WO2016013721A1 - Air-cooling-based sealed battery pack structure - Google Patents

Air-cooling-based sealed battery pack structure Download PDF

Info

Publication number
WO2016013721A1
WO2016013721A1 PCT/KR2014/010620 KR2014010620W WO2016013721A1 WO 2016013721 A1 WO2016013721 A1 WO 2016013721A1 KR 2014010620 W KR2014010620 W KR 2014010620W WO 2016013721 A1 WO2016013721 A1 WO 2016013721A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
battery
air
battery pack
housing
Prior art date
Application number
PCT/KR2014/010620
Other languages
French (fr)
Korean (ko)
Inventor
김수훈
Original Assignee
티에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티에스 주식회사 filed Critical 티에스 주식회사
Publication of WO2016013721A1 publication Critical patent/WO2016013721A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air-cooled cooling-based hermetic battery pack structure, and more specifically, to provide a new concept air-cooled heat dissipation method using a Peltier element to switch from the existing water-cooled to air-cooled cooling method, and to radiate heat in an enclosed space. It relates to an air-cooled cooling-based hermetic battery pack structure.
  • FIGS. 1A and 1B are views illustrating a state in which a battery pack is installed in a commercial vehicle
  • FIG. 2 is a view illustrating a commercial vehicle in which a battery pack is mounted.
  • the battery pack 1 requires a watertight structure. That is, in the case of a commercial vehicle, driving is often performed in a situation where the unpaved road and the driving conditions are worse than the passenger vehicle.
  • the battery pack 1 In the case of a passenger vehicle, the battery pack 1 is mounted in the trunk, but in the case of a commercial vehicle, the battery pack 1 is positioned below the vehicle as shown in FIGS. 1A and 1B.
  • the position of the battery pack 1 in a commercial vehicle is closer to the road surface than a passenger vehicle, and the device protecting the battery pack 1 is made of only a battery pack case, which requires a more robust and waterproof design.
  • the battery pack (1) is designed as a sealed structure. Heat is generated due to the characteristics of the battery, and the battery cell and battery managament system (BMS) are vulnerable to heat and directly affect the lifespan. Therefore, a device for heat dissipation is essential.
  • the currently manufactured commercial vehicle battery pack 1 is cooled by water cooling, but there is a limit in that a separate water cooling pump, a radiator, a cooling line, and the like must be separately installed for heat dissipation of the battery pack.
  • Figure 1c is a view showing a water-cooled HEV lithium ion battery pack according to the prior art.
  • the HEV vehicle lithium ion battery generates a lot of heat due to the instantaneous use of high current and the life of the cell is affected by heat. Therefore, the heat dissipation system is a prerequisite. Since the water pipe is passed inside the battery pack, there is a risk of fire (safety problems) when the water pipe is broken, there was a problem that requires a new power source for driving a separate water pump. In addition, there is a need for a separate coolant and the cost of replacing the coolant, a separate FAN for cooling the coolant, a radiator for cooling the coolant, and additional accessories for cooling the battery pack. Increasing costs and increasing maintenance costs arise.
  • the present invention is to solve the above problems, in consideration of the temperature rise through the air-cooled cooling method that can replace the water cooling system for cooling the battery pack in a commercial vehicle quantitative target 42 It is to provide a sealed battery pack structure based on air-cooled cooling to achieve below the °C.
  • the present invention because the battery management system (BMS) and the battery cell (cell) should be operated in a harsh environment such as vibration, temperature, humidity of the vehicle, as well as heat dissipation, heat and dust by the sealed and insulated structure, etc. To provide an air-cooled cooling-based sealed battery pack structure to block the.
  • BMS battery management system
  • the battery cell cell
  • the present invention is to provide an air-cooled cooling-based sealed battery pack structure to provide a new concept air-cooled heat dissipation method using a Peltier element to switch from the existing water-cooled to air-cooled cooling method, and to allow heat radiation in a closed space. .
  • an air-cooled cooling-based sealed battery pack structure includes a battery module assembly (BMA) 10 including a plurality of battery cells 11;
  • BMA battery module assembly
  • a hexahedron shape with an open top surface is formed of an upper object and a lower object, and formed for primary sealing on a plurality of battery cells 11 in contact with the primary heat sink 20 and the secondary cold sink 30.
  • Primary sealed housing 20a A plurality of battery cells contacted with the primary heat sink 20 and the secondary cold sink 30 by forming an hexahedral shape having an open upper surface surrounding the outer circumferential surface of the primary hermetic housing 20a as an upper object and a lower object ( A secondary hermetic housing 30a formed for secondary closure to 11); The lower surface is inserted into the insertion groove 62 in the cooling fin housing 61 formed with the first cooling fin 60, the upper portion and the secondary cold sink 30 through the cold concentrating cold block 40 A Peltier element 50 in contact with and formed in a sealed structure by the secondary hermetic housing 30a and the cooling fin housing 61; It includes.
  • the present invention the structure that supports the lower surface of the plurality of battery cells 11 in direct contact with the plurality of battery cells 11 to provide the effect of lowering the temperature of the plurality of battery cells 11 primarily plate shape Primary heat sink 20 formed as; And a lower surface of the primary heat sink 20 and formed in a hexahedral shape in which the upper surface, the front surface, and the rear surface are open, thereby lowering the temperature to the second through heat generation for the plurality of battery cells 11. Tea cold sink 30; It further includes.
  • the cold concentrating cold block 40 is formed in a rectangular plate shape in contact with the secondary hermetic housing 30a, and preferably has a structure in contact with the Peltier element 50 in the lower portion thereof.
  • the cooling fin housing 61 includes a first insertion end 61a for inserting the secondary hermetic housing 30a to a predetermined height therein, a BMS 2, a BDU 3, a power supply and a control plug. It is preferable to be divided into the 2nd insertion end 61b for mounting (4), and to form an hexahedron shape in which the upper surface was opened.
  • the predetermined height is inserted into the insertion groove 62 of the first insertion end 61a when inserted into the first insertion end 61a on the cooling fin housing 61 of the secondary hermetic housing 30a. It is preferred that the Peltier element 50 and the upper surface of the laminated structure of the cold concentrating cold block 40 thereon is in contact with the upper surface.
  • the battery cell 11 is a HEV vehicle lithium ion battery cell, which is sealed and insulated by the secondary hermetic housing 30a to prevent the inflow of high heat from the outside and is cooled by the Peltier element 50. It is desirable to maintain the temperature of the interior.
  • first cooling fins 60 are formed on the lower surface of the housing 61 for cooling fins such that a plurality of plate-shaped heat dissipation fins are faced downwardly at equal intervals, so that the first cooling fins 60 are in contact with the outside air while driving the vehicle. It is preferably formed for heat exchange.
  • each of the plurality of battery modules 11u connected in series constituting the BMA 10 has second cooling fins on both sides of the cell cartridge 11a that divides the plurality of battery cells 11 in each battery module 11u. It is preferable to include (11b).
  • the second cooling fins 11b face the direction orthogonal to both sides of the battery module 11u at a position in direct contact with all of the plurality of battery cells 11 in one battery module 11u. It is preferable that a plurality of plate-shaped heat-dissipating fins formed so as to be formed at evenly spaced intervals.
  • the air-cooled cooling-based hermetic battery pack structure according to an embodiment of the present invention, the temperature inside the battery pack in consideration of the temperature rise through the air-cooled cooling method that can replace the water cooling system for cooling the battery pack in a commercial vehicle To achieve below the quantitative target of 42 ° C.
  • the air-cooled cooling-based sealed battery pack structure according to another embodiment of the present invention, because the battery management system (BMS) and the battery cell (cell) should be operated in a harsh environment, such as vibration, temperature, humidity of the vehicle as well as heat radiation
  • BMS battery management system
  • the battery cell cell
  • the sealed and insulated structure provides an effect of blocking external heat and dust.
  • the air-cooled cooling-based hermetic battery pack structure according to another embodiment of the present invention provides a new concept air-cooled heat dissipation method using a Peltier element to switch from the conventional water-cooled to the air-cooled cooling method and to radiate heat in an enclosed space. To provide the effect.
  • FIG. 1A and 1B are views illustrating a state in which a battery pack is mounted in a commercial vehicle
  • FIG. 1C is a view illustrating a water-cooled HEV lithium ion battery pack according to the related art.
  • FIG. 2 is a view generally showing a commercial vehicle equipped with a battery pack.
  • FIG 3 is a view showing the components inside the sealed battery pack 1 of the air-cooled cooling according to an embodiment of the present invention.
  • FIG. 4 is a view showing the Peltier element 50 used in the air-cooled cooling-based hermetic battery pack 1 of FIG.
  • FIG 5 is a view showing a coupling relationship between the components of the air-cooled cooling-based hermetic battery pack 1 according to an embodiment of the present invention.
  • FIG. 6 is a view showing the structure of the battery cell 11 and the second cooling fin (11b) of the battery module assembly (BMA) 10 constituting the air-cooled cooling-based hermetic battery pack 1 according to the present invention.
  • FIG. 7 is a perspective view (FIG. 7A) and a cross-sectional view (FIG. 7B) illustrating a structure of a second cooling fin 11b directly contacting the battery cell 11 constituting the BMA 10 of FIG. 6.
  • FIG. 8 is a diagram illustrating the structure of the BMA 10 of FIG. 6.
  • FIG. 9 is a diagram illustrating a thermal flow state of the BMA 10 of FIG. 6.
  • FIG. 10 is a view showing the configuration of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based hermetic battery pack (1) according to the present invention.
  • FIG. 11 is a view illustrating a thermal flow state of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
  • FIG. 12 and 13 are cross-sectional views of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
  • FIG. 14 is a view illustrating a sealed state of a commercial vehicle lithium ion battery system using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
  • FIG. 15 is an exploded perspective view illustrating the entire structure of the airtight cooling-based hermetic battery pack 1 of FIG. 1.
  • FIG 3 is a view showing the components inside the sealed battery pack 1 of the air-cooled cooling according to an embodiment of the present invention.
  • FIG. 4 is a view showing a peltier (peltier) 50 used in the air-cooled cooling-based hermetic battery pack 1 of FIG.
  • FIG 5 is a view showing a coupling relationship between the components of the air-cooled cooling-based hermetic battery pack 1 according to an embodiment of the present invention.
  • FIG. 6 is a view showing the structure of the battery cell 11 and the second cooling fin (11b) of the battery module assembly (BMA) 10 constituting the air-cooled cooling-based hermetic battery pack 1 according to the present invention.
  • FIG. 7 is a perspective view (FIG. 7A) and a cross-sectional view (FIG. 7B) illustrating a structure of a second cooling fin 11b directly contacting the battery cell 11 constituting the BMA 10 of FIG. 6.
  • FIG. 8 is a diagram illustrating the structure of the BMA 10 of FIG. 6.
  • FIG. 9 is a diagram illustrating a thermal flow state of the BMA 10 of FIG. 6.
  • the air-cooled cooling-based hermetic battery pack 1 may include a battery module assembly (BMA) 10 including a plurality of battery cells 11, a primary heat sink 20, and two.
  • BMA battery module assembly
  • the BMA 10 including the plurality of battery cells 11 is formed in a shape supported by the primary heat sink 20 and the secondary cold sink 30 at the bottom thereof.
  • the primary heat sink 20 directly contacts the plurality of battery cells 11 in a structure supporting the lower surfaces of the plurality of battery cells 11, thereby providing an effect of lowering the temperatures of the plurality of battery cells 11 firstly. In order to form a plate.
  • the secondary cold sink 30 is formed in a hexahedral shape that supports the lower surface of the primary heat sink 20 and has an upper surface, a front surface, and a rear surface open, thereby heating the temperature of the plurality of battery cells 11. It acts as a second lowering.
  • the primary hermetic housing 20a has a hexahedron shape having an open upper surface as an upper object and a lower object, such that a plurality of battery cells 11 are in contact with the primary heat sink 20 and the secondary cold sink 30. Is formed for primary sealing.
  • the secondary sealed housing (30a) is formed by the upper body and the lower object is formed in the upper body and the upper surface surrounding the outer circumferential surface of the primary closed housing (20a), the primary heat sink 20 and the secondary cold sink It is formed for secondary sealing of the plurality of battery cells 11 in contact with 30.
  • the cold concentrating cold block 40 is formed in a rectangular plate shape in contact with the secondary hermetic housing 30a, and has a structure in contact with the Peltier element 50 in the lower portion thereof.
  • the Peltier element 50 is inserted into the insertion groove 62 inside the cooling fin housing 61 in which the first cooling fin 60 is formed, and contacts the cold concentrating cold block 40 on the upper surface.
  • the cooling fin housing 61 is formed of an upper object and a lower object, and each of the upper object and the lower object includes a first insertion end 61a for inserting the secondary sealed housing 30a up to a predetermined height therein.
  • the second insertion end 61b for mounting the BMS 2, the BDU 3 and the power supply and the control plug 4 to be described later is formed, and the upper surface is formed in an open hexahedral shape.
  • the preset height is a Peltier element inserted into the insertion groove 62 of the first insertion end 61a when the first height is inserted into the first insertion end 61a on the cooling fin housing 61 of the secondary hermetic housing 30a. 50) and a position in contact with the upper surface of the laminated structure of the cold concentrating cold block 40 thereon.
  • the battery cell 11 composed of a HEV vehicle lithium ion battery cell generates heat due to instantaneous use of high current, and the battery cell 11 Since the life of is most affected by heat, the heat dissipation structure prevents the inflow of high heat from the outside and contacts the secondary hermetic housing 30a to maintain the internal temperature cooled by the Peltier element 50. It provides a thermal insulation design by the housing 61 for cooling fins. As a result, the first cooling fins 60 and the second cooling fins corresponding to the heat sink and the position of the Peltier element 50 inside the sealed battery pack 1 of the air-cooled cooling-based sealed structure for satisfying the dust and water resistance grades. Provide an optimal shape structure for 11b.
  • Air-cooled cooling-based sealed battery pack (1) has the effect of utilizing the thermoelectric effect to increase the temperature inside.
  • the Peltier device 50 is one of the cooling devices, and varies in size from several cm to several tens of cm.
  • the bottom and top of the Peltier element 50 used in the present invention has a ceramic layer as shown in Figure 4b, and serves to limit the flow of electricity while efficiently transferring heat.
  • the conductor layer and the semiconductor layer sequentially formed in the ceramic layer correspond to the 'engine' for cooling and heating in the air-cooled cooling-based hermetic battery pack 1 using the Peltier element 50 according to the present invention.
  • the entire P-type semiconductor and the N-type semiconductor are configured in series to draw the maximum cooling efficiency.
  • the Peltier element 50 having a structure in which P-type and N-type semiconductors are connected in series, a precondition that two different metals have two contacts is required.
  • the Peltier element 50 has a simple structure, environmental friendliness, and high reliability (there is little chance of failure because it is composed only of an electric circuit having no physical operation structure at all) and is widely used in a local cooler and the like.
  • the Peltier effect of the Peltier element 50 of the present invention is a phenomenon in which a closed circuit is formed between two points connecting a metal and a semiconductor constituting a conductor layer, and when current flows, one side generates heat and the other absorbs heat. Two ends of two different metal wires are connected to form a closed circuit, and if a temperature difference is given at both ends, a potential difference occurs between the two contacts. This is called thermoelectric phenomenon and the potential difference generated at this time is called thermoelectric power. These thermoelectric phenomena can be classified into the Seebeck effect of obtaining an electromotive force by using the temperature difference between the two ends, the Peltier effect of cooling and heating by the electromotive force, and the Thomson effect of generating an electromotive force by the temperature difference between the conductors.
  • the Peltier element 50 when the Peltier element 50 is attached to two different metals with two contacts, when current flows through these two metals, heat is continuously absorbed and cooled on one side and continuously on the other side. Is released and becomes hot. At this time, if the current is flowed in the opposite direction of the + pole and the-pole, the side of dissipating / absorbing heat is also reversed so that the heated side is cooled and the cooled side is heated.
  • a temperature difference occurs on both surfaces, thereby generating a current. There is a constant temperature difference between cooling and heating of the Peltier element 50, cooling the heat on the hot side, and lowering the temperature, the temperature on the other side of the cold side is lowered.
  • the Peltier effect by the Peltier element 50 in the present invention means the release and absorption of heat generated when the current flows through the thin junction of two different materials, the heat is generated when the current flows in any one direction
  • the Peltier effect is reversible because it absorbs heat when flowed in the opposite direction.
  • the airtight cooling-based hermetic battery pack 1 may be cooled to manufacture a completely hermetic battery pack.
  • the first cooling fins 60 are formed on the lower surface of the housing 61 for cooling fins such that a plurality of plate-shaped heat dissipation fins face downward with uniform spacing.
  • the first cooling fin 60 is in contact with the outside air during vehicle operation and is formed for heat exchange.
  • Each of the plurality of battery modules 11u constituting the BMA 10 forms second cooling fins 11b on both sides of the cell cartridge 11a that divides the plurality of battery cells 11.
  • the second cooling fin 11b is formed to face in a direction orthogonal to both sides of the battery module 11u at a position in direct contact with all of the plurality of battery cells 11 in one battery module 11u.
  • a plurality of plate-shaped heat sink fins are formed at even intervals.
  • a plurality of battery modules (11u) is a lithium ion battery module to form a battery module assembly (BMA) (10) on the air-cooled cooling-based sealed battery pack 1 of six series connections as shown in FIG.
  • FIG. 10 is a view showing the configuration of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based hermetic battery pack (1) according to the present invention.
  • FIG. 11 is a view illustrating a thermal flow state of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
  • 12 and 13 are cross-sectional views of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
  • FIG. 14 is a view illustrating a sealed state of a commercial vehicle lithium ion battery system using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
  • a lithium ion battery system for a commercial vehicle using an air-cooled cooling-based hermetic battery pack 1 may include a BMS (battery) in addition to the air-cooled cooling-based hermetic battery pack 1 described above with reference to FIGS. 3 to 9.
  • management system 2), battery disconnect unit (BDU) 3, and power and control plug 4;
  • BMS (2) is connected to the air-cooled cooling-based sealed battery pack (1), the on-board for CAN (Controller Area Network) communication to enable communication with a microcontroller or device without a host computer in the vehicle ( On Board).
  • CAN Controller Area Network
  • the BMS 2 is formed to monitor temperature of the battery cells 11 and the state of the battery cells 11 constituting the air-cooled cooling-based sealed battery pack 1. To this end, the BMS 2 not only checks real-time temperature information measured from a temperature sensor (not shown) attached to the cartridge of the battery cell 11, but also lithium ion for a commercial vehicle using an air-cooled cooling-based sealed battery pack 1. Monitor the voltage, current and temperature of the battery system.
  • the BMS 2 maintains a uniform voltage level between each battery cell 11, which is a lithium ion battery cell, and measures the temperature inside the sealed battery pack 1 based on an air-cooled cooling system. In addition to controlling the operation of the overcharge and over discharge protection, battery level measurement, current consumption measurement, and short protection function.
  • the BDU 3 is compactly designed to be mounted together with the above-described BMS 2 as the second insertion end 61 b of the housing 61 for cooling fins. That is, the front end of the BMS (2) formed in connection with the air-cooled cooling-based hermetic battery pack (1) formed at the first insertion end (61a) of the housing for cooling fins (61), and the rear end of the power supply and control plug (4) Is formed.
  • the air-cooled cooling-based sealed battery pack 1 is a first outer case 71 for covering the upper portion of the first insertion end 61a of the housing 61 for cooling fins, BMS (2), BDU (3) and a second outer case 72 for covering the upper part of the second insertion end 61b for mounting the power supply and control plug 4, which can be mounted on a vehicle and are completely protected from dust. And a completely watertight battery case for low pressure water sprayed from all directions.
  • Figure 15 is an exploded perspective view showing the overall structure of the air-cooled cooling-based hermetic battery pack 1 of FIG.
  • BMS battery management system

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention relates to an air-cooling-based sealed battery pack structure. The present invention comprises: a battery module assembly (BMA) (10) comprising a plurality of battery cells (11); a primary sealing housing (20a) of which an upper object and a lower object are formed as a hexahedral shape having an open upper side and which is formed for primary sealing of the plurality of battery cells (11) which come in contact with a primary heat sink (20) and a secondary cold sink (30); a secondary sealing housing (30a) of which an upper object and a lower object are formed as a hexahedral shape having an open upper side and covering the outer peripheral sides of the primary sealing housing (20a) and which is formed for secondary sealing of the plurality of battery cells (11) which come in contact with the primary heat sink (20) and the secondary cold sink (30); and a Peltier element (50) which is inserted into an insertion groove (62) inside a cooling fin housing (61) having formed first cooling fins (60) on the lower side thereof, of which the upper part comes in contact with the secondary cold sink (30) through a cold block for cooling concentration (40), and which is formed inside a structure sealed by means of the secondary sealing housing (30a) and the cooling fin housing (61).

Description

공냉식 냉각 기반의 밀폐형 배터리팩 구조Air-cooled cooling based sealed battery pack structure
본 발명은 공냉식 냉각 기반의 밀폐형 배터리팩 구조에 관한 것으로, 보다 구체적으로는, 기존 수냉식에서 공냉식의 냉각방식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자를 이용한 신개념 공냉식 방열 방식을 제공하도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩 구조에 관한 것이다. The present invention relates to an air-cooled cooling-based hermetic battery pack structure, and more specifically, to provide a new concept air-cooled heat dissipation method using a Peltier element to switch from the existing water-cooled to air-cooled cooling method, and to radiate heat in an enclosed space. It relates to an air-cooled cooling-based hermetic battery pack structure.
도 1a 및 도 1b는 상용차량의 배터리팩 장착 모습을 나타내는 도면이며, 도 2는 배터리팩이 장착된 상용차량을 나타내는 도면이다. 이 경우, 트랙션모터(traction motor: a2), 모터 드라이브(motor drive: a1) 외의 배터리팩(1)을 포함하는 상용차량에서 배터리팩(1)은 수밀구조가 요구된다. 즉, 상용차량의 경우, 승용차량보다 비포장의 도로 및 운행조건이 더욱 열악한 상황에서 주행을 할 경우가 많다. 승용차량의 경우, 배터리팩(1)은 트렁크에 장착되어 있지만, 상용차량의 경우 도 1a 및 도 1b와 같이 차량 하부에 배터리팩(1)을 위치하게 된다. 1A and 1B are views illustrating a state in which a battery pack is installed in a commercial vehicle, and FIG. 2 is a view illustrating a commercial vehicle in which a battery pack is mounted. In this case, in a commercial vehicle including a battery pack 1 other than a traction motor a2 and a motor drive a1, the battery pack 1 requires a watertight structure. That is, in the case of a commercial vehicle, driving is often performed in a situation where the unpaved road and the driving conditions are worse than the passenger vehicle. In the case of a passenger vehicle, the battery pack 1 is mounted in the trunk, but in the case of a commercial vehicle, the battery pack 1 is positioned below the vehicle as shown in FIGS. 1A and 1B.
상용차량에서 배터리팩(1)의 위치는 승용차량에 비해 노면과 가까이 있고, 배터리팩(1)을 보호하는 장치는 배터리팩 케이스로만 되어있어 보다 방수와 방진에 강건한 설계가 요구된다. The position of the battery pack 1 in a commercial vehicle is closer to the road surface than a passenger vehicle, and the device protecting the battery pack 1 is made of only a battery pack case, which requires a more robust and waterproof design.
그러나, 배터리팩(1)의 발열로 인한 냉각구조의 문제가 발생한다. 방수와 방진에 강건한 설계를 하다 보면 밀폐구조로 배터리팩(1)이 설계되는데 배터리의 특성상 열이 발생하고, 배터리 셀과 BMS(battery managament system)는 열에 취약하고 수명에도 직접적으로 영향을 미치는 중요한 이슈여서 방열을 위한 장치가 필수적이다.However, a problem of the cooling structure due to the heat generation of the battery pack 1 occurs. When the design is robust to waterproof and dustproof, the battery pack (1) is designed as a sealed structure. Heat is generated due to the characteristics of the battery, and the battery cell and battery managament system (BMS) are vulnerable to heat and directly affect the lifespan. Therefore, a device for heat dissipation is essential.
현재 제작된 상용차량용 배터리팩(1)은 수냉식으로 냉각을 하는데 배터리팩의 방열을 위해 별도의 수냉 펌프, 라디에이터, 냉각선 등이 별도로 설치되어야 하는 한계점이 있다. The currently manufactured commercial vehicle battery pack 1 is cooled by water cooling, but there is a limit in that a separate water cooling pump, a radiator, a cooling line, and the like must be separately installed for heat dissipation of the battery pack.
보다 구체적으로, 도 1c는 종래의 기술에 따른 수냉식 HEV 리튬 이온 배터리팩을 나타내는 도면이다. HEV 차량용 리튬 이온 배터리는 순간적인 고전류의 사용으로 인한 발열이 심하고, 셀(cell)의 수명은 열에 영향을 많이 받기 때문에 방열 시스템이 필수조건으로 상술한 바와 같이 방열을 위해서 수냉식 구조를 채택했으나 수냉식 방식에서 배터리팩 내부로 워터 파이프가 지나가므로, 워터 파이프의 파손 시 화재의 위험(안전성의 문제)이 있으며, 별도의 워터펌프를 구동하기 위한 새로운 동력원이 필요한 문제점이 있었다. 이뿐만 아니라, 별도의 냉각수 필요 및 냉각수를 교체하기 위한 비용 발생하며, 냉각수를 냉각시키기 위한 별도의 FAN 필요하고, 냉각수를 냉각시키기 위한 라디에이터를 장착해야하며, 배터리팩을 냉각시키기 위해 추가적으로 장착하는 부속품들의 증가로 인한 비용 상승 및 유지보수 비용의 증가하는 문제점이 발생한다. More specifically, Figure 1c is a view showing a water-cooled HEV lithium ion battery pack according to the prior art. The HEV vehicle lithium ion battery generates a lot of heat due to the instantaneous use of high current and the life of the cell is affected by heat. Therefore, the heat dissipation system is a prerequisite. Since the water pipe is passed inside the battery pack, there is a risk of fire (safety problems) when the water pipe is broken, there was a problem that requires a new power source for driving a separate water pump. In addition, there is a need for a separate coolant and the cost of replacing the coolant, a separate FAN for cooling the coolant, a radiator for cooling the coolant, and additional accessories for cooling the battery pack. Increasing costs and increasing maintenance costs arise.
이에 따라 해당 기술분야에 있어서는 별도의 수냉 시스템이 없이도 공냉식으로 냉각할 수 있도록 하기 위한 배터리팩에 대한 기술개발이 요구되고 있다. Accordingly, in the related art field, there is a demand for technology development of a battery pack for cooling by air cooling without a separate water cooling system.
[관련기술문헌][Related Technical Documents]
1. 배터리팩 수납장치 및 이를 이용한 전력 저장용 배터리팩의 냉각 장치(Apparatus for containing battery pack and apparatus for cooling power storage battery pack using it)(특허출원번호 제10-2011-0038383호)1. Apparatus for containing battery pack and apparatus for cooling power storage battery pack using it (Patent Application No. 10-2011-0038383)
2. 차량용 이차전지 배터리팩의 냉각장치(Apparatus for cooling secondary battery pack for vehicle)(특허출원번호 제10-2010-0078427호)2. Apparatus for cooling secondary battery pack for vehicle (Patent Application No. 10-2010-0078427)
3. 배터리팩 냉각장치(Battery pack cooler using heat-pipes)(특허출원번호 제10-2010-0091904호)3. Battery pack cooler using heat-pipes (Patent Application No. 10-2010-0091904)
본 발명은 상기의 문제점을 해결하기 위한 것으로, 상용차량에서 배터리팩의 냉각을 위한 수냉 시스템을 대체할 수 있는 공냉식의 냉각 방식을 통해 온도 상승을 고려하여 패터리팩 내부의 온도를 정량적 목표인 42℃ 이하로 달성하도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩 구조를 제공하기 위한 것이다.The present invention is to solve the above problems, in consideration of the temperature rise through the air-cooled cooling method that can replace the water cooling system for cooling the battery pack in a commercial vehicle quantitative target 42 It is to provide a sealed battery pack structure based on air-cooled cooling to achieve below the ℃.
또한, 본 발명은 BMS(battery management system)와 배터리 셀(cell)은 차량의 진동, 온도, 습도 등 가혹한 환경에서 작동되어야 하기 때문에 방열뿐만 아니라, 밀폐 및 단열된 구조에 의해 외부의 열기 및 먼지 등을 차단하도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩 구조를 제공하기 위한 것이다.In addition, the present invention, because the battery management system (BMS) and the battery cell (cell) should be operated in a harsh environment such as vibration, temperature, humidity of the vehicle, as well as heat dissipation, heat and dust by the sealed and insulated structure, etc. To provide an air-cooled cooling-based sealed battery pack structure to block the.
또한, 본 발명은 기존 수냉식에서 공냉식의 냉각방식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자를 이용한 신개념 공냉식 방열 방식을 제공하도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩 구조를 제공하기 위한 것이다.In addition, the present invention is to provide an air-cooled cooling-based sealed battery pack structure to provide a new concept air-cooled heat dissipation method using a Peltier element to switch from the existing water-cooled to air-cooled cooling method, and to allow heat radiation in a closed space. .
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 목적을 달성하기 위해 본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩 구조는, 다수의 배터리 셀(11)을 포함하는 BMA(battery module assembly)(10); 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성되며, 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 1차적인 밀폐를 위해 형성되는 1차 밀폐하우징(20a); 1차 밀폐하우징(20a)의 외주면을 감싸는 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성되어 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 대한 2차적인 밀폐를 위해 형성되는 2차 밀폐하우징(30a); 하부면으로 제 1 냉각핀(60)이 형성된 냉각핀용 하우징(61) 내부의 삽입홈(62)으로 삽입되며, 상부로는 냉각집중용 콜드블록(40)을 통해 2차 콜드 싱크(30)와 맞닿으며, 2차 밀폐하우징(30a)과 냉각핀용 하우징(61)에 의한 밀폐된 구조 내에 형성되는 펠티어 소자(50); 를 포함한다.In order to achieve the above object, an air-cooled cooling-based sealed battery pack structure according to an embodiment of the present invention includes a battery module assembly (BMA) 10 including a plurality of battery cells 11; A hexahedron shape with an open top surface is formed of an upper object and a lower object, and formed for primary sealing on a plurality of battery cells 11 in contact with the primary heat sink 20 and the secondary cold sink 30. Primary sealed housing 20a; A plurality of battery cells contacted with the primary heat sink 20 and the secondary cold sink 30 by forming an hexahedral shape having an open upper surface surrounding the outer circumferential surface of the primary hermetic housing 20a as an upper object and a lower object ( A secondary hermetic housing 30a formed for secondary closure to 11); The lower surface is inserted into the insertion groove 62 in the cooling fin housing 61 formed with the first cooling fin 60, the upper portion and the secondary cold sink 30 through the cold concentrating cold block 40 A Peltier element 50 in contact with and formed in a sealed structure by the secondary hermetic housing 30a and the cooling fin housing 61; It includes.
이때, 본 발명은, 다수의 배터리 셀(11)의 하부면을 받치는 구조로 다수의 배터리 셀(11)과 직접 접촉하여 1차로 다수의 배터리 셀(11)의 온도를 낮추는 효과를 제공하기 판 형상으로 형성되는 1차 히트싱크(20); 및 1차 히트싱크(20)의 하부면을 받치며 상부면과 전면 및 후면이 개방된 육면체 형상으로 형성되어 다수의 배터리 셀(11)에 대한 발열을 통해 온도를 2차로 낮추는 역할을 수행하는 2차 콜드싱크(30); 를 더 포함한다. At this time, the present invention, the structure that supports the lower surface of the plurality of battery cells 11 in direct contact with the plurality of battery cells 11 to provide the effect of lowering the temperature of the plurality of battery cells 11 primarily plate shape Primary heat sink 20 formed as; And a lower surface of the primary heat sink 20 and formed in a hexahedral shape in which the upper surface, the front surface, and the rear surface are open, thereby lowering the temperature to the second through heat generation for the plurality of battery cells 11. Tea cold sink 30; It further includes.
또한, 냉각집중용 콜드블록(40)은, 2차 밀폐하우징(30a)과 맞닿는 사각의 판 형상으로 형성되며, 그 하부에는 펠티어 소자(50)와 맞닿는 구조를 갖는 것이 바람직하다.In addition, the cold concentrating cold block 40 is formed in a rectangular plate shape in contact with the secondary hermetic housing 30a, and preferably has a structure in contact with the Peltier element 50 in the lower portion thereof.
또한, 냉각핀용 하우징(61)은, 2차 밀폐하우징(30a)을 내부의 미리 설정된 높이까지 삽입하기 위한 제 1 삽입단(61a)과, BMS(2), BDU(3) 및 전원 및 제어 플러그(4)를 실장하기 위한 제 2 삽입단(61b)으로 구분되며, 상부면이 개방된 육면체 형상으로 형성되는 것이 바람직하다.In addition, the cooling fin housing 61 includes a first insertion end 61a for inserting the secondary hermetic housing 30a to a predetermined height therein, a BMS 2, a BDU 3, a power supply and a control plug. It is preferable to be divided into the 2nd insertion end 61b for mounting (4), and to form an hexahedron shape in which the upper surface was opened.
또한, 상기 미리 설정된 높이는, 2차 밀폐하우징(30a)의 냉각핀용 하우징(61) 상에서 제 1 삽입단(61a)으로 삽입시, 제 1 삽입단(61a)의 삽입홈(62) 내부에 삽입된 펠티어 소자(50) 및 그 상부의 냉각집중용 콜드블록(40)의 적층 구조의 상부면과 맞닿는 위치인 것이 바람직하다.In addition, the predetermined height is inserted into the insertion groove 62 of the first insertion end 61a when inserted into the first insertion end 61a on the cooling fin housing 61 of the secondary hermetic housing 30a. It is preferred that the Peltier element 50 and the upper surface of the laminated structure of the cold concentrating cold block 40 thereon is in contact with the upper surface.
또한, 배터리 셀(11)은, HEV 차량용 리튬 이온 배터리 셀이며, 2차 밀폐하우징(30a)에 의한 밀폐 및 단열된 구조에 의해 외부로부터의 고열의 유입을 막고, 펠티어 소자(50)에 의해 냉각된 내부의 온도를 유지하는 것이 바람직하다. The battery cell 11 is a HEV vehicle lithium ion battery cell, which is sealed and insulated by the secondary hermetic housing 30a to prevent the inflow of high heat from the outside and is cooled by the Peltier element 50. It is desirable to maintain the temperature of the interior.
또한, 제 1 냉각핀(60)은, 냉각핀용 하우징(61)의 하부면에 다수의 판 형상의 방열핀이 각각 균일한 이격 간격을 갖고 하부로 향하도록 형성되어, 차량운행시 외부 공기와 접촉하며 열교환을 위해 형성되는 것이 바람직하다.In addition, the first cooling fins 60 are formed on the lower surface of the housing 61 for cooling fins such that a plurality of plate-shaped heat dissipation fins are faced downwardly at equal intervals, so that the first cooling fins 60 are in contact with the outside air while driving the vehicle. It is preferably formed for heat exchange.
또한, BMA(10)를 구성하는 직렬 연결된 다수의 배터리 모듈(11u) 각각은, 각 배터리 모듈(11u) 내의 다수의 배터리 셀(11)을 구분하는 셀 카트리지(11a)의 양측면에 제 2 냉각핀(11b)을 포함하는 것이 바람직하다.In addition, each of the plurality of battery modules 11u connected in series constituting the BMA 10 has second cooling fins on both sides of the cell cartridge 11a that divides the plurality of battery cells 11 in each battery module 11u. It is preferable to include (11b).
또한, 제 2 냉각핀(11b)은, 하나의 배터리 모듈(11u) 내에서의 다수의 배터리 셀(11) 모두와 직접적으로 접촉하는 위치에 배터리 모듈(11u)의 양 측면에서 직교하는 방향을 향하도록 형성된 다수의 판 형상의 방열핀이 균일한 이격 간격을 두고 형성되는 것이 바람직하다. In addition, the second cooling fins 11b face the direction orthogonal to both sides of the battery module 11u at a position in direct contact with all of the plurality of battery cells 11 in one battery module 11u. It is preferable that a plurality of plate-shaped heat-dissipating fins formed so as to be formed at evenly spaced intervals.
본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩 구조는, 상용차량에서 배터리팩의 냉각을 위한 수냉 시스템을 대체할 수 있는 공냉식의 냉각 방식을 통해 온도 상승을 고려하여 패터리팩 내부의 온도를 정량적 목표인 42℃ 이하로 달성하도록 하는 효과를 제공한다. The air-cooled cooling-based hermetic battery pack structure according to an embodiment of the present invention, the temperature inside the battery pack in consideration of the temperature rise through the air-cooled cooling method that can replace the water cooling system for cooling the battery pack in a commercial vehicle To achieve below the quantitative target of 42 ° C.
또한, 본 발명의 다른 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩 구조는, BMS(battery management system)와 배터리 셀(cell)은 차량의 진동, 온도, 습도 등 가혹한 환경에서 작동되어야 하기 때문에 방열뿐만 아니라, 밀폐 및 단열된 구조에 의해 외부의 열기 및 먼지 등을 차단할 수 있는 효과를 제공한다.In addition, the air-cooled cooling-based sealed battery pack structure according to another embodiment of the present invention, because the battery management system (BMS) and the battery cell (cell) should be operated in a harsh environment, such as vibration, temperature, humidity of the vehicle as well as heat radiation In addition, the sealed and insulated structure provides an effect of blocking external heat and dust.
뿐만 아니라, 본 발명의 다른 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩 구조는, 기존 수냉식에서 공냉식의 냉각방식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자를 이용한 신개념 공냉식 방열 방식을 제공하는 효과를 제공한다. In addition, the air-cooled cooling-based hermetic battery pack structure according to another embodiment of the present invention provides a new concept air-cooled heat dissipation method using a Peltier element to switch from the conventional water-cooled to the air-cooled cooling method and to radiate heat in an enclosed space. To provide the effect.
도 1a 및 도 1b는 상용차량의 배터리팩 장착 모습을 나타내는 도면이며, 도 1c는 종래의 기술에 따른 수냉식 HEV 리튬 이온 배터리팩을 나타내는 도면이다.1A and 1B are views illustrating a state in which a battery pack is mounted in a commercial vehicle, and FIG. 1C is a view illustrating a water-cooled HEV lithium ion battery pack according to the related art.
도 2는 일반적으로 배터리팩이 장착된 상용차량을 나타내는 도면이다.2 is a view generally showing a commercial vehicle equipped with a battery pack.
도 3은 본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 구성 요소를 나타내는 도면이다. 3 is a view showing the components inside the sealed battery pack 1 of the air-cooled cooling according to an embodiment of the present invention.
도 4는 도 3의 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 사용되는 펠티어 소자(50)를 나타내는 도면이다.4 is a view showing the Peltier element 50 used in the air-cooled cooling-based hermetic battery pack 1 of FIG.
도 5는 본 발명의 실시예에 다른 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 구성요소간의 결합관계를 나타내는 도면이다. 5 is a view showing a coupling relationship between the components of the air-cooled cooling-based hermetic battery pack 1 according to an embodiment of the present invention.
도 6은 본 발명에 따른 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 BMA(battery module assembly)(10) 중 배터리 셀(11)과 제 2 냉각핀(11b)의 구조를 나타내는 도면이다. 6 is a view showing the structure of the battery cell 11 and the second cooling fin (11b) of the battery module assembly (BMA) 10 constituting the air-cooled cooling-based hermetic battery pack 1 according to the present invention.
도 7은 도 6의 BMA(10)을 구성하는 배터리 셀(11)에 직접적으로 접촉하는 제 2 냉각핀(11b)의 구조를 나타내는 사시도(도 7a) 및 단면도(도 7b)이다.FIG. 7 is a perspective view (FIG. 7A) and a cross-sectional view (FIG. 7B) illustrating a structure of a second cooling fin 11b directly contacting the battery cell 11 constituting the BMA 10 of FIG. 6.
도 8은 도 6의 BMA(10)의 구조를 나타내는 도면이다. FIG. 8 is a diagram illustrating the structure of the BMA 10 of FIG. 6.
도 9는 도 6의 BMA(10)의 열유동(thermal flow) 상태를 나타내는 도면이다.FIG. 9 is a diagram illustrating a thermal flow state of the BMA 10 of FIG. 6.
도 10은 본 발명에 따른 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 구성을 나타내는 도면이다. 10 is a view showing the configuration of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based hermetic battery pack (1) according to the present invention.
도 11은 도 10의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 열유동(thermal flow) 상태를 나타내는 도면이다. FIG. 11 is a view illustrating a thermal flow state of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
도 12 및 도 13은 도 10의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 단면도를 나타내는 도면이다. 12 and 13 are cross-sectional views of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
도 14는 도 10의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템이 밀폐된 상태를 나타내는 도면이다. FIG. 14 is a view illustrating a sealed state of a commercial vehicle lithium ion battery system using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
도 15는 도 1의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 전체 구조를 나타내는 분해 사시도이다. FIG. 15 is an exploded perspective view illustrating the entire structure of the airtight cooling-based hermetic battery pack 1 of FIG. 1.
이하, 본 발명의 바람직한 실시예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Hereinafter, the detailed description of the preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, detailed descriptions of well-known functions or configurations will be omitted when it is deemed that they may unnecessarily obscure the subject matter of the present invention.
도 3은 본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 구성 요소를 나타내는 도면이다. 3 is a view showing the components inside the sealed battery pack 1 of the air-cooled cooling according to an embodiment of the present invention.
도 4는 도 3의 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 사용되는 펠티어 소자(peltier: 50)를 나타내는 도면이다.4 is a view showing a peltier (peltier) 50 used in the air-cooled cooling-based hermetic battery pack 1 of FIG.
도 5는 본 발명의 실시예에 다른 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 구성요소간의 결합관계를 나타내는 도면이다. 5 is a view showing a coupling relationship between the components of the air-cooled cooling-based hermetic battery pack 1 according to an embodiment of the present invention.
도 6은 본 발명에 따른 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 BMA(battery module assembly)(10) 중 배터리 셀(11)과 제 2 냉각핀(11b)의 구조를 나타내는 도면이다. 6 is a view showing the structure of the battery cell 11 and the second cooling fin (11b) of the battery module assembly (BMA) 10 constituting the air-cooled cooling-based hermetic battery pack 1 according to the present invention.
도 7은 도 6의 BMA(10)을 구성하는 배터리 셀(11)에 직접적으로 접촉하는 제 2 냉각핀(11b)의 구조를 나타내는 사시도(도 7a) 및 단면도(도 7b)이다.FIG. 7 is a perspective view (FIG. 7A) and a cross-sectional view (FIG. 7B) illustrating a structure of a second cooling fin 11b directly contacting the battery cell 11 constituting the BMA 10 of FIG. 6.
도 8은 도 6의 BMA(10)의 구조를 나타내는 도면이다. FIG. 8 is a diagram illustrating the structure of the BMA 10 of FIG. 6.
도 9는 도 6의 BMA(10)의 열유동(thermal flow) 상태를 나타내는 도면이다.FIG. 9 is a diagram illustrating a thermal flow state of the BMA 10 of FIG. 6.
도 3 내지 도 9를 참조하면, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은 다수의 배터리 셀(11)을 포함하는 BMA(battery module assembly: 10), 1차 히트싱크(heatsink: 20), 2차 콜드싱크(coldsink: 30), 1차 밀폐하우징(20a), 2차 밀폐하우징(30a), 콜드블록(40), 펠티어 소자(peltier: 50), 그리고 제 1 냉각핀(60)을 포함한다. 3 to 9, the air-cooled cooling-based hermetic battery pack 1 may include a battery module assembly (BMA) 10 including a plurality of battery cells 11, a primary heat sink 20, and two. A primary cold sink 30, a primary sealed housing 20 a, a secondary sealed housing 30 a, a cold block 40, a peltier 50, and a first cooling fin 60. .
다수의 배터리 셀(11)을 포함하는 BMA(10)는 하부에 1차 히트싱크(20) 및 2차 콜드싱크(30)에 의해 받쳐지는 형태로 형성된다. The BMA 10 including the plurality of battery cells 11 is formed in a shape supported by the primary heat sink 20 and the secondary cold sink 30 at the bottom thereof.
1차 히트싱크(20)는 다수의 배터리 셀(11)의 하부면을 받치는 구조로 다수의 배터리 셀(11)과 직접 접촉함으로써, 1차로 다수의 배터리 셀(11)의 온도를 낮추는 효과를 제공하기 위해 판 형상으로 형성된다. The primary heat sink 20 directly contacts the plurality of battery cells 11 in a structure supporting the lower surfaces of the plurality of battery cells 11, thereby providing an effect of lowering the temperatures of the plurality of battery cells 11 firstly. In order to form a plate.
2차 콜드싱크(30)는 1차 히트싱크(20)의 하부면을 받치며 상부면과 전면 및 후면이 개방된 육면체 형상으로 형성됨으로써, 다수의 배터리 셀(11)에 대한 발열을 통해 온도를 2차로 낮추는 역할을 수행한다. The secondary cold sink 30 is formed in a hexahedral shape that supports the lower surface of the primary heat sink 20 and has an upper surface, a front surface, and a rear surface open, thereby heating the temperature of the plurality of battery cells 11. It acts as a second lowering.
여기서 1차 밀폐하우징(20a)은 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성됨으로써, 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 1차적인 밀폐를 위해 형성된다. Here, the primary hermetic housing 20a has a hexahedron shape having an open upper surface as an upper object and a lower object, such that a plurality of battery cells 11 are in contact with the primary heat sink 20 and the secondary cold sink 30. Is formed for primary sealing.
한편, 2차 밀폐하우징(30a)은 1차 밀폐하우징(20a)의 외주면을 감싸는 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성됨으로써, 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 대한 2차적인 밀폐를 위해 형성된다. On the other hand, the secondary sealed housing (30a) is formed by the upper body and the lower object is formed in the upper body and the upper surface surrounding the outer circumferential surface of the primary closed housing (20a), the primary heat sink 20 and the secondary cold sink It is formed for secondary sealing of the plurality of battery cells 11 in contact with 30.
냉각집중용 콜드블록(40)은 2차 밀폐하우징(30a)과 맞닿는 사각의 판 형상으로 형성되며, 그 하부에는 펠티어 소자(50)와 맞닿는 구조를 갖는다. The cold concentrating cold block 40 is formed in a rectangular plate shape in contact with the secondary hermetic housing 30a, and has a structure in contact with the Peltier element 50 in the lower portion thereof.
펠티어 소자(50)는 제 1 냉각핀(60)이 형성된 냉각핀용 하우징(61) 내부의 삽입홈(62)으로 삽입되며, 상부면에는 냉각집중용 콜드블록(40)과 맞닿는다. 이를 위해 냉각핀용 하우징(61)은 상부 객체와 하부 객체로 이루어지며, 상부 객체 및 하부 객체 각각은 2차 밀폐하우징(30a)을 내부의 미리 설정된 높이까지 삽입하기 위한 제 1 삽입단(61a)과, 후술하는 BMS(2), BDU(3) 및 전원 및 제어 플러그(4)를 실장하기 위한 제 2 삽입단(61b)으로 구분되며, 상부면이 개방된 육면체 형상으로 형성된다. 여기서 미리 설정된 높이는 2차 밀폐하우징(30a)의 냉각핀용 하우징(61) 상에서 제 1 삽입단(61a)으로 삽입시, 제 1 삽입단(61a)의 삽입홈(62) 내부에 삽입된 펠티어 소자(50) 및 그 상부의 냉각집중용 콜드블록(40)의 적층 구조의 상부면과 맞닿는 위치를 의미한다. The Peltier element 50 is inserted into the insertion groove 62 inside the cooling fin housing 61 in which the first cooling fin 60 is formed, and contacts the cold concentrating cold block 40 on the upper surface. To this end, the cooling fin housing 61 is formed of an upper object and a lower object, and each of the upper object and the lower object includes a first insertion end 61a for inserting the secondary sealed housing 30a up to a predetermined height therein. The second insertion end 61b for mounting the BMS 2, the BDU 3 and the power supply and the control plug 4 to be described later is formed, and the upper surface is formed in an open hexahedral shape. Here, the preset height is a Peltier element inserted into the insertion groove 62 of the first insertion end 61a when the first height is inserted into the first insertion end 61a on the cooling fin housing 61 of the secondary hermetic housing 30a. 50) and a position in contact with the upper surface of the laminated structure of the cold concentrating cold block 40 thereon.
이러한 펠티어 소자(50)를 이용한 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 있어서, HEV 차량용 리튬 이온 배터리 셀로 이루어지는 배터리 셀(11)은 순간적인 고전류의 사용으로 인한 발열이 심하고, 배터리 셀(11)의 수명은 열에 영향을 가장 많이 받기 때문에 상술한 방열 구조를 통해 외부로부터의 고열의 유입을 막고, 펠티어 소자(50)에 의해 냉각된 내부의 온도를 유지하기 위해 2차 밀폐하우징(30a)과 맞닿는 냉각핀용 하우징(61)에 의한 단열 구조 설계를 제공한다. 결과적으로, 방진 및 방수의 등급 만족을 위한 밀폐 구조의 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 펠티어 소자(50)의 위치 및 방열판에 해당하는 제 1 냉각핀(60) 및 제 2 냉각핀(11b)에 대한 최적 형상 구조를 제공한다. In the air-cooled cooling-based hermetic battery pack 1 using the Peltier element 50, the battery cell 11 composed of a HEV vehicle lithium ion battery cell generates heat due to instantaneous use of high current, and the battery cell 11 Since the life of is most affected by heat, the heat dissipation structure prevents the inflow of high heat from the outside and contacts the secondary hermetic housing 30a to maintain the internal temperature cooled by the Peltier element 50. It provides a thermal insulation design by the housing 61 for cooling fins. As a result, the first cooling fins 60 and the second cooling fins corresponding to the heat sink and the position of the Peltier element 50 inside the sealed battery pack 1 of the air-cooled cooling-based sealed structure for satisfying the dust and water resistance grades. Provide an optimal shape structure for 11b.
또한, 상술한 바와 같이 냉각을 위해 기존의 수냉식에서 공냉식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자(50)를 적용한 신개념 공냉식 방열 방식을 제공함과 동시에 펠티어 소자(50)를 이용해 겨울철에는 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 온도를 올리기 위한 열전효과 활용할 수 있는 효과가 있다. In addition, as described above, in order to provide a new concept of air-cooled heat dissipation method using the Peltier element 50 to switch from the conventional water-cooled to air-cooled, and to radiate heat in a closed space, and at the same time in the winter using the Peltier element 50 Air-cooled cooling-based sealed battery pack (1) has the effect of utilizing the thermoelectric effect to increase the temperature inside.
한편, 도 4의 펠티어 소자(50)에 대해서 보다 구체적으로 살펴보도록 한다. 펠티어 소자(50)는 냉각 다비이스(device) 중 하나로, 수 cm 내지 수십 cm 크기까지 크기가 다양하다. 본 발명에서 사용되는 펠티어 소자(50)의 맨 아래와 맨 위에는 도 4b와 같이 세라믹층이 있으며, 열을 효율적으로 전달하면서도 전기의 흐름은 제한하는 역할을 한다. 세라믹층의 내부에 순차적으로 형성된 전도체 층과 반도체 층이 실질적인 본 발명에 따른 펠티어 소자(50)를 이용한 공냉식 냉각 기반의 밀폐형 배터리팩(1)에서의 냉각과 가열을 위한 '엔진'에 해당한다. Meanwhile, the Peltier element 50 of FIG. 4 will be described in more detail. The Peltier device 50 is one of the cooling devices, and varies in size from several cm to several tens of cm. The bottom and top of the Peltier element 50 used in the present invention has a ceramic layer as shown in Figure 4b, and serves to limit the flow of electricity while efficiently transferring heat. The conductor layer and the semiconductor layer sequentially formed in the ceramic layer correspond to the 'engine' for cooling and heating in the air-cooled cooling-based hermetic battery pack 1 using the Peltier element 50 according to the present invention.
반도체 층의 경우 P형 반도체와 N형 반도체 전체가 직렬로 이어져서 최대한의 냉각효율을 끌어내도록 구성되어 있다. 본 발명에서 P형 및 N형 반도체가 직렬로 연결되어 있는 구조의 펠티어 소자(50)를 이용하여 가열과 냉각을 하기 위해서는 두 개의 서로 다른 금속이 2개의 접점을 갖고 있어야 한다는 전제 조건이 필요하다. 펠티어 소자(50)는 간단한 구조와 환경친화성, 그리고 높은 신뢰성(물리적인 동작 구조를 전혀 가지지 않는 전기 회로로만 구성되기 때문에 고장 날 여지가 거의 없음)을 가지고 있어서 국부 냉각기 등에 널리 사용되고 있다.In the case of the semiconductor layer, the entire P-type semiconductor and the N-type semiconductor are configured in series to draw the maximum cooling efficiency. In the present invention, in order to heat and cool using the Peltier element 50 having a structure in which P-type and N-type semiconductors are connected in series, a precondition that two different metals have two contacts is required. The Peltier element 50 has a simple structure, environmental friendliness, and high reliability (there is little chance of failure because it is composed only of an electric circuit having no physical operation structure at all) and is widely used in a local cooler and the like.
도 4b의 펠티어 소자(50)의 내부 구조 및 도 4c의 펠티어 소자(50)의 원리를 참조하여 본 발명에서의 펠티어 소자(50)에 의한 펠티어 효과(peltier effect)를 좀 더 살펴보도록 한다. With reference to the internal structure of the Peltier element 50 of FIG. 4B and the principle of the Peltier element 50 of FIG. 4C, the peltier effect of the Peltier element 50 according to the present invention will be described.
본 발명의 펠티어 소자(50)의 펠티어 효과는 전도체 층을 이루는 금속과 반도체를 접속한 두 점 사이에 폐회로를 구성, 전류를 흘리면 한쪽은 열이 발생하고 다른 쪽은 열을 흡수하는 현상으로, 두 개의 서로 다른 금속도선의 양끝을 연결하여 폐회로를 구성하고 양단에 온도차가 주면 두 접점 사이에 전위차가 발생한다. 이를 열전현상이라 부르고 이때 발생한 전위차를 열기전력이라고 한다. 이러한 열전현상은 양 단간의 온도차를 이용하여 기전력을 얻어내는 제베크 효과, 기전력으로 냉각과 가열을 하는 펠티에 효과, 도체의 선상의 온도차에 의해 기전력이 발생하는 톰슨 효과로 구분하여 설명 가능하다. The Peltier effect of the Peltier element 50 of the present invention is a phenomenon in which a closed circuit is formed between two points connecting a metal and a semiconductor constituting a conductor layer, and when current flows, one side generates heat and the other absorbs heat. Two ends of two different metal wires are connected to form a closed circuit, and if a temperature difference is given at both ends, a potential difference occurs between the two contacts. This is called thermoelectric phenomenon and the potential difference generated at this time is called thermoelectric power. These thermoelectric phenomena can be classified into the Seebeck effect of obtaining an electromotive force by using the temperature difference between the two ends, the Peltier effect of cooling and heating by the electromotive force, and the Thomson effect of generating an electromotive force by the temperature difference between the conductors.
본 발명에서의 펠티어 소자(50)는 두 개의 서로 다른 금속이 2개의 접점을 가지고 붙어있을 때, 이 두 금속에 전류를 흘려 주면 한쪽 면에서는 지속적으로 열이 흡수되어 차가워지고 반대쪽 면에서는 지속적으로 열이 방출되어 뜨거워지게 된다. 이때 +극과 -극을 반대로 하여 전류를 흘려주게 되면 열을 방출/흡수하는 면 역시 반대로 되어 가열이 되었던 면은 냉각이 되고 냉각되었던 면은 가열이 되게 된다. 이러한 원리를 응용하여, 본 발명에서의 펠티어 소자(50)의 흡열부에 열에너지를 가해주면 양면에 온도차가 생겨 전류가 발생하게 된다. 펠티어 소자(50)의 냉각과 가열의 사이에는 일정한 온도 차이가 생기가 되어 뜨거운 쪽에 열을 식혀, 온도를 낮춰주면 반대쪽 면인 차가운 쪽은 온도가 더 내려가게 된다.In the present invention, when the Peltier element 50 is attached to two different metals with two contacts, when current flows through these two metals, heat is continuously absorbed and cooled on one side and continuously on the other side. Is released and becomes hot. At this time, if the current is flowed in the opposite direction of the + pole and the-pole, the side of dissipating / absorbing heat is also reversed so that the heated side is cooled and the cooled side is heated. Applying this principle, when heat energy is applied to the heat absorbing portion of the Peltier element 50 in the present invention, a temperature difference occurs on both surfaces, thereby generating a current. There is a constant temperature difference between cooling and heating of the Peltier element 50, cooling the heat on the hot side, and lowering the temperature, the temperature on the other side of the cold side is lowered.
즉, 본 발명에서의 펠티어 소자(50)에 의한 펠티어 효과는 두 가지의 다른 물질들이 가는 접합을 거쳐 전류가 흐를 때 일어나는 열의 방출과 흡수를 의미하며, 전류가 어떤 한 방향으로 흐를 때 열이 발생 되지만, 그 반대방향으로 흐르면 열을 흡수하기 때문에, 펠티어 효과는 가역적이다.In other words, the Peltier effect by the Peltier element 50 in the present invention means the release and absorption of heat generated when the current flows through the thin junction of two different materials, the heat is generated when the current flows in any one direction However, the Peltier effect is reversible because it absorbs heat when flowed in the opposite direction.
이와 같은 펠티어 소자(50)의 특성을 이용하여 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 냉각하여 완전 밀폐형의 배터리 팩을 제조할 수 있다. By using the characteristics of the Peltier device 50, the airtight cooling-based hermetic battery pack 1 may be cooled to manufacture a completely hermetic battery pack.
제 1 냉각핀(60)은 냉각핀용 하우징(61)의 하부면에 다수의 판 형상의 방열핀이 각각 균일한 이격 간격을 갖고 하부로 향하도록 형성된다. 제 1 냉각핀(60)은 차량운행시 외부 공기와 접촉하며 열교환을 위해 형성된다. The first cooling fins 60 are formed on the lower surface of the housing 61 for cooling fins such that a plurality of plate-shaped heat dissipation fins face downward with uniform spacing. The first cooling fin 60 is in contact with the outside air during vehicle operation and is formed for heat exchange.
그리고, BMA(10)를 구성하는 다수의 배터리 모듈(11u) 각각은 다수의 배터리 셀(11)을 구분하는 셀 카트리지(11a)의 양측면에 제 2 냉각핀(11b)을 형성한다. 여기서 제 2 냉각핀(11b)은 하나의 배터리 모듈(11u) 내에서의 다수의 배터리 셀(11) 모두와 직접적으로 접촉하는 위치에 배터리 모듈(11u)의 양 측면에서 직교하는 방향을 향하도록 형성된 다수의 판 형상의 방열핀이 균일한 이격 간격을 두고 형성된다. Each of the plurality of battery modules 11u constituting the BMA 10 forms second cooling fins 11b on both sides of the cell cartridge 11a that divides the plurality of battery cells 11. Here, the second cooling fin 11b is formed to face in a direction orthogonal to both sides of the battery module 11u at a position in direct contact with all of the plurality of battery cells 11 in one battery module 11u. A plurality of plate-shaped heat sink fins are formed at even intervals.
다수의 배터리 모듈(11u)은 리튬 이온 배터리 모듈로 도 9와 같이 6개의 직렬 연결을 공냉식 냉각 기반의 밀폐형 배터리팩(1) 상에서 BMA(battery module assembly)(10)을 형성한다. A plurality of battery modules (11u) is a lithium ion battery module to form a battery module assembly (BMA) (10) on the air-cooled cooling-based sealed battery pack 1 of six series connections as shown in FIG.
도 10은 본 발명에 따른 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 구성을 나타내는 도면이다. 도 11은 도 10의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 열유동(thermal flow) 상태를 나타내는 도면이다. 도 12 및 도 13은 도 10의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 단면도를 나타내는 도면이다. 도 14는 도 10의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템이 밀폐된 상태를 나타내는 도면이다. 10 is a view showing the configuration of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based hermetic battery pack (1) according to the present invention. FIG. 11 is a view illustrating a thermal flow state of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10. 12 and 13 are cross-sectional views of a lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack 1 of FIG. 10. FIG. 14 is a view illustrating a sealed state of a commercial vehicle lithium ion battery system using the air-cooled cooling-based sealed battery pack 1 of FIG. 10.
도 10 내지 도 14를 참조하면, 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템은 도 3 내지 도 9에서 상술한 공냉식 냉각 기반의 밀폐형 배터리팩(1) 외에 BMS(battery management system: 2), BDU(battery disconnect unit: 3) 및 전원 및 제어 플러그(4)를 포함한다. 10 to 14, a lithium ion battery system for a commercial vehicle using an air-cooled cooling-based hermetic battery pack 1 may include a BMS (battery) in addition to the air-cooled cooling-based hermetic battery pack 1 described above with reference to FIGS. 3 to 9. management system: 2), battery disconnect unit (BDU) 3, and power and control plug 4;
BMS(2)는 공냉식 냉각 기반의 밀폐형 배터리팩(1)과 연결된 구조로, 차량 내에서 호스트 컴퓨터 없이 마이크로 콘트롤러나 장치와 서로 통신이 가능하도록 하기 위한 CAN(Controller Area Network) 통신을 위한 온 보드(On Board) 형태로 제공된다. BMS (2) is connected to the air-cooled cooling-based sealed battery pack (1), the on-board for CAN (Controller Area Network) communication to enable communication with a microcontroller or device without a host computer in the vehicle ( On Board).
BMS(2)는 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 배터리 셀(11)에 대한 온도 센싱과 배터리 셀(11)의 상태를 모니터링 하기 위해 형성된다. 이를 위해 BMS(2)는 배터리 셀(11)의 카트리지에 부착된 온도센서(미도시)로부터 측정된 실시간 온도 정보를 확인할 뿐만 아니라, 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 전압, 전류, 온도를 모니터링한다. The BMS 2 is formed to monitor temperature of the battery cells 11 and the state of the battery cells 11 constituting the air-cooled cooling-based sealed battery pack 1. To this end, the BMS 2 not only checks real-time temperature information measured from a temperature sensor (not shown) attached to the cartridge of the battery cell 11, but also lithium ion for a commercial vehicle using an air-cooled cooling-based sealed battery pack 1. Monitor the voltage, current and temperature of the battery system.
뿐만 아니라, BMS(2)는 리튬 이온 배터리 셀인 각 배터리 셀(11) 간의 전압레벨을 균등하게 유지하도록 하며, 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 온도를 측정하여, 펠티어 소자(50)의 동작 유무를 제어할 뿐만 아니라, 과충전 및 과방전 방지, 배터리 잔량 측정, 소비 전류 측정, 쇼트 방지 기능을 수행한다. In addition, the BMS 2 maintains a uniform voltage level between each battery cell 11, which is a lithium ion battery cell, and measures the temperature inside the sealed battery pack 1 based on an air-cooled cooling system. In addition to controlling the operation of the overcharge and over discharge protection, battery level measurement, current consumption measurement, and short protection function.
BDU(3)는 냉각핀용 하우징(61)의 제 2 삽입단(61b)으로 상술한 BMS(2)와 함께 장착되도록 소형으로 설계된다. 즉, 냉각핀용 하우징(61)의 제 1 삽입단(61a)에 형성된 공냉식 냉각 기반의 밀폐형 배터리팩(1)와 연결되어 형성된 BMS(2)의 전단, 그리고 전원 및 제어 플러그(4)의 후단에 형성된다. The BDU 3 is compactly designed to be mounted together with the above-described BMS 2 as the second insertion end 61 b of the housing 61 for cooling fins. That is, the front end of the BMS (2) formed in connection with the air-cooled cooling-based hermetic battery pack (1) formed at the first insertion end (61a) of the housing for cooling fins (61), and the rear end of the power supply and control plug (4) Is formed.
그리고 도 14와 같이, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은 냉각핀용 하우징(61)의 제 1 삽입단(61a) 상부를 덮기 위한 제 1 외장케이스(71)와, BMS(2), BDU(3) 및 전원 및 제어 플러그(4)를 실장하기 위한 제 2 삽입단(61b) 상부를 덮기 위한 제 2 외장케이스(72)를 구비함으로써, 차량에 장착이 가능할 뿐만 아니라, 먼지로부터 완벽하게 보호 및 모든 방향에서 분사되는 낮은 압력의 물에 대한 완벽한 수밀구조의 배터리 케이스를 제공한다. And, as shown in Figure 14, the air-cooled cooling-based sealed battery pack 1 is a first outer case 71 for covering the upper portion of the first insertion end 61a of the housing 61 for cooling fins, BMS (2), BDU (3) and a second outer case 72 for covering the upper part of the second insertion end 61b for mounting the power supply and control plug 4, which can be mounted on a vehicle and are completely protected from dust. And a completely watertight battery case for low pressure water sprayed from all directions.
그리고, 도 15는 도 1의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 전체 구조를 나타내는 분해 사시도이다. And, Figure 15 is an exploded perspective view showing the overall structure of the air-cooled cooling-based hermetic battery pack 1 of FIG.
이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.As described above, the present specification and drawings have been described with respect to preferred embodiments of the present invention, although specific terms are used, it is only used in a general sense to easily explain the technical contents of the present invention and to help the understanding of the present invention. It is not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
부호의 설명Explanation of the sign
1: 공냉식 냉각 기반의 밀폐형 배터리팩1: Hermetic battery pack based on air cooling
2: BMS(battery management system)2: battery management system (BMS)
3: BDU(battery disconnect unit)3: battery disconnect unit (BDU)
4: 전원 및 제어 플러그4: power and control plug
10: BMA(battery module assembly)10: battery module assembly (BMA)
11: 배터리 셀11: battery cell
11a: 셀 카트리지11a: cell cartridge
11b: 제 2 냉각핀11b: second cooling fin
20: 1차 히트싱크(heatsink)20: primary heatsink
20a: 1차 밀폐하우징20a: Primary sealed housing
30: 2차 콜드싱크(coldsink)30: 2nd coldsink
30a: 2차 밀폐하우징30a: secondary sealed housing
40: 콜드블록40: cold block
50: 펠티어 소자(peltier)50: peltier
60: 제 1 냉각핀60: first cooling fin

Claims (9)

  1. 다수의 배터리 셀(11)을 포함하는 BMA(battery module assembly)(10);A battery module assembly (BMA) 10 including a plurality of battery cells 11;
    상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성되며, 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 1차적인 밀폐를 위해 형성되는 1차 밀폐하우징(20a); A hexahedron shape with an open top surface is formed of an upper object and a lower object, and formed for primary sealing on a plurality of battery cells 11 in contact with the primary heat sink 20 and the secondary cold sink 30. Primary sealed housing 20a;
    1차 밀폐하우징(20a)의 외주면을 감싸는 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성되어 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 대한 2차적인 밀폐를 위해 형성되는 2차 밀폐하우징(30a); A plurality of battery cells contacted with the primary heat sink 20 and the secondary cold sink 30 by forming an hexahedral shape having an open upper surface surrounding the outer circumferential surface of the primary hermetic housing 20a as an upper object and a lower object ( A secondary hermetic housing 30a formed for secondary closure to 11);
    하부면으로 제 1 냉각핀(60)이 형성된 냉각핀용 하우징(61) 내부의 삽입홈(62)으로 삽입되며, 상부로는 냉각집중용 콜드블록(40)을 통해 2차 콜드 싱크(30)와 맞닿으며, 2차 밀폐하우징(30a)과 냉각핀용 하우징(61)에 의한 밀폐된 구조 내에 형성되는 펠티어 소자(50); 를 포함하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.The lower surface is inserted into the insertion groove 62 in the cooling fin housing 61 formed with the first cooling fin 60, the upper portion and the secondary cold sink 30 through the cold concentrating cold block 40 A Peltier element 50 which is abutted and formed in a sealed structure by the secondary hermetic housing 30a and the cooling fin housing 61; Air-cooled cooling-based sealed battery pack structure comprising a.
  2. 청구항 1에 있어서, 1차 히트싱크(20)는, The method according to claim 1, wherein the primary heat sink 20,
    다수의 배터리 셀(11)의 하부면을 받치는 구조로 다수의 배터리 셀(11)과 직접 접촉하여 1차로 다수의 배터리 셀(11)의 온도를 낮추는 효과를 제공하기 판 형상으로 형성되며, It is formed in a plate shape to directly lower the temperature of the plurality of battery cells 11 in direct contact with the plurality of battery cells 11 in a structure supporting the lower surface of the plurality of battery cells 11,
    2차 콜드싱크(30)는, Secondary cold sink 30,
    1차 히트싱크(20)의 하부면을 받치며 상부면과 전면 및 후면이 개방된 육면체 형상으로 형성되어 다수의 배터리 셀(11)에 대한 발열을 통해 온도를 2차로 낮추는 역할을 수행하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.Supporting the lower surface of the primary heat sink 20, the upper surface, the front and the rear is formed in a hexahedral shape is characterized in that serves to lower the temperature to the second through the heat generated for the plurality of battery cells (11) Air-cooled cooling based sealed battery pack structure.
  3. 청구항 1에 있어서, 냉각집중용 콜드블록(40)은,The method according to claim 1, Cooling concentration cold block 40,
    2차 밀폐하우징(30a)과 맞닿는 사각의 판 형상으로 형성되며, 그 하부에는 펠티어 소자(50)와 맞닿는 구조를 갖는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.The airtight cooling-based hermetic battery pack structure, which is formed in a rectangular plate shape in contact with the secondary hermetic housing (30a), the lower portion has a structure in contact with the Peltier element (50).
  4. 청구항 1에 있어서, 냉각핀용 하우징(61)은,The method of claim 1, wherein the housing 61 for cooling fins,
    2차 밀폐하우징(30a)을 내부의 미리 설정된 높이까지 삽입하기 위한 제 1 삽입단(61a)과, BMS(2), BDU(3) 및 전원 및 제어 플러그(4)를 실장하기 위한 제 2 삽입단(61b)으로 구분되며, 상부면이 개방된 육면체 형상으로 형성되는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.A first insertion end 61a for inserting the secondary hermetic housing 30a to a predetermined height therein, and a second insertion for mounting the BMS 2, the BDU 3, and the power and control plug 4; Air-cooled cooling-based hermetic battery pack structure, characterized in that divided into stages (61b), the upper surface is formed in an open hexahedral shape.
  5. 청구항 4에 있어서, 상기 미리 설정된 높이는,The method according to claim 4, wherein the preset height is,
    2차 밀폐하우징(30a)의 냉각핀용 하우징(61) 상에서 제 1 삽입단(61a)으로 삽입시, 제 1 삽입단(61a)의 삽입홈(62) 내부에 삽입된 펠티어 소자(50) 및 그 상부의 냉각집중용 콜드블록(40)의 적층 구조의 상부면과 맞닿는 위치인 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.When inserted into the first insertion end 61a on the cooling fin housing 61 of the secondary hermetic housing 30a, the Peltier element 50 inserted into the insertion groove 62 of the first insertion end 61a and its Air-cooled cooling-based closed battery pack structure, characterized in that the position in contact with the upper surface of the laminated structure of the cold concentrating cold block 40 of the upper.
  6. 청구항 1에 있어서, The method according to claim 1,
    배터리 셀(11)은, HEV 차량용 리튬 이온 배터리 셀이며, The battery cell 11 is a HEV vehicle lithium ion battery cell,
    2차 밀폐하우징(30a)에 의한 밀폐 및 단열된 구조에 의해 외부로부터의 고열의 유입을 막고, 펠티어 소자(50)에 의해 냉각된 내부의 온도를 유지하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.An air-cooled cooling-based hermetic battery characterized by preventing the inflow of high heat from the outside by the hermetically sealed and insulated structure by the secondary hermetic housing 30a and maintaining the internal temperature cooled by the Peltier element 50. Pack structure.
  7. 청구항 1에 있어서, 제 1 냉각핀(60)은,The method of claim 1, wherein the first cooling fins 60,
    냉각핀용 하우징(61)의 하부면에 다수의 판 형상의 방열핀이 각각 균일한 이격 간격을 갖고 하부로 향하도록 형성되어, 차량운행시 외부 공기와 접촉하며 열교환을 위해 형성되는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.On the lower surface of the cooling fin housing 61, a plurality of plate-shaped heat-dissipating fins are formed so as to face downwards with uniform spacing, respectively, the air-cooled cooling characterized in that the contact with the outside air when driving the vehicle is formed for heat exchange Based sealed battery pack structure.
  8. 청구항 1에 있어서, The method according to claim 1,
    BMA(battery module assembly)(10)를 구성하는 직렬 연결된 다수의 배터리 모듈(11u) 각각은, Each of the plurality of serially connected battery modules 11u constituting a battery module assembly (BMA) 10,
    각 배터리 모듈(11u) 내의 다수의 배터리 셀(11)을 구분하는 셀 카트리지(11a)의 양측면에 제 2 냉각핀(11b)을 포함하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.Air-cooled cooling-based hermetic battery pack structure, characterized in that it comprises a second cooling fin (11b) on both sides of the cell cartridge (11a) for separating a plurality of battery cells (11u) in each battery module (11u).
  9. 청구항 8에 있어서, 제 2 냉각핀(11b)은,The method of claim 8, wherein the second cooling fin (11b),
    하나의 배터리 모듈(11u) 내에서의 다수의 배터리 셀(11) 모두와 직접적으로 접촉하는 위치에 배터리 모듈(11u)의 양 측면에서 직교하는 방향을 향하도록 형성된 다수의 판 형상의 방열핀이 균일한 이격 간격을 두고 형성되는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩 구조.A plurality of plate-shaped heat dissipation fins formed to face in a direction orthogonal to both sides of the battery module 11u at a position in direct contact with all of the plurality of battery cells 11 in one battery module 11u are uniform. Air-cooled cooling-based hermetic battery pack structure, characterized in that formed at intervals apart.
PCT/KR2014/010620 2014-07-23 2014-11-06 Air-cooling-based sealed battery pack structure WO2016013721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0092973 2014-07-23
KR1020140092973A KR101588572B1 (en) 2014-07-23 2014-07-23 hermetically sealed battery pack based on air cooling type

Publications (1)

Publication Number Publication Date
WO2016013721A1 true WO2016013721A1 (en) 2016-01-28

Family

ID=55163238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010620 WO2016013721A1 (en) 2014-07-23 2014-11-06 Air-cooling-based sealed battery pack structure

Country Status (2)

Country Link
KR (1) KR101588572B1 (en)
WO (1) WO2016013721A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102174288B1 (en) * 2019-09-17 2020-11-05 (주)엠피에스코리아 structure of lithium battery pack displaying battery's replacement time
KR20230150752A (en) * 2022-04-22 2023-10-31 스탠다드에너지(주) Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226955A (en) * 2011-04-19 2012-11-15 Dendo Sharyo Gijutsu Kaihatsu Kk Battery unit
KR20130011370A (en) * 2011-07-21 2013-01-30 현대자동차주식회사 Cooling case for battery pack
KR20140011439A (en) * 2012-07-12 2014-01-28 주식회사 엘지화학 Battery module having indirect air-cooling structure
KR20140034953A (en) * 2012-09-07 2014-03-21 현대자동차주식회사 Battery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226955A (en) * 2011-04-19 2012-11-15 Dendo Sharyo Gijutsu Kaihatsu Kk Battery unit
KR20130011370A (en) * 2011-07-21 2013-01-30 현대자동차주식회사 Cooling case for battery pack
KR20140011439A (en) * 2012-07-12 2014-01-28 주식회사 엘지화학 Battery module having indirect air-cooling structure
KR20140034953A (en) * 2012-09-07 2014-03-21 현대자동차주식회사 Battery system

Also Published As

Publication number Publication date
KR101588572B1 (en) 2016-01-26

Similar Documents

Publication Publication Date Title
WO2012044065A2 (en) Battery pack and a battery pack assembly equipped therewith
WO2017101679A1 (en) Tray, power battery pack and electric vehicle
WO2018008866A1 (en) Battery module, battery pack comprising same, and vehicle
WO2021029549A1 (en) Busbar having excellent insulation and heat dissipation performance and battery module comprising same
WO2016171345A1 (en) Battery cell cooling device and battery module including same
WO2010114311A2 (en) Battery module having improved safety
US11495908B2 (en) Electrical connector assembly with liquid cooling features
WO2020009465A1 (en) Battery module
WO2018034383A1 (en) Battery module
WO2017104938A1 (en) Battery module, battery pack comprising battery module, and vehicle comprising battery pack
WO2017217633A1 (en) Battery module, and battery pack and vehicle which comprise same module
US20120308848A1 (en) Battery pack
WO2011034324A2 (en) Battery module having a temperature sensor installed thereon, and medium or large battery pack including same
WO2010114317A2 (en) Battery module having excellent radiation property and medium to large sized battery pack
WO2014014303A1 (en) Battery module assembly
WO2020013455A1 (en) Electric vehicle battery pack cooling system and electric vehicle battery pack system cooling method using same
WO2012091459A2 (en) Battery module storage device, battery module temperature adjustment device, and electric power storage system having same
WO2018169216A1 (en) Battery module, battery pack comprising battery module, and vehicle comprising battery pack
WO2011149234A2 (en) Battery pack and assembly for an electric vehicle, and a temperature control system using the same
WO2021080115A1 (en) Battery module and battery pack including same
CN102918703A (en) Temperature controlled battery pack assembly and methods for using the same
KR101584322B1 (en) System for driving vehicle having hermetically sealed battery pack based on air cooling type
US20080259569A1 (en) Thermally enhanced battery module
KR101606472B1 (en) hermetically sealed battery pack based on air cooling type for capable of monitoring
WO2022035055A1 (en) Battery module having improved assemblability and battery pack comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898145

Country of ref document: EP

Kind code of ref document: A1