WO2015174698A1 - Heating value measurement apparatus and heating value measurement method - Google Patents

Heating value measurement apparatus and heating value measurement method Download PDF

Info

Publication number
WO2015174698A1
WO2015174698A1 PCT/KR2015/004668 KR2015004668W WO2015174698A1 WO 2015174698 A1 WO2015174698 A1 WO 2015174698A1 KR 2015004668 W KR2015004668 W KR 2015004668W WO 2015174698 A1 WO2015174698 A1 WO 2015174698A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric element
target heating
heating element
temperature
calorific value
Prior art date
Application number
PCT/KR2015/004668
Other languages
French (fr)
Korean (ko)
Inventor
윤병동
김태진
김현재
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2015174698A1 publication Critical patent/WO2015174698A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/10Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature between an inlet and an outlet point, combined with measurement of rate of flow of the medium if such, by integration during a certain time-interval
    • G01K17/12Indicating product of flow and temperature difference directly or temperature
    • G01K17/16Indicating product of flow and temperature difference directly or temperature using electrical or magnetic means for both measurements

Definitions

  • the present invention relates to a calorific value measuring device and a calorific value measuring method of an object generating heat, and more particularly, to a calorific value measuring device and a calorific value measuring method of a heating element having a small and medium size, such as a lithium ion battery or a semiconductor chip for an electric vehicle. .
  • an object of the present invention is to provide an apparatus for measuring a calorific value of a heating element having a small and medium size and a calorific value measuring method using advantages such as fast response characteristics and thermoelectric reliability of a thermoelectric element. It is done.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • the measurement unit having at least one thermoelectric element installed on the target heating element to enable thermal conductivity; An insulating case surrounding a region excluding one side of the target heating element in contact with the thermoelectric element such that the heat generated from the target heating element is transferred to the outside through the thermoelectric element; And a control calculator configured to apply a predetermined power to the thermoelectric element to lower the temperature of the thermoelectric element to control the temperature of the target heating element to a predetermined temperature condition, and calculate the total amount of power used for temperature control of the target heating element. It may include.
  • thermoelectric element disposed to be in direct contact with the thermoelectric element such that heat generated from the target heating element is transferred through the thermoelectric element.
  • the calorific value of the target heating element is calculated by the following equation 1 in the control operation unit, calorific value measuring apparatus.
  • the Q pump is the calorific value of the target heating element
  • k 1 , k 2 , k 3 is the model coefficient
  • I is the current consumed by the thermoelectric element
  • T cool is the thermoelectric element and Contact surface temperature between the heat transfer part
  • T hot is the contact surface temperature between the thermoelectric element and the target heating element
  • thermoelectric elements may be disposed in contact with each other without being spaced apart from each other.
  • the heat transfer part may be disposed to be in direct contact with the thermoelectric element, and may include a heat dissipation structure including at least one of a heat pad, a heat grease, and a heat sink.
  • the heat transfer part may be further disposed on the heat dissipation structure and further include a cooling device including at least one of a cooling fin or a cooling fan.
  • the heat transfer part may be disposed to be in direct contact with the thermoelectric element, and may include a cooling device including at least one of a cooling pin or a cooling fan.
  • the target heating element may include one of structures that may be in contact with the thermoelectric element to enable thermal conductivity.
  • the calorific value measuring method comprises the steps of preparing the target heating element in the calorific value measuring device; Generating heat from the target heating element to change the temperature of the target heating element; Transferring heat generated from the target heating element to the heat transfer part via the thermoelectric element; Monitoring temperature of the thermoelectric element in the measurement unit and transmitting temperature data to the control operation unit; And calculating, by the control operator, power to be applied to the thermoelectric element to control the temperature of the target heating element to a predetermined temperature condition, applying power to the thermoelectric element through a power supply, and measuring the total amount of power applied. And calculating the amount of heat generated by the target heating element.
  • a calorific value measuring device and a calorific value measuring method.
  • the calorific value of lithium ion batteries and semiconductor chips for electric vehicles can be measured more accurately and quickly by using the characteristic formula of thermoelectric elements.
  • FIG. 1 is a process flowchart schematically illustrating a calorific value measuring method using a calorific value measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating a configuration of a calorific value measuring device according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically showing a calorific value measuring device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a calorific value measuring device according to another embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing the components of the calorific value measuring device according to an embodiment of the present invention.
  • FIG. 6 is a perspective view schematically illustrating a calorific value measuring apparatus incorporating components of the calorific value measuring apparatus of FIG. 5.
  • FIG. 7 is a photograph showing a calorific value measuring apparatus according to an embodiment of the present invention.
  • 8A to 8C are diagrams showing a calorific value measurement data result according to an experimental example of the present invention.
  • FIG. 1 is a process flowchart schematically illustrating a calorific value measuring method using a calorific value measuring apparatus according to an embodiment of the present invention.
  • the calorific value measuring method is as follows. Preparing the target heating element in the calorific value measuring device (S10), the step of generating heat in the target heating element to change the temperature of the target heating element (S20), the heat generated from the target heating element is transferred to the heat transfer unit through the thermoelectric element. Step (S30), the measuring unit monitors the temperature of the thermoelectric element, and transmitting the temperature data of the thermoelectric element to the control operation unit (S40) and the control operation unit calculates the power to be applied to the thermoelectric element and then the power to the thermoelectric element It may include the step of calculating the amount of heat of the target heating element by applying (S50).
  • FIG. 2 is a configuration diagram illustrating a configuration of a calorific value measuring device according to an embodiment of the present invention.
  • the calorific value measuring device 1 may be largely comprised of the measuring unit 10 and the control operation unit 20.
  • the temperature of the target heating element 12, the thermoelectric element 14 and the thermoelectric element 14 in direct contact with the target heating element 12, to which the heat generation amount should be measured may be monitored. It may include a heat conduction unit 15 to prevent overheating of the temperature sensor 18 and the thermoelectric element 14 and to improve the thermal conductivity.
  • the temperature sensor 18 may be installed on any one of the upper or lower portion of the thermoelectric element, and may be installed at a position capable of temperature sensing or may be installed at both the upper and lower portions according to the design.
  • the control operation unit 20 controls the power consumption and temperature consumed by the control unit 22 and the thermoelectric element 14 to control the power supply to be supplied to the thermoelectric element 14 based on the measured temperature data of the thermoelectric element 14.
  • the calculation unit 24 for calculating the amount of heat generated by the target heating element 12, the DAQ module 26 and the thermoelectric element 14 for storing or processing the temperature data of the thermoelectric element 14 measured by the temperature sensor 18 It may include a power supply 28 for supplying power.
  • the calorific value measuring method by the configuration of the calorific value measuring device 1 shown in FIG. 2 will be described in detail as follows.
  • the target heating element 12 is positioned in the measuring unit 10 of the calorific value measuring device 1.
  • the target heating element 12 may include one of structures that may be in thermal contact with the thermoelectric element, and may include, for example, one of a lithium ion battery or a semiconductor chip for an electric vehicle.
  • thermoelectric element 14 When the target heating element 12 starts to generate heat in the sealed measuring unit 10, heat may be conducted to the thermoelectric element 14 provided with thermal conductivity in the target heating element 12. The heat may increase the temperature of the lower surface of the thermoelectric element 14, and the upper surface of the thermoelectric element 14 may be relatively low. In order to prevent the thermoelectric element 14 from being overheated, the thermoelectric element 15 may be disposed to be in contact with the thermoelectric element 15. The thermal conductivity of the thermoelectric element 14 may be increased to detect a temperature change more quickly, and the amount of heat generated by the target heating element 12. Helps to compute
  • the temperature sensor 18 may monitor the temperature of the upper or lower portion of the thermoelectric element 14.
  • the temperature sensor 18 may use resistance temperature detectors, for example.
  • Resistive temperature sensors are sensors used to measure temperature with the resistance of a device, and most resistive temperature sensors are constructed with a ceramic or glass core. The resistive element is generally very unstable, so cover it with a cover to protect it.
  • the resistive temperature sensor is relatively accurate compared to other temperature sensors, has excellent stability and repeatability, and is not affected by electrical noise, making it suitable for use in places requiring precise temperature measurement.
  • Temperature data of the thermoelectric element 14 measured by the temperature sensor 18 is stored and processed in the DAQ module 26.
  • the temperature data accumulated in the DAQ module 26 is transferred to the control unit 22 and the calculation unit 24 to help the process proceed.
  • the calculation unit 24 calculates the amount of power to be applied to the thermoelectric element 14 based on the temperature data transmitted to the controller 22.
  • the controller 22 may apply power to the thermoelectric element 14 through the power supply device 28 by the calculated amount of power.
  • the temperature of the thermoelectric element 14 may be lowered by the applied power, and heat may move according to the amount of power consumed. Therefore, the constant temperature state of the target heating element 12 may be maintained, and heat generated continuously from the target heating element 12 may be transferred to the outside along the thermoelectric element 14.
  • the calculation unit 24 may calculate the total amount of power consumed by the thermoelectric element 14 to calculate the amount of heat generated by the target heating element 12. By repeating this series of steps several times, the calorific value of the target heating element 12 can be accurately measured.
  • the amount of heat generated by the target heating element 12 calculated by the calculation unit 24 may be calculated by Equation 1 below.
  • Q pump is the calorific value of the target heating element 12
  • k 1 , k 2 , k 3 is the model coefficient
  • I is the current consumed by the thermoelectric element 14
  • T cool is the thermoelectric element 14.
  • I is the temperature of the contact surface between the heat conduction portion 15, and T hot is the temperature of the contact surface of the thermoelectric element 14 and the target heating element 12
  • Equation 1 is a heating formula of the thermoelectric element 14.
  • Equation 1 is a value representing cooling performance of the thermoelectric element 14, and a second term k on the right side.
  • the value represents the self-heating of the thermoelectric element 14, and finally, in the case of the third term k 3 (T cool -T hot ) on the right side, it is a value due to natural convection.
  • the target element is used by using the current value consumed when the thermoelectric element 14 constantly controls the temperature of the target heating element 12.
  • the calorific value of the heating element 12 can be calculated inversely. The method of obtaining the model coefficient will be described later with reference to FIGS. 8A to 8C.
  • FIG 3 is a cross-sectional view schematically showing a calorific value measuring device according to an embodiment of the present invention.
  • the calorific value measuring apparatus may include the target heating element 12 inside the heat insulating structure 34.
  • the thermoelectric element 14 may be disposed on the target heating element 12 to enable thermal conduction, and a temperature sensor 18 may be formed between the target heating element 12 and the thermoelectric element 14.
  • the heat conductive part 15 may be formed on the thermoelectric element 14, and the temperature sensor 18 may be formed between the thermoelectric element 14 and the heat conductive part 15.
  • the heat conduction unit 15 may be largely classified into a cooling device 36 or a heat dissipation structure.
  • the heat dissipation structure may include, for example, at least one of a thermal pad, a thermal grease, and a heat sink.
  • the cooling device 36 may include at least one of a cooling pin or a cooling fan.
  • the heat conduction unit 15 may include one of a cooling device or a heat dissipation structure, but by connecting a plurality of the cooling devices or the heat dissipation structure, the thermal conductivity may be further improved to cool the thermo element 14 more rapidly.
  • thermoelectric element 14 having at least one of a thermal pad, a thermal grease, and a heat sink on the thermoelectric element 14 is disposed to be in direct contact or a thermoelectric element (
  • the cooling device having at least one of a cooling fin or a cooling fan may be arranged to be in direct contact therewith.
  • the heat dissipation structure is disposed on the thermoelectric element 14 to be in direct contact, and may further include a cooling device including at least one of a cooling pin or a cooling fan. In all three cases, the thermoelectric element 14 may be prevented from being excessively overheated and damaged.
  • the thermal conductivity of the calorific value measuring device is further improved to further control the temperature of the thermoelectric element 14. It can be done quickly.
  • the heat conduction portion 15 functions to control the region between the target heating element 12 and the heat conduction portion 15 at an appropriate temperature. Since the inside of the measuring unit 10 is not overheated by the heat conducting unit 15, it helps to measure the heat generation amount with high accuracy from the characteristic formula of the thermoelectric element 14.
  • the thermally conductive portion 15 may operate only when the target heating element 12 or the thermal element 14 is overheated at a predetermined temperature or more. On the contrary, when the thermal conductive portion 15 is always operated, the target heating element 12 may operate. The temperature of the target heating element 12 can be lowered before calculating the calorific value of c). In this case, the calorific value of the target heating element 12 may be compared by correcting the relative value.
  • FIG. 4 is a cross-sectional view schematically showing a calorific value measuring device according to another embodiment of the present invention.
  • the target heating element 12 may be positioned at the center of the calorific value measuring device 1.
  • the thermoelectric element 14 may directly contact the upper and lower surfaces of the target heating element 12. Heat may be blocked by the heat insulating case 34 in all regions other than the region in which the thermoelectric element is in contact so that all heat generated from the target heating element 12 is transferred through the thermoelectric element 14.
  • the heat conduction portion is disposed on the thermoelectric element 14 to be in direct contact with each other, thereby further improving the thermal conductivity transferred from the thermoelectric element.
  • a temperature sensor 18 may be formed between the target heating element 12 and the thermoelectric element 14, and a cable may be formed to apply electric power to the thermoelectric element 14.
  • a temperature sensor 18 may be formed between the target heating element 12 and the thermoelectric element 14, and a cable may be formed to apply electric power to the thermoelectric element 14.
  • heat generated in the target heating element 12 may be transferred to the outside through the thermoelectric element 14 in the direction of the arrow of Q.
  • temperature data is transferred to the DAQ module 26, and the temperature is transmitted from the DAQ module 26 to the controller 22 and the calculator 24, respectively. Data is passed.
  • the controller 22 may apply power to the thermoelectric element 14 through the power supply device 28.
  • the temperature of the thermoelectric element 14 is lowered by the power applied in this way, and helps to control the temperature of the target heating element 12 to a predetermined temperature condition.
  • the total amount of power consumed by the element 14 may be measured to calculate the amount of heat generated by the target heating element 12.
  • FIG. 5 is a perspective view schematically showing the components of the calorific value measuring device according to an embodiment of the present invention.
  • FIG. 6 is a perspective view schematically illustrating a calorific value measuring apparatus incorporating components of the calorific value measuring apparatus of FIG. 5.
  • the components of the calorific value measuring device 1 are as follows. First, a frame 30 capable of supporting the calorific value measuring device may be formed at a lower end thereof. Insulator 32 may be assembled onto the frame. The insulator 32 may serve as a secondary protection function of the heat insulation case for the purpose of blocking heat transferred from the calorific value measuring device.
  • the heat insulation case 34 may be coupled to the insulator 32.
  • the heat insulation case 34 can use Teflon, for example.
  • the structure of the heat insulation case 34 is a structure which surrounds at least one part of the target heat generating body 12. This is because the heat is transferred only to the target heating element 12 and the thermoelectric element 14 provided with thermal conductivity, so that all of the remaining regions except the region in which the thermoelectric element 14 is in contact with each other are insulated by the insulating case 34. Can be blocked.
  • the target heating element 12 may be positioned inside the heat insulation case 34, and at least one thermoelectric element 14 may be disposed to be in contact with each other without being spaced apart from each other on the upper portion of the target heating element 12.
  • the thermoelectric elements 14 may be disposed in contact with each other without being spaced apart from the heat dissipation structure 16.
  • the cooling device 36 may be disposed on the heat dissipation structure 16 to improve the cooling performance.
  • the measurement unit 10 including the target heating element 12 and the thermoelectric element 14 as a schematic diagram of the calorific value measuring apparatus 10 in which the above-described components are all combined is sealed invisible from the outside. You can check it.
  • FIG. 7 is a photograph showing a calorific value measuring apparatus according to an embodiment of the present invention.
  • an insulation case 34 is disposed at a lower end thereof, and a frame 30 is formed at an edge of the insulation case 34.
  • the calorific value measuring apparatus 1 in which the cooling device 36 is formed in the upper part of the heat insulation case 34 can be seen.
  • the battery is arranged inside the calorific value measuring device 1.
  • the PID controller is used to control the temperature of the thermoelectric element 14.
  • Equation 1 the difference between the current and the temperature consumed by the battery is measured, and k1, k2, and k3 model coefficients are experimentally obtained using 10 reference calorific values.
  • the calculated power factor is compared with the estimated amount of heat consumed by the actual thermoelectric element.
  • the temperature of the battery can be constantly controlled using the thermoelectric element 14.
  • the amount of power consumed for cooling the thermoelectric element 14 may be calculated to measure the calorific value of the battery.
  • Equation 1 As shown in Table 1, by measuring the current consumed in the thermoelectric element 14 on the basis of the reference calorific value and calculating the temperature deviation, the k1, k2, k3 model coefficients can be obtained experimentally.
  • the R-square value is 0.9996 and high reliability.
  • the mean square root deviation (RMSE) value is 0.0359, indicating that the error is also low.
  • 8A to 8C are diagrams showing a calorific value measurement data result according to an experimental example of the present invention.
  • FIG. 8A to 8C are graphs comparing the values of calorific values estimated based on experiments with the result of measuring the calorific value of the battery after the model coefficients were substituted into Equation 1;
  • FIG. 8A illustrates the calorific value according to time change, and it can be seen that the mean square root deviation value is 0.0714W, and the experimental value and the estimated value are almost identical.
  • FIG. 8B illustrates an increase in current over time. Compared with the data value of FIG. 8A, the current value consumed by the thermoelectric element is the same in the same time range to maintain a constant temperature of the battery as the heat generation amount increases. It can be seen that the increase.
  • FIG. 8C illustrates the temperature deviation according to the time change, and as shown in FIGS. 8A and 8B, the temperature deviation may increase in the same time range.
  • the calorific value measuring apparatus 1 using the thermoelectric element can be manufactured. Since the thermoelectric element can perform both cooling and heating, the structure thereof can be greatly simplified as compared with a conventional calorific value measuring device.
  • the formula for calculating the calorific value of the target heating element 12 is a characteristic formula of the thermoelectric element 14 used to keep the temperature of the target heating element 12 constant, regardless of whether the equipment actually manufactured or changed, that is, The process of calculating the calorific value of the target heating element 12 by replacing with Equation 1 can be greatly simplified.
  • the thermoelectric element 14 has a short reaction rate of a few ms compared to the conventional cooling and heating apparatus.
  • the calorific value measuring device 1 manufactured by using the characteristics of the thermoelectric element 14 may measure the calorific value of the target heating element 12 with a shorter time unit and higher accuracy than the conventional apparatus.
  • the equipments developed by the present invention may include all the heating elements that can be directly in contact with the thermoelectric element or the conductor, that is, relatively small or small heating devices, that is, what kind of thermal characteristics of the target heating elements described above It is applicable to all fields that need to be investigated and researched.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The present invention provides a heating value measurement apparatus comprising: a measurement unit including at least one thermoelement, the measurement unit being installed on a heat generating element so as to be thermally conductible; an insulating case which is configured to enclose a region, except one side of the heat generating element that is in contact with the thermoelement, so that the heat generated from the heat generating element can be completely transmitted to the outside after passing through the thermoelement; and a control calculation unit which controls the temperature of the heat generating element to the preset temperature conditions by applying a predetermined amount of power to the thermoelement and lowering the temperature of the thermoelement, and which calculates the total amount of power used in the temperature control of the heat generating element. Provided is also a heating value measurement method comprising: a step in which the heat generating element is prepared in the heating value measurement apparatus; a step in which heat is generated in the heat generating element, resulting in a temperature change of the heat generating element; a step in which the heat generated from the heat generating element is transmitted to a heat transmission unit after passing through the thermoelement; a step in which the measurement unit monitors the temperature of the thermoelement and then transmits temperature data to the control calculation unit; and a step in which the control calculation unit calculates power to be applied to the thermoelement in order to control the temperature of the heat generating element to the preset temperature conditions, and calculates a heating value of the heat generating element by applying power to the thermoelement through a power supply device and then measuring the total amount of applied power.

Description

발열량 측정 장치 및 발열량 측정 방법Calorific value measuring device and calorific value measuring method
본 발명은 열을 발생하는 대상체의 발열량 측정 장치 및 발열량 측정 방법에 관한 것으로서, 더 상세하게는 전기 자동차용 리튬이온 배터리 또는 반도체 칩 등 중소형 크기를 갖는 발열체의 발열량 측정 장치 및 발열량 측정 방법에 관한 것이다.The present invention relates to a calorific value measuring device and a calorific value measuring method of an object generating heat, and more particularly, to a calorific value measuring device and a calorific value measuring method of a heating element having a small and medium size, such as a lithium ion battery or a semiconductor chip for an electric vehicle. .
전기 자동차용 리튬이온 배터리, LED 및 반도체 소자를 이용한 조명기기, 모바일 기기, 컴퓨터의 고성능화, 고집적화에 따라 기기 내에서 발생하는 열로 인해 부품 및 기기의 온도가 상승하고 이로 인해 기기의 기능 저하, 신뢰성 저하, 수명 단축 등의 문제를 발생시킨다.Due to the high performance and high integration of lighting devices, mobile devices, and computers using lithium-ion batteries, LEDs and semiconductor devices for electric vehicles, the temperature of components and devices rises due to heat generated in the devices, resulting in deterioration of the functions and reliability of the devices. Problems, such as shortening the lifespan.
정해진 면적 또는 공간 내에서 열 방출을 극대화시키기 위한 여러 노력들의 일환으로 우수한 발열 소재 개발 및 기구 설계에 노력을 기울이고 있다. 따라서, 발열 소재 및 기기들의 발열 특성을 평가하는 것은 산업적으로 매우 중요함에도 불구하고, 현재 발열특성을 효율적으로 평가할 수 있는 측정 방법 및 장치가 부족한 상황이다.As part of efforts to maximize heat dissipation within a given area or space, efforts are being made to develop superior heating materials and design devices. Therefore, although it is very important industrially to evaluate the heating characteristics of the heating material and the device, there is a lack of a measuring method and apparatus capable of efficiently evaluating the heating characteristics at present.
동일한 발열 소재 또는 발열 패키지라 하더라도 사용하는 측정 장치와 측정 조건에 따라 매우 상반된 특성을 나타낸다. 현재, 발열 특성을 평가하는 방법은 크게 소재의 열전도도(thermal conductivity)를 측정하는 방법과, LED(light emitting diode) 또는 반도체 패키지에서 각 접합 계면에서의 열 저항을 측정하는 방법(thermal resistance) 등이 있다. 실제로 산업현장 또는 연구실에서 발열소재 및 각종 패키지의 발열 능력을 평가함에 있어서, 측정 장치와 측정 조건에 따라 상이한 데이터를 나타내기 때문에 그 얻어진 결과에 대한 신뢰성을 평가하기가 어렵다.Even the same heat generating material or heat generating package shows very opposite characteristics depending on the measuring device used and the measuring conditions. Currently, the method of evaluating the heating characteristics is largely measured by measuring the thermal conductivity of the material, and by measuring the thermal resistance at each junction interface in a light emitting diode (LED) or a semiconductor package (thermal resistance). There is this. In practice, in evaluating the heating ability of heating materials and various packages in an industrial or laboratory, it is difficult to evaluate the reliability of the results obtained because different data are displayed depending on the measuring device and the measurement conditions.
또한, 기존에 이용되고 있는 발열 측정 장치의 경우, 발열을 측정하기 위해 비교적 긴 시간이 필요하며, 높은 발열량을 측정하기에 적합한 장치가 대부분이다. 따라서, 중소형 또는 짧은 시간 단위로 변하는 발열량을 측정하기에는 적합하지 않다.In addition, in the existing heat generation measuring device, a relatively long time is required to measure heat generation, and most of the devices are suitable for measuring a high heat generation amount. Therefore, it is not suitable for measuring the calorific value which varies in small or medium size or short time units.
본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 열전소자가 갖는 빠른 응답특성 및 열전소자의 신뢰성 등의 장점을 이용하여 중소형 크기를 갖는 발열체의 발열량을 측정하는 장치 및 발열량 측정 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The technical problem of the present invention was conceived in this respect, and an object of the present invention is to provide an apparatus for measuring a calorific value of a heating element having a small and medium size and a calorific value measuring method using advantages such as fast response characteristics and thermoelectric reliability of a thermoelectric element. It is done. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 따르면, 대상 발열체 상에 열전도가 가능하게 설치된 적어도 하나의 열전소자를 구비하는 측정부; 상기 대상 발열체로부터 발생된 열이 상기 열전소자를 거쳐 전부 외부로 전달되도록 상기 열전소자가 접촉된 상기 대상 발열체의 일 측면을 제외한 영역을 감싸는 형태인 단열 케이스; 및 상기 열전소자에 소정의 전력을 인가하여 상기 열전소자의 온도를 낮추어 상기 대상 발열체의 온도를 기설정된 온도조건으로 제어하고, 상기 대상 발열체의 온도 제어에 사용된 총 전력량을 연산하는 제어연산부;를 포함할 수 있다.According to an aspect of the invention, the measurement unit having at least one thermoelectric element installed on the target heating element to enable thermal conductivity; An insulating case surrounding a region excluding one side of the target heating element in contact with the thermoelectric element such that the heat generated from the target heating element is transferred to the outside through the thermoelectric element; And a control calculator configured to apply a predetermined power to the thermoelectric element to lower the temperature of the thermoelectric element to control the temperature of the target heating element to a predetermined temperature condition, and calculate the total amount of power used for temperature control of the target heating element. It may include.
상기 대상 발열체로부터 발생된 열이 상기 열전소자를 거쳐 전달되도록 상기 열전소자와 직접 접촉되도록 배치된 열전달부;를 더 포함할 수 있다.And a heat transfer part disposed to be in direct contact with the thermoelectric element such that heat generated from the target heating element is transferred through the thermoelectric element.
상기 대상 발열체의 발열량은 상기 제어연산부에서 하기 수학식 1에 의하여 연산되는, 발열량 측정 장치.The calorific value of the target heating element is calculated by the following equation 1 in the control operation unit, calorific value measuring apparatus.
[수학식 1][Equation 1]
Figure PCTKR2015004668-appb-I000001
Figure PCTKR2015004668-appb-I000001
(여기에서, 상기 Qpump는 상기 대상 발열체의 발열량이고, 상기 k1, k2, k3는 모델계수이며, 상기 I는 상기 열전소자에 의하여 소모되는 전류이고, 상기 Tcool는 상기 열전소자와 상기 열전달부 사이의 접촉면 온도이고, 상기 Thot는 상기 열전소자와 상기 대상 발열체 사이의 접촉면 온도임)Here, the Q pump is the calorific value of the target heating element, k 1 , k 2 , k 3 is the model coefficient, I is the current consumed by the thermoelectric element, T cool is the thermoelectric element and Contact surface temperature between the heat transfer part, and T hot is the contact surface temperature between the thermoelectric element and the target heating element)
상기 열전소자는 상기 열전달부와 서로 이격되지 않고 서로 맞닿아 배치될 수 있다.The thermoelectric elements may be disposed in contact with each other without being spaced apart from each other.
상기 열전달부는, 상기 열전소자와 직접 접촉되도록 배치되며, 방열패드(thermal pad), 방열그리스(thermal grease) 및 히트싱크(heat sink) 중 적어도 어느 하나를 구비하는, 방열 구조체를 포함할 수 있다.The heat transfer part may be disposed to be in direct contact with the thermoelectric element, and may include a heat dissipation structure including at least one of a heat pad, a heat grease, and a heat sink.
상기 열전달부는, 상기 방열 구조체 상에 배치되며, 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 구비하는, 냉각장치를 더 포함할 수 있다.The heat transfer part may be further disposed on the heat dissipation structure and further include a cooling device including at least one of a cooling fin or a cooling fan.
상기 열전달부는, 상기 열전소자와 직접 접촉되도록 배치되며, 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 구비하는, 냉각장치를 포함할 수 있다.The heat transfer part may be disposed to be in direct contact with the thermoelectric element, and may include a cooling device including at least one of a cooling pin or a cooling fan.
상기 대상 발열체는 상기 열전소자에 열전도가 가능하도록 접촉될 수 있는 구조체 중 하나를 포함할 수 있다.The target heating element may include one of structures that may be in contact with the thermoelectric element to enable thermal conductivity.
본 발명의 또 다른 관점에 따르면, 발열량 측정 방법은 상기 발열량 측정 장치에 상기 대상 발열체를 준비하는 단계; 상기 대상 발열체에서 발열이 발생하여 상기 대상 발열체의 온도가 변화하는 단계; 상기 대상 발열체로부터 발생된 열이 상기 열전소자를 거쳐 상기 열전달부로 전달되는 단계; 상기 측정부에서 상기 열전소자의 온도를 모니터링하여 상기 제어연산부로 온도 데이터를 송신하는 단계; 및 상기 제어연산부에서 상기 대상 발열체의 온도를 기설정된 온도 조건으로 제어하기 위해 상기 열전소자에 인가될 전력을 연산하며, 전력공급장치를 통해 상기 열전소자에 전력을 인가하고, 인가된 총 전력량을 측정하여 상기 대상 발열체의 발열량을 연산하는 단계;를 포함할 수 있다.According to another aspect of the invention, the calorific value measuring method comprises the steps of preparing the target heating element in the calorific value measuring device; Generating heat from the target heating element to change the temperature of the target heating element; Transferring heat generated from the target heating element to the heat transfer part via the thermoelectric element; Monitoring temperature of the thermoelectric element in the measurement unit and transmitting temperature data to the control operation unit; And calculating, by the control operator, power to be applied to the thermoelectric element to control the temperature of the target heating element to a predetermined temperature condition, applying power to the thermoelectric element through a power supply, and measuring the total amount of power applied. And calculating the amount of heat generated by the target heating element.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 발열량 측정 장치 및 발열량 측정 방법을 제공한다. 전기 자동차용 리튬이온 배터리 및 반도체 칩 등의 발열량을 열전소자의 특성공식을 이용하여 보다 정확하고 빠르게 측정할 수 있다.According to an embodiment of the present invention made as described above, there is provided a calorific value measuring device and a calorific value measuring method. The calorific value of lithium ion batteries and semiconductor chips for electric vehicles can be measured more accurately and quickly by using the characteristic formula of thermoelectric elements.
또한, 별도의 구성을 추가할 필요가 없어 구조가 간단하며, 제작 비용이 비교적 저렴한 경제적인 효과도 얻을 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.In addition, there is no need to add a separate configuration, the structure is simple, and the economic effect can be obtained with a relatively low production cost. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 발열량 측정 장치를 이용하여 발열량 측정 방법을 개략적으로 도해하는 공정 순서도이다.1 is a process flowchart schematically illustrating a calorific value measuring method using a calorific value measuring apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 발열량 측정 장치의 구성을 도해하는 구성도이다.2 is a configuration diagram illustrating a configuration of a calorific value measuring device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 발열량 측정 장치를 개략적으로 도시하는 단면도이다.3 is a cross-sectional view schematically showing a calorific value measuring device according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 발열량 측정 장치를 개략적으로 도시하는 단면도이다.4 is a cross-sectional view schematically showing a calorific value measuring device according to another embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 발열량 측정 장치의 구성요소를 개략적으로 도시하는 사시도이다.5 is a perspective view schematically showing the components of the calorific value measuring device according to an embodiment of the present invention.
도 6은 도 5의 발열량 측정 장치의 구성요소를 결합한 발열량 측정 장치를 개략적으로 도시하는 사시도이다.FIG. 6 is a perspective view schematically illustrating a calorific value measuring apparatus incorporating components of the calorific value measuring apparatus of FIG. 5.
도 7은 본 발명의 일 실시예에 따른 발열량 측정 장치를 보여주는 사진이다.7 is a photograph showing a calorific value measuring apparatus according to an embodiment of the present invention.
도 8a 내지 도 8c는 본 발명의 일 실험예에 따른 발열량 측정 데이터 결과를 나타내는 도면이다.8A to 8C are diagrams showing a calorific value measurement data result according to an experimental example of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and the following embodiments are intended to complete the disclosure of the present invention, the scope of the invention to those skilled in the art It is provided to inform you completely. In addition, the components may be exaggerated or reduced in size in the drawings for convenience of description.
도 1은 본 발명의 일 실시예에 따른 발열량 측정 장치를 이용하여 발열량 측정 방법을 개략적으로 도해하는 공정 순서도이다.1 is a process flowchart schematically illustrating a calorific value measuring method using a calorific value measuring apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 의한 발열량 측정 방법은 다음과 같다. 발열량 측정 장치의 내부에 대상 발열체를 준비하는 단계(S10), 대상 발열체에서 발열이 발생하여 대상 발열체의 온도가 변화하는 단계(S20), 대상 발열체로부터 발생된 열이 열전소자를 거쳐 열전달부로 전달되는 단계(S30), 측정부에서 열전소자의 온도를 모니터링하고, 열전소자의 온도 데이터를 제어연산부로 송신하는 단계(S40) 및 제어연산부에서 열전소자에 인가될 전력을 연산한 후 열전소자에 전력을 인가하여 대상 발열체의 발열량을 연산하는 단계(S50)를 포함할 수 있다.Referring to Figure 1, the calorific value measuring method according to an embodiment of the present invention is as follows. Preparing the target heating element in the calorific value measuring device (S10), the step of generating heat in the target heating element to change the temperature of the target heating element (S20), the heat generated from the target heating element is transferred to the heat transfer unit through the thermoelectric element. Step (S30), the measuring unit monitors the temperature of the thermoelectric element, and transmitting the temperature data of the thermoelectric element to the control operation unit (S40) and the control operation unit calculates the power to be applied to the thermoelectric element and then the power to the thermoelectric element It may include the step of calculating the amount of heat of the target heating element by applying (S50).
대상 발열체의 발열량 측정 방법에 대한 각 단계별 상세한 설명은 발열량 측정 장치의 구성을 나타내는 도 2 내지 도 6을 참조하여 후술한다.Detailed description of each step of the calorific value measuring method of the target heating element will be described later with reference to FIGS. 2 to 6 showing the configuration of the calorific value measuring apparatus.
도 2는 본 발명의 일 실시예에 따른 발열량 측정 장치의 구성을 도해하는 구성도이다.2 is a configuration diagram illustrating a configuration of a calorific value measuring device according to an embodiment of the present invention.
도 2를 참조하면, 도 2의 실선은 전기적인 신호의 흐름을 도시한 것이고, 도 2의 점선은 열흐름을 도시한 것이다. 발열량 측정 장치(1)는 크게 측정부(10)와 제어연산부(20)로 구성될 수 있다. 먼저, 측정부(10)를 살펴보면, 예를 들어, 발열량을 측정해야하는 대상 발열체(12), 대상 발열체(12)와 직접 접촉되는 열전소자(14), 열전소자(14)의 온도를 모니터링 할 수 있는 온도센서(18) 및 열전소자(14)의 과열을 방지하고, 열전도율을 향상시키는 열전도부(15)를 포함할 수 있다.Referring to FIG. 2, the solid line of FIG. 2 illustrates the flow of electrical signals, and the dotted line of FIG. 2 illustrates the heat flow. The calorific value measuring device 1 may be largely comprised of the measuring unit 10 and the control operation unit 20. First, referring to the measuring unit 10, for example, the temperature of the target heating element 12, the thermoelectric element 14 and the thermoelectric element 14 in direct contact with the target heating element 12, to which the heat generation amount should be measured, may be monitored. It may include a heat conduction unit 15 to prevent overheating of the temperature sensor 18 and the thermoelectric element 14 and to improve the thermal conductivity.
또한, 상기 온도센서(18)는 열전소자의 상부 또는 하부 중 어느 한쪽에 설치될 수 있으며, 설계에 따라 온도 감지가 가능한 위치에 설치되거나 상부와 하부 모두에 설치될 수도 있다.In addition, the temperature sensor 18 may be installed on any one of the upper or lower portion of the thermoelectric element, and may be installed at a position capable of temperature sensing or may be installed at both the upper and lower portions according to the design.
제어연산부(20)는 측정된 열전소자(14)의 온도 데이터를 기반으로 열전소자(14)에 공급될 전력공급을 제어하는 제어부(22), 열전소자(14)에서 소비되는 전력 소모량과 온도를 이용하여 대상 발열체(12)의 발열량을 연산하는 연산부(24), 온도센서(18)에서 측정된 열전소자(14)의 온도 데이터를 저장하거나 처리하는 DAQ 모듈(26) 및 열전소자(14)에 전력을 공급하는 전력공급장치(28)를 포함할 수 있다.The control operation unit 20 controls the power consumption and temperature consumed by the control unit 22 and the thermoelectric element 14 to control the power supply to be supplied to the thermoelectric element 14 based on the measured temperature data of the thermoelectric element 14. By using the calculation unit 24 for calculating the amount of heat generated by the target heating element 12, the DAQ module 26 and the thermoelectric element 14 for storing or processing the temperature data of the thermoelectric element 14 measured by the temperature sensor 18 It may include a power supply 28 for supplying power.
도 2에 도시된 발열량 측정 장치(1)의 구성에 의한 발열량 측정 방법을 자세히 살펴보면 다음과 같다. 먼저, 대상 발열체(12)를 발열량 측정 장치(1)의 측정부(10)에 위치시킨다. 대상 발열체(12)는 열전소자에 열전도가 가능하도록 접촉될 수 있는 구조체 중 하나를 포함할 수 있으며, 예를 들어, 전기 자동차용 리튬이온 배터리 또는 반도체 칩 중에 하나를 포함할 수 있다.The calorific value measuring method by the configuration of the calorific value measuring device 1 shown in FIG. 2 will be described in detail as follows. First, the target heating element 12 is positioned in the measuring unit 10 of the calorific value measuring device 1. The target heating element 12 may include one of structures that may be in thermal contact with the thermoelectric element, and may include, for example, one of a lithium ion battery or a semiconductor chip for an electric vehicle.
밀폐된 측정부(10) 내에서 대상 발열체(12)가 발열하기 시작하면, 상기 대상 발열체(12)에 열전도가 가능하게 설치된 열전소자(14)에 열이 전도될 수 있다. 그 열에 의해 열전소자(14) 하부면의 온도가 높아질 수 있으며, 상대적으로 열전소자(14) 상부면은 온도가 낮을 수 있다. 상기 열전소자(14)가 과열되는 것을 방지하기 위해 열전도부(15)를 접촉하도록 배치할 수 있고, 열전소자(14)의 열전도율을 높혀 보다 빠르게 온도변화를 감지하고, 대상 발열체(12)의 발열량을 연산하는데 도움을 준다.When the target heating element 12 starts to generate heat in the sealed measuring unit 10, heat may be conducted to the thermoelectric element 14 provided with thermal conductivity in the target heating element 12. The heat may increase the temperature of the lower surface of the thermoelectric element 14, and the upper surface of the thermoelectric element 14 may be relatively low. In order to prevent the thermoelectric element 14 from being overheated, the thermoelectric element 15 may be disposed to be in contact with the thermoelectric element 15. The thermal conductivity of the thermoelectric element 14 may be increased to detect a temperature change more quickly, and the amount of heat generated by the target heating element 12. Helps to compute
이 때, 온도센서(18)로 열전소자(14)의 상부 또는 하부의 온도를 모니터링 할 수 있다. 온도센서(18)는 예를 들어, 저항 온도 센서(Resistance Temperature Detectors)를 사용할 수 있다. 저항 온도 감지기는 소자의 저항 값으로 온도를 측정하는데 사용되는 센서이며, 대부분의 저항 온도 센서는 세라믹 또는 유리 코어로 감싼 구성이다. 저항 소자는 일반적으로 매우 불안정하므로, 저항 소자를 보호하기 위해 커버로 덮어 사용한다.At this time, the temperature sensor 18 may monitor the temperature of the upper or lower portion of the thermoelectric element 14. The temperature sensor 18 may use resistance temperature detectors, for example. Resistive temperature sensors are sensors used to measure temperature with the resistance of a device, and most resistive temperature sensors are constructed with a ceramic or glass core. The resistive element is generally very unstable, so cover it with a cover to protect it.
또한, 저항 온도 센서는 다른 온도 센서에 비해 상대적으로 정확도가 높고, 안정성 및 반복성이 뛰어나며, 전기 노이즈에 영향을 받지 않아 정밀한 온도 측정을 요하는 곳에서 사용하기에 적합하다.In addition, the resistive temperature sensor is relatively accurate compared to other temperature sensors, has excellent stability and repeatability, and is not affected by electrical noise, making it suitable for use in places requiring precise temperature measurement.
상기 온도센서(18)로 측정된 열전소자(14)의 온도 데이터는 DAQ 모듈(26)에서 저장되어 처리된다. DAQ 모듈(26)에서 축적된 온도 데이터는 제어부(22)와 연산부(24)로 전달되어 다음 프로세스를 진행할 수 있도록 돕는 기능을 한다.Temperature data of the thermoelectric element 14 measured by the temperature sensor 18 is stored and processed in the DAQ module 26. The temperature data accumulated in the DAQ module 26 is transferred to the control unit 22 and the calculation unit 24 to help the process proceed.
먼저, 대상 발열체(12)의 온도를 기설정된 온도조건으로 제어하기 위해 제어부(22)에 전달된 온도 데이터를 기반으로 열전소자(14)에 인가할 전력량을 연산부(24)에서 연산하게 된다. 연산된 전력량만큼 제어부(22)에서 전력공급장치(28)를 통해 열전소자(14)에 전력을 인가할 수 있다.First, in order to control the temperature of the target heating element 12 to a predetermined temperature condition, the calculation unit 24 calculates the amount of power to be applied to the thermoelectric element 14 based on the temperature data transmitted to the controller 22. The controller 22 may apply power to the thermoelectric element 14 through the power supply device 28 by the calculated amount of power.
인가된 전력에 의해 열전소자(14)의 온도가 낮아질 수 있으며, 소모된 전력량에 따라 열의 이동이 발생할 수 있다. 따라서, 대상 발열체(12)의 항온상태가 유지될 수 있으며, 지속적으로 대상 발열체(12)에서 발생된 열은 열전소자(14)를 따라 외부로 전달될 수 있다.The temperature of the thermoelectric element 14 may be lowered by the applied power, and heat may move according to the amount of power consumed. Therefore, the constant temperature state of the target heating element 12 may be maintained, and heat generated continuously from the target heating element 12 may be transferred to the outside along the thermoelectric element 14.
이와 동시에 연산부(24)에서는 열전소자(14)에서 소모된 전력량의 총량을 연산하여 대상 발열체(12)의 발열량을 연산할 수 있다. 이러한 일련의 과정을 수회 반복하여 대상 발열체(12)의 발열량을 정확하게 측정할 수 있다. 연산부(24)에서 연산되는 대상 발열체(12)의 발열량은 하기의 수학식 1에 의해 연산될 수 있다.At the same time, the calculation unit 24 may calculate the total amount of power consumed by the thermoelectric element 14 to calculate the amount of heat generated by the target heating element 12. By repeating this series of steps several times, the calorific value of the target heating element 12 can be accurately measured. The amount of heat generated by the target heating element 12 calculated by the calculation unit 24 may be calculated by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2015004668-appb-I000002
Figure PCTKR2015004668-appb-I000002
(여기에서, Qpump는 대상 발열체(12)의 발열량이고, k1, k2, k3는 모델계수이며, I는 열전소자(14)에 의하여 소모되는 전류이고, Tcool는 열전소자(14)와 열전도부(15) 사이의 접촉면의 온도이고, Thot는 열전소자(14)와 대상 발열체(12) 접촉면의 온도임)Here, Q pump is the calorific value of the target heating element 12, k 1 , k 2 , k 3 is the model coefficient, I is the current consumed by the thermoelectric element 14, and T cool is the thermoelectric element 14. ) Is the temperature of the contact surface between the heat conduction portion 15, and T hot is the temperature of the contact surface of the thermoelectric element 14 and the target heating element 12)
상기 수학식 1은 열전소자(14)의 발열공식으로, 수학식 1에서 우변의 첫 번째 항 k1ITEM 의 경우, 열전소자(14)의 냉각 성능을 나타내는 값이고, 우변의 두 번째 항 k2I2 TEM 의 경우, 열전소자(14)의 자체발열을 나타내는 값이며, 마지막으로 우변의 세 번째 항 k3(Tcool-Thot)의 경우, 자연대류에 의한 값이다. Equation 1 is a heating formula of the thermoelectric element 14. In the case of the first term k 1 I TEM on the right side in Equation 1, Equation 1 is a value representing cooling performance of the thermoelectric element 14, and a second term k on the right side. In the case of 2 I 2 TEM , the value represents the self-heating of the thermoelectric element 14, and finally, in the case of the third term k 3 (T cool -T hot ) on the right side, it is a value due to natural convection.
여기에서, 교정(calibration)을 통해 모델계수 k1, k2, k3를 구하면, 열전소자(14)가 대상 발열체(12)의 온도를 일정하게 제어할 때, 소모되는 전류값을 이용하여 대상 발열체(12)의 발열량을 역으로 계산할 수 있다. 상기 모델계수를 얻는 방법은 도 8a 내지 도 8c를 참조하여 후술한다.Here, if the model coefficients k 1 , k 2 , and k 3 are obtained through calibration, the target element is used by using the current value consumed when the thermoelectric element 14 constantly controls the temperature of the target heating element 12. The calorific value of the heating element 12 can be calculated inversely. The method of obtaining the model coefficient will be described later with reference to FIGS. 8A to 8C.
도 3은 본 발명의 일 실시예에 따른 발열량 측정 장치를 개략적으로 도시하는 단면도이다.3 is a cross-sectional view schematically showing a calorific value measuring device according to an embodiment of the present invention.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 의한 발열량 측정 장치는 단열 구조체(34) 내부에 대상 발열체(12)를 구비할 수 있다. 대상 발열체(12) 상에 열전소자(14)를 열전도가 가능하도록 배치할 수 있으며, 대상 발열체(12)와 열전소자(14) 사이에 온도센서(18)를 형성할 수 있다.2 and 3, the calorific value measuring apparatus according to an embodiment of the present invention may include the target heating element 12 inside the heat insulating structure 34. The thermoelectric element 14 may be disposed on the target heating element 12 to enable thermal conduction, and a temperature sensor 18 may be formed between the target heating element 12 and the thermoelectric element 14.
열전소자(14) 상에 열전도부(15)를 형성할 수 있으며, 열전소자(14)와 열전도부(15) 사이에 온도센서(18)를 형성할 수 있다. 열전도부(15)는 크게 냉각장치(36) 또는 방열 구조체로 구분할 수 있다. 방열 구조체는 예를 들어, 방열패드(thermal pad), 방열그리스(thermal grease) 및 히트싱크(heat sink) 중 적어도 어느 하나를 포함할 수 있다. 또, 냉각장치(36)는 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 포함할 수 있다. 열전도부(15)는 냉각장치 또는 방열 구조체 중 하나를 포함할 수 있으나, 상기 냉각장치 또는 방열 구조체를 복수개 연결하여 열전도율을 더 향상 시켜 열전소자(14)의 냉각을 더 빠르게 할 수도 있다.The heat conductive part 15 may be formed on the thermoelectric element 14, and the temperature sensor 18 may be formed between the thermoelectric element 14 and the heat conductive part 15. The heat conduction unit 15 may be largely classified into a cooling device 36 or a heat dissipation structure. The heat dissipation structure may include, for example, at least one of a thermal pad, a thermal grease, and a heat sink. In addition, the cooling device 36 may include at least one of a cooling pin or a cooling fan. The heat conduction unit 15 may include one of a cooling device or a heat dissipation structure, but by connecting a plurality of the cooling devices or the heat dissipation structure, the thermal conductivity may be further improved to cool the thermo element 14 more rapidly.
예를 들어, 열전소자(14) 상에 방열패드(thermal pad), 방열그리스(thermal grease) 및 히트싱크(heat sink) 중 적어도 어느 하나를 구비하는, 방열 구조체가 직접 접촉되도록 배치되거나 열전소자(14) 상에 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 구비하는, 냉각장치가 직접 접촉되도록 배치될 수 있다. 또, 열전소자(14) 상에 방열 구조체가 직접 접촉되도록 배치되며, 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 구비하는, 냉각장치를 더 포함할 수도 있다. 상기 세 가지 경우 모두 열전소자(14)가 지나치게 과열되어 손상되는 것을 방지할 수 있으며, 방열 구조체와 냉각장치가 모두 구성된 경우 발열량 측정 장치의 열전도율이 더 향상되어 열전소자(14)의 온도 제어를 더 빠르게 수행할 수 있다.For example, a heat dissipation structure having at least one of a thermal pad, a thermal grease, and a heat sink on the thermoelectric element 14 is disposed to be in direct contact or a thermoelectric element ( The cooling device having at least one of a cooling fin or a cooling fan may be arranged to be in direct contact therewith. In addition, the heat dissipation structure is disposed on the thermoelectric element 14 to be in direct contact, and may further include a cooling device including at least one of a cooling pin or a cooling fan. In all three cases, the thermoelectric element 14 may be prevented from being excessively overheated and damaged. When both the heat dissipation structure and the cooling device are configured, the thermal conductivity of the calorific value measuring device is further improved to further control the temperature of the thermoelectric element 14. It can be done quickly.
또한, 열전도부(15)는 대상 발열체(12)와 열전도부(15) 사이의 영역을 적절한 온도로 제어하는 기능을 한다. 열전도부(15)에 의해 측정부(10) 내부가 과열되지 않아 열전소자(14)의 특성 공식으로부터 높은 정확도의 열발생량을 측정하는 것을 돕는다.In addition, the heat conduction portion 15 functions to control the region between the target heating element 12 and the heat conduction portion 15 at an appropriate temperature. Since the inside of the measuring unit 10 is not overheated by the heat conducting unit 15, it helps to measure the heat generation amount with high accuracy from the characteristic formula of the thermoelectric element 14.
상기 열전도부(15)는 대상 발열체(12) 또는 열전소자(14)가 어느 일정 온도 이상으로 과열될 경우에만 작동할 수도 있으며, 이와 반대로 열전도부(15)가 상시 작동할 경우, 대상 발열체(12)의 발열량을 정확하게 연산하기 전에 대상 발열체(12)의 온도를 낮출 수 있다. 이 경우, 상대적인 값으로 보정하여 대상 발열체(12)의 발열량을 비교할 수 있다.The thermally conductive portion 15 may operate only when the target heating element 12 or the thermal element 14 is overheated at a predetermined temperature or more. On the contrary, when the thermal conductive portion 15 is always operated, the target heating element 12 may operate. The temperature of the target heating element 12 can be lowered before calculating the calorific value of c). In this case, the calorific value of the target heating element 12 may be compared by correcting the relative value.
도 4는 본 발명의 다른 실시예에 따른 발열량 측정 장치를 개략적으로 도시하는 단면도이다.4 is a cross-sectional view schematically showing a calorific value measuring device according to another embodiment of the present invention.
도 2 및 도 4를 참조하면, 대상 발열체(12)가 발열량 측정 장치(1)의 중앙에 위치할 수 있다. 이 때, 열전소자(14)가 대상 발열체(12)의 상부와 하부면에 직접 접촉할 수 있다. 대상 발열체(12)로부터 발생된 열이 모두 열전소자(14)를 거쳐 전달되도록 열전소자가 접촉된 영역 이외의 모든 영역은 단열 케이스(34)에 의하여 열이 차단될 수 있다. 또, 열전소자(14) 상에 열전도부가 직접 접촉되도록 배치되어 열전소자에서 전달되는 열전도율을 더 향상시킬 수 있다.2 and 4, the target heating element 12 may be positioned at the center of the calorific value measuring device 1. In this case, the thermoelectric element 14 may directly contact the upper and lower surfaces of the target heating element 12. Heat may be blocked by the heat insulating case 34 in all regions other than the region in which the thermoelectric element is in contact so that all heat generated from the target heating element 12 is transferred through the thermoelectric element 14. In addition, the heat conduction portion is disposed on the thermoelectric element 14 to be in direct contact with each other, thereby further improving the thermal conductivity transferred from the thermoelectric element.
또한, 대상 발열체(12)와 열전소자(14) 사이에 온도센서(18)가 형성될 수 있으며, 열전소자(14)에 전력을 인가할 수 있도록 케이블이 형성될 수도 있다. 예를 들어, 대상 발열체(12)에서 발열이 발생될 때, 대상 발열체(12)에서 발생된 열은 Q의 화살표 방향으로 열전소자(14)를 통하여 외부로 전달될 수 있다. 대상 발열체(12)에 접촉된 온도센서(18)에서 온도 변화가 감지되면, DAQ 모듈(26)로 온도 데이터가 전달되고, DAQ 모듈(26)로부터 제어부(22)와 연산부(24)에 각각 온도 데이터를 전달된다.In addition, a temperature sensor 18 may be formed between the target heating element 12 and the thermoelectric element 14, and a cable may be formed to apply electric power to the thermoelectric element 14. For example, when heat is generated in the target heating element 12, heat generated in the target heating element 12 may be transferred to the outside through the thermoelectric element 14 in the direction of the arrow of Q. When a temperature change is detected by the temperature sensor 18 in contact with the target heating element 12, temperature data is transferred to the DAQ module 26, and the temperature is transmitted from the DAQ module 26 to the controller 22 and the calculator 24, respectively. Data is passed.
연산부(24)에서 열전소자(14)에 인가할 전력량을 연산한 후 제어부(22)에서 전력공급장치(28)를 통해 열전소자(14)에 전력을 인가할 수 있다. 이렇게 인가된 전력에 의해 열전소자(14)의 온도가 낮아지게 되고, 대상 발열체(12)의 온도를 기설정된 온도조건으로 제어할 수 있도록 도와준다.After calculating the amount of power to be applied to the thermoelectric element 14 in the calculator 24, the controller 22 may apply power to the thermoelectric element 14 through the power supply device 28. The temperature of the thermoelectric element 14 is lowered by the power applied in this way, and helps to control the temperature of the target heating element 12 to a predetermined temperature condition.
제어연산부(20)가 일련의 과정을 거쳐 대상 발열체(12)의 온도를 기설정된 온도조건으로 제어하는 동안 제어연산부(20)의 연산부(24)에서 전력공급장치(28)에서 인가된 전력량 또는 열전소자(14)에서 소모되는 총 전력량을 측정하여 대상 발열체(12)의 발열량을 연산할 수 있다.The amount of power or thermoelectric applied by the power supply device 28 in the calculation unit 24 of the control operation unit 20 while the control operation unit 20 controls the temperature of the target heating element 12 to a predetermined temperature condition through a series of processes. The total amount of power consumed by the element 14 may be measured to calculate the amount of heat generated by the target heating element 12.
도 5는 본 발명의 일 실시예에 따른 발열량 측정 장치의 구성요소를 개략적으로 도시하는 사시도이다. 도 6은 도 5의 발열량 측정 장치의 구성요소를 결합한 발열량 측정 장치를 개략적으로 도시하는 사시도이다.5 is a perspective view schematically showing the components of the calorific value measuring device according to an embodiment of the present invention. FIG. 6 is a perspective view schematically illustrating a calorific value measuring apparatus incorporating components of the calorific value measuring apparatus of FIG. 5.
도 5와 도 6을 참조하면, 발열량 측정 장치(1)의 구성요소를 살펴보면 다음과 같다. 먼저 발열량 측정 장치를 지지할 수 있는 프레임(30)이 하단부에 형성될 수 있다. 그 위로 절연체(32)가 프레임 상에 조립될 수 있다. 이 절연체(32)는 발열량 측정 장치에서 전달되는 열을 차단하기 위한 용도로 단열 케이스의 2차 보호 기능을 할 수 있다.5 and 6, the components of the calorific value measuring device 1 are as follows. First, a frame 30 capable of supporting the calorific value measuring device may be formed at a lower end thereof. Insulator 32 may be assembled onto the frame. The insulator 32 may serve as a secondary protection function of the heat insulation case for the purpose of blocking heat transferred from the calorific value measuring device.
절연체(32) 상에 단열 케이스(34)를 결합할 수 있다. 단열 케이스(34)는 예를 들어, 테프론을 사용할 수 있다. 단열 케이스(34)의 구조는 대상 발열체(12)의 적어도 일부를 둘러싸는 구조이다. 이는 대상 발열체(12)와 열전도가 가능하게 설치된 열전소자(14)로만 열이 전달되어 외부로 빠져나갈 수 있도록 열전소자(14)가 접촉한 영역을 제외한 나머지 영역은 모두 단열 케이스(34)에 의해 차단될 수 있다.The heat insulation case 34 may be coupled to the insulator 32. The heat insulation case 34 can use Teflon, for example. The structure of the heat insulation case 34 is a structure which surrounds at least one part of the target heat generating body 12. This is because the heat is transferred only to the target heating element 12 and the thermoelectric element 14 provided with thermal conductivity, so that all of the remaining regions except the region in which the thermoelectric element 14 is in contact with each other are insulated by the insulating case 34. Can be blocked.
대상 발열체(12)는 상기 단열 케이스(34)의 내부에 위치할 수 있으며, 대상 발열체(12)의 상부에 적어도 하나 이상의 열전소자(14)가 서로 이격되지 않고 서로 맞닿아 배치될 수 있다. 또, 상기 열전소자(14)는 방열 구조체(16)와 서로 이격되지 않고 서로 맞닿아 배치될 수 있다. 냉각장치(36)는 냉각성능을 향상시키기 위하여 상기 방열 구조체(16) 상에 배치할 수 있다.The target heating element 12 may be positioned inside the heat insulation case 34, and at least one thermoelectric element 14 may be disposed to be in contact with each other without being spaced apart from each other on the upper portion of the target heating element 12. In addition, the thermoelectric elements 14 may be disposed in contact with each other without being spaced apart from the heat dissipation structure 16. The cooling device 36 may be disposed on the heat dissipation structure 16 to improve the cooling performance.
도 6에 의하면, 상술한 구성요소들이 모두 결합한 발열량 측정 장치(10)의 모식도로써 대상 발열체(12) 및 열전소자(14)를 포함하는 측정부(10)는 외부에서 보이지 않게 밀폐되어 있는 구조임을 확인할 수 있다.Referring to FIG. 6, the measurement unit 10 including the target heating element 12 and the thermoelectric element 14 as a schematic diagram of the calorific value measuring apparatus 10 in which the above-described components are all combined is sealed invisible from the outside. You can check it.
도 7은 본 발명의 일 실시예에 따른 발열량 측정 장치를 보여주는 사진이다.7 is a photograph showing a calorific value measuring apparatus according to an embodiment of the present invention.
도 7을 참조하면, 도 6의 발열량 측정 장치(1)의 모식도에서 볼 수 있듯이, 하단부에 단열 케이스(34)가 배치되어 있고, 단열 케이스(34)의 모서리에 프레임(30)이 형성되고, 단열 케이스(34)의 상부에 냉각장치(36)가 형성되어 있는 발열량 측정 장치(1)를 볼 수 있다.Referring to FIG. 7, as can be seen in the schematic diagram of the calorific value measuring device 1 of FIG. 6, an insulation case 34 is disposed at a lower end thereof, and a frame 30 is formed at an edge of the insulation case 34. The calorific value measuring apparatus 1 in which the cooling device 36 is formed in the upper part of the heat insulation case 34 can be seen.
[실험예]Experimental Example
발열량 측정 장치(1)의 내부에 배터리를 배치한다. PID 제어기를 사용해 열전소자(14)의 온도를 제어하기 위해 사용한다. 상기 수학식 1을 참조하여 배터리에서 소모되는 전류와 온도의 차이를 측정하여 10개의 기준 발열량을 이용해 실험적으로 k1, k2, k3 모델계수를 각각 구한다. 구해진 모델계수를 적용하여 실제 열전소자에서 소모된 전력량과 추정된 발열량을 비교한다.The battery is arranged inside the calorific value measuring device 1. The PID controller is used to control the temperature of the thermoelectric element 14. By referring to Equation 1, the difference between the current and the temperature consumed by the battery is measured, and k1, k2, and k3 model coefficients are experimentally obtained using 10 reference calorific values. The calculated power factor is compared with the estimated amount of heat consumed by the actual thermoelectric element.
이 때, 배터리에서 발생하는 모든 발열은 외부로 빠져나간다고 가정하면, 배터리의 온도를 열전소자(14)를 이용하여 일정하게 제어할 수 있다. 배터리의 온도를 일정하게 제어하기 위해 열전소자(14)의 냉각에 소모되는 전력량을 연산하여 배터리의 발열량을 측정할 수 있다.At this time, assuming that all the heat generated from the battery escapes to the outside, the temperature of the battery can be constantly controlled using the thermoelectric element 14. In order to constantly control the temperature of the battery, the amount of power consumed for cooling the thermoelectric element 14 may be calculated to measure the calorific value of the battery.
표 1
기준 발열량(W) 열전소자에서 소모되는 전류(A) 온도차(℃)
1 0.5 0.1173 1.887
2 1 0.1805 2.233
3 1.5 0.2644 3.080
4 2 0.3507 3.996
5 2.5 0.4539 5.040
6 3 0.5528 6.240
7 3.5 0.6793 7.656
8 4 0.8029 9.440
9 4.5 0.9530 11.31
10 5 1.1870 14.72
Table 1
Reference calorific value (W) Current dissipated in thermoelectric element (A) Temperature difference (℃)
One 0.5 0.1173 1.887
2 One 0.1805 2.233
3 1.5 0.2644 3.080
4 2 0.3507 3.996
5 2.5 0.4539 5.040
6 3 0.5528 6.240
7 3.5 0.6793 7.656
8 4 0.8029 9.440
9 4.5 0.9530 11.31
10 5 1.1870 14.72
표 1에 나타낸 것처럼, 기준 발열량을 토대로 열전소자(14)에서 소모되는 전류를 측정하고, 그에 따른 온도편차를 계산하면, 실험적으로 k1, k2, k3 모델계수를 구할 수 있다. 수학식 1에 대입하여 약 95% 신뢰구간에 포함되는 모델계수의 값은 k1=-1.291, k2=9.673, k3=-0.3156 임을 알 수 있다. 이 때, R-스퀘어(R-square) 값이 0.9996으로 신뢰도가 높음을 확인할 수 있다. 또, 평균 제곱근 편차(RMSE) 값이 0.0359로 오차 역시 낮은 수치임을 확인할 수 있다.As shown in Table 1, by measuring the current consumed in the thermoelectric element 14 on the basis of the reference calorific value and calculating the temperature deviation, the k1, k2, k3 model coefficients can be obtained experimentally. By substituting Equation 1, it can be seen that the values of the model coefficients included in the 95% confidence interval are k1 = -1.291, k2 = 9.673, and k3 = -0.3156. In this case, it can be confirmed that the R-square value is 0.9996 and high reliability. Also, the mean square root deviation (RMSE) value is 0.0359, indicating that the error is also low.
도 8a 내지 도 8c는 본 발명의 일 실험예에 따른 발열량 측정 데이터 결과를 나타내는 도면이다.8A to 8C are diagrams showing a calorific value measurement data result according to an experimental example of the present invention.
도 8a 내지 도 8c는 상기 모델계수를 구한 후 수학식 1에 대입 후 배터리의 발열량을 측정한 결과와 실험을 토대로 추정한 발열량의 값을 비교한 그래프이다. 먼저, 도 8a는 시간 변화에 따른 발열량을 살펴본 것으로, 평균 제곱근 편차 값이 0.0714W로 실험값과 추정값이 거의 일치함을 확인할 수 있다.8A to 8C are graphs comparing the values of calorific values estimated based on experiments with the result of measuring the calorific value of the battery after the model coefficients were substituted into Equation 1; First, FIG. 8A illustrates the calorific value according to time change, and it can be seen that the mean square root deviation value is 0.0714W, and the experimental value and the estimated value are almost identical.
도 8b는 시간 변화에 따른 전류의 증가를 살펴본 것으로, 도 8a의 데이터 값과 비교하면, 발열량이 증가함에 따라 배터리의 온도를 일정하게 유지하기 위해 열전소자에서 소모된 전류값이 동일한 시간범위에서 동일하게 증가함을 확인할 수 있다.FIG. 8B illustrates an increase in current over time. Compared with the data value of FIG. 8A, the current value consumed by the thermoelectric element is the same in the same time range to maintain a constant temperature of the battery as the heat generation amount increases. It can be seen that the increase.
도 8c는 시간 변화에 따른 온도편차를 살펴본 것으로, 도 8a와 도 8b와 같이 동일한 시간범위내에서 동일하게 온도편차값이 증가함을 확인할 수 있다.FIG. 8C illustrates the temperature deviation according to the time change, and as shown in FIGS. 8A and 8B, the temperature deviation may increase in the same time range.
상술한 바와 같이 본 발명에서는 열전소자를 이용한 발열량 측정 장치(1)를 제조할 수 있다. 열전소자가 냉각 및 가열을 모두 수행할 수 있어, 기존의 발열량 측정 장치와 비교시 그 구조가 크게 단순화할 수 있다.As described above, in the present invention, the calorific value measuring apparatus 1 using the thermoelectric element can be manufactured. Since the thermoelectric element can perform both cooling and heating, the structure thereof can be greatly simplified as compared with a conventional calorific value measuring device.
또한, 대상 발열체(12)의 발열량을 계산하기 위한 공식이 실제 제작된 장비가 변화되거나 변형에 관계없이 대상 발열체(12)의 온도를 일정하게 유지하는데 사용된 열전소자(14)의 특성공식 즉, 수학식 1로 대체되어 대상 발열체(12)의 발열량을 연산하는 과정이 크게 단순화할 수 있다.In addition, the formula for calculating the calorific value of the target heating element 12 is a characteristic formula of the thermoelectric element 14 used to keep the temperature of the target heating element 12 constant, regardless of whether the equipment actually manufactured or changed, that is, The process of calculating the calorific value of the target heating element 12 by replacing with Equation 1 can be greatly simplified.
열전소자(14)는 기존의 냉각 및 가열장치에 비하여 수 ms 수준의 짧은 반응속도를 지니고 있다. 이러한 열전소자(14)의 특성을 이용하여 제작된 발열량 측정장치(1)는 기존의 장치에 비하여 더욱 짧은 시간 단위 및 높은 정밀도로 대상 발열체(12)의 발열량을 측정할 수 있다.The thermoelectric element 14 has a short reaction rate of a few ms compared to the conventional cooling and heating apparatus. The calorific value measuring device 1 manufactured by using the characteristics of the thermoelectric element 14 may measure the calorific value of the target heating element 12 with a shorter time unit and higher accuracy than the conventional apparatus.
기존에 발열량 측정이 요구되었던 산업분야가 내열기관, 공장설비 등의 대형 장치를 대상으로 했다. 그러나 최근에는 휴대용 전자기기(스마트폰 등), 반도체(CPU 및 메모리 등) 또는 에너지 저장장치(배터리 및 연료전지) 등이 얼마만큼의 열을 발생하고, 이를 어떻게 해소할 것이냐가 중요하다.The industrial sector that required the measurement of calorific value targets large devices such as heat engines and factory facilities. Recently, however, it is important to know how much heat is generated by portable electronic devices (smartphones, etc.), semiconductors (CPUs and memories, etc.) or energy storage devices (batteries and fuel cells), and how to solve them.
상기 분야의 장치들은 기존에 비해 상대적으로 적은 발열량을 가지며 또한 빠르게 변하는 열적특성을 지니고 있다. 따라서, 본 발명에 의하여 개발되는 장비들은 상대적으로 중소형 또는 적은 발열량을 가지는 장비, 즉, 열전소자 또는 전도체에 직접접촉이 가능한 모든 발열체를 포함할 수 있으며, 상술한 대상 발열체들이 어떠한 열특성을 지니는지를 조사하여 연구하는 것이 필요한 모든 분야에 적용이 가능하다.Devices in this field have a relatively low heat generation and fast changing thermal characteristics compared to the prior art. Therefore, the equipments developed by the present invention may include all the heating elements that can be directly in contact with the thermoelectric element or the conductor, that is, relatively small or small heating devices, that is, what kind of thermal characteristics of the target heating elements described above It is applicable to all fields that need to be investigated and researched.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (9)

  1. 대상 발열체 상에 열전도가 가능하게 설치된 적어도 하나의 열전소자를 구비하는 측정부;A measuring unit including at least one thermoelectric element installed on the target heating element to enable thermal conductivity;
    상기 대상 발열체로부터 발생된 열이 상기 열전소자를 거쳐 전부 외부로 전달되도록 상기 열전소자가 접촉된 상기 대상 발열체의 일 측면을 제외한 영역을 감싸는 형태인 단열 케이스; 및An insulating case surrounding a region excluding one side of the target heating element in contact with the thermoelectric element such that the heat generated from the target heating element is transferred to the outside through the thermoelectric element; And
    상기 열전소자에 소정의 전력을 인가하여 상기 열전소자의 온도를 낮추어 상기 대상 발열체의 온도를 기설정된 온도조건으로 제어하고, 상기 대상 발열체의 온도 제어에 사용된 총 전력량을 연산하는 제어연산부;A control calculator configured to apply predetermined power to the thermoelectric element to lower the temperature of the thermoelectric element to control the temperature of the target heating element to a predetermined temperature condition, and calculate a total amount of power used for temperature control of the target heating element;
    를 포함하는, 발열량 측정 장치.Comprising, calorific value measuring device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 대상 발열체로부터 발생된 열이 상기 열전소자를 거쳐 전달되도록 상기 열전소자와 직접 접촉되도록 배치된 열전달부;를 더 포함하는, 발열량 측정 장치.And a heat transfer part disposed to be in direct contact with the thermoelectric element such that heat generated from the target heating element is transferred through the thermoelectric element.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 대상 발열체의 발열량은 상기 제어연산부에서 하기 수학식 1에 의하여 연산되는, 발열량 측정 장치.The calorific value of the target heating element is calculated by the following equation 1 in the control operation unit, calorific value measuring apparatus.
    [수학식 1][Equation 1]
    Figure PCTKR2015004668-appb-I000003
    Figure PCTKR2015004668-appb-I000003
    (여기에서, 상기 Qpump는 상기 대상 발열체의 발열량이고, 상기 k1, k2, k3는 모델계수이며, 상기 I는 상기 열전소자에 의하여 소모되는 전류이고, 상기 Tcool는 상기 열전소자와 상기 열전달부 사이의 접촉면 온도이고, 상기 Thot는 상기 열전소자와 상기 대상 발열체 사이의 접촉면 온도임)Here, the Q pump is the calorific value of the target heating element, k 1 , k 2 , k 3 is the model coefficient, I is the current consumed by the thermoelectric element, T cool is the thermoelectric element and Contact surface temperature between the heat transfer part, and T hot is the contact surface temperature between the thermoelectric element and the target heating element)
  4. 제 2 항에 있어서,The method of claim 2,
    상기 열전소자는 상기 열전달부와 서로 이격되지 않고 서로 맞닿아 배치되는, 발열량 측정 장치.The thermoelectric element is disposed in contact with each other without being spaced apart from the heat transfer unit, calorific value measuring device.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 열전달부는, The heat transfer unit,
    상기 열전소자와 직접 접촉되도록 배치되며, 방열패드(thermal pad), 방열그리스(thermal grease) 및 히트싱크(heat sink) 중 적어도 어느 하나를 구비하는, 방열 구조체를 포함하는, 발열량 측정 장치.And a heat dissipation structure disposed in direct contact with the thermoelectric element, the heat dissipation structure including at least one of a thermal pad, a thermal grease, and a heat sink.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 열전달부는,The heat transfer unit,
    상기 방열 구조체 상에 배치되며, 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 구비하는, 냉각장치를 더 포함하는, 발열량 측정 장치.And a cooling device disposed on the heat dissipation structure and having at least one of a cooling pin or a cooling fan.
  7. 제 2 항에 있어서,The method of claim 2,
    상기 열전달부는, The heat transfer unit,
    상기 열전소자와 직접 접촉되도록 배치되며, 냉각핀(cooling pin) 또는 냉각팬(cooling fan) 중 적어도 어느 하나를 구비하는, 냉각장치를 포함하는, 발열량 측정 장치.And a cooling device arranged to be in direct contact with the thermoelectric element, the cooling device including at least one of a cooling pin or a cooling fan.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 대상 발열체는 상기 열전소자에 열전도가 가능하도록 접촉될 수 있는 구조체 중 하나를 포함하는, 발열량 측정 장치.The target heating element includes one of the structures that can be in contact with the thermoelectric element to enable thermal conductivity, calorific value measuring apparatus.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 따른 발열량 측정 장치를 이용한 발열량 측정은,The calorific value measurement using the calorific value measuring device according to any one of claims 1 to 8,
    상기 발열량 측정 장치에 상기 대상 발열체를 준비하는 단계;Preparing the target heating element in the calorific value measuring device;
    상기 대상 발열체에서 발열이 발생하여 상기 대상 발열체의 온도가 변화하는 단계;Generating heat from the target heating element to change the temperature of the target heating element;
    상기 대상 발열체로부터 발생된 열이 상기 열전소자를 거쳐 상기 열전달부로 전달되는 단계;Transferring heat generated from the target heating element to the heat transfer part via the thermoelectric element;
    상기 측정부에서 상기 열전소자의 온도를 모니터링하여 상기 제어연산부로 온도 데이터를 송신하는 단계; 및Monitoring temperature of the thermoelectric element in the measurement unit and transmitting temperature data to the control operation unit; And
    상기 제어연산부에서 상기 대상 발열체의 온도를 기설정된 온도 조건으로 제어하기 위해 상기 열전소자에 인가될 전력을 연산하며, 전력공급장치를 통해 상기 열전소자에 전력을 인가하고, 인가된 총 전력량을 측정하여 상기 대상 발열체의 발열량을 연산하는 단계;The control operation unit calculates the power to be applied to the thermoelectric element in order to control the temperature of the target heating element to a predetermined temperature condition, applying power to the thermoelectric element through a power supply device, by measuring the total amount of power applied Calculating a calorific value of the target heating element;
    를 포함하는, 발열량 측정 방법.Comprising, calorific value measuring method.
PCT/KR2015/004668 2014-05-14 2015-05-11 Heating value measurement apparatus and heating value measurement method WO2015174698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140057809A KR101596794B1 (en) 2014-05-14 2014-05-14 Apparatus for measuring heating value and method of measuring heating value
KR10-2014-0057809 2014-05-14

Publications (1)

Publication Number Publication Date
WO2015174698A1 true WO2015174698A1 (en) 2015-11-19

Family

ID=54480189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004668 WO2015174698A1 (en) 2014-05-14 2015-05-11 Heating value measurement apparatus and heating value measurement method

Country Status (2)

Country Link
KR (1) KR101596794B1 (en)
WO (1) WO2015174698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038212B2 (en) 2017-12-22 2021-06-15 Samsung Electronics Co., Ltd. Module for real-time thermal behavior analysis of secondary cell battery and method of operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031607B1 (en) 2018-10-26 2019-10-14 포톤데이즈(주) A Method for Measuring a Heating Value of a Material or a Component and an Apparatus for the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014065A (en) * 2000-06-28 2002-01-18 Meidensha Corp Method and apparatus for measuring heating amount of electronic component
WO2009107209A1 (en) * 2008-02-27 2009-09-03 株式会社渕上ミクロ Heater device, measuring device, and method of estimating heat conductivity
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435361B1 (en) 2012-08-22 2014-08-28 한국에너지기술연구원 Calorimeter self-generating by using thermo-electric device and calorimetric method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014065A (en) * 2000-06-28 2002-01-18 Meidensha Corp Method and apparatus for measuring heating amount of electronic component
WO2009107209A1 (en) * 2008-02-27 2009-09-03 株式会社渕上ミクロ Heater device, measuring device, and method of estimating heat conductivity
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038212B2 (en) 2017-12-22 2021-06-15 Samsung Electronics Co., Ltd. Module for real-time thermal behavior analysis of secondary cell battery and method of operating the same

Also Published As

Publication number Publication date
KR20150130782A (en) 2015-11-24
KR101596794B1 (en) 2016-03-07

Similar Documents

Publication Publication Date Title
US20210044129A1 (en) Power storage device
WO2013036083A2 (en) Intelligent heating cable having a smart function and method for manufacturing same
WO2016153268A1 (en) Battery pack having structure capable of efficiently sensing temperature, and temperature sensor-mounted printed circuit board applied to same
WO2021117984A1 (en) Heat regulating device using shape memory alloy, power electronic system provided with same, and shape memory alloy structure thereof
CN106197711A (en) There is thermal sensor system and the method for radiator
US20230324233A1 (en) Testing method for a thermal contact
WO2015174698A1 (en) Heating value measurement apparatus and heating value measurement method
KR102460108B1 (en) Temperature measuring device, and battery module and battery pack having the same
JPH0197144A (en) Charge completion detector
JP6171902B2 (en) Temperature detection device
CN104582426B (en) Utilize the method for testing of the thermo-resistance measurement system with modularization radiating source device
CN109088129B (en) Heat abstractor and battery module
WO2013085115A1 (en) Device for measuring heat flux and system for measuring heat flux using same
KR102628761B1 (en) Battery cell temperature measuring device of battery pack
CN213601877U (en) Temperature control device of photoelectric detection device
TWM515649U (en) Device for forcing temperature of IC
TWI570419B (en) Device and method for forcing temperature of ic
CN210037013U (en) Temperature detection device, circuit board and computing equipment
TWI603172B (en) Temperature controlling device and method for ic
CN210109152U (en) Temperature-adjusting wafer bearing table and laser diode testing equipment
WO2022019463A1 (en) Method and system for predicting behavior of secondary battery on basis of parameter measurement
CN214895642U (en) Temperature control characteristic testing device
TWI537567B (en) Electronic load testing device
TWI806160B (en) Test board with a temperature control function
CN216529131U (en) Battery package thermal spread testing arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793571

Country of ref document: EP

Kind code of ref document: A1