WO2020040381A1 - Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for manufacturing same - Google Patents

Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for manufacturing same Download PDF

Info

Publication number
WO2020040381A1
WO2020040381A1 PCT/KR2019/001240 KR2019001240W WO2020040381A1 WO 2020040381 A1 WO2020040381 A1 WO 2020040381A1 KR 2019001240 W KR2019001240 W KR 2019001240W WO 2020040381 A1 WO2020040381 A1 WO 2020040381A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
temperature
resistance
thermocouple
layer
Prior art date
Application number
PCT/KR2019/001240
Other languages
French (fr)
Korean (ko)
Inventor
제갈원
강상우
김용규
권수용
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2020040381A1 publication Critical patent/WO2020040381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Definitions

  • the present invention relates to a temperature measuring wafer sensor, and more particularly, to a multilayer resistance-thermoelectric temperature measuring wafer sensor capable of grasping temperature uniformity over the entire area of a wafer, and a manufacturing method thereof.
  • a wafer In a semiconductor manufacturing process, a wafer is heated by receiving heat from a susceptor while being placed on a susceptor. At this time, since heat loss occurs in the process of conducting heat from the susceptor to the wafer, a temperature difference occurs between the susceptor and the wafer.
  • setting the temperature of the susceptor to 1000 ° C. may cause the actual temperature of the wafer to be less than this.
  • test wafers such as a wafer temperature measuring apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-31231 (2000.01.28) or a process condition measuring apparatus disclosed in US Patent No. 7,540,188 (2009.06.02) Proposed.
  • the wafer temperature measuring apparatus disclosed in Japanese Patent Laid-Open No. 2000-31231 uses a thermocouple, and since the wires and the lead wires are drawn out from the RTD installed in the recess of the wafer, the wires and the lead wires are Too complicated to intertwine, it is not possible to install a lot of resistance thermometer in several places. At this time, it is difficult to grasp the temperature uniformity over the entire area of the wafer.
  • thermocouple the multi-layer resistance-thermoelectric thermometry wafer sensor and method of manufacturing the same of Korean Patent No. 10-1746560, a technique for forming a first thermocouple and a second thermocouple constituting the thermocouple in different layers. It is starting.
  • thermoelectric part can be evenly installed on the wafer, so that the temperature uniformity over the entire area of the wafer can be grasped in detail.
  • Patent No. 10-1746560 uses only one reference resistance, it is difficult to calibrate the Seebeck coefficient of each thermoelectric part, and thus it is sure that the temperature at each point calculated by adding the temperature difference measured through each thermoelectric part to the reference temperature is correct. Can not.
  • thermoelectric is composed of two different types of wires, the electromotive force generated through this is very small and difficult to measure.
  • the present invention has been made to solve the above problems, and it is possible to correctly correct the Seebeck coefficient of the elements constituting the thermocouple, and to amplify the magnitude of the electromotive force generated in each thermoelectric part, thereby covering the entire area of the wafer. It is an object of the present invention to provide a multi-layer resistance-thermoelectric thermocouple wafer sensor that can more conveniently and accurately grasp temperature uniformity.
  • Still another object of the present invention is to provide a method of manufacturing such a multilayer resistance-thermoelectric thermometric wafer sensor.
  • the multilayer resistance-thermoelectric temperature measuring wafer sensor comprises a plurality of reference resistors formed on the wafer; A thermocouple formed between two reference resistors and one or more thermocouples connected in series from one end of the reference resistor; A wiring section comprising connection wirings between each measurement contact point (both ends of the reference resistance and the thermoelectric section) and the measurement terminal; And an interlayer insulating layer disposed between the layer in which the thermoelectric part is formed and the layer in which the wiring part is formed.
  • the reference resistance and the thermoelectric part are formed on the same layer, and each of the measurement contacts and the corresponding connection wirings are connected to each other through a via hole formed through the interlayer insulating layer.
  • thermoelectric part is formed between two adjacent reference resistors.
  • thermocouple may be configured in such a manner that two kinds of conductive wires forming a thermocouple are repeatedly connected in series with each other in turn.
  • the two kinds of wires may be made of gold and platinum, respectively.
  • the number of times the two types of conductive wires alternately appear may be configured to be 100 times or more and 1,000 times or less.
  • the thermoelectric part may be formed such that each conductive wire constituting the thermocouple has a zigzag shape between two regions.
  • the size of each region may be 100 ⁇ m or less, and the distance between the two regions may be 1 cm or more.
  • a method of manufacturing a multilayer resistance-temperature thermoelectric wafer sensor comprising: forming connection wirings connecting respective measurement contacts and measurement terminals on a wafer; Forming an interlayer insulating layer on the connection wiring; Forming a via hole in the interlayer insulating layer so that one end of each connection line is exposed; Forming a conductive plug in each of the via holes; And forming each reference resistance and a thermoelectric part to electrically connect each measurement contact point to the conductive plug.
  • thermoelectric part may be formed between two adjacent reference resistors.
  • the reference resistance used to measure the temperature and each thermoelectric element are formed in a layer different from the layer where the connection wiring is formed.
  • thermoelectric part can be provided evenly over the whole area of a wafer sensor, without interrupting wiring.
  • a plurality of reference resistors can accurately determine the reference temperature, and by calibrating the Seebeck coefficient of each thermoelectric part, it is possible to more accurately measure the temperature difference between each measurement contact point.
  • thermoelectric part physically amplifies the magnitude of the electromotive force to be measured, the electromotive force of each thermoelectric part can be measured more conveniently and easily.
  • the temperature uniformity of the entire area of the wafer can be more conveniently and accurately grasped.
  • thermometric wafer sensor 1 is an embodiment of a multilayer resistance-thermoelectric thermometric wafer sensor according to the present invention
  • thermocouple 2 is an embodiment of a thermocouple
  • 3 is an embodiment illustrating a multilayer structure
  • connection wiring 4 is an embodiment of a layer in which a connection wiring is formed
  • thermometric wafer sensor 5 is an embodiment of a method for manufacturing a multilayer resistance-thermoelectric thermometric wafer sensor according to the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • thermoelectric part a thermoelectric temperature sensor on a substrate 101.
  • UC1 thermoelectric temperature sensor 1
  • the substrate 101 of the wafer sensor 100 may be used for semiconductor manufacturing, but is not limited thereto.
  • the substrate 101 may include a measuring plate heat-treated by an electric furnace or a hot plate, or a thin plate used in such a condition. That is, it may be a thin plate to be subjected to heat treatment, a member having such a surface shape and such a heat capacity, or the thin plate itself to be subjected to heat treatment.
  • the reference resistors Rc, Rm, and Re are used to measure the reference temperature, and a plurality of reference resistors are provided.
  • the number of reference resistors may be configured in various ways.
  • the reference resistances (Rc, Rm, Re) may be a resistance temperature sensor that measures the temperature in a resistive manner, and is used to measure the temperature of a specific point of the substrate 101, and the reference resistances (Rc, Rm, Re) The temperature measured by is the reference temperature.
  • the reference resistors Rc, Rm, and Re may be configured in various ways.
  • the wires may be formed of conductive wires formed on the substrate 101.
  • the wires may have a serpentine shape, but the wires are not limited thereto.
  • the reference resistors Rc, Rm, and Re may be arranged in various ways. As a specific example, the reference resistors Rc, Rm, and Re may be intermittently formed in a straight direction from the center of the substrate 101 toward the edge. The thermoelectric part is disposed between the reference resistors which are intermittently arranged.
  • thermoelectric parts UC1 and UC2 are formed between the reference resistors Rc and Rm and between the reference resistors Rm and Re, respectively.
  • the measurement terminal 110 is provided on the substrate 101. Both ends of each reference resistor (Rc, Rm, Re) and both ends of each thermoelectric part (UC) form a measurement contact, each measurement contact is connected to the measurement terminal 110 through a connection wiring, the measurement terminal 110 Through this measurement can be made at each measuring contact.
  • thermoelectric part UC is formed on the same layer as the layer on which the reference resistors Rc, Rm, and Re are formed, and may be a thermoelectric temperature sensor measuring temperature by thermoelectric.
  • the thermoelectric part UC is used to measure the temperature difference at each point on the substrate 101.
  • thermoelectric part UC may be disposed at various positions as well as between the two reference resistors (UC1 and UC2).
  • one or more thermoelectric units UC may be connected in series from one end of each of the reference resistors Rc, Rm, and Re, and may be disposed by branching again from a point where the thermoelectric unit and the thermoelectric unit are connected.
  • thermocouple UC may be configured using two kinds of conductive wires forming a thermocouple.
  • each conductor may be made of various materials.
  • it may be selected from the group consisting of gold (Au), platinum (Pt), aluminum, nickel, copper, titanium, and combinations thereof.
  • Au gold
  • Pt platinum
  • aluminum nickel
  • copper titanium
  • titanium titanium
  • combinations thereof gold
  • the conductive wire made of gold (Au) and the conductive wire made of platinum (Pt) are used, it is made of pure metal and thus has an advantage of showing uniform thermoelectric performance.
  • thermoelectric unit UC is formed of a conductive wire made of gold (Au) and a conductive wire made of platinum (Pt) will be described.
  • thermoelectric unit thermoelectric unit
  • thermoelectric part UC of the wafer sensor 100 is configured such that two kinds of conductive wires forming the thermocouple are connected in series repeatedly alternately a plurality of times.
  • FIG. 2 illustrates an embodiment of a thermoelectric unit UC, in which a conductive wire L1 made of gold and a conductive wire L2 made of platinum are arranged in a zigzag form between both ends V1 and V2 of the thermoelectric part UC. Formed.
  • the conductive line L1 made of gold is formed from the region a1 to the region a2, and the structure in which the conductive line L2 made of platinum bonded to the conductive line is formed in the region a1 in the region a2 is repeated a plurality of times so that one thermoelectric part UC ) Is configured.
  • Both ends V1 and V2 of the thermoelectric part UC form a measurement contact point, and are electrically connected to the measurement terminal 110 through connection lines p1 and p2, respectively. At this time, the connection wirings p1 and p2 are formed in a different layer from the thermoelectric part UC.
  • thermocouple When the conductor L1 made of gold and the conductor L2 made of platinum form a thermocouple, a constant electromotive force is generated according to the temperature difference appearing at both ends.
  • the electromotive force appearing at both ends V1 and V2 of the thermocouple UC may be amplified by about n times the electromotive force shown through one thermocouple.
  • the size of the regions a1 and a2 where the junctions of the gold and platinum conductors exist and the distance between the regions a1 and a2 need to be well designed. .
  • the size of the regions a1 and a2 (the maximum distance between the junctions, d1) in which the junctions of the conductive lines exist is small enough to assume that the temperatures of all junctions belonging to the same region are the same. Further, the distance d2 between the regions a1 and a2 is preferably sufficiently spaced apart.
  • each region a1 and a2 where the junctions of the conductive wires constituting the thermocouple are collected may be 100 ⁇ m or less, and the distance d2 between the regions a1 and a2 may be 1 cm or more. It doesn't happen.
  • Equation 1 illustrates that physical amplification is performed in the embodiment of the thermoelectric unit UC shown in FIG. 2.
  • T is 't2-t1' and? S is 'S AU -S pt '.
  • t0 is the temperature of the portion where the connecting wirings p1 and p2 are connected to the measuring terminal 110
  • t1 is the temperature of the region a1
  • t2 is the temperature of the region a2
  • n is the number of times each conductor appears alternately
  • S AU is The Seebeck coefficient of the conductor made of gold (Au)
  • S pt is the Seebeck coefficient of the conductor made of platinum (Pt).
  • Equation 1 shows that when the thermocouples are connected in series by n times, amplification may be performed about n times of the electromotive force generated by one thermocouple.
  • the number of times the two types of conductors alternately appear repeatedly in the thermoelectric unit UC may be variously configured according to the need for physical amplification. As a specific example, the number of times the two types of conductors may be alternately repeated may be configured to 100 or more times 1,000, but is not limited thereto.
  • thermoelectric unit Assuming that the electromotive force generated by one gold lead and platinum lead is 10 ⁇ V, if the number of times the gold lead and the platinum lead appears alternately is 1,000, the electromotive force measured through one thermoelectric unit (UC) is about 10 mV. Therefore, it becomes easy to measure the electromotive force of the thermoelectric part UC at the measurement terminal 110 of the wafer sensor.
  • thermoelectric (UC) forms a measuring contact
  • each measuring contact is electrically connected to the measuring terminal 110 through a connection wiring
  • the thermoelectric (UC) And connection wiring are formed on different layers.
  • the wiring unit 102 includes each connection wiring 103 connecting between each measurement contact point and the measurement terminal 110, and reference resistances Rc, Rm, and Re and the thermoelectric unit UC. Is formed on a layer different from the wiring portion 102.
  • thermoelectric unit UC may be evenly installed over the entire area without being disturbed by the connection wiring 103 to the measurement terminal 110.
  • the layer 109 on which the reference resistors Rc, Rm, and Re and the thermoelectric unit UC are formed is disposed above the layer on which the wiring unit 103 is formed. It is preferable to arrange.
  • An interlayer insulating layer 105 is provided between the layer 109 on which the thermoelectric part UC is formed and the layer on which the connection wiring 103 is formed, and each measurement contact point and the corresponding connecting wiring ( Via holes 107 are formed to electrically connect 103.
  • each measurement contact point and a corresponding connection wiring are connected to each other through a via hole 107 formed through the interlayer insulating layer 105.
  • FIG. 4 illustrates an example of a layer in which the wiring unit 102 is formed, which corresponds to the embodiment shown in FIG. 1, and has various connection wires for connecting each measurement contact to the measurement terminal 110. .
  • the portions connected through the measuring holes V1 to V6 and via holes shown in FIG. 1 are denoted by the same reference numerals V1 to V6, and the measuring contacts V1 and V2 are measured in the example shown in FIG.
  • Connection lines p1 and p2 connecting to the terminal 110 are also indicated by the same reference numerals.
  • a reference resistance measurement wiring may be provided between both ends of the reference resistors Rc, Rm, and Re and the measurement terminal 110.
  • the reference resistance measurement wiring may include a connection wiring for measuring electromotive force and a connection wiring for applying a current to measure resistance values for each temperature.
  • connection wiring may be made of various materials.
  • each connection line may be formed of gold, but is not limited thereto.
  • Via holes may be filled with conductive plugs of various materials.
  • the via hole may be filled with gold or platinum, but is not limited thereto.
  • the temperature at each measurement contact point is measured through the measurement terminal 110 where the connection wires are collected, it is possible to determine where the temperature irregularity occurs. That is, since the temperature difference can be known through the potential difference of each thermoelectric part UC, the temperature at each point can be measured by adding each temperature difference to the reference temperature.
  • the measurement contact should be large.
  • the installation space of the thermoelectric unit UC is restricted for the installation of the connection wiring.
  • thermoelectric part and the connection wiring are arranged in different layers as in the present invention, the thermoelectric part can be evenly installed on the entire substrate 101 without being disturbed by the connection wiring, so that the temperature uniformity can be grasped in detail over the entire area. have.
  • the wafer sensor 100 is placed in a constant temperature chamber where the temperature is kept uniform throughout, and a constant current flows through each reference resistance through measurement terminals connected to both ends of each of the reference resistors Rc, Rm, and Re. Then, the voltage applied to each of the reference resistors Rc, Rm, and Re is measured, the resistance value of each reference resistor is measured, and the correspondence relationship between the temperature and the resistance value is stored.
  • the temperature-specific resistance value of the reference resistor can be used for temperature measurement in various forms. For example, you can database the relationship between temperature and resistance values, and derive a linear relationship between temperature and resistance values.
  • the temperature-specific resistance value of the reference resistance is experimentally confirmed, when the actual temperature is measured, the temperature of each reference resistance is accurately determined by measuring the resistance value of the reference resistance.
  • the wiring of the actual circuit may be implemented through a deposition process, in which the Seebeck coefficient value of the thermoelectric element UC may be influenced by contamination or secondary adhesion layer. This can change.
  • thermoelectric part UC not only the calibration for measuring the reference temperature but also the Seebeck coefficient of the thermoelectric part UC are required.
  • thermocouples UC1 and UC2 are disposed between the respective reference resistors Rc, Rm, and Re so as to perform self calibration.
  • the Seebeck coefficient may be corrected using the temperature deviation applied to the thermoelectric parts UC1 and UC2 and the resulting thermoelectric power.
  • thermoelectric part UC The calibration of the thermoelectric part UC may be performed as follows.
  • the wafer sensor 100 on which the calibration procedure for the reference temperature is completed is placed on a heater having a temperature gradient, and the respective reference temperatures and the electromotive force at both ends of the thermoelectric parts UC1 and UC2 are measured.
  • thermocouples UC1 and UC2 since the temperature difference between the thermocouples UC1 and UC2 can be accurately known through the reference temperature calibration, the Seebeck coefficients of the thermocouples UC1 and UC2 are calculated using the information and electromotive force information of both ends of the thermocouples UC1 and UC2.
  • thermocouples UC1 and UC2 By using the calculated Seebeck coefficients of the thermocouples UC1 and UC2, a method of correcting the Seebeck coefficient for each of the other thermocouples UC may be variously configured.
  • the average of the Seebeck coefficient values of the thermocouples UC1 and UC2 may be set as the reference Seebeck coefficient of all the thermocouples UC.
  • the Seebeck coefficient of each thermoelectric unit UC may be corrected, and if necessary, the Seebeck coefficient may be corrected for each temperature.
  • the temperature at each point of the wafer sensor 100 can be calculated by adding the temperature difference ( ⁇ t, relative temperature) obtained through the thermoelectric part to the 'reference temperature'.
  • connection wiring 103 connecting each measurement contact point and the measurement terminal is formed on the substrate 101 (S210).
  • a metal layer of a material to be used for connection wiring may be formed on the substrate 101, and then the metal layers may be patterned to form respective connection wirings 103.
  • connection wiring 103 may be made of various materials. As a specific example, the connection wiring 103 may be made of gold, but is not limited thereto.
  • an interlayer insulating layer 105 is formed on the connection wiring 103 (S220).
  • a via hole 107 is formed in the interlayer insulating layer 105 so that one end of each connection wiring 103 is exposed (S230), and a conductive plug is formed in each via hole 107 (S240).
  • the conductive plug may be made of various materials.
  • the conductive plug may be made of gold or platinum, but is not limited thereto.
  • each reference resistance and the thermoelectric part are formed to electrically connect each measurement contact point to the conductive plug (S250).
  • each measuring contact is connected to each conductive plug formed in step S240. Then, each measuring contact is connected to the corresponding connection line 103 through the conductive plug (through the via hole), and is also electrically connected to the measurement terminal 110 corresponding to itself through the connection line 103.
  • the number and arrangement of reference resistors formed in step S250 may be variously configured. As a specific example, three reference resistors may be intermittently formed in a linear direction from the center of the substrate toward the edges, and a thermoelectric portion may be formed between two adjacent reference resistors.
  • thermocouple may be configured such that two kinds of conductors forming the thermocouple are repeatedly connected in series with each other in turn.
  • the material of the conductive wire constituting the thermoelectric part may be configured in various ways, using a conductive wire made of gold (Au) and a conductive wire made of platinum (Pt) has an advantage of showing uniform thermoelectric performance because it is made of pure metal.
  • the number of alternating repetitions of the two types of wires forming the thermocouple may be variously configured according to the need for physical amplification.
  • the number of times the two types of conductors may be alternately repeated may be configured 100 times or more, but is not limited thereto.
  • the size of the regions a1 and a2 (the maximum distance between the junctions, d1) in which the junctions of the conductive lines exist is small enough to assume that the temperatures of all junctions belonging to the same region are the same. desirable. Further, the distance d2 between the regions a1 and a2 is preferably sufficiently spaced apart.
  • the size of the regions a1 and a2 where the junctions of the conductive wires constituting the thermocouple are collected may be 100 ⁇ m or less, and the distance d2 between the regions a1 and a2 may be 1 cm or more. It is not limited.
  • wafer sensor 101 substrate
  • wiring portion 105 interlayer insulating layer
  • a1, a2 area where the junction points are collected
  • Rc, Rm, Re reference resistance p1, p2, 103: connection wiring
  • V1 to V6 Measuring contact UC, UC1, UC2: Thermoelectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A wafer sensor according to the present invention is configured to comprise, as a resistive temperature sensor, a plurality of reference resistors for measuring a reference temperature, and, as a thermocouple type temperature sensor, one or more thermoelectric parts connected in series from one end of the reference resistor, wherein the thermoelectric part and a connection wire are displaced in different layers. In particular, the thermoelectric part is configured in a shape in which two types of wires for forming a thermocouple are alternately repeated approximately 100 to 1,000 times. The respective thermoelectric parts are formed in a layer which is different from the layer in which the connection wire is formed so that the respective thermoelectric parts may be uniformly mounted on the entire surface area of the wafer sensor without any interference from the wire. More specifically, calibration corresponding to the reference temperature and a Seebeck coefficient of the thermoelectric unit is carried out by using the plurality of reference resistors so that reliability of the measured temperature may be improved and measuring may become more convenient since electromotive force measured through the respective thermoelectric parts is physically amplified. To this end, temperature uniformity regarding the entire surface area of a wafer can be more conveniently or accurately recognized.

Description

다층 저항-열전식 온도측정 웨이퍼 센서 및 그 제조 방법Multi-layer resistance-thermoelectric temperature measurement wafer sensor and manufacturing method thereof
본 발명은 온도측정 웨이퍼 센서에 관한 것으로서, 특히 웨이퍼의 전 면적에 대해 온도 균일도를 세밀하게 파악할 수 있는 다층 저항-열전식 온도측정 웨이퍼 센서 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring wafer sensor, and more particularly, to a multilayer resistance-thermoelectric temperature measuring wafer sensor capable of grasping temperature uniformity over the entire area of a wafer, and a manufacturing method thereof.
반도체 제조공정에서 웨이퍼는 서셉터 상에 놓인 상태에서 서셉터로부터 열을 전달받아 가열된다. 이때 서셉터에서 웨이퍼로 열이 전도되는 과정에서 열 손실이 발생되므로 서셉터와 웨이퍼 사이에 온도 차이가 나게 된다.In a semiconductor manufacturing process, a wafer is heated by receiving heat from a susceptor while being placed on a susceptor. At this time, since heat loss occurs in the process of conducting heat from the susceptor to the wafer, a temperature difference occurs between the susceptor and the wafer.
예를 들어, 서셉터의 온도를 1000℃로 세팅하더라도 웨이퍼의 실제 온도는 이 보다 못하게 될 수 있다.For example, setting the temperature of the susceptor to 1000 ° C. may cause the actual temperature of the wafer to be less than this.
따라서 웨이퍼의 실제 온도를 정확히 파악할 필요가 있다. 온도 균일성이 떨어지면 부분별로 공정조건이 달라지는 결과가 되어 공정 신뢰도가 떨어지기 때문에 웨이퍼 전 면적에 대한 온도 균일도를 파악하는 것은 매우 중요하다Therefore, it is necessary to accurately know the actual temperature of the wafer. It is very important to know the temperature uniformity over the whole wafer area because the temperature uniformity is the result of different process conditions for each part, resulting in less reliable process.
이와 관련하여, 일본 특개 제2000-31231호(2000.01.28)에 개시된 웨이퍼 온도 측정장치나, 미국 특허 제7,540,188호(2009.06.02)에 개시된 공정조건 측정장치 등 여러 가지 테스트 웨이퍼(더미 웨이퍼)가 제안되었다.In this regard, various test wafers (dummy wafers) such as a wafer temperature measuring apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-31231 (2000.01.28) or a process condition measuring apparatus disclosed in US Patent No. 7,540,188 (2009.06.02) Proposed.
상기 일본 특개 제2000-31231호에 개시된 웨이퍼 온도 측정장치는 열전대를 이용하는 것으로서 웨이퍼의 오목부에 설치된 측온저항체로부터 소선과 리드선들이 외부 인출되어 이루어지기 때문에 웨이퍼 내에 측온저항체를 많이 설치할 경우 소선과 리드선들이 너무 복잡하게 얽히게 되므로, 측온저항체를 여러 군데에 많이 설치할 수 없다. 이 때믄에 웨이퍼의 전 면적에 대하여 온도 균일도를 세밀하게 파악하기 어렵다.The wafer temperature measuring apparatus disclosed in Japanese Patent Laid-Open No. 2000-31231 uses a thermocouple, and since the wires and the lead wires are drawn out from the RTD installed in the recess of the wafer, the wires and the lead wires are Too complicated to intertwine, it is not possible to install a lot of resistance thermometer in several places. At this time, it is difficult to grasp the temperature uniformity over the entire area of the wafer.
이러한 문제를 해결하기 위하여, 대한민극 등록특허 10-1746560호의 다층 저항-열전식 온도측정 웨이퍼 센서 및 그 제조 방법은, 열전쌍을 이루는 제1열전부와 제2열전부를 서로 다른 층에 형성하는 기술을 개시하고 있다.In order to solve this problem, the multi-layer resistance-thermoelectric thermometry wafer sensor and method of manufacturing the same of Korean Patent No. 10-1746560, a technique for forming a first thermocouple and a second thermocouple constituting the thermocouple in different layers. It is starting.
이 기술을 이용하면, 열전부를 웨이퍼 상에 고르게 설치할 수 있어서, 웨이퍼의 전 면적에 대한 온도 균일도를 세밀하게 파악할 수 있다Using this technique, the thermoelectric part can be evenly installed on the wafer, so that the temperature uniformity over the entire area of the wafer can be grasped in detail.
그러나, 등록특허 10-1746560호는 기준저항을 하나만 이용하기 때문에, 각 열전부의 제벡계수를 교정하기 어렵고, 이 때문에 기준온도에 각 열전부를 통해 측정되는 온도차를 더하여 산출되는 각 지점의 온도가 정확한지 확신할 수 없다.However, since Patent No. 10-1746560 uses only one reference resistance, it is difficult to calibrate the Seebeck coefficient of each thermoelectric part, and thus it is sure that the temperature at each point calculated by adding the temperature difference measured through each thermoelectric part to the reference temperature is correct. Can not.
또한, 각 열전부는 서로 다른 종류의 두 선으로 이루어지는데, 이를 통해 발생되는 기전력이 매우 작아 측정하기가 쉽지 않다.In addition, each thermoelectric is composed of two different types of wires, the electromotive force generated through this is very small and difficult to measure.
이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 열전쌍을 이루는 요소의 제백계수를 올바르게 교정할 수 있도록 함과 아울러 각 열전부에서 발생되는 기전력의 크기를 증폭하여, 웨이퍼의 전 면적에 대한 온도 균일도를 더욱 편리하고 정확하게 파악할 수 있는, 다층 저항-열전식 온도측정 웨이퍼 센서를 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, and it is possible to correctly correct the Seebeck coefficient of the elements constituting the thermocouple, and to amplify the magnitude of the electromotive force generated in each thermoelectric part, thereby covering the entire area of the wafer. It is an object of the present invention to provide a multi-layer resistance-thermoelectric thermocouple wafer sensor that can more conveniently and accurately grasp temperature uniformity.
본 발명의 또 다른 목적은 상기와 같은 다층 저항-열전식 온도측정 웨이퍼 센서를 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of manufacturing such a multilayer resistance-thermoelectric thermometric wafer sensor.
상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 다층 저항-열전식 온도측정 웨이퍼 센서는, 웨이퍼 상에 형성된 복수 개의 기준저항; 두 기준저항의 사이에 형성되는 열전부와, 상기 기준저항의 일단으로부터 직렬로 하나 이상 연결되는 열전부; 각 측정접점(기준저항과 열전부의 양단)과 측정단자 사이의 연결배선들로 이루어지는 배선부; 및 상기 열전부가 형성된 층과 상기 배선부가 형성된 층의 사이에 배치되는 층간절연층을 포함하여 이루어진다.In order to achieve the above object, the multilayer resistance-thermoelectric temperature measuring wafer sensor according to the present invention comprises a plurality of reference resistors formed on the wafer; A thermocouple formed between two reference resistors and one or more thermocouples connected in series from one end of the reference resistor; A wiring section comprising connection wirings between each measurement contact point (both ends of the reference resistance and the thermoelectric section) and the measurement terminal; And an interlayer insulating layer disposed between the layer in which the thermoelectric part is formed and the layer in which the wiring part is formed.
이때, 상기 기준저항과 열전부는 동일한 층에 형성되며, 상기 각 측정접점과 그에 대응하는 연결배선은 상기 층간절연층을 관통하여 형성되는 비아 홀을 통해 서로 연결된다.In this case, the reference resistance and the thermoelectric part are formed on the same layer, and each of the measurement contacts and the corresponding connection wirings are connected to each other through a via hole formed through the interlayer insulating layer.
상기 기준저항은 상기 웨이퍼의 중심에서 에지를 향하여 직선 방향으로 3개가 단속적으로 형성될 수 있다. 이때, 인접한 두 기준저항의 사이에는 상기 열전부가 형성된다.Three reference resistors may be intermittently formed in a linear direction from the center of the wafer toward the edge. In this case, the thermoelectric part is formed between two adjacent reference resistors.
상기 열전부는 열전쌍(thermocouple)을 형성하는 2 종류의 도선이 서로 교대로 복수회 반복하여 직렬 연결되는 형태로 구성될 수 있다.The thermocouple may be configured in such a manner that two kinds of conductive wires forming a thermocouple are repeatedly connected in series with each other in turn.
상기 2 종류의 도선은 각각 금과 백금으로 이루어질 수 있다.The two kinds of wires may be made of gold and platinum, respectively.
상기 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 100회 이상 1,000회 이하로 구성될 수 있다.The number of times the two types of conductive wires alternately appear may be configured to be 100 times or more and 1,000 times or less.
상기 열전부는 열전쌍을 이루는 각 도선이 두 영역 사이에서 지그재그 형태를 이루도록 형성될 수 있다. 이때 상기 각 영역의 크기는 100μm 이하로 구성하고, 상기 두 영역 사이의 거리는 1cm 이상으로 구성할 수 있다.The thermoelectric part may be formed such that each conductive wire constituting the thermocouple has a zigzag shape between two regions. In this case, the size of each region may be 100 μm or less, and the distance between the two regions may be 1 cm or more.
본 발명에 따른 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법은, 웨이퍼 상에 각 측정접점과 측정단자를 연결할 연결배선을 형성하는 단계; 상기 연결배선 위에 층간절연층을 형성하는 단계; 상기 각 연결배선의 일단이 노출되도록 상기 층간절연층에 비아 홀을 형성하는 단계; 상기 각 비아 홀에 도전플러그를 형성하는 단계; 및 상기 도전플러그에 상기 각 측정접점이 전기적으로 접속되도록 각 기준저항과 열전부를 형성하는 단계를 포함하여 이루어진다.In accordance with another aspect of the present invention, there is provided a method of manufacturing a multilayer resistance-temperature thermoelectric wafer sensor, comprising: forming connection wirings connecting respective measurement contacts and measurement terminals on a wafer; Forming an interlayer insulating layer on the connection wiring; Forming a via hole in the interlayer insulating layer so that one end of each connection line is exposed; Forming a conductive plug in each of the via holes; And forming each reference resistance and a thermoelectric part to electrically connect each measurement contact point to the conductive plug.
이때 상기 기준저항은 상기 웨이퍼의 중심에서 에지를 향하여 직선 방향으로 3개가 단속적으로 형성될 수 있으며, 인접한 두 기준저항의 사이에는 상기 열전부가 형성될 수 있다.In this case, three reference resistors may be intermittently formed in a linear direction from the center of the wafer toward the edges, and the thermoelectric part may be formed between two adjacent reference resistors.
본 발명에 따른 웨이퍼 센서는 온도를 측정하기 위해 사용되는 기준저항과 각 열전부가 연결배선이 형성되는 층과 다른 층에 형성된다.In the wafer sensor according to the present invention, the reference resistance used to measure the temperature and each thermoelectric element are formed in a layer different from the layer where the connection wiring is formed.
이 때문에, 각 열전부를 배선의 방해를 받지 않고 웨이퍼 센서의 전 면적에 고르게 설치할 수 있다.For this reason, each thermoelectric part can be provided evenly over the whole area of a wafer sensor, without interrupting wiring.
복수 개의 기준저항을 통해 기준온도를 정확하게 파악할 수 있고, 이를 통해 각 열전부의 제백계수를 교정함으로써, 각 측정접점 사이의 온도차를 더욱 정확하게 측정할 수 있다.A plurality of reference resistors can accurately determine the reference temperature, and by calibrating the Seebeck coefficient of each thermoelectric part, it is possible to more accurately measure the temperature difference between each measurement contact point.
특히, 각 열전부는 측정되는 기전력의 크기를 물리적으로 크게 증폭하므로, 각 열전부의 기전력을 더욱 편리하고 손쉽게 측정할 수 있다.In particular, since each thermoelectric part physically amplifies the magnitude of the electromotive force to be measured, the electromotive force of each thermoelectric part can be measured more conveniently and easily.
이에 따라, 웨이퍼의 전 면적에 대한 온도 균일도를 더욱 편리하고 정확하게 파악할 수 있게 된다.Accordingly, the temperature uniformity of the entire area of the wafer can be more conveniently and accurately grasped.
도 1은 본 발명에 따른 다층 저항-열전식 온도측정 웨이퍼 센서의 일 실시예,1 is an embodiment of a multilayer resistance-thermoelectric thermometric wafer sensor according to the present invention;
도 2는 열전부에 관한 일 실시예,2 is an embodiment of a thermocouple;
도 3은 다층 구조를 설명하는 일 실시예,3 is an embodiment illustrating a multilayer structure;
도 4는 연결배선이 형성되는 층의 일 실시예,4 is an embodiment of a layer in which a connection wiring is formed;
도 5는 본 발명에 따른 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법의 일 실시예이다.5 is an embodiment of a method for manufacturing a multilayer resistance-thermoelectric thermometric wafer sensor according to the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
도 1은 본 발명에 따른 웨이퍼 센서(100)의 일 실시예를 보인 것으로서, 기판(101)에 저항식 온도 센서인 기준저항(Rc, Rm, Re)과, 열전식 온도 센서인 열전부(UC, UC1, UC2)가 구비된다.1 shows an embodiment of a wafer sensor 100 according to the present invention, a reference resistance (Rc, Rm, Re) as a resistance temperature sensor and a thermoelectric part (UC) as a thermoelectric temperature sensor on a substrate 101. , UC1, UC2).
웨이퍼 센서(100)의 기판(101)은 반도체 제조용으로 사용되는 것일 수 있지만, 이에 한정되는 것은 아니다.The substrate 101 of the wafer sensor 100 may be used for semiconductor manufacturing, but is not limited thereto.
기판(101)은 전기로나 핫 플레이트 등에 의해 열처리되는 측정판, 또는 그와 같은 조건에서 사용되는 박판 등을 포함할 수 있다. 즉, 열처리 대상이 되는 박판이나, 그와 같은 표면 형상 및 그와 같은 열용량을 가지는 부재, 또는 열처리 대상이 되는 박판 그 자체일 수도 있다.The substrate 101 may include a measuring plate heat-treated by an electric furnace or a hot plate, or a thin plate used in such a condition. That is, it may be a thin plate to be subjected to heat treatment, a member having such a surface shape and such a heat capacity, or the thin plate itself to be subjected to heat treatment.
기준저항(Rc, Rm, Re)은 기준온도를 측정하기 위하여 사용되며, 복수 개가 구비된다. 기준저항의 개수는 다양하게 구성될 수 있다. The reference resistors Rc, Rm, and Re are used to measure the reference temperature, and a plurality of reference resistors are provided. The number of reference resistors may be configured in various ways.
기준저항(Rc, Rm, Re)은 저항식으로 온도를 측정하는 저항식 온도 센서일 수 있으며, 기판(101)의 특정 지점의 온도를 측정하기 위해 사용되는데, 기준저항(Rc, Rm, Re)을 통해 측정되는 온도가 기준온도이다.The reference resistances (Rc, Rm, Re) may be a resistance temperature sensor that measures the temperature in a resistive manner, and is used to measure the temperature of a specific point of the substrate 101, and the reference resistances (Rc, Rm, Re) The temperature measured by is the reference temperature.
기준저항(Rc, Rm, Re)은 다양하게 구성될 수 있다. 예를 들어, 기판(101)에 형성된 도전성 배선으로 구성될 수 있으며, 이 배선은 구불구불하게 연결된 형태를 가질 수도 있지만, 이에 한정되는 것은 아니다.The reference resistors Rc, Rm, and Re may be configured in various ways. For example, the wires may be formed of conductive wires formed on the substrate 101. The wires may have a serpentine shape, but the wires are not limited thereto.
기준저항(Rc, Rm, Re)의 배치는 다양하게 이루어질 수 있다. 구체적인 예로서, 기준저항(Rc, Rm, Re)은 기판(101)의 중심으로부터 에지(edge)를 향해 직선 방향으로 단속적으로 형성될 수 있다. 그리고, 단속적으로 배치되는 각 기준저항의 사이에는 열전부가 배치된다.The reference resistors Rc, Rm, and Re may be arranged in various ways. As a specific example, the reference resistors Rc, Rm, and Re may be intermittently formed in a straight direction from the center of the substrate 101 toward the edge. The thermoelectric part is disposed between the reference resistors which are intermittently arranged.
도 1에는 3개의 기준저항(Rc, Rm, Re)이 단속적으로 배치된 예가 나타나 있으며, 기준저항 Rc와 Rm의 사이, 기준저항 Rm과 Re의 사이에 각각 열전부 UC1과 UC2가 형성되어 있다.1 shows an example in which three reference resistors Rc, Rm, and Re are intermittently arranged, and thermoelectric parts UC1 and UC2 are formed between the reference resistors Rc and Rm and between the reference resistors Rm and Re, respectively.
또한, 기판(101)에는 측정단자(110)가 구비된다. 각 기준저항(Rc, Rm, Re)의 양단과 각 열전부(UC)의 양단이 측정접점을 이루며, 각 측정접점은 연결배선을 통해 측정단자(110)와 연결되고, 측정단자(110)를 통해 각 측정접점에서 대한 측정이 이루어질 수 있다.In addition, the measurement terminal 110 is provided on the substrate 101. Both ends of each reference resistor (Rc, Rm, Re) and both ends of each thermoelectric part (UC) form a measurement contact, each measurement contact is connected to the measurement terminal 110 through a connection wiring, the measurement terminal 110 Through this measurement can be made at each measuring contact.
열전부(UC)는 기준저항(Rc, Rm, Re)이 형성된 층과 동일한 층에 형성되며, 열전식으로 온도를 측정하는 열전식 온도센서일 수 있다. 열전부(UC)는 기판(101) 상의 각 지점에서의 온도차를 측정하기 위해 사용된다.The thermoelectric part UC is formed on the same layer as the layer on which the reference resistors Rc, Rm, and Re are formed, and may be a thermoelectric temperature sensor measuring temperature by thermoelectric. The thermoelectric part UC is used to measure the temperature difference at each point on the substrate 101.
열전부(UC)는 두 기준저항의 사이뿐 아니라(UC1, UC2), 다양한 위치에 배치될 수 있다. 구체적인 예로서 열전부(UC)는 각 기준저항(Rc, Rm, Re)의 일단으로부터 직렬로 하나 이상 연결될 수 있으며, 열전부와 열전부가 연결된 지점으로부터 다시 분지하여 배치될 수도 있다.The thermoelectric part UC may be disposed at various positions as well as between the two reference resistors (UC1 and UC2). As a specific example, one or more thermoelectric units UC may be connected in series from one end of each of the reference resistors Rc, Rm, and Re, and may be disposed by branching again from a point where the thermoelectric unit and the thermoelectric unit are connected.
열전부(UC)는 열전쌍(thermocouple)을 형성하는 2 종류의 도선을 이용하여 구성될 수 있다.The thermocouple UC may be configured using two kinds of conductive wires forming a thermocouple.
이때 각 도선은 다양한 재질로 구성될 수 있다. 예를 들자면, 금(Au), 백금(Pt), 알루미늄, 니켈, 구리, 티타늄, 및 이것의 조합으로 이루어진 군에서 선택될 수 있다. 이 중에서도 금(Au)으로 이루어진 도선과 백금(Pt)으로 이루어진 도선을 이용하면, 순금속으로 이루어져 있어 균일한 열전성능을 나타내는 장점이 있다.In this case, each conductor may be made of various materials. For example, it may be selected from the group consisting of gold (Au), platinum (Pt), aluminum, nickel, copper, titanium, and combinations thereof. Among these, when the conductive wire made of gold (Au) and the conductive wire made of platinum (Pt) are used, it is made of pure metal and thus has an advantage of showing uniform thermoelectric performance.
이하에서는 설명의 편의를 위하여, 금(Au)으로 이루어진 도선과 백금(Pt)으로 이루어진 도선으로 열전부(UC)를 구성하는 예로 설명하기로 한다.Hereinafter, for convenience of description, an example in which the thermoelectric unit UC is formed of a conductive wire made of gold (Au) and a conductive wire made of platinum (Pt) will be described.
그런데, 열전부(UC)를 통해 기전력을 측정하여 온도차를 알 수 있다고 하더라도, 열전부(UC) 양단의 온도차에 의해 발생하는 기전력이 매우 작아 이를 측정하기가 쉽지 않다.By the way, even if the temperature difference can be known by measuring the electromotive force through the thermoelectric unit (UC), the electromotive force generated by the temperature difference across the thermoelectric unit (UC) is very small, it is not easy to measure.
본 발명에 따른 웨이퍼 센서(100)의 열전부(UC)는 열전쌍을 형성하는 2 종류의 도선이 서로 교대로 복수회 반복하여 직렬 연결되도록 구성된다.The thermoelectric part UC of the wafer sensor 100 according to the present invention is configured such that two kinds of conductive wires forming the thermocouple are connected in series repeatedly alternately a plurality of times.
도 2는 열전부(UC)에 관한 일 실시예를 보인 것으로서, 열전부(UC)의 양단(V1, V2) 사이에 금으로 이루어진 도선(L1)과 백금으로 이루어진 도선(L2)이 지그재그 형태로 형성되어 있다.FIG. 2 illustrates an embodiment of a thermoelectric unit UC, in which a conductive wire L1 made of gold and a conductive wire L2 made of platinum are arranged in a zigzag form between both ends V1 and V2 of the thermoelectric part UC. Formed.
금으로 이루어진 도선(L1)이 영역 a1에서 영역 a2까지 형성되고, 이 도선과 접합된 백금으로 이루어진 도선(L2)이 영역 a2에서 영역 a1로 형성되는 구조가 복수회 반복됨으로서 하나의 열전부(UC)가 구성된다.The conductive line L1 made of gold is formed from the region a1 to the region a2, and the structure in which the conductive line L2 made of platinum bonded to the conductive line is formed in the region a1 in the region a2 is repeated a plurality of times so that one thermoelectric part UC ) Is configured.
이 열전부(UC)의 양단(V1, V2)은 측정접점을 이루며, 각각 연결배선 p1과 p2를 통해 측정단자(110)에 전기적으로 연결된다. 이때 연결배선 p1과 p2는 열전부(UC)와는 다른 층에 형성된다.Both ends V1 and V2 of the thermoelectric part UC form a measurement contact point, and are electrically connected to the measurement terminal 110 through connection lines p1 and p2, respectively. At this time, the connection wirings p1 and p2 are formed in a different layer from the thermoelectric part UC.
금으로 이루어진 도선(L1)과 백금으로 이루어진 도선(L2)이 열전쌍을 이루면, 양단에 나타나는 온도차에 따라 일정한 기전력이 발생한다. 이러한 열전쌍이 n개 직렬 연결되면, 열전부(UC)의 양단(V1, V2)에 나타나는 기전력은 하나의 열전쌍을 통해 나타나는 기전력의 약 n배 정도 증폭될 수 있다.When the conductor L1 made of gold and the conductor L2 made of platinum form a thermocouple, a constant electromotive force is generated according to the temperature difference appearing at both ends. When n thermocouples are connected in series, the electromotive force appearing at both ends V1 and V2 of the thermocouple UC may be amplified by about n times the electromotive force shown through one thermocouple.
열전쌍의 직렬 연결로 물리적인 증폭이 충분히 일어나도록 하기 위해서는 금으로 이루어진 도선과 백금으로 이루어진 도선의 접합점들이 존재하는 영역 a1과 a2의 크기, 및 영역 a1과 a2 사이의 거리가 잘 설계될 필요가 있다.In order for physical amplification to take place sufficiently in series with thermocouples, the size of the regions a1 and a2 where the junctions of the gold and platinum conductors exist and the distance between the regions a1 and a2 need to be well designed. .
이와 관련하여, 도선의 접합점들이 존재하는 영역 a1과 a2의 크기(접합점간 최대 거리, d1)는 같은 영역에 속한 모든 접합점의 온도를 같은 것으로 가정할 수 있을 만큼 작은 것이 바람직하다. 또한, 영역 a1과 a2 사이의 거리(d2)는 충분히 이격되는 것이 바람직하다.In this regard, it is preferable that the size of the regions a1 and a2 (the maximum distance between the junctions, d1) in which the junctions of the conductive lines exist is small enough to assume that the temperatures of all junctions belonging to the same region are the same. Further, the distance d2 between the regions a1 and a2 is preferably sufficiently spaced apart.
구체적인 예로서, 열전쌍을 이루는 도선의 접합점이 모여있는 각 영역(a1, a2)의 크기는 100μm 이하로 구성하고, 영역 a1과 a2 사이의 거리(d2)는 1cm 이상으로 구성할 수 있지만, 이에 제한되는 것은 아니다.As a specific example, the size of each region a1 and a2 where the junctions of the conductive wires constituting the thermocouple are collected may be 100 μm or less, and the distance d2 between the regions a1 and a2 may be 1 cm or more. It doesn't happen.
다음의 수학식 1은 도 2에 도시된 열전부(UC)의 실시예에서 물리적 증폭이 이루어지는 것을 설명한다.Equation 1 below illustrates that physical amplification is performed in the embodiment of the thermoelectric unit UC shown in FIG. 2.
<수학식 1><Equation 1>
Figure PCTKR2019001240-appb-I000001
Figure PCTKR2019001240-appb-I000001
Figure PCTKR2019001240-appb-I000002
Figure PCTKR2019001240-appb-I000002
여기서 △t는 't2-t1'이고, △S는 'SAU-Spt'이다.Where? T is 't2-t1' and? S is 'S AU -S pt '.
또한, t0는 연결배선 p1과 p2가 측정단자(110)에 연결된 부분의 온도, t1은 영역 a1의 온도, t2는 영역 a2의 온도, n은 각 도선이 교대로 반복하여 나타나는 횟수, SAU는 금(Au)으로 이루어진 도선의 제백계수, Spt는 백금(Pt)으로 이루어진 도선의 제백계수이다.In addition, t0 is the temperature of the portion where the connecting wirings p1 and p2 are connected to the measuring terminal 110, t1 is the temperature of the region a1, t2 is the temperature of the region a2, n is the number of times each conductor appears alternately, S AU is The Seebeck coefficient of the conductor made of gold (Au), S pt is the Seebeck coefficient of the conductor made of platinum (Pt).
상기 수학식 1은 열전쌍이 n회 반복되어 직렬 연결된 경우, 열전쌍 하나가 발생시키는 기전력의 n배 정도 증폭이 이루어질 수 있음을 보여준다.Equation 1 shows that when the thermocouples are connected in series by n times, amplification may be performed about n times of the electromotive force generated by one thermocouple.
열전부(UC)에서 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 물리적인 증폭의 필요에 따라 다양하게 구성될 수 있다. 구체적인 예로서, 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 100회 이상 1,000회 이하로 구성될 수 있으나, 이에 제한되는 것은 아니다.The number of times the two types of conductors alternately appear repeatedly in the thermoelectric unit UC may be variously configured according to the need for physical amplification. As a specific example, the number of times the two types of conductors may be alternately repeated may be configured to 100 or more times 1,000, but is not limited thereto.
하나의 금 도선과 백금 도선이 발생시키는 기전력이 10μV 라고 가정할 때, 금 도선과 백금 도선이 교대로 반복하여 나타나는 횟수가 1,000회라면, 하나의 열전부(UC)를 통해 측정되는 기전력은 10mV 정도가 되므로, 웨이퍼 센서의 측정단자(110)에서 열전부(UC)의 기전력을 측정하기가 용이해진다.Assuming that the electromotive force generated by one gold lead and platinum lead is 10 μV, if the number of times the gold lead and the platinum lead appears alternately is 1,000, the electromotive force measured through one thermoelectric unit (UC) is about 10 mV. Therefore, it becomes easy to measure the electromotive force of the thermoelectric part UC at the measurement terminal 110 of the wafer sensor.
한편, 각 기준저항(Rc, Rm, Re)과 열전부(UC)의 양단은 측정접점을 이루며, 각 측정접점은 측정단자(110)와 연결배선을 통해 전기적으로 연결되는데, 열전부(UC)와 연결배선은 서로 다른 층에 형성된다.On the other hand, both reference resistances (Rc, Rm, Re) and both ends of the thermoelectric (UC) forms a measuring contact, each measuring contact is electrically connected to the measuring terminal 110 through a connection wiring, the thermoelectric (UC) And connection wiring are formed on different layers.
도 3을 참조하자면, 배선부(102)는 각 측정접점과 측정단자(110) 사이를 연결하는 각 연결배선(103)으로 이루어지며, 기준저항(Rc, Rm, Re)과 열전부(UC)는 배선부(102)와 다른 층에 형성된다.Referring to FIG. 3, the wiring unit 102 includes each connection wiring 103 connecting between each measurement contact point and the measurement terminal 110, and reference resistances Rc, Rm, and Re and the thermoelectric unit UC. Is formed on a layer different from the wiring portion 102.
이에 따라 측정단자(110)로의 연결배선(103)에 방해를 받지않고, 열전부(UC)를 전 면적에 걸쳐 고르게 설치할 수 있다.Accordingly, the thermoelectric unit UC may be evenly installed over the entire area without being disturbed by the connection wiring 103 to the measurement terminal 110.
웨이퍼 센서(100)는 표면 온도를 측정하기 위하여 사용될 수 있으므로, 기준저항(Rc, Rm, Re)과 열전부(UC)가 형성되는 층(109)은 배선부(103)가 형성되는 층보다 위에 배치되는 것이 바람직하다.Since the wafer sensor 100 can be used to measure the surface temperature, the layer 109 on which the reference resistors Rc, Rm, and Re and the thermoelectric unit UC are formed is disposed above the layer on which the wiring unit 103 is formed. It is preferable to arrange.
열전부(UC)가 형성된 층(109)과 연결배선(103)이 형성된 층의 사이에는 층간절연층(105)이 구비되며, 층간절연층(105)에는 각 측정접점과 그에 대응하는 연결배선(103)을 전기적으로 연결하기 위한 비아 홀(107)이 형성된다.An interlayer insulating layer 105 is provided between the layer 109 on which the thermoelectric part UC is formed and the layer on which the connection wiring 103 is formed, and each measurement contact point and the corresponding connecting wiring ( Via holes 107 are formed to electrically connect 103.
즉, 각 측정접점과 그에 대응하는 연결배선은 층간절연층(105)을 관통하여 형성되는 비아 홀(107)을 통해 서로 연결된다.That is, each measurement contact point and a corresponding connection wiring are connected to each other through a via hole 107 formed through the interlayer insulating layer 105.
도 4는 배선부(102)가 형성된 층의 예를 보인 것으로서, 도 1에 도시된 실시예와 대응 관계에 있으며, 각 측정접점을 측정단자(110)로 연결하기 위한 여러 연결배선들이 형성되어 있다.4 illustrates an example of a layer in which the wiring unit 102 is formed, which corresponds to the embodiment shown in FIG. 1, and has various connection wires for connecting each measurement contact to the measurement terminal 110. .
설명의 이해를 돕기 위하여, 도 1에 도시된 측정접점 V1 내지 V6과 비아 홀을 통해 연결되는 부분을 같은 참조부호 V1 내지 V6으로 표시하였고, 도 2에 보인 실시예에서 측정접점 V1과 V2를 측정단자(110)로 연결하는 연결배선 p1과 p2도 같은 참조부호로 표시하였다.For better understanding of the description, the portions connected through the measuring holes V1 to V6 and via holes shown in FIG. 1 are denoted by the same reference numerals V1 to V6, and the measuring contacts V1 and V2 are measured in the example shown in FIG. Connection lines p1 and p2 connecting to the terminal 110 are also indicated by the same reference numerals.
연결배선과 관련하여, 기준저항(Rc, Rm, Re)의 양단과 측정단자(110)의 사이에는 기준저항 측정배선이 구비될 수 있다.In relation to the connection wiring, a reference resistance measurement wiring may be provided between both ends of the reference resistors Rc, Rm, and Re and the measurement terminal 110.
여기서, 기준저항 측정배선에는 기전력을 측정하기 위한 연결배선과 온도별 저항 값을 측정하기 위하여 전류를 인가하는 연결배선이 포함될 수 있다.Here, the reference resistance measurement wiring may include a connection wiring for measuring electromotive force and a connection wiring for applying a current to measure resistance values for each temperature.
각 연결배선들은 다양한 재질로 이루어질 수 있다. 예를 들어 각 연결배선은 금으로 형성될 수 있으나, 이에 한정되는 것은 아니다.Each connection wiring may be made of various materials. For example, each connection line may be formed of gold, but is not limited thereto.
비아 홀은 다양한 재질의 도전플러그로 채워질 수 있다. 예를 들어, 비아 홀은 금 또는 백금으로 채워질 수 있으나, 이에 한정되는 것은 아니다.Via holes may be filled with conductive plugs of various materials. For example, the via hole may be filled with gold or platinum, but is not limited thereto.
이와 같은 웨이퍼 센서(100)에 온도 불균일이 발생하면, 제백효과(Zeebeck effect)에 의해 각 측정접점 사이에 전위차가 발생한다.When such temperature nonuniformity occurs in the wafer sensor 100, a potential difference occurs between the respective measurement contacts due to the Seebeck effect.
그러므로, 연결배선들이 취합되는 측정단자(110)를 통해 각 측정접점에서의 전위차를 측정하면, 어느 부분에 온도 불균일이 발생하였는지 파악할 수 있다. 즉, 각 열전부(UC)의 전위차를 통해 온도차를 알 수 있으므로, 기준온도에 각 온도차를 더하여 각 지점에서의 온도를 측정할 수 있다.Therefore, when the potential difference at each measurement contact point is measured through the measurement terminal 110 where the connection wires are collected, it is possible to determine where the temperature irregularity occurs. That is, since the temperature difference can be known through the potential difference of each thermoelectric part UC, the temperature at each point can be measured by adding each temperature difference to the reference temperature.
이때, 웨이퍼 센서(100)의 전 면적에 대해 온도 불균일을 세밀하게 파악하기 위해서는 측정접점이 많아야 한다. 그런데, 열전부(UC)와 연결배선이 동일한 평면상에 존재하면, 연결배선의 설치를 위해 열전부(UC)의 설치 공간이 제약 받는다.At this time, in order to closely grasp the temperature nonuniformity with respect to the entire area of the wafer sensor 100, the measurement contact should be large. However, when the thermoelectric unit UC and the connection wiring exist on the same plane, the installation space of the thermoelectric unit UC is restricted for the installation of the connection wiring.
하지만, 본 발명과 같이 열전부와 연결배선을 다른 층에 배치하면, 열전부를 연결배선으로 인한 방해 없이 기판(101)의 전체에 고르게 설치할 수 있게 되어, 전 면적에 걸쳐 온도 균일도를 세밀하게 파악할 수 있다.However, when the thermoelectric part and the connection wiring are arranged in different layers as in the present invention, the thermoelectric part can be evenly installed on the entire substrate 101 without being disturbed by the connection wiring, so that the temperature uniformity can be grasped in detail over the entire area. have.
이제 기준저항을 이용한 교정에 관하여 살펴보기로 한다.Now let's take a look at calibration using reference resistance.
먼저 기준저항의 온도별 저항 값을 측정함으로서, 온도 측정의 기준이 되는 기준온도를 정확하게 알 수 있도록 한다.First, by measuring the resistance value for each temperature of the reference resistance, it is possible to accurately know the reference temperature that is the reference of the temperature measurement.
이를 위하여, 전체적으로 온도가 균일하게 유지되고 있는 항온 챔버 내에 웨이퍼 센서(100)를 올려 놓고, 각 기준저항 Rc, Rm, Re의 양단에 연결된 측정단자를 통해 일정 전류가 각 기준저항에 흐르도록 한다. 그리고, 각 기준저항(Rc, Rm, Re)에 인가되는 전압을 측정하여, 각 기준저항의 저항 값을 계측하고, 온도와 저항 값의 대응 관계를 저장한다.To this end, the wafer sensor 100 is placed in a constant temperature chamber where the temperature is kept uniform throughout, and a constant current flows through each reference resistance through measurement terminals connected to both ends of each of the reference resistors Rc, Rm, and Re. Then, the voltage applied to each of the reference resistors Rc, Rm, and Re is measured, the resistance value of each reference resistor is measured, and the correspondence relationship between the temperature and the resistance value is stored.
이러한 과정을 각 온도에 대해 반복함으로써, 온도와 저항 값의 대응 관계를 획득할 수 있다. 기준저항의 온도별 저항 값은 다양한 형태로 이후 온도 측정에 이용될 수 있다. 예를 들어, 온도와 저항 값의 관계를 데이터베이스화 할 수 있고, 온도와 저항 값의 선형 관계식을 도출할 수도 있다.By repeating this process for each temperature, a corresponding relationship between temperature and resistance value can be obtained. The temperature-specific resistance value of the reference resistor can be used for temperature measurement in various forms. For example, you can database the relationship between temperature and resistance values, and derive a linear relationship between temperature and resistance values.
기준저항의 온도별 저항 값이 실험적으로 확인된 후에는, 실제 온도를 측정할 때, 기준저항의 저항 값 측정을 통해 각 기준저항이 위치한 곳의 온도를 정확히 알 수 있다.After the temperature-specific resistance value of the reference resistance is experimentally confirmed, when the actual temperature is measured, the temperature of each reference resistance is accurately determined by measuring the resistance value of the reference resistance.
열전부(UC)와 관련하여, 실제 회로의 배선은 증착 과정을 통해 구현될 수 있는데, 이 과정에서 오염, 혹은 부차적인 접착층(adhesion layer) 등의 영향으로, 열전부(UC)의 제백계수 값이 변할 수 있다.In relation to the thermoelectric element UC, the wiring of the actual circuit may be implemented through a deposition process, in which the Seebeck coefficient value of the thermoelectric element UC may be influenced by contamination or secondary adhesion layer. This can change.
그러므로, 기준온도를 측정하기 위한 교정뿐 아니라 열전부(UC)의 제백계수도 교정이 필요하다.Therefore, not only the calibration for measuring the reference temperature but also the Seebeck coefficient of the thermoelectric part UC are required.
웨이퍼 센서(100)에는 자체 교정(self calibration)을 수행할 수 있도록 각 기준저항(Rc, Rm, Re)과 그 사이에 열전부(UC1, UC2)가 배치되어 있다. 열전부(UC1, UC2)에 인가된 온도 편차와 그로 인해 발생된 열기전력을 이용하여 제백계수를 교정할 수 있다.In the wafer sensor 100, thermocouples UC1 and UC2 are disposed between the respective reference resistors Rc, Rm, and Re so as to perform self calibration. The Seebeck coefficient may be corrected using the temperature deviation applied to the thermoelectric parts UC1 and UC2 and the resulting thermoelectric power.
열전부(UC)의 교정은 다음과 같이 이루어질 수 있다.The calibration of the thermoelectric part UC may be performed as follows.
먼저, 온도 구배를 가지는 히터 위에 기준온도에 대한 교정 절차가 완료된 웨이퍼 센서(100)를 올려 놓고, 각 기준온도와, 열전부 UC1 및 UC2의 양단 기전력을 계측한다.First, the wafer sensor 100 on which the calibration procedure for the reference temperature is completed is placed on a heater having a temperature gradient, and the respective reference temperatures and the electromotive force at both ends of the thermoelectric parts UC1 and UC2 are measured.
이때 열전부 UC1과 UC2의 온도차는 기준온도 교정을 통해 정확하게 알 수 있는 상태이므로, 이 정보와 열전부 UC1 및 UC2의 양단 기전력 정보를 이용하여, 열전부 UC1, UC2의 제백계수를 산출한다.At this time, since the temperature difference between the thermocouples UC1 and UC2 can be accurately known through the reference temperature calibration, the Seebeck coefficients of the thermocouples UC1 and UC2 are calculated using the information and electromotive force information of both ends of the thermocouples UC1 and UC2.
산출된 열전부 UC1 및 UC2의 제백계수를 이용하여, 그 이외의 각 열전부(UC)에 대한 제백계수를 교정하는 방법은 다양하게 구성될 수 있다.By using the calculated Seebeck coefficients of the thermocouples UC1 and UC2, a method of correcting the Seebeck coefficient for each of the other thermocouples UC may be variously configured.
예를 들어, 열전부 UC1과 UC2의 제백계수 값의 평균을 모든 열전부(UC)의 기준 제백계수로 설정할 수 있다.For example, the average of the Seebeck coefficient values of the thermocouples UC1 and UC2 may be set as the reference Seebeck coefficient of all the thermocouples UC.
상기와 같은 과정을 통해 각 열전부(UC)의 제백계수를 교정할 수 있으며, 필요에 따라서는 각 온도별로 제백계수를 교정할 수도 있다.Through the above process, the Seebeck coefficient of each thermoelectric unit UC may be corrected, and if necessary, the Seebeck coefficient may be corrected for each temperature.
이제 웨이퍼 센서(100)의 각 지점에서의 온도는 '기준온도'에 '열전부를 통해 얻어지는 온도차(△t, 상대온도)'를 더하여 산출될 수 있다.Now, the temperature at each point of the wafer sensor 100 can be calculated by adding the temperature difference (Δt, relative temperature) obtained through the thermoelectric part to the 'reference temperature'.
기준온도와 각 열전부의 제백계수 교정을 통하여, 기준온도뿐 아니라 각 열전부(UC)에서의 온도차를 정확하게 알 수 있으므로, 기준온도에 각 온도차를 더하여 획득되는 각 지점의 온도는 그 신뢰성이 높다.Through the calibration of the reference temperature and the Seebeck coefficient of each thermoelectric part, it is possible to accurately know not only the reference temperature but also the temperature difference in each thermoelectric part UC, so that the temperature at each point obtained by adding each temperature difference to the reference temperature is highly reliable.
도 3과 도 5를 참조하여, 본 발명에 따른 웨이퍼 센서(100)를 제조하는 방법의 일 실시예를 설명하기로 한다.3 and 5, an embodiment of a method of manufacturing the wafer sensor 100 according to the present invention will be described.
먼저, 기판(101) 상에 각 측정접점과 측정단자를 연결할 연결배선(103)을 형성한다(S210).First, the connection wiring 103 connecting each measurement contact point and the measurement terminal is formed on the substrate 101 (S210).
이때, 연결배선에 사용할 재질의 금속층을 기판(101)에 형성한 후, 이 금속층을 패터닝하여 각 연결배선(103)을 형성할 수 있다.In this case, a metal layer of a material to be used for connection wiring may be formed on the substrate 101, and then the metal layers may be patterned to form respective connection wirings 103.
연결배선(103)은 다양한 재질로 이루어질 수 있다. 구체적인 예로서 연결배선(103)은 금으로 구성될 수 있지만, 이에 한정되는 것은 아니다.The connection wiring 103 may be made of various materials. As a specific example, the connection wiring 103 may be made of gold, but is not limited thereto.
이제 연결배선(103)의 위에 층간절연층(105)을 형성한다(S220).Now, an interlayer insulating layer 105 is formed on the connection wiring 103 (S220).
그리고, 각 연결배선(103)의 일단이 노출되도록 층간절연층(105)에 비아 홀(107)을 형성하고(S230), 각 비아 홀(107)에 도전플러그를 형성한다(S240).A via hole 107 is formed in the interlayer insulating layer 105 so that one end of each connection wiring 103 is exposed (S230), and a conductive plug is formed in each via hole 107 (S240).
도전플러그는 다양한 재질로 구성될 수 있다. 예를 들어, 도전플러그는 금 또는 백금으로 구성될 수 있지만, 이에 한정되는 것은 아니다.The conductive plug may be made of various materials. For example, the conductive plug may be made of gold or platinum, but is not limited thereto.
그리고, 도전플러그에 각 측정접점이 전기적으로 접속되도록 각 기준저항과 열전부를 형성한다(S250).Then, each reference resistance and the thermoelectric part are formed to electrically connect each measurement contact point to the conductive plug (S250).
즉, 각 측정접점이 단계 S240에서 형성된 각 도전플러그와 접속되도록, 층간절연층(105) 상에 기준저항과 열전부를 형성한다. 그러면, 각 측정접점은 도전플러그를 통해(비아 홀을 관통하여) 해당 연결배선(103)과 연결되며, 또한 연결배선(103)을 통해 자신과 대응되는 측정단자(110)와 전기적으로 연결된다.That is, the reference resistance and the thermoelectric part are formed on the interlayer insulating layer 105 so that each measuring contact is connected to each conductive plug formed in step S240. Then, each measuring contact is connected to the corresponding connection line 103 through the conductive plug (through the via hole), and is also electrically connected to the measurement terminal 110 corresponding to itself through the connection line 103.
단계 S250에서 형성되는 기준저항의 개수와 배치는 다양하게 구성될 수 있다. 구체적인 예로서, 기준저항은 기판의 중심으로부터 에지를 향하여 직선 방향으로 3개가 단속적으로 형성되고, 인접한 두 기준저항의 사이에 열전부가 형성되도록 구성될 수 있다.The number and arrangement of reference resistors formed in step S250 may be variously configured. As a specific example, three reference resistors may be intermittently formed in a linear direction from the center of the substrate toward the edges, and a thermoelectric portion may be formed between two adjacent reference resistors.
또한, 열전부는 열전쌍을 형성하는 2 종류의 도선이 서로 교대로 복수회 반복하여 직렬 연결되도록 구성될 수 있다. 열전부를 구성하는 도선의 재질은 다양하게 구성될 수 있으며, 금(Au)으로 이루어진 도선과 백금(Pt)으로 이루어진 도선을 이용하면, 순금속으로 이루어져 있어 균일한 열전성능을 나타내는 장점이 있다.In addition, the thermocouple may be configured such that two kinds of conductors forming the thermocouple are repeatedly connected in series with each other in turn. The material of the conductive wire constituting the thermoelectric part may be configured in various ways, using a conductive wire made of gold (Au) and a conductive wire made of platinum (Pt) has an advantage of showing uniform thermoelectric performance because it is made of pure metal.
열전쌍을 이루는 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 물리적인 증폭의 필요에 따라 다양하게 구성될 수 있다. 구체적인 예로서, 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 100회 이상 1,000회 이하로 구성될 수 있으나, 이에 제한되는 것은 아니다.The number of alternating repetitions of the two types of wires forming the thermocouple may be variously configured according to the need for physical amplification. As a specific example, the number of times the two types of conductors may be alternately repeated may be configured 100 times or more, but is not limited thereto.
또한, 도 2를 참조하여 설명한 바와 같이, 도선의 접합점들이 존재하는 영역 a1과 a2의 크기(접합점간 최대 거리, d1)는 같은 영역에 속한 모든 접합점의 온도를 같은 것으로 가정할 수 있을 만큼 작은 것이 바람직하다. 또한, 영역 a1과 a2 사이의 거리(d2)는 충분히 이격되는 것이 바람직하다.In addition, as described with reference to FIG. 2, the size of the regions a1 and a2 (the maximum distance between the junctions, d1) in which the junctions of the conductive lines exist is small enough to assume that the temperatures of all junctions belonging to the same region are the same. desirable. Further, the distance d2 between the regions a1 and a2 is preferably sufficiently spaced apart.
구체적인 예로서, 열전쌍을 이루는 도선의 접합점이 모여있는 영역(a1, a2)의 크기는 100μm 이하로 구성될 수 있고, 영역 a1과 a2 사이의 거리(d2)는 1cm 이상으로 구성될 수 있지만, 이에 한정되는 것은 아니다.As a specific example, the size of the regions a1 and a2 where the junctions of the conductive wires constituting the thermocouple are collected may be 100 μm or less, and the distance d2 between the regions a1 and a2 may be 1 cm or more. It is not limited.
상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다.While the invention has been shown and described with respect to certain preferred embodiments thereof, it will be understood that the invention may be modified and modified in various ways without departing from the spirit or scope of the invention provided by the following claims. It will be apparent to one of ordinary skill in the art that it can.
[부호의 설명][Description of the code]
100: 웨이퍼 센서 101: 기판100: wafer sensor 101: substrate
102: 배선부 105: 층간절연층102: wiring portion 105: interlayer insulating layer
107: 비아 홀 110: 측정단자107: via hole 110: measuring terminal
a1, a2: 접합점들이 모인 영역a1, a2: area where the junction points are collected
Rc, Rm, Re: 기준저항 p1, p2, 103: 연결배선Rc, Rm, Re: reference resistance p1, p2, 103: connection wiring
V1~V6: 측정접점 UC, UC1, UC2: 열전부V1 to V6: Measuring contact UC, UC1, UC2: Thermoelectric

Claims (15)

  1. 웨이퍼 상에 형성된 복수 개의 기준저항;A plurality of reference resistors formed on the wafer;
    각 기준저항의 사이에 형성되는 열전부와, 상기 기준저항의 일단으로부터 직렬로 하나 이상 연결되는 열전부;A thermocouple formed between each reference resistor and at least one thermocouple connected in series from one end of the reference resistor;
    각 측정접점(기준저항과 열전부의 양단)과 측정단자 사이를 전기적으로 연결하는 연결배선들로 이루어지는 배선부; 및A wiring section comprising connection wirings electrically connecting each measurement contact point (both reference resistance and the thermoelectric section) and the measurement terminal; And
    상기 열전부가 형성된 층과 상기 배선부가 형성된 층의 사이에 배치되는 층간절연층을 포함하고,An interlayer insulating layer disposed between the layer in which the thermoelectric part is formed and the layer in which the wiring part is formed;
    상기 기준저항과 열전부는 동일한 층에 형성되며,The reference resistance and the thermoelectric part are formed in the same layer,
    상기 각 측정접점과 그에 대응하는 연결배선은 상기 층간절연층을 관통하여 형성되는 비아 홀을 통해 서로 연결되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.And each of the measurement contacts and corresponding connection wirings are connected to each other through a via hole formed through the interlayer insulating layer.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 기준저항은 상기 웨이퍼의 중심에서 에지를 향하여 직선 방향으로 3개가 단속적으로 형성되고, 인접한 두 기준저항의 사이에 상기 열전부가 형성되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.And three reference resistors are intermittently formed in a linear direction from the center of the wafer toward the edges, and the thermoelectric portion is formed between two adjacent reference resistors.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 열전부는 열전쌍(thermocouple)을 형성하는 2 종류의 도선이 서로 교대로 복수회 반복하여 직렬 연결되는 형태로 구성되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.The thermoelectric part is a multi-layer resistance-thermoelectric temperature measuring wafer sensor, characterized in that the two types of conductive wires forming a thermocouple (thermocouple) is configured in a form that is alternately repeated in series a plurality of times.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 2 종류의 도선은 금으로 이루어진 도선과 백금으로 이루어진 도선인 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.And the two kinds of wires are gold wires and platinum wires.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 100회 이상 1,000회 이하인 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.A multi-layer resistance-thermoelectric temperature measurement wafer sensor, characterized in that the number of turns of the two kinds of conductors alternately repeats 100 to 1,000 times.
  6. 제 3 항에 있어서,The method of claim 3, wherein
    상기 열전부는 열전쌍을 이루는 각 도선이 두 영역 사이에서 지그재그 형태로 형성되고, 상기 각 영역의 크기는 100μm 이하이며, 상기 두 영역 사이의 거리는 1cm 이상인 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.The thermocouple is a multi-layer resistance-thermoelectric thermocouple wafer sensor, characterized in that each conductive wire constituting the thermocouple is formed in a zigzag form between two regions, the size of each region is 100 μm or less, and the distance between the two regions is 1 cm or more. .
  7. 제 1 항에 있어서,The method of claim 1,
    상기 비아 홀은 금 또는 백금으로 채워지는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.And the via hole is filled with gold or platinum.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 연결배선은 금으로 구성되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.The connection wiring is a multilayer resistance-temperature thermoelectric wafer sensor, characterized in that consisting of gold.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 기준저항의 양단과 상기 측정단자 사이에 연결되는 기준저항 측정배선을 더 포함하는 다층 저항-열전식 온도측정 웨이퍼 센서.And a reference resistance measurement interconnection connected between both ends of the reference resistance and the measurement terminal.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 기준저항과 열전부가 형성된 층은 상기 배선부가 형성된 층보다 위에 배치되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서.And the layer in which the reference resistor and the thermoelectric part are formed is disposed above the layer in which the wiring part is formed.
  11. 제1항에 기재된 다층 저항-열전식 온도측정 웨이퍼 센서를 제조하는 방법으로서,A method of manufacturing the multilayer resistance-thermoelectric thermometric wafer sensor according to claim 1,
    웨이퍼 상에 각 측정접점과 측정단자를 연결할 연결배선을 형성하는 단계;Forming connection wirings connecting the respective measurement contacts and the measurement terminals on the wafer;
    상기 연결배선 위에 층간절연층을 형성하는 단계;Forming an interlayer insulating layer on the connection wiring;
    상기 각 연결배선의 일단이 노출되도록 상기 층간절연층에 비아 홀을 형성하는 단계;Forming a via hole in the interlayer insulating layer so that one end of each connection line is exposed;
    상기 각 비아 홀에 도전플러그를 형성하는 단계; 및Forming a conductive plug in each of the via holes; And
    상기 도전플러그에 상기 각 측정접점이 전기적으로 접속되도록 각 기준저항과 열전부를 형성하는 단계를 포함하고,Forming each reference resistance and a thermoelectric part to electrically connect each measurement contact point to the conductive plug,
    상기 기준저항은 상기 웨이퍼의 중심에서 에지를 향하여 직선 방향으로 3개가 단속적으로 형성되고, 인접한 두 기준저항의 사이에 상기 열전부가 형성되는, 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법.And three reference resistors are intermittently formed in a linear direction from the center of the wafer toward the edges, and the thermoelectric portion is formed between two adjacent reference resistors.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 열전부는 열전쌍(thermocouple)을 형성하는 2 종류의 도선이 서로 교대로 복수회 반복하여 직렬 연결되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법.The thermoelectric part is a method for manufacturing a multi-layer resistance-thermoelectric temperature measurement wafer sensor, characterized in that the two kinds of conductors forming a thermocouple are connected in series repeatedly alternately a plurality of times.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 2 종류의 도선이 교대로 반복하여 나타나는 횟수는 100회 이상 1,000회 이하인 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법.A method for manufacturing a multilayer resistance-thermoelectric temperature measurement wafer sensor, characterized in that the number of times the two kinds of conductors are alternately repeated is 100 or more and 1,000 or less.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 열전부는 열전쌍을 이루는 각 도선이 두 영역 사이에서 지그재그 형태로 형성되고, 상기 각 영역의 크기는 100μm 이하이며,The thermoelectric part is formed in a zigzag form between each of the conductive wires constituting the thermocouple, the size of each region is less than 100μm,
    상기 두 영역 사이의 거리는 1cm 이상인 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법.And the distance between the two regions is 1 cm or more.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 연결배선은 금으로 구성되는 것을 특징으로 하는 다층 저항-열전식 온도측정 웨이퍼 센서 제조 방법.The connecting wiring is made of a gold multi-layer resistance-thermoelectric temperature measuring wafer sensor manufacturing method characterized in that.
PCT/KR2019/001240 2018-08-22 2019-01-30 Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for manufacturing same WO2020040381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0098176 2018-08-22
KR1020180098176A KR102119757B1 (en) 2018-08-22 2018-08-22 Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same

Publications (1)

Publication Number Publication Date
WO2020040381A1 true WO2020040381A1 (en) 2020-02-27

Family

ID=69592917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001240 WO2020040381A1 (en) 2018-08-22 2019-01-30 Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102119757B1 (en)
WO (1) WO2020040381A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896963B2 (en) * 2006-03-16 2012-03-14 東京エレクトロン株式会社 Wafer-shaped measuring apparatus and manufacturing method thereof
US20130029433A1 (en) * 2007-02-23 2013-01-31 Kla-Tencor Corporation Process condition measuring device
US20150177069A1 (en) * 2013-12-22 2015-06-25 Melexis Technologies N.V. Infrared thermal sensor with good snr
KR101746560B1 (en) * 2017-02-24 2017-06-14 한국표준과학연구원 Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same
KR101825461B1 (en) * 2016-10-20 2018-02-06 한국표준과학연구원 On-wafer power supply using thermoelectric effect and method for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896963B2 (en) * 2006-03-16 2012-03-14 東京エレクトロン株式会社 Wafer-shaped measuring apparatus and manufacturing method thereof
US20130029433A1 (en) * 2007-02-23 2013-01-31 Kla-Tencor Corporation Process condition measuring device
US20150177069A1 (en) * 2013-12-22 2015-06-25 Melexis Technologies N.V. Infrared thermal sensor with good snr
KR101825461B1 (en) * 2016-10-20 2018-02-06 한국표준과학연구원 On-wafer power supply using thermoelectric effect and method for fabricating the same
KR101746560B1 (en) * 2017-02-24 2017-06-14 한국표준과학연구원 Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same

Also Published As

Publication number Publication date
KR102119757B1 (en) 2020-06-08
KR20200022263A (en) 2020-03-03

Similar Documents

Publication Publication Date Title
US7175343B2 (en) Multi-element thermocouple
RU2543690C2 (en) Electric plug-in connector for heat element and method of its manufacturing
US7648269B2 (en) Temperature measuring device for semiconductor manufacturing apparatus, method of measuring temperature in semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus
US20080006619A1 (en) Zone control heater plate for track lithography systems
US7803022B2 (en) Thermocouple connector for joining thermocouple wires
KR102303306B1 (en) holding device
WO2017200267A1 (en) Temperature measurement wafer sensor and method for manufacturing same
WO2020040381A1 (en) Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for manufacturing same
EP0459054B1 (en) Isothermal termination block having a multi-layer thermal conductor
KR101746560B1 (en) Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same
WO2020218690A1 (en) Probe system for low-temperature high-precision heat transport measurement and measurement device including same
CN111736052B (en) Probe card, wafer detection equipment with probe card and bare chip test process using probe card
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
JPH11118616A (en) Temperature sensor, semiconductor wafer with temperature measuring function, and method of forming thermocouple sensor
WO2019103328A1 (en) Vertically layered hybrid temperature and humidity sensor and manufacturing method therefor
KR101820675B1 (en) Multi-layered resistive type multi-point temperature measuring wafer sensor and method for fabricating the same
KR101825461B1 (en) On-wafer power supply using thermoelectric effect and method for fabricating the same
WO2018199601A1 (en) Sensor-mounted wafer
JPH1090076A (en) Surface temperature distribution measuring apparatus
WO2018117655A1 (en) Pressure sensor and manufacturing method therefor
WO2023140542A1 (en) Temperature measurement device
JP3687240B2 (en) Thermocouple conductor coating structure
KR101746558B1 (en) Multi-layered resistive type multi-point temperature measuring wafer sensor and method for fabricating the same
WO2024117545A1 (en) Probe sheet having multi-stage contact tip and method of manufacturing same
WO2022114762A1 (en) Multichannel thermocouple measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851146

Country of ref document: EP

Kind code of ref document: A1