 110.
여기에 도시된 바와 같이, 본 발명의 또 다른 특징은 상기 매립홈(111)이 웨이퍼(110)의 최외각 끝까지 형성된 것이다. As shown here, another feature of the present invention is that the buried groove 111 is formed to the outermost end of the wafer (110).
기존에는 열전쌍연결선이 웨이퍼 상부로 드러나는 길이 또는 면적이 많았고, 일부에서는 열전쌍연결선의 선단부 뿐만 아니라 본체의 일부까지 매설하기도 하였지만, 여전히 열전쌍연결선의 일부는 외부로 드러나 있었다. Conventionally, the length or area of the thermocouple wire was exposed to the upper part of the wafer, and in some cases, not only the tip of the thermocouple wire was buried but also a part of the main body, but some of the thermocouple wire was still exposed to the outside.
그러나, 본 발명은 웨이퍼(110) 상에 형성된 매립홈(111)을 통하여, 온도측정부(120) 전체를 웨이퍼(110)의 매립홈(111)에 매설한 것이 특징이고, 이를 통하여 고온에서도 안정하며, 온도센서로서의 특성을 안정되게 지속적으로 장기간 유지시킬 수 있다. However, the present invention is characterized in that the entire temperature measuring unit 120 is buried in the buried groove 111 of the wafer 110 through the buried groove 111 formed on the wafer 110, thereby stable at high temperatures. In addition, the characteristics as a temperature sensor can be stably and continuously maintained for a long time.
이를 위하여, 본 발명은 웨이퍼(110)의 일부 측면에 온도측정부(120)의 연결배선(122)과 외부 리드배선(150)을 연결하는 연결단자(160)를 더 포함할 수도 있다(도 1 참조).To this end, the present invention may further include a connection terminal 160 connecting the connection wiring 122 and the external lead wiring 150 of the temperature measuring part 120 to some side surfaces of the wafer 110 (FIG. 1). Reference).
도 8은 본 발명의 다른 일 실시예에 따른 매립형 온도측정 웨이퍼 센서(1)의 제조방법을 설명하기 위한 순서도이다. 8 is a flowchart illustrating a method of manufacturing the buried temperature measuring wafer sensor 1 according to another embodiment of the present invention.
먼저, 도 8a에 도시된 바와 같이, 웨이퍼(110) 상에 온도측정부를 매립하기 위한 매립홈(111)을 형성하는 단계;를 거친다. 상기 매립홈(111)을 형성하는 방법은 특별히 제한되지 않는다. 상기 매립홈(111)의 형상이나 크기 역시 특별히 제한되지 않으며, 후술하는 온도측정부(120)를 매립할 수 있도록, 온도센서(121) 및/또는 연결배선(122)에 대응하는 것이 바람직하다. First, as shown in FIG. 8A, forming a buried groove 111 for filling the temperature measuring part on the wafer 110. The method of forming the buried groove 111 is not particularly limited. The shape or size of the buried groove 111 is also not particularly limited, and it is preferable to correspond to the temperature sensor 121 and / or the connection wiring 122 so as to bury the temperature measuring unit 120 to be described later.
다음에, 도 8b에서와 같이, 상기 형성된 매립홈(111)에 상기 온도측정부(120)를 매립하는 단계;를 거친다. 예를 들어, 금속물질을 증착하거나 와이어를 삽입해서 온도센서(121) 및/또는 연결배선(122)을 형성하는 것이 가능하다. 특히, 금속물질이나 와이어를 상기 매립홈(111)에만 매립하여 형성하는 것이 본 발명의 특징이다. 또한, 상기 온도센서(121) 및/또는 연결배선(122)의 상면은 웨이퍼(110)와 동일한 높이의 평면을 갖는 것이 바람직하다. Next, as shown in Figure 8b, the step of embedding the temperature measuring part 120 in the buried groove 111 formed. For example, it is possible to form the temperature sensor 121 and / or the connection wiring 122 by depositing a metal material or inserting a wire. In particular, it is a feature of the present invention to form a metal material or a wire is embedded only in the buried groove 111. In addition, the upper surface of the temperature sensor 121 and / or the connection wiring 122 preferably has a plane of the same height as the wafer (110).
이어서, 도 8c에 도시된 바와 같이, 상기 온도측정부(120)를 덮는 보호층(140)을 형성하는 단계;를 거친다. 보호층(140)을 형성하는 방법은 특별히 제한되지 않고, 이 기술분야에 알려진 다양한 방법을 모두 이용할 수 있다. Subsequently, as shown in FIG. 8C, forming the protective layer 140 covering the temperature measuring part 120. The method for forming the protective layer 140 is not particularly limited, and various methods known in the art may be used.
이와 함께, 본 발명은 상기한 웨이퍼 센서(1)와, 상기 웨이퍼 센서(1)가 올려지는 플레이트(도시하지 않음)를 포함하는 웨이퍼 온도측정 시스템이다. In addition, the present invention is a wafer temperature measuring system including the above-described wafer sensor 1 and a plate (not shown) on which the wafer sensor 1 is placed.
상기 플레이트는 이 기술분야에 널리 알려진 다양한 형태를 포함한다. The plates include various forms well known in the art.
이러한 웨이퍼 온도측정 시스템은 기존의 시스템에 적용되어 구현될 수 있고, 본 발명에 따른 웨이퍼 센서(1)를 위한 새로운 시스템으로 구현되는 것도 가능하다.Such a wafer temperature measuring system may be applied to an existing system and may be implemented as a new system for the wafer sensor 1 according to the present invention.
한편, 도 9은 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(201)를 설명하기 회로도이다. 도 9에 도시된 바와 같이 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(201)는 웨이퍼(210) 상에 전극부(220)와 저항부(230)가 설치되어 이루어진다. 9 is a circuit diagram illustrating a multilayer resistance multi-point temperature measuring wafer sensor 201 according to the present invention. As shown in FIG. 9, the multilayer resistance multi-point temperature measuring wafer sensor 201 according to the present invention includes an electrode 220 and a resistor 230 disposed on the wafer 210.
전극부(220)는 복수개의 전극배선(221)을 포함하여 이루어지고, 저항부(230)는 복수개의 단위저항(231)이 연결배선(232)에 의해 직렬 연결되어 이루어진다. 각 전극배선(221)의 일단은 단위저항(231)의 양단에 전기적으로 연결되며 타단은 전압측정단자(240)에 취합된다. The electrode unit 220 includes a plurality of electrode wirings 221, and the resistor unit 230 includes a plurality of unit resistors 231 connected in series by the connection wiring 232. One end of each electrode wiring 221 is electrically connected to both ends of the unit resistor 231, and the other end thereof is collected at the voltage measuring terminal 240.
웨이퍼(210)에 온도 불균일이 발생하면 제백효과(Zeebeck effect)에 의해 저항부(230)에 전위차가 발생하게 된다. 따라서 전극배선(221)들이 취합되는 전압측정단자(240)를 통하여 각 포인트(P1, P2, Pn)에서의 전위차를 측정하면 어느 부분에서 온도 불균일 발생하였는지 파악할 수 있다.When the temperature nonuniformity occurs in the wafer 210, a potential difference is generated in the resistor unit 230 by the Seebeck effect. Therefore, when the potential difference at each point P1, P2, Pn is measured through the voltage measuring terminal 240 where the electrode wirings 221 are collected, it is possible to determine where the temperature unevenness occurs.
이 때, 웨이퍼(210)의 전면적에 대해서 온도 불균일을 세밀하게 파악하기 위해서는 포인트(P1, P2, Pn)의 숫자가 많아야 하는데, 전극부(220)와 저항부(230)가 동일한 평면상에 존재하게 되면 전극배선(221)의 설치를 위해서 직렬저항(231)과 연결배선(232)의 설치공간이 제약을 받을 수밖에 없어 바람직하지 않다. 따라서 전극부(220)와 저항부(230)는 서로 다른 평면상에 배치시키는 것이 바람직하다. At this time, the number of points (P1, P2, Pn) should be large in order to closely grasp the temperature nonuniformity with respect to the entire surface of the wafer 210, the electrode portion 220 and the resistance portion 230 is present on the same plane In this case, the installation space of the series resistor 231 and the connection wiring 232 is limited because the electrode wiring 221 is installed. Therefore, the electrode unit 220 and the resistor unit 230 may be disposed on different planes.
도 10은 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(201)의 구조를 설명하기 위한 도면으로서, 도 10a는 측면도이고, 도 10b는 저항부(230)의 평면도이다. 10 is a view for explaining the structure of a multi-layer resistance multi-point temperature measurement wafer sensor 201 according to the present invention, Figure 10a is a side view, Figure 10b is a plan view of the resistor 230.
도 10에 도시된 바와 같이, 전극부(220)는 웨이퍼(210) 상에 복수개의 전극배선선(221)이 병렬적으로 형성됨으로써 이루어진다. 저항부(230)는 층간절연층(250)에 의해 전극부(220)와 다른 층에 위치하도록 설치되며, 복수개의 단위저항(231)이 연결배선(232)에 의해 직렬 연결되어 이루어진다.As shown in FIG. 10, the electrode part 220 is formed by forming a plurality of electrode wirings 221 in parallel on the wafer 210. The resistor unit 230 is installed to be located on a different layer from the electrode unit 220 by the interlayer insulating layer 250, and the plurality of unit resistors 231 are connected in series by the connection wiring 232.
저항부(230)는 선폭이 좁은 부분과 넓은 부분으로 구분되는 금속배선으로 이루어진다. 선폭이 좁은 부분이 단위저항(231)의 역할을 하고 선폭이 넓은 부분이 연결배선(232)의 역할을 한다. 단위저항(231)의 저항이 더 한층 높도록 단위저항(231)은 연결배선(232)보다 긴 것이 바람직하다. 여기서, 금속배선이라 함은 순수한 금속만을 의미하는 것이 아니라 실리사이드와 같이 반도체 분야에서 배선재료로 사용되는 것을 모두 지칭하는 의미이다. The resistor unit 230 is formed of a metal wiring divided into a narrow portion and a wide portion. The narrow line width serves as the unit resistor 231 and the wide line width serves as the connection wiring 232. It is preferable that the unit resistance 231 be longer than the connection wiring 232 so that the resistance of the unit resistance 231 is higher. Here, the metal wiring does not mean only pure metal but also refers to all materials used as wiring materials in the semiconductor field, such as silicide.
전극배선(221)들의 일단은 층간절연층(250)의 비아홀에 설치되는 도전플러그(255)에 의해서 단위저항(231)들의 양단에 전기적으로 연결된다. One end of the electrode wirings 221 is electrically connected to both ends of the unit resistors 231 by a conductive plug 255 provided in the via hole of the interlayer insulating layer 250.
저항부(230)는 전극부(220)의 밑에 위치하는 것보다는 위에 위치하는 것이 더 바람직하다. 왜냐하면, 반도체 소자 제조공정에서 실제 공정이 이루어지는 것은 웨이퍼(210)의 표면이므로 웨이퍼(210) 표면에서의 온도 및 균일도를 파악하는 것이 중요하기 때문이다. The resistor unit 230 is more preferably positioned above the electrode unit 220. This is because it is important to know the temperature and uniformity on the surface of the wafer 210 because the actual process is performed in the semiconductor device manufacturing process.
웨이퍼(210)의 온도는 서셉터의 가열을 통해서 뿐만 아니라 공정챔버 내부 분위기 온도에 의해서도 영향을 받기 때문에 공정챔버 내부의 온도가 반영되도록 저항부(230)가 표면에 노출되도록 설치될 수 있다. 물론, 저항부(230)를 이루는 금속배선이 고온에서 산화 등으로 퇴화되지 않도록 저항부(230) 상에 보호층(미도시)이 더 형성될 수도 있다. 금속배선이 퇴화(degradation)되면 정확한 전위차 측정에 오류가 발생할 수 있다. Since the temperature of the wafer 210 is influenced not only through the heating of the susceptor but also by the ambient temperature inside the process chamber, the resistance unit 230 may be installed to expose the surface of the wafer so that the temperature inside the process chamber is reflected. Of course, a protective layer (not shown) may be further formed on the resistor unit 230 so that the metal wiring constituting the resistor unit 230 does not deteriorate due to oxidation at a high temperature. Degradation of the metallization can cause errors in accurate potential difference measurements.
도 11은 본 발명에 따른 다층 저항식 다점 온도측정 웨이퍼 센서(201)의 제조방법을 설명하기 위한 도면이다.11 is a view for explaining a method of manufacturing a multilayer resistance multi-point temperature measurement wafer sensor 201 according to the present invention.
먼저, 도 11a에 도시된 바와 같이 웨이퍼(210) 상에 금속층을 형성한 후에 상기 금속층을 패터닝하여 복수개의 전극배선(221)으로 이루어지는 전극부(220)를 형성한다. First, as shown in FIG. 11A, after forming a metal layer on the wafer 210, the metal layer is patterned to form an electrode part 220 including a plurality of electrode wirings 221.
다음에, 도 11b에서와 같이 전극부(220) 상에 층간절연층(250)을 형성하고, 전극배선(221)들 각각의 일단이 노출되도록 층간절연층(250)에 비아홀을 형성한 후에 전극배선(221)들과 전기적 접속을 위하여 상기 비아홀에 도전플러그(255)를 형성시킨다. Next, as shown in FIG. 11B, an interlayer insulating layer 250 is formed on the electrode part 220, and a via hole is formed in the interlayer insulating layer 250 so that one end of each of the electrode wirings 221 is exposed. A conductive plug 255 is formed in the via hole for electrical connection with the wirings 221.
이어서, 도 11c에 도시된 바와 같이, 층간절연층(250) 상에 금속층을 형성한 후 상기 금속층을 패터닝함으로써 선폭이 좁은 부분과 넓은 부분으로 구분되는 금속배선으로 이루어지는 저항부(230)를 형성한다. Subsequently, as illustrated in FIG. 11C, after forming a metal layer on the interlayer insulating layer 250, the metal layer is patterned to form a resistor unit 230 including a metal wiring divided into a narrow portion and a wide portion. .
본 발명에 의하면, 전극부(220)와 저항부(230)가 서로 다른 층에 형성되기 때문에 저항부(230)의 단위저항(231)과 연결배선(232)을 전극부(220)의 방해를 받지 않고 웨이퍼(210)의 전면적에 설치할 수 있다. 따라서 웨이퍼(210)의 전면적에 대해서 온도 균일도를 세밀하게 파악할 수 있게 된다. According to the present invention, since the electrode unit 220 and the resistor unit 230 are formed on different layers, the unit resistor 231 and the connection wiring 232 of the resistor unit 230 prevent the electrode unit 220 from interfering with each other. It can be installed on the entire surface of the wafer 210 without receiving. Therefore, the temperature uniformity of the entire surface of the wafer 210 can be grasped in detail.
상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다. While the invention has been shown and described with respect to certain preferred embodiments thereof, it will be understood that the invention may be modified and modified in various ways without departing from the spirit or scope of the invention provided by the following claims. It can be apparent to one of ordinary skill in the art.

Claims (19)

  1. 웨이퍼 상에 온도측정부가 구비된 웨이퍼 센서에 있어서,In the wafer sensor provided with a temperature measuring unit on the wafer,
    상기 웨이퍼는 상기 온도측정부가 매립되는 매립홈을 가지고,The wafer has a buried groove in which the temperature measuring portion is embedded,
    상기 온도측정부는 상기 매립홈에 매립된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The buried temperature measuring wafer sensor, characterized in that the temperature measuring portion is embedded in the buried groove.
  2. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 온도센서와 상기 온도센서를 웨이퍼 외부와 연결하는 연결배선을 포함하고,The temperature measuring unit includes a temperature sensor and a connection wiring connecting the temperature sensor to the outside of the wafer,
    상기 온도센서와 연결배선은 상기 매립홈에 매립된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The buried temperature measuring wafer sensor, characterized in that the temperature sensor and the connection wiring is buried in the buried groove.
  3. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 열전쌍(thermocouple)인 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The embedded temperature measuring wafer sensor, characterized in that the temperature measuring unit is a thermocouple (thermocouple).
  4. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 서로 다른 물질로 이루어진 제1연결배선과 제2연결배선; 및 상기 제1연결배선과 제2연결배선이 접점된 접점부;를 가지고, The temperature measuring unit includes a first connection wire and a second connection wire made of different materials; And a contact part in which the first connection wire and the second connection wire are in contact with each other.
    상기 제1연결배선과 제2연결배선; 및 접점부;는 상기 매립홈에 매립된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The first connection wire and the second connection wire; And a contact portion; and a buried temperature measuring wafer sensor, characterized in that it is buried in the buried groove.
  5. 제1항에 있어서, The method of claim 1,
    상기 매립홈은 웨이퍼의 최외각 끝까지 형성된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The buried groove measuring wafer sensor, characterized in that formed to the outermost end of the wafer.
  6. 제1항에 있어서, The method of claim 1,
    상기 매립홈은 내부에 절연층을 가지고, The buried groove has an insulating layer therein,
    상기 절연층 위에 온도측정부가 매립된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.A buried temperature measuring wafer sensor, characterized in that the temperature measuring portion is buried on the insulating layer.
  7. 제1항에 있어서, The method of claim 1,
    상기 웨이퍼는 상기 온도측정부를 덮는 보호층을 더 포함하는 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The wafer further includes a protective layer covering the temperature measuring part.
  8. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 금속물질이 상기 매립홈에 증착된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The temperature measuring part is a buried temperature measuring wafer sensor, characterized in that the metal material is deposited in the buried groove.
  9. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 와이어가 상기 매립홈에 삽입된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The temperature measuring part is a buried temperature measuring wafer sensor, characterized in that the wire is inserted into the buried groove.
  10. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 금속물질로 이루어지고, The temperature measuring part is made of a metal material,
    상기 금속물질은 구리, 금, 백금, 니켈, 티타늄 및 이것의 조합으로 이루어진 군에서 선택된 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.The metal material is a buried temperature measuring wafer sensor, characterized in that selected from the group consisting of copper, gold, platinum, nickel, titanium and combinations thereof.
  11. 제1항에 있어서, The method of claim 1,
    상기 온도측정부는 2개 이상인 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서.Embedded temperature measuring wafer sensor, characterized in that the two or more temperature measuring unit.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 웨이퍼 센서와,A wafer sensor according to any one of claims 1 to 11,
    상기 웨이퍼 센서가 올려지는 플레이트를 포함하는 웨이퍼 온도측정 시스템.And a plate on which the wafer sensor is mounted.
  13. 웨이퍼 상에 온도측정부가 구비된 웨이퍼 센서의 제조방법에 있어서,In the manufacturing method of the wafer sensor provided with a temperature measuring unit on the wafer,
    상기 웨이퍼 상에 온도측정부를 매립하기 위한 매립홈을 형성하는 단계;Forming a buried groove for embedding a temperature measuring part on the wafer;
    상기 형성된 매립홈에 상기 온도측정부를 매립하는 단계; 및Embedding the temperature measuring part in the formed filling groove; And
    상기 온도측정부를 덮는 보호층을 형성하는 단계;를 포함하는 것을 특징으로 하는 매립형 온도측정 웨이퍼 센서의 제조방법.Forming a protective layer covering the temperature measuring unit; Method of manufacturing a buried temperature measuring wafer sensor comprising a.
  14. 웨이퍼 상에 복수개의 전극배선이 형성되어 이루어지는 전극부; An electrode portion having a plurality of electrode wirings formed on the wafer;
    상기 웨이퍼 상에서 상기 전극부와 다른 층에 위치하도록 설치되며, 복수개의 단위저항이 연결배선에 의해 직렬 연결되어 이루어지는 저항부; A resistor installed on the wafer so as to be positioned on a different layer from the electrode, wherein a plurality of unit resistors are connected in series by a connection wiring;
    상기 전극부와 저항부 사이에 설치되는 층간절연층; 및An interlayer insulating layer disposed between the electrode portion and the resistor portion; And
    상기 전극배선 각각의 일단이 상기 단위저항들의 양단에 전기적으로 연결되도록 상기 층간절연층의 비아홀에 설치되는 도전플러그; 를 포함하여 이루어짐으로써, A conductive plug installed in the via hole of the interlayer insulating layer such that one end of each of the electrode wirings is electrically connected to both ends of the unit resistors; By being made, including
    상기 전극부를 통하여 상기 저항부에서의 전위차를 측정하여 상기 웨이퍼의 온도 균일도를 간파하는 것을 특징으로 하는 다층 저항식 다점 온도측정 웨이퍼 센서.A multi-layer resistive multi-point temperature measuring wafer sensor characterized by measuring the potential difference in the resistance portion through the electrode portion to observe the temperature uniformity of the wafer.
  15. 제14항에 있어서, 상기 저항부가 상기 전극부보다 위에 위치하도록 설치되는 것을 특징으로 하는 다층 저항식 다점 온도측정 웨이퍼 센서. 15. The multi-layer resistive multi-point temperature measuring wafer sensor according to claim 14, wherein the resistor portion is disposed above the electrode portion.
  16. 제15항에 있어서, 상기 저항부가 표면에 노출되도록 설치되는 것을 특징으로 하는 다층 저항식 다점 온도측정 웨이퍼 센서. 16. The multi-layer resistive multi-point temperature measuring wafer sensor according to claim 15, wherein the resistance part is installed to be exposed on the surface.
  17. 제14항에 있어서, 상기 저항부가 선폭이 좁은 부분과 넓은 부분으로 구분되는 금속배선으로 이루어짐으로써 선폭이 좁은 부분이 상기 단위저항의 역할을 하고 선폭이 넓은 부분이 상기 연결배선의 역할을 하는 것을 특징으로 하는 다층 저항식 다점 온도측정 웨이퍼 센서.15. The method of claim 14, wherein the resistance portion is made of a metal wiring divided into a narrow line portion and a wide portion, the narrow line width portion serves as the unit resistance and the wide line portion serves as the connection wiring Multi-layer resistive multipoint temperature measuring wafer sensor.
  18. 제14항에 있어서, 상기 전극배선들 각각의 타단을 취합하는 전압측정단자가 상기 웨이퍼에 설치되는 것을 특징으로 하는 다층 저항식 다점 온도측정 웨이퍼 센서. 15. The multilayer resistive multi-point temperature measuring wafer sensor according to claim 14, wherein a voltage measuring terminal for collecting the other end of each of the electrode wirings is provided on the wafer.
  19. 웨이퍼 상에 복수개의 전극배선으로 이루어지는 전극부를 형성하는 단계;Forming an electrode portion including a plurality of electrode wirings on the wafer;
    상기 전극부 상에 층간절연층을 형성하는 단계;Forming an interlayer insulating layer on the electrode portion;
    상기 전극배선들 각각의 일단이 노출되도록 상기 층간절연층에 복수개의 비아홀을 형성하는 단계;Forming a plurality of via holes in the interlayer insulating layer to expose one end of each of the electrode wirings;
    상기 전극배선들과의 전기적 접속을 위하여 상기 비아홀에 도전플러그를 형성하는 단계; 및Forming a conductive plug in the via hole for electrical connection with the electrode wirings; And
    선폭이 좁은 부분이 단위저항 역할을 하고 선폭이 넓은 부분이 연결배선 역할을 하도록 선폭이 좁은 부분과 넓은 부분으로 구분되면서 상기 단위저항의 양단이 상기 금속플러그에 전기적으로 접속되는 금속배선을 상기 층간절연층 상에 형성하여 저항부를 얻는 단계; 를 포함하는 것을 특징으로 하는 다층 저항식 다점 온도측정 웨이퍼 센서 제조방법. The interlayer insulation is provided with a metal wire in which both ends of the unit resistance are electrically connected to the metal plug while the narrow line width serves as the unit resistance and the wide line portion serves as the connection wiring. Forming on the layer to obtain a resistance portion; Multi-layer resistance multi-point temperature measurement wafer sensor manufacturing method comprising a.
PCT/KR2017/005058 2016-05-16 2017-05-16 Temperature measurement wafer sensor and method for manufacturing same WO2017200267A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0059678 2016-05-16
KR1020160059678A KR101746558B1 (en) 2016-05-16 2016-05-16 Multi-layered resistive type multi-point temperature measuring wafer sensor and method for fabricating the same
KR1020170024524A KR20180098429A (en) 2017-02-24 2017-02-24 Embedded type temperature measuring wafer sensor and method for fabricating the same
KR10-2017-0024524 2017-02-24

Publications (1)

Publication Number Publication Date
WO2017200267A1 true WO2017200267A1 (en) 2017-11-23

Family

ID=60325145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005058 WO2017200267A1 (en) 2016-05-16 2017-05-16 Temperature measurement wafer sensor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017200267A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009066A (en) * 2019-07-01 2021-01-28 株式会社八洲測器 Wafer type temperature sensor
CN113506760A (en) * 2021-06-18 2021-10-15 电子科技大学 Wafer temperature field reconstruction device with double-layer structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001893A (en) * 2002-06-29 2004-01-07 주식회사 하이닉스반도체 Wafer for measuring temperature and method for manufacturing the same
KR100690926B1 (en) * 2006-02-03 2007-03-09 삼성전자주식회사 Micro heat flux sensor array
JP2009123744A (en) * 2007-11-12 2009-06-04 Kelk Ltd Measuring substrate, and temperature measuring substrate
JP2011216540A (en) * 2010-03-31 2011-10-27 Renesas Electronics Corp Semiconductor device and resistance measurement method
KR20130099392A (en) * 2012-02-29 2013-09-06 주식회사 엘지실트론 Temperature measuring device, heat treatment device for wafer and method of heat treatment of wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001893A (en) * 2002-06-29 2004-01-07 주식회사 하이닉스반도체 Wafer for measuring temperature and method for manufacturing the same
KR100690926B1 (en) * 2006-02-03 2007-03-09 삼성전자주식회사 Micro heat flux sensor array
JP2009123744A (en) * 2007-11-12 2009-06-04 Kelk Ltd Measuring substrate, and temperature measuring substrate
JP2011216540A (en) * 2010-03-31 2011-10-27 Renesas Electronics Corp Semiconductor device and resistance measurement method
KR20130099392A (en) * 2012-02-29 2013-09-06 주식회사 엘지실트론 Temperature measuring device, heat treatment device for wafer and method of heat treatment of wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009066A (en) * 2019-07-01 2021-01-28 株式会社八洲測器 Wafer type temperature sensor
CN113506760A (en) * 2021-06-18 2021-10-15 电子科技大学 Wafer temperature field reconstruction device with double-layer structure
CN113506760B (en) * 2021-06-18 2023-05-09 电子科技大学 Wafer temperature field reconstruction device with double-layer structure

Similar Documents

Publication Publication Date Title
US7175343B2 (en) Multi-element thermocouple
JP5289419B2 (en) Device for detecting temperature on integrated circuit manufacturing tool substrate
RU2543690C2 (en) Electric plug-in connector for heat element and method of its manufacturing
US7648269B2 (en) Temperature measuring device for semiconductor manufacturing apparatus, method of measuring temperature in semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus
WO2017200267A1 (en) Temperature measurement wafer sensor and method for manufacturing same
US7803022B2 (en) Thermocouple connector for joining thermocouple wires
TW591733B (en) Apparatus and method for terminating probe apparatus of semiconductor wafer
CN102209491A (en) Medical device comprising a probe for measuring temperature data in a patient's tissue
KR101746560B1 (en) Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same
WO2020218690A1 (en) Probe system for low-temperature high-precision heat transport measurement and measurement device including same
CN111736052B (en) Probe card, wafer detection equipment with probe card and bare chip test process using probe card
WO2020040381A1 (en) Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for manufacturing same
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
JPH11118616A (en) Temperature sensor, semiconductor wafer with temperature measuring function, and method of forming thermocouple sensor
JP3824943B2 (en) IC socket module
KR101820675B1 (en) Multi-layered resistive type multi-point temperature measuring wafer sensor and method for fabricating the same
WO2018199601A1 (en) Sensor-mounted wafer
CN109724712B (en) Temperature detection device, manufacturing method thereof and laser surface annealing equipment
WO2015174698A1 (en) Heating value measurement apparatus and heating value measurement method
US3954508A (en) High temperature thermocouple probe
WO2017061739A1 (en) Cryogenic probe station
WO2023140542A1 (en) Temperature measurement device
JP3687240B2 (en) Thermocouple conductor coating structure
JP2613132B2 (en) Monitoring method of conductor temperature of laid power cable joint
KR101746558B1 (en) Multi-layered resistive type multi-point temperature measuring wafer sensor and method for fabricating the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799624

Country of ref document: EP

Kind code of ref document: A1